
Being the new guy in an experienced team –
enhancing training on the job

Jörg Denzinger
denzinge@cpsc.ucalgary.ca

Sean Ennis
ennis@cpsc.ucalgary.ca

Department of Computer Science
University of Calgary, Canada

ABSTRACT
We present a modification to evolutionary on-line learning of
cooperative behavior, based on a special action “learn”, that
allows the performance of a new agent replacing an old agent
with somewhat different abilities in an experienced team to
be improved. The general idea is to make us of the strategy
of the old agent, obtained either directly or by the model
the other team members made of it. This would be used
as a seed strategy in the on-line learning process providing
a focus to the process. This way, the flexibility of on-line
learning remains, and the new agent is much less prone to
making “beginner” mistakes that may prevent achievement
of the team goal. Experiments with rather different variants
of the pursuit game show that our method allows new agents
to overcome the difference in abilities rather quickly. Thus,
team performance is much better than when the new agent
starts learning from scratch.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Developing cooperation schemes for multi-agent systems,

and developing individual agent strategies that fit and im-
plement such schemes is an important and unfortunately dif-
ficult and costly problem to solve in building a multi-agent
system. The idea of using learning techniques to enable
agents to develop cooperative behavior to solve given tasks
has become more and more popular, because it provides
a solution to this problem. Off-line learning approaches,
as presented, for example, in [9], were able to reduce the
human involvement in the solution process drastically, usu-
ally at the cost of long learning periods. In most cases,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
AAMAS’02, July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

agent strategies learned off-line are not very flexible. As a
result of this, on-line learning approaches have been devel-
oped that provide much more flexibility, but at the cost of
having to interweave both working on the given task, and
learning. Aside from the general problem of losing the possi-
bility to perform the required task due to incorrect decisions
made earlier, another consequence is that when using on-line
learning, it is very seldom that solutions to the given task
are produced very quickly. The known on-line approaches,
whether they be based on reinforcement learning (see, for
example, [10] for reinforcement learning in general and [14]
or [11] for on-line learning with reinforcement learning) or
evolutionary off-line approaches and an action learn (see [6],
[7]), require a lot of (explorative) experiences before a satis-
factory cooperative behavior is achieved.
If we look at human teams cooperating to perform given

tasks and achieve given goals, very often the teams exist for
a longer period than a certain person is a member of them.
This means that the teams do not always have to start from
scratch each time they tackle a task. In fact, on-line learned
behavior survives the one time problem solving solution and
becomes like off-line learned behavior the next time the task
has to be performed (as was indicated in [6]). On-line learn-
ing only ”kicks in”, if its flexibility is needed. In such long
existing teams, a situation that has to be dealt with is the
exchange of an agent by another one and the consequent
problem of fitting the new agent into the team during the
execution of a task with the least amount of inefficiency as
possible. In human teams, this is solved by training the new
guy on the job.
There are a lot of applications of (pure computer-based)

multi-agent systems that will face a similar problem, for
example, if a new robot is brought into a robot team, or
the software of an agent representing a human being or a
company in auctions or other E-commerce applications is
updated. Usually, the new agent replacing the old agent will
have different abilities and the strategy of the old agent will
not be sufficient for the new agent. Perhaps sometimes some
action cannot even be performed perfectly by it. Therefore
modifying on-line learning approaches so that they allow, on
the one hand side, an old agent to ”teach” the new one its
strategy while on the other side still adapt it very quickly to
the needs of the new agent, is an interesting and necessary
research task. The goal must be to solve the team task with
the new agent faster than in the case that the new agent
starts its learning from scratch.
It should be noted that some people think that learning

in this context is not necessary, because planning based on



some min-max search (to deal with having several agents
acting) should do the job. But first of all, this means that
each time an agent team is given a task, this planning method
has to be applied (since no learning takes place). Even with
only a few possible actions and a few agents, the search
spaces are so large (we are talking about action sequences
of at least 20 to 30 steps of each agent involved) that it
takes a lot of time to traverse them, and storing the final
state within an agent to make use of information from previ-
ous runs is not feasible. Finally, most heuristics for min-max
search assume rational behavior of opponents, which cannot
always be assumed in multi-agent systems, if agents do not
have absolutely sure knowledge about other agents.
In this paper, we present a modification to the on-line

learning approach of [6], as it is realized in the OLEMAS
system, to deal with the situation of a new agent joining
an experienced team. Learning agents in OLEMAS control
their actions by comparing the situation they are in with
the situations of a set of prototypical situation-action pairs
(SAPs). They perform the action of the pair that is the most
similar to the given situation. Learning is an evolutionary
process, generating new sets of SAPs (so-called strategies)
mostly out of strategies that performed very well in simu-
lations of the team of agents at work. On-line learning is
invoked via a special action “learn”, and performs off-line
learning by starting with the current situation and using
simulations that are not going too far into the future (thus
limiting the time an agent does not contribute to the given
task).
Normally, if a new agent is put into an existing team, sub-

