Referees for Teamwork

Jorg Denzinger, Dirk Fuchs
Department of Computer Science
University of Kaiserslautern
Postfach 3049, 67653 Kaiserslautern
E-mail: {denzinge,dfuchs}@informatik.uni-kl.de

Abstract

Teamwork is a method to distribute automated theo-
rem proving and is mainly based on the competition
and cooperation of different search control heuristics.
Together with the usual control heuristics that try to
anticipate whether an inference step and the result-
ing fact is good, teamwork also employs assessment
heuristics that judge the impact a fact has had on the
search after a while. For this assessment teamwork
uses so-called referees that allow it to throw away facts
that did not meet the expectations. In this paper we
discuss several referee concepts and compare them by
experiments.

1 Introduction

The main goal when developing search strategies for
automated theorem provers is to do as few unneces-
sary inference steps as possible. Unfortunately, expe-
rience has shown us that automated theorem provers
do many more unnecessary steps than steps that are
needed for a proof. Since unnecessary steps tend to
produce more unnecessary steps, a research goal with
high priority is to eliminate or forget unnecessary in-
ference steps.

Research concerning this problem is aimed in two
directions. The first direction is to reduce the applica-
bility of inference rules that generate new facts while
developing other rules that simplify or remove existing
facts. A good example of this direction are the works
of Bachmair and Ganzinger on ordered superposition
and on general redundancy criteria (see [BG90]). The
second direction is to develop criteria to throw away
facts without any justification by inference rules, what
we call forgetting of facts. An example of results of this

direction is the limitation of the size of generated facts
that can be found, for example, in the Otter prover
(see [Mc94]). Unfortunatly almost every usable crite-
rion results in losing the completeness of the prover.
Furthermore, most of the criteria developed so far are
very crude, which means, for example, that they do
not take the problem one wants to prove into account.

With our teamwork method (see [AD93], [De95]) we
developed a knowledge-based distribution method for
automated theorem provers that concentrated on both
search strategies to generate new facts and assessment
heuristics to forget facts in order to avoid an explosion
of the search space. The general idea of teamwork
is to let several different search heuristics (so-called
experts) work on the given problem in parallel and
independently. Periodically referees judge the experts
and select outstanding new facts from them. These
facts are added to the set of facts of the best rated
expert by a supervisor. Since the resulting search state
is the new start state of all experts, all the experts’
non-selected facts (without those of the best expert)
are forgotten. The supervisor also uses the judgement
by the referees to exchange experts for better suited
ones, thus allowing for an adaptation of the system to
the given problem.

After reports concerning special search heuristics
([DF94]) and the planning task of the supervisor when
selecting the team for the next round ([DK94]) we will
concentrate in this report on the referees. Obviously,
the referees allow a synthesis of different search heuris-
tics and strategies for forgetting facts. By selecting
facts that have proven to be ”good” (which has to
be defined by the referees) and thus forgetting useless
facts, a very sophisticated concept for deleting facts
—that takes the problem to prove into account— is real-
ized. This i1s enhanced by the competition of different
search heuristics which is a result of the teamwork con-
cept. In the following we will demonstrate several ways
to design referees and compare the different referees by
giving some examples.

2 Automated theorem proving and
completion

Due to lack of space we can only give a very brief in-
troduction to automated theorem proving, equational
theorem proving and the completion method. For
more details we refer to [CL73], [HR87] and [AD93].

Theorem proving means solving the following prob-
lem :
Given: A set A of axioms and a theorem T to
prove.

Question: Is T a logical consequence of A 7

In equational proving A = {s; = t;| i=1,...,n} is a set
of (all-quantified) equations and T is an equation u =
v, too.

All successful methods for automated theorem prov-
ing, 1f equality is involved, are based on two kinds of
inference rules: generation rules and contraction rules.
The generation inference rules add new facts to the
data base. These facts are derived either from the ax-
ioms alone (as in the case of equational theorem prov-
ing by completion) or from both the axioms and the
theorem T (as in the case of resolution and paramod-
ulation). The contraction inference rules change or
delete facts from the data base.

