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ABSTRACT
The term “context-free grammar” invariably implies use of
a static, unchanging set of grammar rules. When this con-
straint is removed, dynamic grammars result. In the past,
use of dynamic grammars has been relegated to semantics
work. However, we show that by defining and interpret-
ing dynamic grammars appropriately, we can create a new
grammar-based program execution model. This model uni-
fies disparate areas such as compiler construction, oper-
ating systems, data compression, formal languages, inter-
process communication, and program representation. Ap-
plication areas include code compression in embedded sys-
tems and the implementation of user-level threads.
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1 Introduction

Context-free grammars are primarily used in parsers, which
take an input string and attempt to determine if the input
is valid according to a set of grammar rules. However,
such grammars1 may be interpreted in at least three other
ways [1]. One way to see a grammar is as a generative
device, where the grammar rules are applied to generate a
sentence; effectively, this is the reverse of what parsers do.

Typically, a parser will use a set of grammar rules that
is static – defined at compiler-build time, no grammar rules
will be added or deleted as the parser operates. However,
it is possible to lift this restriction, resulting in “dynamic
grammars.”

Dynamic grammars have been the subject of occa-
sional research, dating back to the early 1960s [2]; Chris-
tiansen [3] gives a survey of work prior to 1990. How-
ever, this work [2, 3, 4, 5, 6, 7] is uniformly concerned
with developing a formalism that captures static semantic
properties in syntax. For example, upon seeing a variable
declaration like

int foo;

1Unless otherwise noted, we use “grammar” to mean “context-free
grammar” in the remainder of the paper.

one could dynamically add a grammar rule permittingfoo
to be an identifier. Semantically correct use offoo would
thus become a syntactic property to be checked by the
parser.

To the best of our knowledge, no one else has ex-
plored applications of dynamic grammars in a generative
sense. We define dynamic grammars and our semantics for
them in Section 3. In Sections 4 through 6 we show how
dynamic grammars can be used to create a new program ex-
ecution model, and extend that to a multitasking kernel and
the implementation of inter-process communication. We
conclude with a discussion of application areas for our ex-
ecution model.

2 Notation and Definitions

We use standard notation for context-free grammars [8].
Formally, a context-free grammaris a quadrupleG =
(N,T,R, S) whereN is a set ofnonterminalsymbols,T
is a set ofterminal symbols (N ∩ T = ∅), R is a set of
grammar rulesof the formN × (N ∪ T )∗, andS is a
distinguished nonterminal called thestart symbol. When
discussing context-free grammars abstractly, we use upper-
case letters early in the alphabet to denote nonterminals,
lowercase letters early in the alphabet to represent termi-
nals, and uppercase letters late in the alphabet stand for ei-
ther terminals or nonterminals. The empty string is written
asε, w stands for a string of terminal symbols, andα and
β stand for strings of terminal and nonterminal symbols
X1X2 . . . Xk, k ≥ 0. Grammar rules are writtenA→ α.

Beginning with the start symbol, a nonterminalA
may beexpandedby replacingA with α for some gram-
mar ruleA → α. Thesederivation stepsmay be repeated
until only terminal symbols remain, at which point we have
a sentencein the language described byG. Each string of
terminal and nonterminal symbols resulting from a deriva-
tion step is called asentential form.

3 Dynamic Grammars

We define our dynamic grammars in a way that gives them
some characteristics which we exploit later. Our grammar
rules can be partitioned into two types: static and dynamic



(β, (N,N∆, T,R, S)) `+A→α (β, (N,N∆, T, {R1, R2, . . . , R|R|, A→ α}, S))

(wAβ, (N,N∆, T,R, S)) `A (wAβ, (N,N∆, T,R, S)),
if no ruleA→ α ∈ R

(wAβ, (N,N∆, T,R, S)) `A (wαβ, (N,N∆, T,R, S)),
if A ∈ N , andA→ α is the first rule
in R with A as the left-hand side