stituting an old team member, on-line learning would start
with random strategies and would try to evolve an agent
strategy that cooperates well with the strategies of the other
agents. Even with having exploration of possibilities taken
care of in simulations however, this usually takes quite some
time and, due to the fact that from time to time actions have
to be performed, might even result in missing all opportu-
nities to solve the task given to the team. Our approach is
to first determine how similar important characteristics of
the old agent and its replacement are. If both agents are
sufficiently similar, we extract from the old agent all SAPs
of its strategy with actions that can be performed by the
new agent. This is called its seed strategy.
We modify the evolutionary learning process by requir-

ing each new strategy to at least contain a given percent-
age of SAPs from the seed strategy and at most another
given (higher) percentage of them. This use of a seed strat-
egy, in addition to the usual random start SAPs and mu-
tations, lets the learning start with much better strategies,
i.e. the experience of the old agent, while still allowing for
the flexibility needed to deal with the differences between
the agents. As our experimental evaluation shows, on-line
learning agents using a seed strategy fit themselves into the
team much faster and thus enable the team to accomplish
given tasks much faster than in the case of the new agent
learning its strategy without the help of a seed strategy.

2. EVOLUTIONARY ON-LINE LEARNING
IN OLEMAS

OLEMAS (On-Line Evolution of Multi-Agent Systems)
was developed as a testbed for learning cooperative behavior
of agents. Although in general all types of agent architec-

tures and learning concepts can be integrated into OLEMAS
to be tested on a wide variety of pursuit game variants,
so far only some fixed strategies and evolutionary learn-
ing for agents based on prototypical SAPs and the Nearest-
Neighbor Rule (NNR, see [4]) have been implemented in it.
In the following, we will briefly recapitulate the basics of
OLEMAS (see [6] for more details) so that we can describe
our extensions in the next section.

2.1 Agent Architecture
In general, an agent Ag can be described as a triple Ag =

(Sit,Act,Dat). Sit is a set of situations the agent can be in,
Act a set of actions the agent can perform, and Dat a set of
possible values of the internal data areas of the agent. The
agent then realizes a function fAg: Sit × Dat → Act. The
set Dat can be especially structured in addition to take into
account that an agent is acting within a multi-agent system,
for example by distinguishing between Datown for informa-
tion about the agent itself, Datsag for sure knowledge about
other agents and Datusag for unsure knowledge.
Our agent architecture is based on SAPs and the NNR.

A set of SAPs, the agent’s strategy, is part of Datown of
an agent (i.e. Datown = 2

Sit×Act ×Datown,rest
1). When an

agent is confronted with a situation s, it computes the sim-
ilarity (resp. distance) of all situations in its strategy and
s, and performs the action of the SAP whose situation is
most similar to s (i.e. it applies the nearest-neighbor rule).
If a situation description just consists of a vector of numer-
ical values, then the Euklidean distance of two vectors is
a possible similarity measure. Otherwise, knowledge about
the concrete application has to be used to come up with a
measure.
Note that this agent architecture results in a very reactive

behavior, but it is not very complex. The use of the NNR
allows to cover a lot of possible situations with a rather small
set of SAPs.

2.2 Off-line Learning
Off-line learning is characterized by a so-called learning

phase in which the behavior of an agent or team is formed,
later applying the learned knowledge to the task for which
it was learned. During this later application phase there is
only exploitation of what was learned, that is, no further
learning takes place.
In OLEMAS, an evolutionary learning approach is taken,

based on a Genetic Algorithm (GA) for sets as an individual.
The general idea of a GA is to work on a set of so-called
individuals. Each individual is evaluated resulting in its
fitness value. New individuals are generated out of existing
ones by applying Genetic Operators, namely crossover and
mutation. The “parents” of a new individual are selected
by use of fitness-influenced randomness. New individuals
replace the old ones with the lowest fitness.
Applied to the agent architecture of OLEMAS, individu-

als consist of a set of SAPs for each agent whose strategy
is to be learned. The fitness of such an individual is deter-
mined by applying the agent team to the task that is to be
learned. If the team is successful, the fitness is the number
of steps needed, otherwise, after each action, a measure for

1The situation of an SAP does not have to be limited to the
set Sit, it is also possible to use extended situations that,
for example, contain values of data areas that are part of
Datown,rest



the task fulfillment by the whole team is computed and the
fitness is the sum of these measures over a whole run. If the
task includes dealing with random effects then several runs
contribute to the overall fitness of an individual.
The crossover operator needs two parent individuals, gen-

erating a new individual by randomly picking SAPs from
these parents (up to a maximal number of SAPs). The mu-
tation operator only takes one parent, deletes a randomly
chosen SAP and (sometimes) adds a randomly generated
SAP. In the initial set of individuals all SAPs in an individ-
ual are randomly generated.
Since the idea of off-line learning is to produce a strat-

egy that is then used whenever the team has to perform the
task it was learned for, usually it is okay to put quite a lot
of computational effort into the generation of such a strat-
egy (or strategies, if we learn the behavior of a whole team).
Although [5] showed, that in OLEMAS the learned strate-
gies can deal with some small changes in the task (which
was expressed, for example, by agents with some random
behavior), this flexibility is rather limited. This led to the
subsequent work of incorporating on-line learning. A good
off-line learned strategy, however, must be seen as an invest-
ment that, if possible, should not be completely abandoned.