For equational reasoning, the area we applied team-
work to, the generation inference rule is the critical
pair generation and the contraction inference rule is
reduction (also known as demodulation). According
to a so-called reduction ordering the equations are ori-
ented to rules (if possible). A critical pair to two rules
l; = r; and ly — 9 is the equation o (l1)[p + o(r2)] =
o(r1), where o is the mgu of 13 and the subterm of 13
at position p (which mustn’t be a variable) and where
o(l1)[p + o(r2)] denotes the exchange of the subterm
at position p in o(l1) by o(r2). Rules are also used to
reduce terms. If there is a match u from the left hand
side of a rule | > r to a subterm of term t (at posi-
tion p), then this subterm is replaced by p(r) (writ-
ten t = t[p ¢ p(r)]. An equation or rule is in normal
form, if no reduction with any rule of the data base is
possible.

From a theoretical point of view we need for an auto-
mated theorem prover, besides the inference rules, fair-
ness criteria for the use of the inference rules. These
criteria guarantee that each application of an inference
rule that is enabled infinitely often will finally be ex-
ecuted. But, for challenging examples there are many
possible inferences and a systematic application results
both in enormous run times and the need of much
(memory) space. It is not uncommon for a prover to
require an agenda of 500,000 to 1,000,000 inference
rule applications.

Therefore, implementations of automated theorem

provers use strategies and heuristics to select the next
inference rule to apply and the facts these rules should
work on. A strategy guarantees theoretical complete-
ness, whereas for heuristics it is possible that the
prover will not find a proof even if there is one and
enough time and space are provided. Heuristics are
very important, because very often only the use of a
heuristic allows finding a proof. The same can be said
about simply forgetting facts that do not seem to be
necessary. This allows a reduction of the search space
but there is the danger that necessary information for
finding a proof is deleted. Many theorem provers al-
low the user to choose between various strategies and
heuristics. But two problems still remain. First, for a
given problem there may be no appropriate strategy
or heuristic implemented in the system. Second, even
if there 1s a good one implemented, how does the user
know which one is good? We tackled both problems
with our teamwork method as we will demonstrate in
the next section.

3 The teamwork method

The main intention of the teamwork method is to
achieve cooperation between different strategies for au-
tomated theorem provers while using competition to
direct the whole system in the most promissing di-
rection. The main instruments for achieving these
goals are techniques from the areas of distributed sys-
tems, multi-agent systems and knowledge-based sys-
tems together with control strategies, heuristics and
techniques from automated deduction.

A system based on teamwork consists of four types of
components: experts, specialists, referees and a super-
visor. Experts and some specialists are those compo-
nents working on solving a given problem. Some other
specialists, the referees and the supervisor control the
team and are responsible for achieving cooperation and
competition.

Ezxperts are automated theorem provers. They differ
either in the inference rules they use or in the control
strategies or heuristics they employ (mainly the con-
trol of the generation rules). All known general control
strategies and heuristics can be used, but —since they
work in a team-— also fragments of strategies or even
specialized ideas. All experts use a common represen-
tation of their search state. So, each of the experts
can continue its work using the state of another ex-
pert. During the so-called working period all experts
work independently on the given problem.

In the case of equational theorem proving by com-
pletion the experts use different selection methods for
critical pairs. Besides standard criteria, like the num-
ber of symbols in the pair or using functional interpre-
tations of the symbols over IN | we also have developed

criteria that define similarities between a critical pair
and the goal (see [DF94]). These criteria are examples
of specialized heuristics that can only solve very few
examples when working alone but are very useful in
cooperation with other experts.

Specialists can either be used to assist in finding the
solution to the given problem or to help the supervi-
sor in its controlling task. Some specialists can even
contribute to both tasks. One of these specialists, the
so-called domain detection specialist, will be described
together with the supervisor. In contrast to experts,
specialists needn’t use the common search state repre-
sentation. Specialists also work independently of each
other and the experts during the working periods.

