
Extending Old Compiler Tools with Meta-Tools
John Aycock

Department of Computer Science
University of Calgary

2500 University Drive N.W.
Calgary, Alberta, Canada T2N 1N4

Phone: +1 403 210 9409, Fax: +1 403 284 4707
Email: aycock@cpsc.ucalgary.ca

Abstract— There are many tradeoffs involved in choosing
between a new, more powerful software tool and an older,
more established one. The best way to handle this problem
may be to make the old tool more powerful through the use
of meta-tools. Compiler tools suffer from this exact problem
– we present YETI, a meta-tool that provides a framework
for transforming and enhancing Yacc specifications. YETI can
generate new Yacc specifications which automate common tasks,
enhancing programmer productivity.

Index Terms— Tools, Meta-tools, Parsing, Yacc.

I. I NTRODUCTION

How can a transition be made from old, very well-
established software tools to new, more powerful ones? Prac-
tically speaking, there are a number of issues that may be
involved:

� Software developers are unfamiliar with the new tools,
and may need training or retraining.

� Training materials may not be readily available for the
new tools.

� The new software tools may not be universally available
on all platforms of interest.

� The new tools may be under active development, present-
ing a moving target for software developers.

� Support and the future existence of the new tools may be
questionable.

This tool-transition problem arises in the area of compiler
tools. The most ubiquitous parser generation tool, Yacc [1],
[2], dates backa quarter of a century.1 In the late 1970s,
computing resources were much more limited, resulting in
an engineering tradeoff – using a weaker parsing algorithm
in exchange for reduced space requirements. Yacc (and the
GNU incarnation, Bison) is now available for most any system
imaginable, generations of compiler writers have been trained
using it, and it has influenced the design and implementation
of other parser tools.

We are now at a point computationally where more power-
ful, easier-to-use, more resource-intensive parsing algorithms
can be feasibly used. There are a variety of new parser tools
incorporating these algorithms [4]–[8], but they suffer the tool-
transition problem described above, especially against a tool
as old and entrenched as Yacc.

1 [3, page 99] has a first-hand account of the problem that led to Yacc’s
inception.

Perhaps the solution to the tool-transition problem is not
training, not tool stability, not even using the new tools at all.
Perhaps we should be looking at new, more powerful ways of
using existing tools rather than adopting new ones.

We have taken this approach with Yacc. In the remainder of
this paper we describe YETI – Yacc-Enhancing Tool Infras-
tructure – which allows Yacc to be used in more productive
ways. Effectively, YETI is a meta-tool, which automatically
generates code to enhance an existing Yacc specification.
Programmers are still using Yacc, avoiding many training
problems, and YETI is a portable, lightweight tool whose
output is not reliant on YETI’s continued existence.

Starting with a brief Yacc tutorial, we present YETI’s ar-
chitecture, two different transformations that YETI is currently
able to perform, then related work and possible applications.

II. A Y ACC PRIMER

Yacc is a parser generator tool for compiler writers. It takes
a Yacc specification as input, and produces C code as output
that implements a table-driven parser. The output code from
Yacc is compiled by the programmer and linked in with the
compiler they are building.

Yacc specifications have three sections, separated by%%
symbols:

declarations
%%
grammar rules
%%
C code

Declarations simply declare information about symbols used
in the grammar rules. The grammar rules themselves specify
what inputs to the generated parser are valid; the grammar
rules may have code snippets embedded within them to
perform actions at certain points during parsing. C code in the
third section is copied to the generated output file untouched.

III. YETI: Y ACC-ENHANCING TOOL INFRASTRUCTURE

YETI transforms existing Yacc specifications by automati-
cally inserting new code into them. The architecture of YETI
is shown in Figure 1:

Fig. 1. YETI architecture.

� Yacc specifications are read in and then canonicalized by
the front end. Converting into a canonical form simplifies
later parts of YETI.

� An additional specification file may be required, de-
pending on the transformation the user has selected. If
necessary, this additional specification file is read directly
by the transformation engine.

� The new, transformed Yacc file is output by YETI’s back
end. The back end is decoupled from the transformation
process, allowing different output formats to be supported
by YETI. Current back ends output either the transformed
Yacc specification or just the grammar (useful for extract-
ing the grammar for use in different parsing tools).

YETI is written in Python, an object-oriented scripting lan-
guage, and consists of approximately 2100 lines of code.

IV. T RANSFORMATION EXAMPLES

Currently, YETI supports two transformations, both of
which automatically add code to the Yacc specification to
construct an abstract syntax tree (AST). This is a common task,
and is usually done by the programmer laboriously writing
repetitive code in the Yacc specification to manually construct
the AST.

We will use the Yacc specification in Figure 2 as a running
example; it parses a list of key/value pairs. Such a grammar
would describe flat file databases, such as the domain name
resolver configuration shown in Figure 3.

A. Simple AST Construction

Simple AST construction builds an AST using two user-
supplied functions:

AST TERMINAL
Passed the token type, a pointer to the token, and the
token’s attribute, this function converts a token into
a leaf node in the AST.