2.3 On-line Learning by Off-line Learning
On-line learning does not have a learning phase and an

application phase. Instead, learning is done while agents
are already at work on the given task; they are trained on
the job, but without advice up front. While this allows for
more flexibility, especially in the beginning when not much
has been learned, there is a chance that an agent performs
actions that cannot be reversed. In some cases, this can
result in not being able to complete the given task.
In OLEMAS, on-line learning is based on the off-line learn-

ing approach we just described by introducing a special
action “learn”. When “learn” is executed, the off-line ap-
proach is called with the situation the agent anticipates to
be in after “learn” as start situation, models for the other
agents to predict what they will be doing (on-line learning is
performed within one agent, in contrast to off-line learning
that develops strategies for all learning agents at once), and
a rather limited number of actions as the length of the sim-
ulation as parameters. The off-line learning then uses these
parameters to build simulations of the real world in which
the agent is acting at the moment for evaluating strategies.
Since learning takes time, it is necessary to start the simula-
tions not with the current situation but with the anticipated
situation after learning. Naturally, this anticipated situation
might not be the real situation the agent will find itself in
if random influences or models of other agents that are not
very accurate are used (which requires to have a strategy to
deal with it without having to start “learn” again immedi-
ately).
The models of other agents are either based on direct com-

munication or observation. If a teammate communicates
its strategy to the others, then this results in a very accu-
rate model for it. If an agent only observes the agent to
model and then uses the observed situation-action pairs as
the modeled strategy, then this obviously cannot take into
account any information about the internal data areas of the
observed agent. As a result, the model might not be very
accurate.
Since learning takes time, it somewhat interferes with ful-

filling the task given to the team. Due to this, we cannot
afford the long run times that off-line learning usually needs.
By limiting the number of steps that are performed in a
simulation run, a rather good run-time behavior in the real
world can be achieved (see [7]). In OLEMAS, “learn” is
performed periodically until either the given task is fulfilled
or the allotted number of steps (in the real world) are used
up. The intervals between executing “learn” are flexible de-
pending on the performance the strategy that was learned
last achieves. Whenever “learn” is executed, a new strategy
is learned without any influence from the previous strategy
(except that it led to the current situation).

3. EFFICIENT TRAINING ON THE JOB
While both on- and off-line learning in OLEMAS have

proven to be successful, there are certain weaknesses:

• off-line learning is very inflexible, so rather small changes
in the environment during the application often cannot
be compensated for, and a whole new learning phase
is needed (which is rather time consuming).

• on-line learning has to explore the possibilities, which
can lead to missing opportunities, failing to fulfill the
given task, and almost always will lead to poor effi-
ciency in solving the task the first time.

These weaknesses are not particular to OLEMAS, they are
general weaknesses of learning. While OLEMAS allows hav-
ing a learning approach in between the two extremes (by,
for example, executing “learn” as a start with a rather large
number of steps in the simulations and then shorten this
number drastically later; which kind of achieves moving from
off-line to on-line learning), the efficiency in the real world
and missed opportunities (due to not having sufficient ex-
perience) are still problems. If the task given to a team
is completely new, even teams of human beings have these
problems, so we cannot expect much improvement in this
situation.
Very often teams perform tasks for quite some time. Hu-

man teams doing this are able to cope with changing team
members without losing much efficiency. The reason for this
is that new team members start out with a lot of advice on
how to do their part of the team’s task. Either the old
team member provides this advice or the remaining team
members communicate their model of how the new member
should work to him or her. This even works, in the sense
that the loss of efficiency is quite low, if the new team mem-
ber has different abilities than the old one, as long as this
difference is not too large.
In the following, we will present a modification to on-

line learning in OLEMAS that achieves the same results
when exchanging an agent, as we just described for human
beings. We will first present the general approach and then
concentrate on the key issue, namely on how to use a so-
called seed strategy.

3.1 The General Approach
Before the modifications described in the following, deal-

ing with the exchange of an agent in a team in OLEMAS
required performance of on-line learning by the new agent
without any use of either the strategy of the old agent or the
model that the remaining agents had of the old agent. This
assumed that there would be a strategy (resp. a sequence of



strategies to learn) for the new agent that would blend in
with the strategies of the remaining agents. Naturally this
would result in the performance of the given task in the real
world to be quite ineffective.
Our new approach makes use of the strategy of the old

agent (or the model of it of the remaining agents), resp.
parts of it. The general procedure is as follows:

1. Compare the abilities of the old agent and its replace-
ment.

2. If the abilities are too different then let the whole team
re-learn the task.

3. Otherwise, if the abilities are identical (or the new
agent has more abilities), use the strategy of the old
agent.

4. Otherwise, filter out the SAPs in the strategy of the old
agent that have actions the new agent cannot perform,
which results in a seed strategy (i.e. all SAPs that are
not filtered out).

