
Teamwork-PaReDuX:
Knowledge-based Search with Multiple Parallel Agents

Jörg Denzinger
�

, Carsten Sinz
�

, Jürgen Avenhaus
�

, and Wolfgang Küchlin
�

�

Computer Science Department, University of Calgary, Canada
�

Fakultät für Informatik, Universität Tübingen, Germany
�

Fachbereich Informatik, Universität Kaiserslautern, Germany

Abstract

We present the combination of a distribution approach and
a parallelization concept for knowledge-based search. We
formally characterize distribution and parallelization and
present one instantiation of each, TEAMWORK and PaRe-
DuX. TEAMWORK-PaReDuX, the combination of them, em-
ploys collaborating parallel search agents to prove equa-
tional theorems. Our experiments indicate that the speed-
ups obtained by the single approaches are multiplied when
using the combination, thus making good use of networks of
multi-processor computers and allowing us to solve harder
problems in acceptable time.

1. Introduction

Knowledge-based search is at the core of most problem
solving techniques. In most cases, it has to deal with large
search spaces, i.e., for most states generated during a search
run there are many possible successor states. So, there are
many possibilities to design search control strategies for
knowledge-based search systems. Selecting the best control
for a given instance of a problem is very difficult. Due to the
large search spaces and the many possibilities for traversing
them, improving the efficiency of search systems is an im-
portant issue for research in many application domains.

The use of several processing units, i.e., processors or
whole computers, has proven to be a good way to speed up
the time needed to find solutions. Since there are many dif-
ferent paradigms for representing, organizing, and perform-
ing search, as for example branch-and-bound-based search,
evolutionary methods, local optimization techniques, or
tabu search, there are also many different concepts of how
to make use of several processing units. In general, we
can divide these concepts into two classes, namely control
strategy compliant, or parallelization, approaches and those
which are based on concurrent, or distributed, search.

A strategy compliant parallelization approach aims at
speeding up a given traversal of the search space by making
the generation of the next search state faster, i.e. the compu-
tations for the transition from one state to another are spread
over the processing units. The approach is called strat-
egy compliant because the computation follows the same
course through the search space as in the sequential case,
only faster. As a consequence, the parallel work is the same
as the sequential work (provided that the search control is
not dependent on the sequence future steps are evaluated).
In contrast, in a concurrent search approach, each process-
ing unit (often called an agent) works on different parts of
the search space at the same time. Each agent may per-
form one or several transitions before communicating with
other units, and this is repeated until the given search in-
stance is solved. Due to the cooperation of the agents, the
search space traversal may differ from a one-agent search
(e.g., one concurrent agent may find the solution early), so
that the parallel work may be less, with the potential for
considerable super-linear speedups.

Since strategy compliant approaches expand nodes one
after the other, with only each expansion computation done
in parallel, there is less parallel grain size, so that these ap-
proaches usually are aimed for use on multi-processor ma-
chines with shared memory. Concurrent multi-agent search
usually enjoys larger grain sizes, which opens a potential for
distributing the agents over clusters of computers or even
over the Internet. Naturally, concurrent search approaches
can also be realized on multi-processor machines, but usu-
ally they can make no special use of a shared memory, be-
cause the agents work independently except for short spurts
of communication.

For the purpose of this paper, we take the term parallel to
mean shared memory one search state parallel, and we take
distributed to mean several search states parallel. Conse-
quently, we identify parallel search with shared memory
parallelized one-agent search (which we implemented by
multi-threading the agent on a parallel server), and we iden-
tify the terms multi-agent search and distributed search with

concurrent multi-agent search (which we implemented by
distributing the agents over a cluster).

Since, from the point of view of hardware architec-
ture and configuration, parallelization and distribution ap-
proaches are on different levels, combinations of concrete
concepts from each of these two classes should be possi-
ble, in order to make optimal use of existing hardware. In
addition, for each instance of a search problem and each
parallelization or distribution approach, there is a maximal
number of processing units that can be sensibly used. For
our applications, this number is not very large, say half a
dozen in each case. Adding more units does not lead to
speedups, often it even leads to slowdowns. By combin-
ing a parallelization and a distribution approach, more units
can be sensibly used. Although the possibility of combining
parallelization and distribution has often been mentioned in
the literature, an experimental evaluation with regard to the
benefits is missing. Even in [19], which can be seen as com-
bining aspects of both general ideas, no experiments with
respect to the contributions of the ideas to the speedups are
reported.

In this paper, we characterize more formally the distinc-
tion between parallelization and distribution of search. Then
we present the results of the combination of a paralleliza-
tion approach to completion based equational theorem prov-
ing (PaReDuX) with a general search distribution concept
improving on the so-called competition approach of search
agents (TEAMWORK).

The general idea of PaReDuX is to provide control strat-
egy compliant parallel term completion procedures which
have efficient multi-threaded implementations on current
shared memory multiprocessors [5, 6, 1]. From the view-
point of search, this concept parallelizes individual transi-
tions and, moreover, evaluates all possible successor states
in parallel (by generating the relevant parts of these states
and measuring these parts according to the control strategy
of an agent). The general idea of TEAMWORK [7] is to have
a set of search agents that work on the given problem in-
stance using different control strategies. Periodically, the
agents assess the results they have produced so far, deter-
mine the agent with the greatest success, and use all results
of this agent together with selected results of all other agents
to produce a new start state for all agents.