%token ID

%%

list : list pair
| pair
;

pair : {flag = 1;} key value
;

key : ID ;
value : ID ;

%%

Fig. 2. Sample Yacc specification.

domain cpsc.ucalgary.ca
nameserver 127.0.0.1
nameserver 192.168.100.1

Fig. 3. Sample input file with key/value pairs. Yacc would see six “ID”
tokens for this file.

AST NONTERMINAL
This function constructs an interior AST node. Its
arguments are the node type, its arity, and an array
of child nodes.

YETI’s transformation inserts code into each grammar rule to
call these functions appropriately. A na¨ıve user implementation
of these two functions, which constructs the AST nodes
exactly as requested by YETI-generated code, results in the
construction of a parse tree (also called a concrete syntax tree).
Figure 4 shows such a tree built for the input in Figure 3.

Fig. 4. Parse tree built by simple AST construction.

Fig. 5. Flattened AST, produced with simple AST construction modifications.

A user may make simple changes to their two AST-building
functions that mold the AST from the parse tree. For example,
AST_NONTERMINALcould be modified so that it doesn’t
construct a new node if only one child is present. This type
of modification avoids creating some extraneous AST nodes,
and results in the much-flattened tree in Figure 5.

Part of the Yacc output from YETI is shown in Figure 6.
Besides the calls to the two AST-building functions, YETI
has inserted appropriate declarations for the grammar, and
preserved the user-specified code that was in the input spec-
ification – such an action might be required to send lexical
feedback to the scanner, which is outside the scope of YETI’s
transformation. TheAST_ROOTfunction is called at the root
of the tree to allow the tree to be processed by the user’s code
in an application-specific manner. All the data structures YETI
uses, such as AST nodes and token types, are user-defined for
maximum flexibility.

This method of simple AST construction has been used
for over four years in our SPARK toolkit [8] and has proved
simple but effective. Among other things, we have used it to
build ASTs for a bytecode decompiler, and for transformation
specifications in YETI itself.

%{
static AST_TYPE *_ast_kids[3];

%}
%union {

AST_TOKEN_TYPE AST_TOKEN_TAG;
AST_TYPE *ast_node;

}
%type <ast_node> key
%type <ast_node> list
%type <ast_node> pair
%type <ast_node> value
%token <AST_TOKEN_TAG> ID
%start list
%%
list: list pair {

_ast_kids[0] = $1;
_ast_kids[1] = $2;
$$ = AST_NONTERMINAL(

2, 2, _ast_kids
);

AST_ROOT($$);
} ;

...

pair: {flag = 1;} key value {
_ast_kids[0] = $2;
_ast_kids[1] = $3;
$$ = AST_NONTERMINAL(

3, 2, _ast_kids
);

} ;
key: ID {

_ast_kids[0] = AST_TERMINAL(
5, ID, $1

);
$$ = AST_NONTERMINAL(

1, 1, _ast_kids
);

} ;

...

%%

Fig. 6. Partial output for simple AST construction.

list/2 $1 +($2)
list/1 LIST ($1)
pair/3 PAIR ($1, $2)
key/1 $1
value/1 $1

Fig. 7. Sample AST shaping specification.

Fig. 8. AST produced with AST shaping.

B. AST Shaping

AST shaping is a somewhat newer concept, only a year and
a half old, but we have used the method in many substantial
projects already: Yacc files in YETI, an assembler, a compiler,
and a grammar utility. It allows a more concise, higher-level,
finer-grained description of AST construction than is easily
achievable with simple AST construction.

YETI uses a separate specification file to describe how
AST shaping should be performed. A specification file for
the running example in shown in Figure 7, which associates
a shaping rule with each rule in the original grammar. We
use a Prolog-inspired syntax for the association –list/2
identifies the grammar rule for “list” with two items on its
right-hand side, for instance. Our experience is that this is
usually sufficient to uniquely identify a grammar rule, but an
extended mechanism is supported too:

list/2 with list

and

list with list

both specify the same grammar rule, allowing a distinguishing
symbol on the grammar rule’s right-hand side to be named.

The AST shaping rules can take one of six forms:
1) New AST node. Given the node type to build, calls

AST_NONTERMINALto create a new node, as in simple
AST construction.

2) Existing AST node. Used for passing subtrees without
modification or, if applied to a token, automatically
creates a leaf AST node by callingAST_TERMINAL.

3) Append to existing AST node. Extremely useful for
constructing lists in an AST, such as representing a list
of statements or a list of arguments.

4) NULL. For AST designs that call for a NULL place-
holder.

5) Function call. Invokes a user-specified function to con-
struct the AST node, effectively supplying an escape

...

%%
list: list pair {

$1 = AST_APPEND($1, $2);
$$ = $1;
AST_ROOT($$);

} ;
list: pair {

_ast_kids[0] = $1;
$$ = AST_NONTERMINAL(

1, 1, &_ast_kids[0]
);

AST_ROOT($$);
} ;

...

Fig. 9. Partial output for AST shaping.

mechanism for shaping too complicated to be described
by the shaping rules.

6) Arbitrary code. The ultimate escape mechanism, which
just copies the supplied code directly into the output.