5. Apply the improved on-line learning with the seed strat-
egy.

While point 5 is obviously the most interesting one and will
thusly be dealt with in its own subsection, we will now look
more closely into points 1 through 4. Measuring the simi-
larity with respect to abilties between the old and the new
agent is also an interesting task that depends on the con-
crete application. This is because the application defines
the situation descriptions, possible actions, and the possible
agents in general. Note that ability is not the same as ac-
tion. Two agents might be able to perform the same action
in general, but they might do it at different speeds. Also, in
special situations a certain action can be performed by one
agent, while another cannot (because it needs more space or
other preconditions). Therefore different applications will
not only need different agent similarity measures, but also
the threshold between sufficiently similar and too different
(with regard to the applicability of on-line learning with a
seed strategy) will vary. We will look into this issue in our
experiments.
If the difference between the old and the new agent is too

large, then we cannot expect the new agent to fit into the
role that the old agent had in the exisitng team. Conse-
quently, the whole team has to change its solution strategy
for the given task and therefore has to learn a new one.
There might be the possibility that using the old strategy
of each team member as seed strategy for its newly to learn
strategy might improve the learning process, but this will
be the subject of future research.
If the new agent can follow the exact same strategy as

the old one did, then there is obviously no need to learn a
new strategy, if keeping up the good cooperative behavior of
the whole team is our goal. If the new agent has additional
abilities (because it is supposed to be an improvement over
the old one), then not changing the strategy will not make
use of these additional abilities (for example, being able to
move faster). Again, using our concept of a seed strategy
might allow to try out the new abilities in small steps. As
a result of the on-line learning, a detoriation of the perfor-
mance (compared to just using the old strategy) has to be
expected and it might prove necessary to change the strate-
gies of other team members in order to make use of the

improved abilities. Therefore, looking into these possibili-
ties will also be a future research topic after we established
the basic advantages of using a seed strategy.
Point 4 of our general procedure does not address abili-

ties anymore, but concentrates on the actions that the new
agent is able to perform. Since our agent architecture with
SAPs and the NNR results in rather reactive agent behav-
ior, a complicated analysis of situations, actions and agent
characteristics for each possible situation is much too much
effort and is also something that should not be necessary due
to the on-line learning capability of the agent. Therefore we
just eliminate those SAPs of the old strategy that obviously
cannot be of use to the new agent and use all others as the
seed strategy that will guide the learning process of the new
agent.

3.2 Using the Seed Strategy
The general idea behind using a seed strategy is to already

have a frame for a good strategy in place that only contains
a few holes that need to be filled by the on-line learning
process. This way, the learning process is much more focused
and there is a much lower probability that opportunities are
missed due to bad actions in the real world.
Applied to evolutionary on-line learning with SAPs this

means that we have to modify the evolutionary process to
include the seed strategy. This is done by requiring that a
certain percentage of all SAPs in an individual (i.e. strategy)
are from the seed strategy.
More precisely, let sseed be the seed strategy. When “learn”

is invoked, a start population must be generated first. Let
pseed,start be the parameter determining the percentage of
SAPs from sseed in the initial individuals. If strategy sinit,i

is supposed to contain k SAPs, then it is generated by ran-

domly selecting d
k×pseed,start

100
e SAPs from sseed and gener-

ating d
k×(100−pseed,start)

100
e SAPs randomly.

In the following, for a strategy s let seed(s) be the SAPs
that are in the intersection of s and sseed (seed(s) = s∩sseed)
and new(s) the remaining SAPs in s (new(s) = s - seed(s)).
Then we can modify the genetic operators crossover and
mutation in the following way, given parameters pseed,co,
pnew,co and pseed,mut with pseed,co + pnew,co ≤ 100.

crossover: Let s1 and s2 be two individuals in the cur-
rent population that have been selected as the parents.
Let seed-pool = seed(s1) ∪ seed(s2) and new-pool =
new(s1) ∪ new(s2). Then we generate a new individ-
ual s consisting of at most k SAPs by randomly se-

lecting d
k×pseed,co

100
e SAPs from seed-pool, d

k×pnew,co

100
e

SAPs from new-pool and k - d
k×pseed,co

100
e - d

k×pnew,co

100
e

SAPs out of s1 ∪ s2.

mutation: The use of sseed results in having several muta-
tion operators that can be applied, differing in whether
they contribute to the seed(s′) or new(s′) part of an
individual s′. If s is the parent individual, then we
have the following possible mutations to get s′:

• just delete a SAP of s

• replace a SAP of seed(s) by a randomly chosen
SAP of sseed

• replace a SAP of new(s) by a randomly generated
SAP



• replace a SAP of seed(s) by a randomly generated

SAP if |seed(s)|
|s|

>
pseed,mut

100

• replace a SAP of new(s) by a randomly chosen

SAP of sseed if
|seed(s)|
|s|

≤
pseed,mut

100

The use of two parameters in crossover allows some flexibil-
ity in the use of the seed strategy by allowing for some vari-
ability in the seed content of the evolved strategies. This is
also reflected in the different mutations (that are applied in
equal percentage during the learning process). Different val-
ues for pseed,start, pseed,co, and pseed,mut also give us added
flexibility, although we will not make use of this flexibility
in our experiments.