When we apply the general TEAMWORK approach of co-
operating concurrent agents to the term completion domain
and combine it with the multi-threaded agents of PaRe-
DuX, then the TEAMWORK agents, resp. the transitions
between states they perform, are parallelized, resulting in
a search system employing multiple parallel agents. Our
experiments in the domain of equational deduction show
that the gains which each single concept is able to produce
are almost multiplied when the combined search system is
applied (which is the best that can be even theoretically

achieved).
This paper is organized as follows: In Section 2, we for-

mally characterize first knowledge-based search and then
distributed, resp. multi-agent, search and parallel search. In
Section 3, we focus on our parallel search agents, again by
first presenting the basic search model on which our distri-
bution and parallelization is based and then introducing the
concrete distribution and parallelization concepts we com-
bine. Section 4 presents the case study in automated deduc-
tion that evaluates our combination method. We conclude
with a few remarks on future work.

2 Characterizing parallel and distributed
search

We provide some terminology and definitions that allow
us to make a distinction between parallelization and distri-
bution approaches. We also briefly sketch the different ideas
that are used in developing specific parallelization and dis-
tribution concepts. For further details, see [8].

2.1 Knowledge-Based Search

Knowledge-based search algorithms differ in the data
structures used, the search spaces to traverse, the knowledge
employed, or even the goals of the search. Usually, many al-
gorithms can be used to solve a search problem, and often
they behave rather differently for different instances of the
search problem. But they all can be described in terms of the
search states that can be generated, and the transitions be-
tween states that allow to traverse the possible search space.

Definition 2.1 (Search model, search process)
Let
�

be a set of possible search states and ��� ����� a set
of transitions between states. Then � = (

�
, �) is a search

model. Let further �
	�� (the environment) be a set of values
of (data) structures. The triple
 = (� , �
	�� , �) is a search
process, if � :

��� �
	���� � is a function for which � (s,e)���
s’ � (s,s’)

� ��� holds for all s
� �

and e
� �
	�� . � is

called the search control of the search process.

The different search algorithms usually employ different
search models, but they can also just differ in the search con-
trol functions. We will need the environment �
	�� in order
to model the outside influence on the behavior of a search
process during the search (e.g., by incorporating informa-
tion from other search agents, see Section 2.2).

Search models and processes are aimed at providing a
mechanism that can be used for different instances of a
search problem. Therefore, in order to employ a search pro-
cess, we need a search instance providing it with a start state
and a way to detect goal search states representing solutions
to the given problem instance (represented by a predicate

�
). Then the search process produces a sequence ������� �	� IN

of search states, called a search derivation, where ��
 is the
start state, � ����
 = ����� ������� � , and ��� � �
	�� is the environ-
mental information accessible in state � � .

For determining the efficiency of a search process (for
a certain problem instance) the run time needed to produce
a successful search sequence is the usual measure. If we
want to improve this efficiency, often it is very useful to
look at the produced search derivation and to compare it to
other possible sequences of states leading from ��
 to a state
representing a solution. Usually, in the produced derivation
������� , many states, resp. transitions, can be identified that did
not contribute to the found solution.

2.2 Multi-Agent Search

As already stated, the basic idea of distributed, or multi-
agent, search is to have several search processes that run
concurrently and that exchange information in order to help
each other. In order to describe how and what the different
agents communicate, we need a communication structure
����� that provides channels, i.e. data areas ��
 ,..., ��� , that
can be used by the agents and that define type and struc-
ture of the information that can be put into them. Such a
communication structure ����� has at each point in time an
actual value val which is a tuple (
 ,..., �) with � � � � .

We define search agents as search processes that have the
additional ability to change the value of ����� by employing
their communication functions � � �!� : � � ����� � ���"� .
So, a search agent �$#%� is a triple (
&� , ����� , � � ���). Note that
we can model receiving information by assigning ���"� or
parts of it as the environment �
	��'� of an agent.

Besides a communication structure and search agents, a
multi-agent search system must also define how to generate
search instances for all its search agents, and how to bring
the results of the search agents together to get a solution
for a given problem instance. These are the tasks of two
additional agents, namely the start agent and the end agent.
Thus we have the following definition:

Definition 2.2 (Multi-agent search system)
Let

�)(
be a search problem, ����� a communication

structure and let �*#,+ (start agent) and �*#%- (end agent)
be agents and �*#'
 ,..., �$#". a set of search agents, �$#%� =
(
&� , ���"� , � � ���). Further, let

(0/
=
�
pu
 ,...,pu 1 � , z 2

n, be a set of processing units. Then the tuple 3 �5464
= (�$#,+ , �$#"- , �$#,
 ��7�7�7�� �$#". , ����� ,

(8/
) is called a multi-

agent search system (or distributed search system) for
�)(

,
if the following holds:
9

For each
:� = (�*� , �
	��,� , �;�) there are D<>= ,...,D<�?	@ in
����� , such that �
	��,� = (D<>= ,...,D<�?	@).