AST shaping rules are processed recursively, so tree shapes
of arbitrary complexity can be described. Items in a grammar
rules’s right-hand side are referenced using$1 , $2 , $3 , and
so on. Figure 7’s shaping rules are very straightforward:ID
tokens are made into leaf nodes; key/value pairs are hung off
newPAIR nodes; oneLIST node is made initially for the first
key/value pair, and subsequent pairs are appended to that node.
Figure 8 shows the resulting AST for the input in Figure 3,
and Figure 9 shows sample output from YETI.

The ease with which an AST can be built with AST
shaping, compared to manual construction or even simple
AST construction, has made it our method of choice for new
projects.

V. RELATED WORK

Automatically generating code is a well-known technique
for software development [9]–[11]. Strictly speaking, even
tools like Yacc are meta-tools, since they generate code for
another tool (the C compiler), but this distinction is usually
overlooked.

While there are some systems that enhance parser tools
in some respect (e.g., [12]), the closest work to ours is
MetaToolTM [13]–[15].2 As an application generator, their tool
was much more ambitious (and heavyweight) than ours, and
was not intended to address tool-transition problems. Ox [16]
is another related tool, for working with attribute grammars;
in contrast, our tool is a much more general framework.

A different approach is to change the legacy tool itself.
Recent versions of Bison have included experimental support

2MetaTool was formerly known as STAGE, and the work is now carried
on asivy*metaTM .

for a more powerful parsing algorithm. We would argue,
however, that a new parser tool is effectively created by doing
so, presenting the same tool-transition problem as before.

VI. POSSIBLE APPLICATIONS AND CONCLUSIONS

The above transformations really just begin to demonstrate
what can be done with YETI. YETI can be viewed as a general
framework for applying transformations to Yacc specifications;
new transformations can be added to YETI in the same way
that plug-ins can be added to Eclipse [17]. Some possible
applications include:

� Converting legacy Yacc specifications to new/different
forms, for use in reengineering tools.

� Automatically inserting debugging code as an aid to
development.

� Inserting code to graphically display Yacc’s operation, for
use in training.

� Enhancing the power of the parsing algorithm Yacc uses,
making it easier to use, without changing Yacc itself.

� Applying transformations to the grammar automatically.
� Adding support for attribute grammars, which would

allow more of the compilation process to be specified
at a high level.

Our experience with YETI suggests that it is definitely
possible to breathe new life into old tools. Adoption of newer
tools is not always feasible, and the meta-tool approach can
provide enhanced programmer productivity with an existing
tool.

ACKNOWLEDGMENT

Thanks to Shannon Jaeger and Rob Walker for commenting
on an early version of this paper. This work was funded in part
by the Natural Sciences and Engineering Research Council of
Canada.

REFERENCES

[1] S. C. Johnson, “YACC — yet another compiler compiler,”UNIX
Programmer’s Manual, 7th Edition, vol. 2B, 1978.

[2] J. R. Levine, T. Mason, and D. Brown,Lex & Yacc, 2nd ed. O’Reilly
& Associates, 1992.

[3] P. H. Salus,A Quarter Century of UNIX. Addison-Wesley, 1994.
[4] A. van Deursen, “Introducing ASF+SDF using the�-calculus as exam-

ple,” in Executable Language Definitions. PhD thesis, University of
Amsterdam, 1994.

[5] F. W. Schröer, “The ACCENT compiler compiler, introduction and ref-
erence,” German National Research Center for Information Technology,
Tech. Rep. 101, June 2000.

[6] P. T. Breuer and J. P. Bowen, “The PRECC compiler compiler,” in
Proceedings of the UKUUG/SUKUG Joint New Year 1993 Conference,
1993, pp. 167–182.

[7] S. McPeak, “Elkhound: A fast, practical GLR parser generator,” Univer-
sity of California, Berkeley, Tech. Rep. UCB/CSD-2-1214, Dec. 2002.

[8] J. Aycock, “Compiling little languages in Python,” inProceedings of the
7th International Python Conference, 1998, pp. 69–77.

[9] J. Herrington,Code Generation in Action. Manning, 2003.
[10] J. Bentley, “Little languages,” inMore Programming Pearls. Addison-

Wesley, 1988, pp. 83–100.
[11] R. S. Pressman,Software Engineering: A Practioner’s Approach, 3rd ed.

McGraw-Hill, 1992.
[12] B. Trancón y Widemann, M. Lepper, and J. Wieland, “Automatic con-

struction of XML-based tools seen as meta-programming,”Automated
Software Engineering, vol. 10, pp. 23–38, 2003.

[13] J. C. Cleaveland, “Building application generators,”IEEE Software,
vol. 5, no. 4, pp. 25–33, July 1988.

[14] I. L. Sindelar, “Specification-driven tool technology,” inProceedings of
the Sun User Group 1990 Conference, 1990, pp. 209–219.

[15] T. T. Wetmore, “MetaTool compiler generator,” 1990, Usenet,
comp.compilers 90-10-038.

[16] K. M. Bischoff, “Ox: An attribute-grammar compiling system based on
Yacc, Lex, and C: User reference manual,” 1993.

[17] Eclipse Platform Technical Overview, Object Technology International,
Inc., Feb. 2003.

