CPSC/PMAT 629 — Elliptic Curves and Cryptography ASSIGNMENT 2

Problem 1. Projective coordinates

Let \mathbb{K} be a field of characteristic different from 2, 3. In such fields, inversion of elements is very expensive compared to multiplication and squaring — one inversion takes approximately as much time as 50-80 multiplications, depending on your hardware and software — so we want to do elliptic curve arithmetic without inversions. Therefore, one uses projective coordinates.

- (1) Construct doubling formulas for standard projective coordinates for an elliptic curve $E: y^2 = x^3 + Ax + B$ over \mathbb{K} that require no inversions. Hint: convert projective points to affine first, then back to projective.
- (2) Derive formulas for addition of two points in mixed coordinates, i.e. one point is assumed to be given in affine representation, the other in projective, and their sum is a projective point, requiring no inversions. Don't forget the case where the two points are equal or inverse to each other.
- (3) Determine the minimum number of multiplications and squarings required to use your formulas from (1) and (2), along with the number of intermediate values that must be stored.
- (4) Determine the minimum number of multiplications and squaring required to use your formulas from (1) and (2) if you are not allowed to store intermediate values for reuse.

Problem 2. 3-torsion in characteristic 2

Let E be an elliptic curve in characteristic 2. Show that

$$E[3] \equiv \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} .$$

Hint: Use the formulas for point doubling in characteristic 2 for the two different models of an elliptic curve.

Problem 3. Weil pairing on basis elements

Prove that $e_n(T_1, T_2)$ is a primitive nth root of unity if $\{T_1, T_2\}$ is a basis of E[n].

Problem 4. Elliptic curve discrete logarithm problem

Recall that the discrete logarithm problem in a field \mathbb{K} is, given elements $a, b \in \mathbb{K}$, determine an integer k such that $a^k = b$, if such an integer exists.

The elliptic curve discrete logarithm problem is, given points P and Q, on an elliptic curve, determine an integer k such that [k]P = Q if such an integer exists.

- (1) Consider an elliptic curve E defined over a field \mathbb{K} , and let P be a point of order n on E where n is not divisible by the characteristic of the field. Let $Q \in E[n]$. Show that $Q \in \langle P \rangle$ (i.e. there exists an integer k such that Q = [k]P) if and only if $e_n(P,Q) = 1$.
- (2) Let P be as in part (1) and Q = [k]P. Use the Weil Pairing to show that the elliptic curve discrete logarithm problem (with respect to Q and P) can be solved by solving a discrete logarithm problem in $\mu_n \subseteq \mathbb{K}(\zeta_n)$, i.e. in the smallest field containing \mathbb{K} and ζ_n .

(3) Consider the case of $\mathbb{K} = \mathbb{F}_q$. Determine a criterion for the smallest integer k such that $\mu_n \subseteq \mathbb{F}_{q^k}$ (again, assuming $\gcd(n,q)=1$). What does this say about the complexity of the discrete logarithm problem on an elliptic curve versus a finite field?

Problem 5. An elliptic curve group structure computation

Let E be the elliptic curve defined by

$$y^2 = x^3 + x + 1 \quad \text{over } \mathbb{F}_5 \ .$$

- (1) Show that the point (0,1) on E does not have order 3.
- (2) Show that the point [3](0,1) on E does have order 3.
- (3) Determine the order of the group $E(\mathbb{F}_5)$ (with proof). Argue why this group must be cyclic and find and a generator. Note: no credit will be given for brute force solutions!