9
The agents can use the processing units to run their
search processes and their � � � -functions.

9
The agent �$#,+ produces for each problem instanceA 	B��C of

�)(
n pairs (s
�= � �
�� , ..., (s
!D � � .), such that

(s
 @ � � �) is a search instance to
 � .
9

If A
 ,...,A . are the search derivations produced by

 ,...,
 . to (s
 = � �
 � , ..., (s
 D � � .) then �*# - produces
a solution to the instance

A 	B��C of
�)(

, if
A 	B��C is solv-

able and all �$# � terminated their search in a regular
fashion.

Our definition of a multi-agent search system describes
the static aspects of such a system. In order to describe and
analyze runs of a particular system for a certain problem
instance, we have to know for each point in time the actual
search states of all agents and the actual value of �E��� . In
practice, for generating a search course protocol we only
need such snapshots for certain important points in time.
These important points in time are defined by time frames
and coincide with changes, either to the state of any agent
or to the value of any data area in ����� . A more detailed
account of the dynamics of a multi-agent search system is
given in [8] and [9].

In the literature, there are three basic ideas on how to dis-
tribute search among the agents of a multi-agent search sys-
tem. The competition approach has been proposed by sev-
eral authors in different applications. It consists of running
different search agents on the available processing units
working on the same problem instance. In the pure version,
there is no communication between the agents. Improve-
ments on this approach, like the TEAMWORK concept [2, 7],
allow for agents to periodically communicate selected re-
sults of different types. Then agents can use the results from
the others to speedup their own search considerably.

By dividing the given problem instance into instances of
subproblems that hopefully are smaller and easier to solve, it
is very easy to employ several agents. Unfortunately, if such
a division is possible, the resulting subproblem instances are
often not independent of each other. So, such multi-agent
search systems have to implement some kind of negotia-
tion mechanism for the agents to produce solutions to their
subproblems that are compatible with each other. Usually,
agents inform other agents about conflicts and their partic-
ular problem instance, resulting in a more global view on
the initial problem instance for the individual agents. For an
example of a system employing this basic idea, see [24].

The use of a common search state for all search agents is
inspired by properties of search models and processes. All
the data structures usually employed as search states allow
the concurrent execution of several transitions. For exam-
ple, transitions in tree-based search models usually extend
leaf nodes, and several of those extensions can be performed
by different agents at the same time. This realizes a kind of
partitioning of the search space between the agents. Agents
may perform several transitions before they integrate their

results (usually their actual state) into the common search
state. The common state can either be stored centrally using
shared memory to represent the communication structure,
or it can be distributed among the agents resp. their envi-
ronments (see, e.g., [16]).

It should be noted that the three basic ideas do not mutu-
ally exclude each other, so that multi-agent search systems
are possible that include two or even all ideas. For example,
a system based on dividing the problem into subproblems
might use several agents for the same subproblem. Such a
subteam might then cooperate by competition or by working
on a common search state.

While the limit on the number of processing units that
can be sensibly used is obvious for concepts dividing the
problem instance into subproblems—if there are only 5 sub-
problems then using more than 5 units does not make sense–
-this is not so obvious for the other two basic ideas. But
just consider a problem instance and a search control of a
search process that leads to a search derivation in which no
unnecessary transition was performed and each transition
needs the result of the previous transition to be applicable.
If one of the agents of a multi-agent search system improv-
ing on the competition approach employs this search pro-
cess then the other agents will not contribute anything to
this agent solving the instance (because it already does an
optimal search). So, just using this agent is enough. The
same is true in a multi-agent search system based on a com-
mon search state: agents other than the one optimal agent
just perform unnecessary transitions. Naturally, the chance
for this to happen is very low, but dependencies between key
transitions in addition to rather good search agents can for
some problem instances result in rather small numbers of
sensibly usable processing units, at least for homogeneous
multi-agent search systems.

2.3 Parallel Search

The basic idea of parallel search is to employ several
processing units in generating the next search state out of
the actual one. This means essentially that performing one
transition is done in parallel. In order to do so, we have to
split performing a transition into several tasks. We need
a set � �

of tasks and a task function C�� : �
�
� � ���

that assigns a set
� C��
 ,..., C��
	 � of tasks to each transition

C�� ��� � �
�
� � �

�
� � . Since it might not be possible to

divide each transition in � (except for the “trivial” division
into a single task) we need the subset �

�
of � to indicate the

really decomposable transitions. There might be tasks for
a transition that require that other tasks have already been
dealt with. In a parallel search, such dependencies are mod-
eled by an assignment function.

Definition 2.3 (Parallel search system)
Let

� (
be a search problem, � = (

�
, �) a search model,

�
�
��� , and
 = (� , �
	�� , �) a search process for

�)(
.

Furthermore, let
(8/

=
�
pu
 ,...,pu 1 � be a set of processing

units, � �
a set of tasks and C�� a task function to � , �

�
and

� �
. The tuple
�464 = (� ,
 , � �

, �
�
, C
� , (8/) is called a

parallel search system for
�)(

, if the following holds:
9

For all instances
A 	B��C of

�)(
and their search in-

stances (s
 � �)
 produces search derivations A =
(s �) �	� IN , such that (s � ,s ����
) � �

�
.