(wAβ, (N,N∆, T,R, S)) `A (wαβ, (N,N∆, T,R \ {A→ α}, S)),
if A ∈ N∆, andA→ α is the first
rule inR with A as the left-hand side

Figure 1. Semantics of transitions between derivation configurations

(S,G∆) `S (aA, (N,N∆, T, {S → aA,B → d}, S))
`+A→bA (aA, (N,N∆, T, {S → aA,B → d,A→ bA}, S))
`+A→cB (aA, (N,N∆, T, {S → aA,B → d,A→ bA,A→ cB}, S))
`A (abA, (N,N∆, T, {S → aA,B → d,A→ cB}, S))
`A (abcB, (N,N∆, T, {S → aA,B → d}, S))
`B (abcd, (N,N∆, T, {S → aA,B → d}, S))

Figure 2. Derivation ofabcd using a dynamic grammar

rules. A grammar initially only has a set of static grammar
rules; as the grammar is used (to derive a terminal string,
for instance), other rules may be added dynamically. The
two types of rules are treated slightly differently, in that
a static grammar rule may never be deleted. In contrast,
a dynamic grammar rule is automatically deleted from the
grammar when it is used.

To formalize this, adynamic context-free grammaris
a quintupleG∆ = (N,N∆, T,R, S). N is a set of non-
terminal symbols which appear on the left-hand side of
static grammar rules,N∆ is a set of nonterminals which
may be used on the left-hand side of dynamic grammar
rules (N ∩ N∆ = ∅), T is a set of terminal symbols
(N∩T = N∆∩T = ∅), andS is the start symbol (S ∈ N ).
R is anorderedset of grammar rules, containing both static
grammar rules of the formN × (N ∪ N∆ ∪ T )∗ and dy-
namic grammar rules of the formN∆ × (N ∪ N∆ ∪ T )∗.
We writeRi to refer to theith rule inR.

When deriving a sentence with a dynamic grammar,
is it not sufficient to simply keep track of the evolving
sentential form. Both the sentential form and the state of
the dynamic grammar may change during a derivation, so
changes to both must be noted. Aderivation configuration
for a dynamic grammarG∆ is a pairC = (β,G∆), where
β is a sentential form.

Transitions from one derivation configuration to an-
other, writtenCi ` Ci+1, may be made in one of two ways.
First, the leftmost nonterminal2 in the sentential form may

2We only consider leftmost derivations here.

be expanded (Ci `A Ci+1). Second, a dynamic grammar
rule may be added (Ci `+A→α Ci+1). The semantics of
these operations are given in Figure 1.

For example, letG∆ = (N,N∆, T,R, S), where
N = {S,B}, N∆ = {A}, T = {a, b, c, d}, andR =
{S → aA,B → d}. The stringabcd may be derived as
shown in Figure 2.

4 Code as Dynamic Grammar

How can these dynamic grammars be applied? The answer
lies in how we interpret the terminal and nonterminal sym-
bols of the grammar.

Compiled code for a program can easily be repre-
sented by a static grammar. Compiled code is a static,
finite-length sequence of machine instructions. Taking ter-
minal symbols to represent machine instructions, a sin-
gle grammar rule suffices to describe a sequence of code.
Grammars can also be used to describe feasible execution
paths in programs, for purposes of program analysis [9].
But in both cases, this is a static description: static code,
static analysis.

Instead, we use dynamic grammars to describe a dy-
namic, executing program. The grammar rules are used
to generate the program’s code on demand as it is execut-
ing. Program execution thus alternates with code genera-
tion from grammar rules; every time execution reaches a
nonterminal, control reverts back to a “kernel” which ex-
pands the nonterminal, then resumes execution.
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Figure 3. Grammar-based execution model over six time
steps. Dashed lines represent the expansion of a nontermi-
nal by the kernel, and “PC” is the program counter