Referees are responsible for comparing experts, spe-
cialists and their results and therefore represent the
competition aspect of teamwork. After a working pe-
riod each expert and each specialist is judged by a
referee. A referee computes for its expert a measure
of progress and it selects the best facts generated by
the expert during the last working period. A referee
for a specialist only selects good facts of the specialist,
provided that the specialist has generated any facts.
Other information computed by a specialist, as for ex-
ample the domain of the problem to prove, is passed
on to the supervisor unjudged. In section 4 we will
describe in more detail possible criteria that can be
used by referees to fulfill their tasks. The measure of
progress of each expert is transmitted to the super-
visor. Then, after the best expert is determined, the
experts’ and specialists’ selected facts are reported to
the supervisor.

The supervisor is responsible for strategic decisions
in the team and therefore for the adaptation of the
team to the given problem. In addition, the supervi-
sor also achieves the cooperation of the team members
by generating a new start state for the next working
period. In detail, the supervisor performs the follow-
ing actions: First, it receives the measure of progress
of each expert and the information from the special-
ists. Then the supervisor determines the best expert,
i.e. the expert with the highest measure. After that it
receives the selected facts of all other experts and the
specialists and adds these facts to the search state of
the best expert resulting in a new start state. Then
the supervisor selects the members of the next team
based on a long-term memory (consisting of informa-
tion about domains of interest, good teams and good
and bad expert combinations) and on a short-term
memory (consisting of the information gathered by the
specialists and the measure of progress of each expert
for each working period so far). After transmitting
the new start state to all members of the next team
the supervisor also determines the length of the next

working period and sends this information to the team
members. Then the work of the supervisor is done and
a new working period begins.

An 1mportant help for determining the new team
members are the results of the domain detection spe-
ctalist. A domain is described by a set of facts. With a
domain are associated known consequences of the facts
(which are the delivered to the referee of the specialist
in case the domain is detected), a plan skeleton, hierar-
chical information about the domain and known good
single experts and referees for this domain. The su-
pervisor uses the plan skeleton as basis for its decision
about the new team, but modifies this plan in reac-
tion to the measures of the experts. For more about
the planning task of the supervisor we refer to [DK94].

The teamwork method allows an efficient implemen-
tation with a very effective communication between
processors. By representing experts/specialists, refer-
ees and supervisor as one process with different modi
(supervisor modus always given to the processor run-
ning the best expert), the only interprocessor commu-
nication that is necessary are the reports of the refer-
ees to the supervisor and the transmission of the new
start state. Since this transmission uses broadcast and
allows for filtering the data on the side of the sender
(eliminating unnecessary data) and ordering the data
on the side of the receivers (typically using different
orderings due to the different selection criteria), there
is no big overhead due to communication.

Our experiments have shown that teamwork was in-
deed able to achieve cooperation between competiting
strategies resulting in synergetic speed-ups and even
in the ability to solve much more examples than all
experts working alone (see [DF94]). Teamwork also
provides a higher level of automatization than most
other provers, which is due to the planning and adap-
tation ability of the supervisor (see [DK94]). Finally,
we also have shown that teamwork can successfully be
applied to other search problems, for example opti-
mization problems. For the traveling salesman prob-
lem the same synergetic effects as for theorem proving
can be achieved (see [De95]).

4 Referee concepts

Referees have two tasks, namely judging the whole
work of an expert of a working period and selecting
outstanding results of an expert. Therefore a referee
consists of two functions, a judge-expert function and a
select-good-results function. Select-good-results func-
tions compute for each new fact a measure. Then
the best n facts will be selected by the referee, pro-
vided their measure exceeds a given threshold. Since
these measures can also be used to judge an expert (by,
for example, using the mean value of all new facts as

measure), in the following we will mainly concentrate
on select-good-results functions and we only provide a
short section about statistical criteria for judge-expert
functions that have proven to be quite useful.