9
There is an assignment function ���!� : �

� � � � � (8/��
IN that assigns to each transition C � �

�
and each task

C�� � C
� � C�� a processing unit �"������� (C , C��) and a number
���!�
��� (C , C��) indicating when to start C�� on the unit.

9
If t = (s, s’)

� �
�

and C�� � C>��� � C��%
 ��7	7�7	� C�� 	 � then exe-
cuting C���� on processing unit ���!� ��� � C � C���� � at moment
���!� ��� � C � C�� ��� for all ta � results in generating s’ out of s.

So, a parallel search system generates the same search
derivation A as the parallelized search process
 would pro-
duce if not parallelized, provided that all transitions are in
�
�

and the search control does not rely in any way on ran-
dom factors or time dependent evaluations of transitions.
Note that the assignment function is not fixed, in the same
sense as we did neither fix the assignment of agents to
processing units, nor the search course protocol in case of
multi-agent search systems. Once again, for an analysis of
parallel search systems snapshots of the system with respect
to the points in time represented by �"��� ��� (C , C�� �) for all C�� �
(and performed transitions C) are needed. We will not go
into more detail here.

The parallel search systems in the literature can be lo-
cated within a spectrum that ranges from systems whose
task sets contain only tasks directly concerned with manip-
ulating the search state to systems whose task sets contain
only tasks that deal with evaluating all transitions that can
be performed in the actual state (and one task for performing
the selected transition). Task sets of the first kind are very
dependent on details of the search model, and therefore on
the particular application. Parallel search systems with task
sets that mainly deal with providing the search control with
selection information can often be described independently
from the particular application, taking only into account the
rules that define the possible transitions.

As the definition shows, there is a limit on the number of
processing units that can be sensibly used for parallelizing a
certain transition, namely the number of tasks. Usually this
limit can already not be reached in reality, because some
tasks depend on others. So, given the search derivation to a
problem instance and the search process we parallelize, the
highest number of sensibly usable processing units is at best
the maximum of the highest numbers for all the transitions.
It should be noted that for concepts with task sets centering
on providing information for the search control usually in

late stages of the search this highest number can become
rather large whereas the other concepts tend to have limits
that are more independent of the stage the search is in.

Note that the border between a multi-agent search sys-
tem and a parallel search system is rather strict if the search
model (and especially the definition of the transitions) is
given, and not both ideas for utilizing several processing
units are integrated into the system. But without a clear
search model the border is not very well defined. For ex-
ample, if we look at a set-based search model and a genetic
algorithm search process, we could describe a transition us-
ing the notion of a generation, i.e. by generating in each
step a certain number of new individuals while eliminating
the same number of old ones. An alternative would be to
consider the creation and elimination of one individual as
a transition. A search system utilizing several processing
units in order to compute a new generation in parallel can
be classified as a parallel search system if we use the first
definition for a transition, while it would be a multi-agent
search system (based on a common search state) for some-
one using the second definition.

3 Parallel search agents

If we look at our definitions in Sections 2.2 and 2.3 then it
looks as if each parallelization concept could also be applied
to the individual agents of a distributed search system. But
this need not be the case as, for example, the communication
function of a search agent influences the behavior of other
agents via their environments, and this is not dealt with by
the tasks of a parallel search system. Therefore we cannot
always expect that the combination of a distribution and a
parallelization concept results in a multiplication of speed-
up factors.

A general problem with all parallelization approaches is
that performing a single transition may not require enough
effort to justify a parallelization. This obviously depends on
the search model and the concrete search problem, but there
is no guarantee that a parallelization approach achieving sat-
isfactory speed-ups can be found. Another general problem
with heterogeneous multi-agent search approaches, i.e. ap-
proaches with agents using different search models, is that
several parallelization approaches are needed, one for each
of the different search processes used.

If the search control of at least one agent relies on deci-
sions that may be time-dependent (FIFO, for example) then
small differences in the relative execution progress of the
agents can cause quite different time frames. And, unfor-
tunately, the parallelization of agents very often produces
such small differences. Even distribution approaches based
on a common search state, for which this problem is not
very grave, suffer from another problem, namely the already
mentioned fuzzy borders between multi-agent and parallel

search. If the search model used for the distribution ap-
proach differs only a little bit from that of the paralleliza-
tion approach, then the result of a combination is often not
a multiplication, but just an addition of the speed-up fac-
tors. And the combination might not overcome the problem
of the maximal number of processing units that can be sen-
sibly used for a particular problem instance.

So, although at a first glance combining multi-agent and
parallel search seems to be easy and straightforward, the
success cannot be guaranteed. Therefore approaches have
to be found that really can be put together by parallelizing
the agents and then an experimental evaluation is necessary
to prove that the combination is good and achieves the mul-
tiplication of the speed-ups. In the following, we will first
present the basic search model, then the two approaches we
have selected to combine and finally our resulting approach
for multiple parallel search agents.