4. EXPERIMENTAL EVALUATION
The OLEMAS system offers pursuit games as the testbed

for the learning concepts for cooperative behavior. As we
will see in the first subsection, there are a wide variety of
pursuit games of different difficulty and different realism
that allow for agents of rather different abilities. In the
second subsection, we will present our experiments with 3
different game variants (depicting the different problems to
overcome) and the enhanced training on the job.

4.1 Pursuit Games
Pursuit games as a testbed for multi-agent systems were

first introduced in [2] and since then have been used rather
frequently in literature and in quite a number of variations.
[5] introduced a large list of features of pursuit games that
can be varied, and since then even more features, especially
feature instantiations, have been introduced by various au-
thors.
The general idea of pursuit games is rather simple: on a

playing field, consisting of connected grids, several hunter
agents have to work together to catch one or several prey
agents. The game consists of turns that represent a discrete
time line. Usually, the game is limited to a given number
of turns. Among the features that can be varied in addition
to this time limit are the field: infinite, with borders, with
or without additional obstacles; the agents: number, shape,
speed, possible moves; the strategy of the prey agents; or
how we define catch. In the original version of the game,
the playing field was infinite, all agents occupied only one
grid and could move only to the north (N), west (W), south
(S), and east (E) at the same speed of one grid per turn; the
only prey agent moved randomly and catch was defined as
the four hunters surrounding the prey so that it could not
move.
For our purposes the features concerning a single agent,

like its shape, the actions it can perform, and the speed for
each action, are of special interest because these features de-
fine the abilities of an agent. This allows that a new agent
might not be able to move in all of the directions that the
old agent could, or it might move slower in one or several
directions than the old one. The latter is a problem in multi-
agent scenarios, because the timing between agents will be
off. Another difference in abilities that can be difficult to
overcome in multi-agent scenarios is a difference in shape.
If the shape of the old agent is just a point occupying one
grid and the new agent is a rectangle occupying 2 by 3 grids,
then the old agent might go into places the new agent cannot
and the new agent might block moves of the other hunters

that were essential for the success of the old team. Gener-
ally, pursuit games allow a wide variety of difference in the
abilities of agents and therefore are a very good testbed for
our problem, the exchange of agents in an experienced team
and how to overcome the consequences while working on the
given task.
Before we look at our experiments, let us provide some im-

portant instantiations of the general learning methods pre-
sented in Section 2 (more details are provided in [6] and [7]).
In OLEMAS, the situation vector seen by an agent consists
of the coordinates relative to the agent and the orientation
for each of the other agents in a fixed order. Consequently,
the similarity of two situations just sums up the square of the
difference in numbers for each field and an adjusted square
of the difference in orientation (based on assigning numbers
to the possible orientations). The fitness measure is based
on computing the Manhattan distance between an agent and
the prey at each turn. These distances are summed up for
all agents and all turns, if the team was not able to catch
the prey, else we just take the number of turns necessary to
do the catching (as we already described earlier).

4.2 Results
In order to demonstrate the capabilities of our approach

we have selected three variants of the pursuit game in which
“newbie” agents can seriously endanger the success of a
team. Naturally, there are many other variants we could use,
but we hope that these variants demonstrate well the pos-
sible problems that a replacement agent has to face. Since
we are also interested in how varying differences in abili-
ties between old and new agent influence the success of our
training on the job, we have provided for one variant, sev-
eral replacements (and one alternative for each of the other
variants) and their experimental results. Before we take a
look at the individual variants and the results, let us first
describe the general setting and the aspects all experiments
have in common.
The experienced teams that are the basis of our exper-

iments were obtained by letting OLEMAS learn them off-
line. For each variant this took more than 6 hours CPU
time, whereas all runs reported in Table 1 took less than 5
minutes, including the time spent in on-line learning. All
variants have as goal to surround and immobilize the prey
agent. In order to clearly demonstrate the capabilities of
our method and to allow for comparability of the different
runs for a game variant, the variants do not include any
random factors, like random moves by the prey or random
start situations.
All on-line learning agents were allowed a maximum of 35