4.1 Judging an expert

In order to judge the complete work of an expert in
a working period statistical criteria are the first obvi-
ous choice. And our experiments showed that these
criteria are sufficient to allow successful proof runs
with teamwork based systems. There is much statisti-
cal data that can be used in computing a measure of
progress for an expert. In our experiments that will be
described in section 5 we used only the judge-expert
function relational that has two parameters, red_factor
and cp_factor, and combines the number of critical
pairs |CP|, the number of reductions made |Red|, the
number of rules |R| and the number of equations |E|.
The value of relational is computed as
red_factor * |Red| — mll;;??#'

The idea of relational is that many reductions obvi-
ously are a good sign, while many critical pairs mean
more difficulties in selecting the right ones. But, if
there are many rules and equations, then many criti-
cal pairs have to be expected while many critical pairs
out of only a few rules and equations clearly indicate
that experts with a better (i.e. lower) ratio should be
preferred. We found it useful to start proof runs with
referees using relational with a parameter combination,
where red_factor >> cp_factor and then employing in
later periods referees with growing cp_factor.

4.2 Select-good-results functions

Measuring facts is a task of both, experts and referees.
On the one hand this makes finding criteria that can be
used by select-good-results functions of referees easier,
because the criteria of experts can be used as a starting
point. On the other hand the question arises whether
referees are different from experts at all and therefore
possibly not necessary.

Experts try to measure the impact of a fact (or an
inference) on the problem at hand. Since experts do
not want to measure this impact by actually doing the
inference leading to the fact with all consequences that
are involved —this would be much too inefficient— they
have to do a kind of guessing, which can be partially
or even totally wrong.

On the other hand, referees measure facts after their
impact on a search process has become known. They
can observe what inferences resulted from the addition
of a fact. The impact of a new fact is also measured
by the number of facts that could be thrown away,

because they have become redundant. Since facts se-
lected by a referee are added to the search state of the
best expert, a further criterion that should be taken
into account by a referee is the probability that a fact
enhances this search state. This means that selected
facts should produce inferences that will be given a
high priority by the winning expert, without treating
them in a special way. So, referees offer a new dimen-
sion and are indeed necessary.

In the following we will present three concepts for
developing select-good-results functions that have dif-
ferent priorities concerning the goals given above.

Last(number _of facts)

The select-good-results function Last 1s quite simple,
it selects the last number_of_facts facts produced by
the expert that were not redundant. The idea behind
Last is that several experts that were not the best
one may be members of the next team again. These
experts should be able to continue their work without
repeating most of the inferences they have done in the
last working period. By including their last results into
the new start state there is a high probability that they
will concentrate on these results in future.

As we will see in section 5, this simple function can
be used for several examples with some success. But
for other examples the idea 1s just too simple.

Statistic(number_of _facts, crit_pair_penalty, re-
duction_bonus, threshold)

The aim of the select-good-results function Statistic is
to measure the impact a fact has had on the search
of an expert. The impact is observed by the num-
ber of critical pairs generated by a fact (weighted by
erit_pair_penalty) and the number of reductions that
have been made using the fact (weighted by reduc-
tion_bonus). Different reductions are counted differ-
ently when computing the number of reductions: Re-
ductions of a goal count more (typically 100 times)
than the reduction of a critical pair. Also the reduc-
tion of a rule or an equation counts more (typically
5 times). Statistic computes for each fact a weighted
sum of the number of critical pairs and the number of
reductions and selects the best number_of_facts facts
(i.e. the facts with the highest sums), provided they
are better rated as threshold.

As the names of the weights suggest, we intended to
see many reductions as a bonus while the generation
of many critical pairs should be given a penalty (i.e.
crit_pair_penalty is negative). But it may be necessary
to vary penalty and bonus during a proof run. At
the beginning of a proof run the generation of many
critical pairs should not be penalized, because a broad

base of facts is needed. Therefore the number of reduc-
tions alone (i.e. crit_pair_penalty=0) or even a positive
penalty for critical pairs can be used. Later on, using
a positive value for weighting the number of critical
pairs often becomes disastrous.