3.1 The Basic Search Model

Both, TEAMWORK and PaReDuX, were designed for
set-based search models. Thus, a search state consists of a
collection

� ��
 ��7�7�7 � � 	 � of facts, and each transition can add
and/or remove facts from the current search state in order to
produce the successor state. Each transition is composed of
three steps:
� � � selection of a yet unhandled fact,
� ��� � deduction of new facts by combining known facts with
the selected one, and
� ����� � simplification of facts.
Step � ��� � helps in evaluating the possible future transitions
by computing part of their results. To keep track of which
facts have already been processed, the agents distinguish be-
tween active and passive facts. Only active facts are consid-
ered during the deduction process; all newly generated facts
and facts from the original problem are initially passive (ac-
tivation by step � � �).

As the size of the search space crucially depends on the
selection strategy employed in step � � � , choosing the next
fact carefully (according to some elaborate heuristic built
into the search control) can be worthwhile. Usually, there
are several heuristics to do this. They define different search
processes that all evaluate all passive facts to select the best
one.

3.2 The TEAMWORK Method

In TEAMWORK (see [7], [11]), the agents performing
the search processes are called experts. They are ho-
mogeneous, and thus use the basic search model with
different controls. The communication functions of 	
agents �$#"� work on a communication structure �����
= (D ����� � �	� � � ,D
�� �
�
 ��7�7�7��D
�� ��� . , D � ���
 ��7	7	7��D � ��� . ,D ��� .).

The data areas D � ��� � � � � � and D � � . are shared by all search
agents, and additionally, agent �$#%� has data area D
 � � � � and
D � � � � in its environment.

The start agent transforms the given problem instance
into a search instance that is given to � of the 	 search agents
selected as the start team. In addition, it selects one of these
search agents as first supervisor, a role that this agent’s com-
munication function will play until a new supervisor is cho-
sen in a team meeting. Such a team meeting takes place after
a given period of time. In the mean time, all search agents
act solely as experts, so that no information exchange takes
place. In a team meeting only the communication functions
are used (and the search process of the agent selected as new
supervisor).

A team meeting starts with the communication functions
of all active agents acting as referees by computing a mea-
sure of success for their agents and by selecting their best
new facts. Both types of information naturally depend on
the search problem. The measure of success is then put into
the D
�� � -area of the agent that is the supervisor at this mo-
ment. The communication function of this agent then acts
in the supervisor role, compares the measures of success
of all agents, and selects the agent with the best measure as
next supervisor. This agent (and all other ones) are informed
about this change via the D � � . -area.

All agents put their selected facts into the D
�� � -area of
the new supervisor. Then the supervisor generates the next
search state of its agent by adding all the selected facts from
the others to its actual search state (and performing the nec-
essary additional actions of an expert). This new state will
be the starting point for all agents and therefore the super-
visor puts it into the D � ��� � ��� � � -area. The supervisor is also
responsible for selecting the next team, i.e. the agents that
will be active after the meeting is over. To do this, it uses
some general knowledge about the agents and the D � � . -area
consisting of reports about the team meetings containing the
measures of success of all agents. Agents that performed
badly for a while are exchanged by hopefully better agents.
All selected agents (the supervisor is always among them)
are assigned a different element of

(8/
in their D � � -areas,

while the other agents are assigned “NONE” in their areas.
The first transition the active agents perform as experts is to
set their states to the new start state and then they continue
their work until the next meeting.

3.3 The PaReDuX Approach

Following our definitions of Section 2.3, the paralleliza-
tion approach represented by PaReDuX [5, 6, 1] can be de-
scribed as follows. The set � �

of tasks to be performed for
a transition consists of the following three types:

C��%
 : Selection and activation of a passive fact � new.

C����"� ��
 � ��� � : Deduction of new facts by combining two ac-
tive facts �
 and ��� .

C����"� ��� : Simplification of fact � , possibly inactivating or
deleting it.

Obviously, task C��
 has to be performed first, resulting in the
selection and activation of � new. Then consequences deriv-
able with � new are generated in parallel, where for each
active fact �
� a task C�� � � � new � �
� � is employed. The transi-
tion is completed by simplifying all facts, again in parallel,
using task C������ ��� for each fact � . We thus get the following
task function:

C�� ������� � ���	��
���� � � C��,
 � �� C�������� � ��� �
	 �
������� � �

� C������ � new � #B� � # � � 	 ������� � � � new � � �
where

� 	 ������� and
	 �

����� � , respectively, denote the set of
active facts in state ��� and the set of active or passive facts
after having finished all C��,
 and C���� tasks initiated in state
� � . � �	��
 denotes the set of all remaining simplified facts
delivered by the C�� � tasks.

For the processor assignment function let us assume a
transition C � ��� ��� � ����
 � , a set of active facts

� 	 ��� � � �� #
 ��7�7�7�� #��
�
 � and a set of facts
	 �

��� � � � � �
 ��7�7�7 � � . �
after having finished C��
 and C�� � . Furthermore (for unifor-
mity), we set # � � � new, and thus get
���!� � C � C��
 � � �����
 ��� � �
���!� � C � C�� � � � new � # < � � ����� < ��� � for � 2�� 2&� �
���!� � C � C�� � ��� 	,��� � ����� 	 ��� � for � 2�� 2 	 �

where we have made the assumption, that we have a set of
(virtual) processors of size at least ��� � ��� � 	 � at our dis-
posal.1.