SAPs per strategy and the parameters of the GA for on-
line learning were always a maximum of 20 generations, a
population size of 100 and a mutation rate of 30 percent
(i.e. 30 percent of the applications of genetic operators were
mutations, 70 percent crossovers). The agents also are in-
formed about the strategies of all other agents to be used in
their simulation runs. The action “learn” takes 3 turns to
perform and all other actions take just one turn (with one
expection regarding variant 3). The action “learn” was per-
formed after at least 10 and at most 30 turns. With regard
to the parameters guiding the use of the seed strategy, we
set pseed,start = pseed,mut = pseed,co for all experiments.
Table 1 reports the different variants (with the number of

turns needed by the experienced team to solve them) and



Table 1: Experimental results

Variant Exp. Team Replacement from scratch with seed strategy pseed,co pnew,co

best worst mean
1 41 A1 ← A11 – 487 514 500.8 80 20

A1 ← A12 – 363 388 370.6 60 20
2 14 A2 ← A21 – 212 240 224.9 60 20

C2 ← C21 – 144 163 153.4 90 5
3 70 A3 ← A31 870 147 165 154.4 90 5

A3 ← A32 – 499 520 507.6 90 5
A3 ← A33 532 75 93 82 60 20
B3 ← B31 – 111 132 120.1 80 20

the replacements we performed, the best result on-line learn-
ing in OLEMAS produced without using the seed strategy
(as number of turns until the prey was catched), the re-
sults of OLEMAS using the seed strategy and the values of
pseed,co and pnew,co that produced these results. Since on-
line learning is based on an evolutionary algorithm, different
runs usually lead to different results (due to the random in-
fluences that are an essential part of a GA). Therefore we
report the best run, the worst run and the mean value of the
10 runs we performed (the success in 10 runs is used as fit-
ness when dealing with random effects in a game, therefore
we have chosen this as the value here as well). We tested
several ratios of pseed,co to pnew,co for each of the variants
and replacements. Table 1 reports the best combination of
these only (and what this best ratio was, see later for com-
ments on this) to keep the table simple. For all replacements
in all variants, just using the strategy of the old agent did
not result in catching the prey within 1000 turns.

Variant 1
Pursuit game variant 1 in our experiments requires the two
hunter agents to pass between two obstacles before they then
have to corner the prey (the start situation is depicted in
Figure 1). Potential problems that the experienced team
had already solved where collisions of the agents while at-
tempting to pass through the opening (like several people
trying to pass through a door at the same time). After
passing the obstacle (agent B1 passes first) there are other
potential problems regarding getting the prey into a corner.
The experienced team forms a wedge that brings the prey
(that tries to stay away form the nearest hunter as far as
possible) against a corner. All agents can move in all 8 di-
rections and both hunters, in addition, can turn right and
left (around a center point that is located in the middle of
the agents).
Our first experiment replaces agent A1 by the larger agent

A11, and therefore has to figure out that it must turn before
being able to pass through the opening. Since agent B1’s
strategy (that is not changing) is to pass first through the
opening, learning from scratch results in exactly the tangle
at the opening we described above. In fact, the replace-
ment agent blocks the opening and agent B1 then blocks all
attempts of the replacement agent to turn.
By having the seed strategy providing the necessary or-

der in passing through the opening, on-line learning (i.e. the
new-part of the strategies) figuring out that a turn is nec-
essary, then getting the prey into the corner guided by the
seed strategy, and finally having on-line learning account for

Figure 1: Start of variant 1 and replacements

�������
�������
�������
�������

�
�
�
�
�

�
�
�
�
�

���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�

�������
�������
�����
�����

B1

A1

P1

A11

A12

achieving the catch, the improved OLEMAS on-line learning
wins the game.
In the second experiment to this variant we replaced agent

A1 by A12 that does not have the problem of turning before
the opening, but after succesfully making it through, it has
a different orientation than A1 did. Consequently, this new
agent has it easier than the one in the first experiment, which
is also documented by the lower number of turns needed to
win.

Variant 2
Our second game variant features an infinite grid together
with a prey that tries to maximize the distance to the nearest
hunter (see Figure 2 for the start situation). Consequently,
whenever the prey gets past any one of the hunters, it will
not be caught anymore (all agents have the same speed).
That does not leave much room for errors by a new agent,
proving that this scenario is an excellent example for the
need to get the new agent up to speed very fast (or at least
keep some status quo until the agent has figured out what
to do). The three hunters in the experienced team are very
specialized: A2 is only allowed to move E, SE, S, SW and
W, B2 E, SE and S, and C2 can move N, NE, E, W and
NW. Since they cannot turn, there is only one constellation
for them to catch the prey, that is allowed to move in all
directions, and the team must cooperate very well to achieve
this (which this particular team does, as indicated by the
only 14 turns necessary to win).
If we replace A2 by A21, which is allowed to move in all

directions and may also turn left and right (the center is,
again, the middle of the agent), then the problem it has to



Figure 2: Start of variant 2 and replacements

������
���
������
���

������
������

������
������

��
��
��

��
��
��

��������������������

A2

B2

C2

A21

C21
P2

face is to turn early enough so that prey and other hunters
do not block such a turn. On the other side, if A21 stays
too far away (or makes wrong moves), the prey can escape.
As Table 1 shows, in order to achieve this, we have to allow
for quite a bit of flexibility in the strategies (i.e. 20 to 40
percent SAPs not in the seed strategy in all individuals).
Agent C21 is also allowed moves into all directions, but

its blocking behavior against the prey is different from C2,
so that a slightly different approach towards the prey is nec-
essary to achieve a catch. As our results show, this can be
accomplished with a rather large percentage of seed-SAPs
and faster than in the first experiment to this variant.
It should be noted, that for this particular scenario there

might be a chance to employ min-max search, because of the
small number of turns needed by the experienced team (al-
though 14 turns still generate a very large search space and
there is no guarantee that the new team does not need more
turns to be successful). Using evolutionary on-line learning
(with a seed strategy) allows to concentrate on what would
be only a few of the paths in such a min-max search graph
and, despite the shortness of simulation runs compared to
what is done in off-line learning, an evaluation much deeper
than everything possible by a heuristical control of a min-
max search before committing to actions.