Nevertheless, Statistic has proven to be quite suc-
cessful. For some examples an adjustment of the pa-
rameters allows for quite some improvements. There-
fore there are some possibilities for the use of further
knowledge for parameter adjustment. But there are
standard parameters that result in a satisfactory per-
formance.

Winner_Driven(number of facts, threshold)

The aim of Winner_Driven is to select results that
have a high probability to help the best expert of the
working period, the winner. The idea behind Win-
ner_Driven is to use the selection function for critical
pairs of the best expert to measure the facts of some
of the other experts. Since the selection of the best
facts can be delayed until the winner is determined,
this idea can easily be implemented.

Provided that the expert whose best facts have to be
selected differs very much from the best expert the fol-
lowing effect occurs: A heuristic for traversing a search
space can be seen as following a kind of valley through
a mountainous region. The mountains are those paths
through the search space that have higher measures
than the path that is actually taken. But behind the
mountains may be a much deeper valley than the ac-
tual followed one that is not reached because of the
mountain barrier (in our case facts that do not have
a good measure but which produce other facts that
would be measured good). Paths that are mountains
for one expert may be valleys for another one. There-
fore an expert may, after some time, produce facts that
are very good according to the heuristic used by an-
other expert but are also impossible to reach using this
heuristic. Such facts are selected by Winner_Driven.

As we will see in the next section, Winner_Driven
is a very generally usable select-good-results function.
It is very stable under variation of the parameters (al-
though an astronomically high threshold can greatly
influence a proof run). A rip-off of the idea of Win-
ner_Driven is to use not the function of the winner but
always goal similarity functions (see [DF94]). This rip-
off can also be very successful.

5 Experiments

In this section we will compare the select-good-results
functions presented in section 4.2. For this purpose
we have chosen several examples for which teamwork
has been quite successful. These examples are taken

from [ADF95] and [DK94]. We omitted those exam-
ples for which not the exchange of results caused the
improvements but the change of the selection heuristic
for critical pairs that is a result of choosing the best
rated expert as basis for the new start state of a cycle.

Because Statistic has some parameters that can
be adjusted to an example, we devote Statistic two
columns in Table 1, one stating the run times with
standard parameter values (St.st.) and another one
stating the times for the best values found (St.b.). In
each row of the table the same lengths of working peri-
ods and (of course) the same expert combinations were
used, so that only the select-good-results functions of
the referees had changed. In order to give a hint at
what the gain provided by teamwork is, we give in the
last column the run times of the best known experts
for the examples, provided we have been able to find
an expert that is capable of solving them.

| Ex. | St.st. | St.b. | Wi._Dr. | Last | b.exp.
bool5b 75.2 70.0 57.9 — —
sa2 28.2 16.8 10.7 | 15.1 —
ra2 41.4 41.4 42.3 | 49.7 230.0
lusk6 460.6 | 312.2 341.0 | 495.8 | 3019.0
cal3 87.5 79.8 81.9 | 81.7 297.2
cal4 275.8 | 171.0 111.7 | 96.5 —
p2.a 6.2 6.2 5.7 6.9 79.5
p8.b 40.6 39.4 40.6 | 97.4 —
pl0 26.6 26.4 23.0 — —

Table 1: Comparison of different select-good-results
functions on 2 SUN-ELC, run times in sec.

The examples cover a wide range of domains: bool5b
boolean algebra, sa2 groups, ra2 robbins algebra, lusk6
rings, cal3 and cal4 propositional calculus and p2.a
p8.b and p10 lattice ordered groups.

The first and most important observation that can
be made in Table 1 is that the two more ”intelli-
gent” select-good-results functions Statistic and Win-
ner_Driven enable our system to solve all examples
even those that couldn’t be proved in a sequential run.
The importance of cooperation as result of these func-
tions 1s emphasized by examples bool5b and p10 that
could not be solved by using Last, thus indicating that
good cooperation is necessary to solve them. But Last
has its merrits, as can be seen in example cal4.