3.4 TEAMWORK-PaReDuX

If we combine TEAMWORK and PaReDuX then the ex-
perts represent the search process that PaReDuX is aimed
at parallelizing. So, after the team meeting and after setting
the actual search state to the value of D � �
� � ��� � � , PaReDuX
is used to perform the subsequent transitions of an agent un-
til it has to act as referee. Note that this is possible because
TEAMWORK does not allow any communication between
agents acting as experts so that we do not have to develop
any “communication tasks” for PaReDuX.

But the experts are not the only use of PaReDuX that is
possible. When the new supervisor integrates the selected
facts of the other agents into its search state, this is essen-
tially a transition, only that � new does not have to be se-
lected out of the set of passive facts but it is one of the
selected facts. So, there are still the C��!� and C���� tasks to
perform that are exactly the tasks that are parallelized by
PaReDuX. In TEAMWORK-PaReDuX this possibility to use

1This assumption is even made in the implementation, where it is re-
solved by the VSThreads middleware [13, 14, 15].

the PaReDuX approach is also employed, so that not only
in the time between team meetings PaReDuX is used to
speed-up the system, but also during the team meetings the
processing intensive part of the supervisor’s work is paral-
lelized (which keeps the percentage of time spent for over-
head computations nearly the same between TEAMWORK

alone and TEAMWORK-PaReDuX).

4 A case study: Experiments in Automated
Deduction

Both, PaReDuX and TEAMWORK, have already been ap-
plied separately to parallel and distributed equational deduc-
tion using unfailing completion (see [18, 10]). Therefore,
and because equational deduction is a rather hard search
problem, we also have chosen this application for their com-
bination. The goal of equational deduction is to show that
a goal equation u=v is the logical consequence of a set

�

of equations,
� � � �
�� C>
 ��7	7�7	� ��. � C�. � . For a general

discussion of parallel completion see [1].
Unfailing completion [3] solves this search problem us-

ing a set-based search model, in which a state consists of
three components: a set of valid rules2 and equations, a set
of unhandled facts called critical pairs, and the goal to be
proved in normal form, i.e. simplified with respect to the di-
rected and undirected equations. In terms of Section 3.1, the
equation set is the set of active facts, whereas passive facts
are critical pairs. Each transition thus first selects a critical
pair and transforms it into a rule or equation, depending on
whether or not it can be oriented. Then new critical pairs are
generated, which are finally simplified by computing their
normal forms. Simplification also encompasses interreduc-
tion of the rule and equation sets, as well as the elimination
of redundant equations and critical pairs.

For our case study we used the PaReDuX system as the
implementation of the single parallel search agent, we im-
plemented several of the special heuristics that result in dif-
ferent and well cooperating agents from the TEAMWORK

point of view within PaReDuX, and we put these parallel
agents into the TEAMWORK framework represented by the
TWlib class library (see [12]). For our experiments with
the resulting system we selected examples from the TPTP
problem collection [22]. Two further problems (LUKA3
and RA0073) were additionally included. Table 1 reports
on the results of these experiments. The reported exam-
ples represent problems that are hard (around 100 seconds
of run time or more) for the best sequential control strat-
egy in PaReDuX. The time needed by the best strategy is
reported in the column B. Seq..

2In this setting, directed equations are called rules.
3LUKA3 is taken from [10], RA007 proves that ������� �

in all
relation algebras using the Tarski/Givant axiomatization [23].

This best control strategy was also used by the parallel
runs of PaReDuX, which are reported in column Par. in the
table. TEAMWORK employed the best two control strategies
for each example and the run times are reported in column
Distr.. The team of parallel agents consisted of the same
two strategies, but now parallelized. The run times of the
parallel agents are in column Par. Ag..In order to get a clear
idea of how well the concepts work together, we did not
make use of the reactive planning possibilities of TEAM-
WORK and also did not choose individual cycle times for
the different examples. Instead, a fixed cycle time of 10s in
the case of sequential agents and 2.5s for parallel agents was
used. The experiments were performed using two Sun E450
machines with four processors each. The control strategies
available have been Occnest, AddWeight, MaxWeight and
Goal-in-CP (see [10], [11]). All four processors of the ma-
chines were used in the parallel runs (i.e. Par. and Par. Ag.).
For the sequential agent runs (B. Seq. and Distr.), only one
processor of each machine was used.

As the right part of Table 1 shows, the speed-ups ob-
tained by using the parallelization method (column Par. un-
der speed-up factors) only cover a range between a little
better than no speed-up (i.e. 1.36) and the theoretically best
possible factor of 4 (with 3.36 being the highest actually
achieved). Due to the synergetic effects of TEAMWORK,
the speed-ups achieved by distribution cover a much larger
spectrum (up to a factor of nearly 260 with only two ma-
chines) as column Distr. shows. But, as BOO022-1 shows,
TEAMWORK is not always successful (at least with the re-
ported way of choosing the team) and might even slow down
the search. The examples BOO007-4, LUKA3 and RA007
also show that TEAMWORK is capable of solving examples
that no single agent could cope with (we imposed a limit of
2400s on the system).