L1: i1
i2
goto L2
· · ·

L2: i3

⇒ L1 → i1 i2 L2
L2 → i3

(a) Goto

L1: i1
i2
call foo
i3
· · ·

foo: i4

⇒ L1 → i1 i2 foo i3
foo → i4

(b) Function call

Figure 4. Translation of unconditional control flow into
grammar rules

Figure 3 illustrates this new execution model, for the
grammar:

S → i1 i2 A i3
A → i4

Here, i1, i2, i3, and i4 are instructions, andS is the start
symbol. At each time step, the box represents the current
state of the program code in memory; we call this state the
sentential code form, because it corresponds to a sentential
form of the grammar. The initial execution state simply has
the start symbol as the sentential code form, with the pro-
gram counter pointing to the start symbol. As the start sym-
bol is a nonterminal, this causes the kernel to expand the
nonterminal and adjust the program counter accordingly.
In this particular example, the kernel performs two nonter-
minal expansions, and no dynamic grammar rules are used.

L1: i1
if cond goto L2

else goto L3
· · ·

L2: i2
· · ·

L3: i3

⇓

L1 → i1
[ cond ? gen L1′ → L2 ]
[ ¬cond ? gen L1′ → L3 ]
L1′

L2 → i2
L3 → i3

Figure 5. Translation of a conditional goto into grammar
rules. Machine instruction details are enclosed in brackets

One interesting aspect of our grammar-based execu-
tion model is that programs do not need any explicit con-
trol transfer instructions; there is sufficient mechanism in
the grammar model to handle control flow changes.

Let us assume that user programs are compiled to a
typical assembly code. The assembly code can be con-
verted into a grammar by creating a separate grammar rule
for each basic block in the code. There are no user-visible
changes because we convert from the assembly level; users
write their programs as they normally would, in any lan-
guage.

Given this grammar encoding, a goto statement in the
assembly code is simply replaced by a nonterminal naming
the basic block that was the target of the goto. This is il-
lustrated in Figure 4a. When execution reaches the end of
L1 and the program counter points toL2, the kernel will
expandL2, yielding the net effect of the original goto.

Function calls are dealt with in a similar manner, as
Figure 4b shows. A function call in the assembly code is
replaced by the nonterminal corresponding to the start of
the callee’s code. Essentially, this results in procedure in-
tegration [10] of the callee into the caller’s code.

Unconditional gotos and function calls are static, in
that their targets are unchanging. What about conditional
gotos? The answer lies in dynamic generation of gram-
mar rules, shown in Figure 5. Here, the nonterminalL1′

is initially without a definition. Execution ofL1’s code re-
sults in the generation of eitherL1′ → L2 or L1′ → L3,
depending on the value of the conditional. To ensure that
the correct rule is generated, dynamic rule-generation in-
structions may beguarded– an instruction is only executed
if its guard expression is true [11]. This is only a partial
solution, because the program may need to take a differ-
ent path the next time the conditional is evaluated. Condi-
tional gotos function as expected, however, because our se-
mantics for dynamically-generated grammar rules cause a
dynamically-generated rule to be deleted immediately after



being used in a production by the kernel. In other words, a
dynamically-generated rule does not remain in the dynamic
grammar to incorrectly influence future program execution.

Let us now formalize the dynamic grammar-based ex-
ecution model. At any point during execution, the execu-
tion state may be described using a triple(pc, C, Q). C is a
derivation configuration for a dynamic grammar describing
the program (C’s sentential formβ is therefore a senten-
tial code form),pc is used to index into the sentential code
form (1 ≤ pc ≤ |β|+ 1), andQ is a code processor state.

The code processor is what actually executes individ-
ual instructions, such as the assembly code instructions we
used earlier. The instructions it supports are irrelevant, so
long as two constraints hold:

1. Instruction execution must be sequential; no control
flow instructions are permitted. Control flow changes
may be handled using the dynamic grammar mecha-
nisms described above.

2. A guarded instruction must be provided to dynami-
cally generate grammar rules.

These constraints can be easily met if the code processor is
a virtual machine implemented in software. For a hardware
code processor – a CPU – some creativity may be required.
In the ARM architecture [12], for instance, the second con-
straint may be met using a conditionally-executed branch
instruction.