Variant 3
While variants 1 and 2 were rather unforgiving with regard
to early errors by the replacement agent, with variant 3
we have a scenario that still can profit a lot from the seed
strategy, but at least gives the on-line learning without seed
strategy a chance, as Table 1 shows. As Figure 3 shows,
the hunters A3 and B3 have to pass an obstacle, again, and
then have to immobilize P3. This time, the obstacle does
not force immediate changes against the seed strategy on
replacements, but timing between agents is a factor, again
(as is to be expected in experienced teams). In the experi-
enced team, B3 passes the obstacle after A3, gets above P3
and then A3 comes from below, turns at the right time and
achieves the catch against the right side of the field. P3 is
the same prey as in the first two variants and A3 and B3
can move in all directions and turn left and right.
In the first experiment to this variant, agent A31 has a

different shape that requires two turns to bring it into the
catch position of A3. In the second experiment, agent A32
does not need the turn of A3, and in fact cannot perform
turns at all. As the results show, eliminating the SAPs with

Figure 3: Start of variant 3 and replacements

	�		�	
	�		�	


�

�


�

�


��������������������


�

�


�

�


������
������

���
�

��������������������

������
������

������
������

A3

B3

P3

A31

A32

A33

B34

turns as actions offsets the agents so much that their timing
gets out of synchronization. This leads to a worse behavior
than in the first experiment (that required additional ac-
tions). This shows that holes in strategies due to filtering
out of SAPs can have rather negative effects (in coopera-
tive multi-agent environments where agents rely on certain
actions of other agents). Still, however, the result is better
than in the case of learning from scratch.
In our third experiment, we substitute A3 by agent A33

that has the same form, but can only perform the moves N,
E, S, SW, W, and NW and turn left and right. So, no moves
to NE or SE are allowed. In the strategy of A3 there are not
many SAPs with these two actions, but nevertheless they
are performed by A3 and therefore A33 has to compensate
for this. With a pseed,co-value of 90 and a pnew,co-value of 5
we can already achieve success with around 108 steps, but
catching the prey in the upper right corner, i.e. differently
than the experienced team. The results reported in Table 1
use more variablility and achieve the same catching situation
as the experienced team. So, the agent with this more vari-
ability learns how to compensate for the unavailable moves.
In our forth experiment, we substituted B3 by B34 which

has a slightly different shape, can move N, E, SE, S, SW, W
and NW and is slower in moving W (i.e. a move W takes two
turns). This means that each backing up of B3 towards west
will hamper the timing in the team considerably. As our
results show, with some flexibility and the guidance by the
seed strategy the new agent is able to avoid such situations
and therefore stays on target, which allows the team to be
very successful, despite the new agent.

General Remarks
The usage of a seed strategy allows our evolutionary on-line
learning to overcome the exchange of an agent by a new
agent with different abilities and trains the new agent on
the job to achive the task given to the team. This way
we can make use of the experience that the old agent had
in working together with the other agents that was gained
under rather high costs. In addition, this effect is rather
stable, which is an important issue in evolutionary systems.
As Table 1 shows, varying differences in abilities (and differ-
ent scenarios) require different percentages of SAPs from the
seed strategy in the evolved strategies. Sticking too much
to the seed strategy may not allow the necessary flexibility,
while allowing for too much flexibility results in loosing the
focus and making mistakes that compromise fulfilling the



given task.
Our results suggest that difference in abilities is not the

only factor influencing the success. The game variant and
the quality of the strategies of the agents in the experi-
enced teams also have some influence on what combination
of pseed,co and pnew,co is best, resp. successful. We added
to the seed strategies used in our experiments to version 2,
a few SAPs from strategies that were predecessors of the
strategies used by the experienced team. Not only did the
performance deteriorate in general, but especially high val-
ues of pseed,co did not produce good results anymore. Here
we will have to do more experiments to get an idea how an
automatic selection of pseed,co and pnew,co can be realized.