Column Par.
�

Distr. represents the theoretical out-
come of combining the parallelization and distribution ap-
proaches, namely the multiplication of the speed-ups of the
two columns to the left of it. In the rightmost column (i.e.
Par. Ag.) we report the empirically determined speed-ups
of our system of cooperating parallel search agents. For sev-
eral of the examples we nearly reached the optimum and for
four examples we were even better than the theoretical best.
For the three examples requiring the TEAMWORK concept
to be solved, parallelizing the agents leads to a multiplica-
tion of the speed-up with between 2.63 and 4.09, well within
the range of the other results.

The fact that we have better practical results than the
theoretically predicted outcome needs an explanation. We
found it by looking at the number of transitions made by
the individual agents during a working cycle. In order to
produce facts needed by other agents to find a proof, agents
have to perform certain numbers of transitions according to
their control. It would be optimal if team meetings hap-

Table 1. Experimental Results
Problem Run times Speed-up factors

B. Seq. Par. Distr. Par. Ag. Par. Distr. Par.
�

Distr. Par. Ag.

BOO002-2 411.95 154.02 194.80 76.19 2.67 2.11 5.63 5.41
BOO007-4 - - 554.31 163.68 - - - -
BOO016-2 96.20 70.98 5.32 2.73 1.36 18.08 24.59 35.24
BOO022-1 148.50 56.34 226.44 57.08 2.64 0.66 1.74 2.60
COL003-12 364.89 111.21 262.08 86.56 3.28 1.39 4.60 4.21
COL003-20 285.48 93.65 1.10 0.41 3.05 259.53 751.57 696.29
GRP002-4 205.93 83.36 14.00 6.22 2.47 14.71 36.33 33.11
GRP119-1 867.70 258.45 423.86 99.81 3.36 2.07 6.96 8.69
GRP122-1 752.73 218.73 155.31 49.23 3.32 4.85 16.10 15.29
GRP175-3 1422.15 555.19 63.70 29.04 2.56 22.33 57.17 48.97
GRP175-4 464.33 163.02 243.50 87.61 2.85 1.91 5.44 5.30
LUKA3 - - 135.73 33.17 - - - -
RA007 - - 67.22 25.58 - - - -
ROB004-1 1683.82 670.16 40.73 14.60 2.51 41.34 103.76 115.33

pened immediately after the production of such facts, be-
cause then the other agents can make immediate use of
them. But it is also possible that such facts are produced
immediately after a team meeting, so that the whole time
until the next team meeting is “lost”, because agents cannot
produce the follow-up facts. This timing between agents
can change due to parallelization. So, the timing of team
meetings has a certain influence on the time needed to solve
a problem, and parallelizing the agents can change this tim-
ing a little bit compared to the sequential agent. This can be
both positive and negative, as our experiments have shown.
In order to give an impression of the reliability of the com-
bination, we have chosen to use fixed cycle times in Table 1.

As presented here, we assume that the distributed ar-
chitecture consists of an essentially homogeneous cluster
(processors of similar speed) with uniform network speed,
such as our cluster of multiprocessor SUN ES450 servers.
If one of the agents is delayed by a slow system or net-
work, then either the team meetings can be delayed, or we
accept that the contribution by the agent will be less than
the contribution of the others. As our explanation in the
previous paragraph showed, we have chosen the latter to
keep the scheduled team meetings. Different numbers of
physical processors can be evened out by user level threads
systems supporting symbolic computation [13, 14, 15]. On
inhomogeneous processor and operating system architec-
tures our DOTS distribution middleware can provide a log-
ically homogeneous programming environment based on
asynchronous remote procedure calls; DOTS has been suc-
cessfully applied to distributed algebraic computation and
satisfiability checking [4, 20, 21].

5 Conclusion and Future Work

Based on basic definitions and coarse classifications of
distribution and parallelization approaches for knowledge-
based search, we presented experimental evidence that
loosely coupled parallel agents, i.e. distributed search based
on improvements of the competition approach combined
with parallel search mostly based on evaluating all transi-
tions in parallel, achieve a multiplication of the speed-ups
resulting from distribution and parallelization alone. This
makes this combination of distribution and parallelization
very interesting for usage in systems aimed at utilizing net-
works of homogeneous multi-processor computers, because
of the good use of the characteristics of such a hardware
platform.

Although we presented only a single case study, our
experimental results show the anticipated problems of the
combination of the general types of distribution and paral-
lelization, i.e. problems with timing between agents. But
they also indicate that these problems have only a minor
influence on the performance of the combined search sys-
tem. For other possible combinations this might not work
out as well. Future work could be directed to using our par-
allel search agents in other application domains, using other
cooperation concepts based on the competition approach,
and trying out parallelization approaches more towards con-
structing the new state in parallel.

Acknowledgements

This work is based in part upon research funded by the
German National Science Foundation DFG under grants Ku
966/4-1 and Av 10/7-1 within the special purpose program
“SPP Deduktion.” One of the ES450 servers is a gift to the

University of Tübingen under Sun’s Academic Equipment
Grant program.