The state of the code processor is abstracted away by
Q, upon which two operations are defined. First, we need
to know the new code processor state following execution
of an instructioni, writtenQ′ = executeiQ. Second, we
must be able to evaluate a side-effect-free predicateb in Q,
and receive a boolean value in return. This second opera-
tion is denotedquerybQ. The initial code processor state is
calledQ0.

Returning to the execution model, the state transitions
are described in Figure 6. Indexing the sentential code form
using the program counter is denotedβ[pc] and is defined
only when1 ≤ pc ≤ |β|. The setTgen , Tgen ⊆ T , consists
of terminal symbols that correspond to guarded dynamic
rule-generation instructions of the formb?A → α. These
deterministic state transitions are applied repeatedly, start-
ing from the initial execution state(1, (S,G∆), Q0) until
an execution state is reached wherepc > |β|.

5 A Multitasking Kernel

When control flow is encoded as described in the last sec-
tion, the kernel is frequently invoked to expand nontermi-
nals. Also, programs cannot loop without the kernel being
called, because there are no explicit control flow instruc-
tions. The kernel is in an ideal position to implement non-
preemptive context switching.

Nonpreemptive, or cooperative, multitasking has been
used previously in operating systems, most notably in early
versions of MacOS [13, 14] and Windows [15, 16]. In

pc C Q
=⇒ pc C′ Q

whereβ[pc] ∈ (N ∪N∆)
, C `β[pc] C′

pc C Q
=⇒ pc + 1 C executeβ[pc]Q

whereβ[pc] ∈ (T \ Tgen)

pc C Q
=⇒ pc + 1 C′ Q

whereβ[pc] ∈ Tgen andquerybQ = true
,

C `+A→α C′

pc C Q
=⇒ pc + 1 C Q

whereβ[pc] ∈ Tgen andquerybQ = false

Figure 6. State transitions of dynamic grammar-based exe-
cution model

these systems, programs are event-driven and assumed to
frequently call an API routine to get the next event; the op-
erating system relies on this to regain control and context
switch to another process. Any violation of this assumption
by a program – a long-running computation, a misbehaving
process – and the system as a whole becomes unrespon-
sive. In contrast, our nonpreemptive multitasking does not
require programs to be written in a particular fashion and
cannot lose control of the system. Successful nonpreemp-
tive multitasking follows from the underlying program rep-
resentation, not the program behavior.

In the kernel, each process is represented by an ex-
ecution state as described in the previous section. Part of
the execution state is the code processor’s state which, in
concrete terms, would typically consist of a register set, a
stack, and a heap. The set of processes is assumed to be
fixed – a feasible constraint for many embedded systems.
Every time the kernel is invoked to expand a nonterminal,
it suspends the current process, then finds and resumes the
next unblocked process in round-robin3 fashion. But how
can a process block in the first place?

6 Inter-Process Communication

Blocking and inter-process communication in our
grammar-based execution model hinge on the concept
of “useless” nonterminals, specifically undefined non-
terminals. Normally the appearance of an undefined
nonterminal in a grammar rule would signal a potential
error, and the grammar rule would be deleted [17]. In a
dynamic grammar, an undefined nonterminal makes it im-

3Of course, variations on the scheduling algorithm or context switch-
ing policy are possible.



L1: · · ·
wait(“mutex”)
critical section
signal(“mutex”)
· · ·

⇒

L1 → · · ·
mutex
critical section
[ gen mutex→ ε ]
· · ·

Figure 7. Semaphore translation

possible for the kernel to expand the sentential code form
further; this is formalized by the semantics in Figure 1. We
use this idea as the basis of blocking – a process whose
program counter points to an undefined nonterminal is
blocked. That semantics, plus the fact that nonterminal
expansion is an atomic kernel operation, allows for the
construction of inter-process communication mechanisms.