If we take a closer look at the results of Win-
ner_Driven and Statistic, we can observe that for 7
examples Winner_Driven is better (i.e. faster) than
the standard parameter setting of Statistic. And for
the remaining 2 examples it is (nearly) as good as the
standard version. With respect to the reduction of

support by the user this is a very good sign, since Win-
ner_Driven doesn’t have many parameters that have
to be set. On the other hand there are 4 examples for
which a little fiddling with the parameters of Statis-
tic produced better run times than those using Win-
ner_Driven. So there is definitely room for some im-
provements. These improvements can either be a com-
bination of Winner_Driven and Statistic or a planned
use of specialized Statistic referees using the concept
developed for experts in [DK94].

As a consequence of our experiments so far we
use the standard version of Statistic for all ex-
perts in teams that do not include goal-oriented ex-
perts. Teams that use goal-oriented experts use Win-
ner_Driven.

6 Conclusion

A very crucial part of teamwork based systems are the
referees. Only good referees allow for synergetic effects
and the forgetting of useless results, features that are
among the great advantages of teamwork. After pre-
senting the main ideas for experts and the supervisor
in other papers we concentrated in this paper on the
referees. Since a good result is not determined by a
good inference that generated this result but by the
consequences a result has for a proof attempt, con-
cepts for select-good-results functions of referees are
not only important for teamwork, but for each theo-
rem prover.

In this paper we presented several simple concepts
for such selection functions that have proven to be suc-
cessful. The use of statistical data offers both a good
starting point and adjustment to particular examples,
while expert oriented selection functions offer robust-
ness and stability. Even selecting the newest facts can
be useful. So statistical criteria are a basis that should
be strengthened by including other, knowledge-based
criteria. One possibility that should be investigated in
the future is to combine Statistic with Winner_Driven
to achieve this strengthened basis.

The development of more concepts for referees is also
important because of the growing number of distribu-
tion and cooperation approaches for automated theo-
rem proving. In both areas the central problem is the
huge amount of communication that real systems have
to deal with. Since communication is quite expensive
a major concern should be to avoid communicating
unnecessary results, which can be achieved by using
referee-like concepts. Even if one is purely interested
in search control heuristics, forgetting of facts remain
a necessity.

References

[AD93] Avenhaus, J. ; Denzinger, J.: Distribut-
ing equational theorem proving, Proc. 5th RTA,
Montreal, LNCS 690, 1993, pp. 62-76.

[ADF95] Avenhaus, J. ; Denzinger, J. ; Fuchs,
M.: DISCOUNT: A system for distributed
equational deduction, Proc. 6th RTA, Kaiser-
slautern, LNCS 914, 1995, pp. 397-402.

[BG90] Bachmair, L.; Ganzinger, H.: On re-
strictions of ordered paramodulation with sim-
plification, Proc. 10th CADE, Kaiserslautern,
Springer, LNCS 449, pp. 427-441.

[CL73] Chang, C.L.; Lee, R.C.T.: Symbolic Logik
and Mechanical Theorem Proving, Academic

Press, 1973.

[DF94] Denzinger, J. ; Fuchs, M.: Goal ori-
ented equational theorem proving using team-
work, Proc. 18th KI-94, Saarbricken, LNAI
861, 1994, pp. 343-354.

[DK94] Denzinger, J. ; Kronenburg, M.: Plan-
ning for distributed theorem proving: The team
work approach, SEKI-Report SR-94-09, Uni-
versity of Kaiserslautern, 1994.

[De95] Denzinger, J.: Knowledge-Based Distributed
Search Using Teamwork, Proc. ICMAS-95, San
Francisco, AAAI Press, 1995, pp. 81-88.

[HR87] Hsiang, J.; Rusinowitch, M.: On word
problems in equational theories, Proc. 14th
ICALP, Karlsruhe, LNCS 267, 1987, pp. 54-
71.

[Mc94] McCune, W.W.: OTTER 3.0 Reference
manual and Guide, Tech. Rep. ANL-94/6, Ar-
gonne National Laboratory, 1994.