5. RELATED WORK
While there are lots of works concerned with on- and off-

line learning in multi-agent systems, the problem of substi-
tuting an agent in an experienced team by another agent
with different abilities has not been tackled so far (at least
to our knowledge). There are, however, some works that can
be seen as addressing a related problem, namely learning by
imitation (see, for example, [8], [1], or [3]).
In contrast to the basic assumption in learning by imita-

tion, we do not have an agent to observe and imitate, we
just have its strategy (or its observed strategy). Also, in
nearly all of the approaches to learning by imitation, there
is no difference in abilities between old and new agent and
the learning agent is not part of a team, i.e. no other agents
rely on the new agent atleast doing an acceptable job.
Price and Boutilier presented in [13] a reinforcement learn-

ing approach that tackled the problem of difference in abil-
ity, but did not work on learning cooperative behavior, and
the difference in abilities was only due to different action
sets. They extended their approach of [12] by a limited
search for repair action sequences that replace actions that
become infeasible due to difference in abilities (here: actions
that lead into deadends because the follow-up actions of the
imitated agent cannot be performed). They provided no ex-
periments in which timing, due to other agent’s needs, was
an issue, so that we cannot comment on the potential of
their approach with this regard.

6. CONCLUSION
We presented the problem of how to deal with an agent re-

placing another agent in an experienced team that has differ-
ent abilities. We also offered a first solution to this problem
based on improving evolutionary on-line learning by using
a seed strategy. We presented different variants of the pur-
suit game highlighting the different aspects of the problem
and different replacement scenarios and showed with exper-
iments that our improved on-line learning allows the new
agent to avoid early mistakes that are the pitfall of just us-
ing on-line learning without a seed strategy. If the difference
in abilities between old and new agent is small enough, our
improved on-line learning allows the new agent to fit into
the cooperative team strategy fast enough to allow the new
team to fulfill its task. Too much of a difference throws off
the timing in the team and consequently the cooperative be-
havior and as a result the team is not able to solve the given
task without a rather expensive retraining of all agents.
Future work has to focus on a better understanding of

what differences in abilities require what percentage of seed

strategy SAPs. Such a better understanding should also
help us to use seed startegies for off-line learning of whole
teams, if the difference in abilities is too large so that the
whole team has to adapt itself to the new agent. Hopefully,
we will be able to speed-up the retraining process of the
team. This should then also allow to speed up retraining
if the new agent has additional abilities, that might allow
for better task fulfillment if the team adjusts itself appropi-
ately. Since learning of cooperative behavior of teams is a
time consuming task requiring the agents to make lots of
experiences, a re-use of at least some of the results of such
a learning process after changes to agents are made is defi-
nitely an important goal in multi-agent systems.

7. REFERENCES
[1] C. Atkeson and S. Schaal. Robot learning from
demonstration, Proc. ICML-97, 1997, pp. 12-20.

[2] M. Benda; V. Jagannathan and R. Dodhiawalla. An
Optimal Cooperation of Knowledge Sources, Technical
Report BCS-G201e-28, Boeing AI Center, 1985.

[3] A. Billard and G. Hayes. Learning to communicate
through imitation in autonomous robots, Proc.
ICANN-97, 1997, pp. 763–768.

[4] T.M. Cover and P.E. Hart. Nearest Neighbor Pattern
Classification, IEEE Trans. on Information Theory, Vol.
IT-13, 1967, pp. 21–27.

[5] J. Denzinger and M. Fuchs. Experiments in Learning
Prototypical Situations for Variants of the Pursuit
Game, Proc. ICMAS’96, AAAI Press, 1996, pp. 48–55.

[6] J. Denzinger and M. Kordt. Evolutionary On-line
Learning of Cooperative Behavior with
Situation-Action-Pairs, Proc. ICMAS-2000, IEEE Press,
2000, pp. 103–110.

[7] J. Denzinger and M. Kordt. On the influence of
learning time on evolutionary online learning of
cooperative behavior, Proc. GECCO-2001, Morgan
Kaufmann, 2001, pp. 837–844.

[8] G. Hayes and J. Demiris. A robot controller using
learning by imitation, Technical Report DAI No. 676,
University of Edinburgh, 1994.

[9] T. Haynes, R. Wainwright, S. Sen and D. Schoenefeld.
Strongly typed genetic programming in evolving
cooperation strategies, Proc. 6th Intern. Conf. on
Genetic Algorithms, Morgan Kaufmann, 1995,
pp. 271–278.

[10] J. Hu and M.P. Wellman. Multiagent reinforcement
learning: theoretical framework and an algorithm, Proc.
15th Machine Learning, AAAI Press, 1998, pp. 242–250.

[11] N. Ono and K. Fukumoto. Multi-agent Reinforcement
Learning: A Modular Approach, Proc. ICMAS’96,
AAAI Press, 1996, pp. 252–258.

[12] B. Price and C. Boutilier. Implicit imitation in
multiagent reinforcement learning, Proc. Machine
Learning-99, 1999, pp. 325–334.

[13] B. Price and C. Boutilier. Imitation and
Reinforcement Learning in Agents with Heterogeneous
Actions, In Stroulia, Matwin (eds.): Advances in
Artificial Intelligence, Springer LNAI 2056, 2001,
pp. 111–120.

[14] M. Tan. Multi-agent reinforcement learning:
Independent vs cooperative agents, Proc. 10th Machine
Learning, Morgan Kaufmann, 1993, pp. 330–337.