References

[1] B. Amrhein, R. Bündgen, and W. Küchlin (1998). Parallel
completion techniques. In M. Bronstein, J. Grabmeier, and
V. Weispfenning, (eds), Symbolic Rewriting Techniques, vol-
ume 15 of Progress in Computer Science and Applied Logic,
Birkhäuser, pp. 1–34.

[2] J. Avenhaus and J. Denzinger (1993). Distributing equa-
tional theorem proving. Proc. RTA’93, LNCS 690, pp. 62–
76.

[3] L. Bachmair, N. Dershowitz, and D. Plaisted (1989). Com-
pletion without Failure. Coll. on the Resolution of Equations
in Algebraic Structures, Austin (1987), Academic Press.

[4] W. Blochinger, W. Küchlin, C. Ludwig, and A. Weber
(1999). An object-oriented platform for distributed high-
performance symbolic computation. Mathematics and Com-
puters in Simulation, 49:161–178.

[5] R. Bündgen, M. Göbel, and W. Küchlin (1996). Strat-
egy compliant multi-threaded term completion. J. Symbolic
Computation, 21(4–6):475–505.

[6] R. Bündgen, M. Göbel, W. Küchlin, and A. Weber (1998).
Parallel Term Rewriting with PaReDuX. in Bibel, Schmitt
(eds.): Automated Deduction–A Basis for Applications, Vol.
II, Kluwer, pp. 231–260.

[7] J. Denzinger (1995). Knowledge-Based Distributed Search
Using Teamwork. Proc. ICMAS-95, AAAI-Press, pp. 81–
88.

[8] J. Denzinger (2000). Distributed Knowledge-based Search.
Habilitationsschrift, Computer Science Department, Univer-
sity of Kaiserslautern.

[9] J. Denzinger (2000). Conflict Handling in Collaborative
Search. In Tessier, Chaudron, Müller (eds.): Conflict-
ing Agents: Conflict management in multi-agent systems.
Kluwer, pp. 251–278.

[10] J. Denzinger and M. Fuchs (1994). Goal Oriented Equational
Theorem Proving using Teamwork. Proc. 18th KI-94, LNAI
861, pp. 343-354.

[11] J. Denzinger, Mark Fuchs, and Matthias Fuchs (1997). High
Performance ATP Systems by Combining Several AI Meth-
ods. Proc. IJCAI-97, Morgan Kaufmann, pp. 102–107.

[12] J. Denzinger and J. Lind (1996). TWlib - a Library for Dis-
tributed Search Applications. Proc. ICS’96-AI, pp. 101–108.

[13] W. Küchlin (1992). The S-threads environment for parallel
symbolic computation. In R. Zippel (ed), Computer Algebra
and Parallelism, Springer LNCS 584, pp. 1–18.

[14] W. Küchlin and N. J. Nevin (1991). On multi-threaded list-
processing and garbage collection. Proc. Third IEEE Symp.
on Parallel and Distributed Processing, IEEE Press, pp. 894–
897.

[15] W. Küchlin and J. A. Ward (1992). Experiments with virtual
C Threads. Proc. Fourth IEEE Symp. on Parallel and Dis-
tributed Processing, IEEE Press, pp. 50–55.

[16] V. Kumar, K. Ramesh, and V. Nageshwara Rao (1988). Par-
allel Best-First Search of State-Space Graphs: A Summary
of Results. Proc. AAAI-88, AAAI Press, pp. 122–127.

[17] S.E. Lander and V.R. Lesser (1992). Customizing Dis-
tributed Search Among Agents with Heterogeneous Knowl-
edge. Proc. 1st Intern. Conf. on Information and Knowledge
Management.

[18] P. Maier, M. Göbel, and R. Bündgen (1995). A Multi-
Threaded Unfailing Completion. Technical Report 95-
06, Wilhelm-Schickard-Institut, Universität Tübingen, Ger-
many.

[19] P. Nangsue and S.E. Conry (1998). Fine-Grained Multia-
gent Systems for the Internet. Proc. ICMAS’98, IEEE Press,
pp. 198–205.

[20] R.-D. Schimkat, W. Blochinger, C. Sinz, M. Friedrich, and
W. Küchlin (2000). A service-based agent framework for
distributed Symbolic Computation. Proc. 8th Intl. Conf.
on High Performance Computing and Networking Europe,
HPCN 2000, Springer LNCS 1823, pp. 644–656.

[21] C. Sinz, W. Blochinger, and W. Küchlin (2001). PaSAT -
parallel SAT-checking with lemma exchange: Implementa-
tion and applications. In H. Kautz and B. Selman, editors,
LICS’2001 WS on Theory and Applications of Satisfiability
Testing (SAT’2001), volume 9 of Electronic Notes in Dis-
crete Mathematics, Elsevier.

[22] G. Sutcliffe, C.B. Suttner, and T. Yemenis (1994). The TPTP
Problem Library. Proc. 12th CADE, LNAI 814, pp. 252–
266.

[23] A. Tarski and S. Givant (1987). A Formalization of Set The-
ory without Variables, vol 41 Coll. Publ. Amer. Math. Soci-
ety.

[24] M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara
(1992). Distributed constraint satisfaction for formalizing
distributed problem solving. Proc. 12th IEEE Conf. on Dis-
tributed Computing Systems, pp. 614–621.