Semaphores are exposed to the user viasignal and
wait function calls at the source language level. The com-
piler maps these into a dynamic rule generation and an un-
defined nonterminal, respectively, as shown in Figure 7. In
the user’s code, “mutex” is used as the semaphore’s name;
this becomes an undefined nonterminal in the translated
code. A minor extension to program execution seman-
tics is required here, so that one process may add gram-
mar rules to another process’ dynamic grammar. (A sim-
ple way to implement this is for the kernel to maintain all
process’ grammar rules globally, and prefix each nontermi-
nal’s name with the name of the process: nonterminalA in
processP1would becomeP1 A.)

Note that our dynamic grammars apply dynamically-
generated rules using a FIFO scheme, so multiple signals
on a single semaphore are handled properly. This ordering
property is also useful for the second type of inter-process
communication we support, messages.

Messages are used for passing values between pro-
cesses. The user simply sees two operations at the source
language level,send andrecv . Their translation is given
in Figure 8, where the integer value 123 is being sent. The
receiver waits on the “queue” nonterminal for a message,
after which it saves the message intox . The compiler trans-
latesrecv as a function returning a value, where function
return values are placed in register$rv . The sender sends
its message by generating a rule which causes “queue” to
be replaced by a single instruction that loads the appropri-
ate value into$rv .

Essentially, message passing is implemented by hav-
ing one process dynamically modify another process’ code.
What we have constructed is a formal framework for self-
modifying code as well as run-time code generation [18].
Our grammar-based execution model allows a process to
declare where it can be modified, and provides a mecha-
nism for doing so: grammar rule generation.

We have written a proof-of-concept implementation
which employs a virtual machine as a code processor. Cur-
rently, we are looking at ways to implement grammar-
based execution efficiently on the ARM processor.

L1: · · ·
send(“queue”, 123)
· · ·

⇒

L1 → · · ·
[ gen queue→

[ $rv = 123 ] ]
· · ·

Sender

L2: · · ·
x = recv(“queue”)
· · ·

⇒

L2 → · · ·
queue
[ x = $rv ]
· · ·

Receiver

Figure 8. Message translation

7 Applications

Our grammar-based execution model allows for code de-
compression as part of its basic operation, an attractive
feature for memory-limited embedded systems. Employ-
ing a grammar-based scheme for data compression, repet-
itive code sequences become new grammar rules, with the
original locations of these sequences compressed to a sin-
gle nonterminal [19]. The kernel decompresses code com-
pressed this way automatically during program execution.

Software-based code decompression has been ex-
plored, for example, in [20, 21, 22]. Our approach is
loosely related to Liao et al., who extract common code
sequences and invoke them via function calls at run-
time [23]. Our current contribution is not a new compres-
sion method, but a natural way to incorporate decompres-
sion into program execution.

Grammar-based execution may also be applicable in
the implementation of user-level thread packages, or any
situation where multitasking is required, but preemptive
multitasking is not feasible.

8 Conclusion

We have explored a practical application of dynamic
context-free grammars, where the grammars are used to
generate sentences rather than parse them. By interpreting
the grammar’s terminal symbols as instructions, we arrive
at a grammar-based execution model for programs. We are
thus able to unify ideas in compiler construction, operating
systems, data compression, formal languages, inter-process
communication, and program representation.

Other unification efforts have been made. Symbol-
ics Lisp machines permeated all software with a single
programming language, and allowed a user to replace any
component, including ones in the operating system [24].
The EZ system involved a programming language which
subsumed operating system functionality into language ab-
stractions mapping, for example, files into strings [25].
Jones [26] suggests ways to exploit concepts common to
both languages and operating systems, and also advocates
that user programs and the operating system be written in



the same language.
However, our novel grammar-based execution model

changes only the low-level program representation. We are
thereby able to unify many areas without impinging on the
user’s choice of programming language. The user never
sees the grammar mechanisms and is free to write programs
for our system in any programming language.
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