Cauchy sequences and Euclidean Geometry:
A foundational method in computing

Ernie Manes, UMass, Amherst
FMCS 2010, Kananaskis
June, 2010

Special thanks to Vaughan Pratt for correcting some spaling errors.

1 Timeline

- Pythagoras (570-495 BC)
- Euclid (at Alexandria, 323-283 BC)
- Archimedes (287-212 BC)
- Oresme (1323-1382)
- Viète (1540-1603)
- Newton (1642-1727)
- Jakob Bernoulli (1646-1716)
- Johann Bernoulli (1654-1705)
- Taylor (1685-1731)
- Euler (1707-1783)
- Lagrange (1736-1813)
- Laplace (1749-1827)
- Legendre (1752-1853)
- Fourier (1768-1830)
- Gauss (1777-1855)
- Cauchy (1789-1857)
- George Green (1793-1841)
- Olinde Rodrigue (1795-1851)
- Abel (1802-1829)
- Dirichlet (1805-1899)
- Liouville (1809-1882)
- Ludwig Schläfli (1814-1895)
- Weierstrass (1815-1897)
- Riemann (1826-1866)
- Mittag-Leffler (1846-1927)
- Volterra (1860-1940)
- Baire (1874-1932)
- Lebesgue (1875-1941)
- C̆ech (1893-1960)

2 What is a Euclidean space?

A Euclidean space is a separable real Hilbert space with norm $\|x\|=\langle x, x\rangle^{\frac{1}{2}}$ and orthonormal basis e_{i},

$$
\lim _{n \rightarrow \infty}\left\|x-\sum_{k=1}^{n} a_{i} e_{i}\right\|=0
$$

where $a_{i}=<x, e_{i}>$.

Note that $a_{1} e_{1}+\cdots+a_{n} e_{n}$ is the closest vector in $\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$ to x (in the metric $\|y-z\|$). This is the (Euclidean!) theory of best least-square fit.

Pthagorean theorem $=$ Parsival's equality

 For orthonormal e_{i},$$
\left\|\sum a_{i} e_{i}\right\|^{2}=\sum a_{i}^{2}
$$

If $x=\sum a_{i} e_{i}$ with e_{i} only orthogonal,

$$
\|x\|^{2}=\sum\left(\left\|e_{i}\right\| a_{i}\right)^{2}
$$

3 Why π ?

- $A=\pi r^{2}$ (Archimedes, 287-212 BC)
- $V=\frac{4}{3} \pi r^{3}$ (Archimedes)
- Ellipse, $A=\pi a b$

Green's theorem in the plane (George Green, 1828; Gauss, 1813; Lagrange, 1760)

Let C be a closed curve (not necessarily simple) bounding a (not necessarily simply-connected) region R. For force field $(u(x, y), v(x, y))$ with continuous first partial derivatives and defined on and inside C,

$$
\int_{C}(u, v) \cdot(d x, d y)=\iint_{R}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y
$$

For $u=0, v=x$,

$$
\text { Area } R=\int_{C} x d y
$$

Example $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Parametrize ∂E by $x=a \cos \theta, y=b \sin \theta, 0 \leq \theta \leq 2 \pi$. Note the use of the (Euclidean) Pthagorean theorem $\left(\sin ^{2}+\cos ^{2}=\right.$ 1). Then the area is

$$
\int_{\partial E} x d y=\int_{0}^{2 \pi} a \cos \theta(b \cos \theta d \theta)=a b \int_{0}^{2 \pi} \cos ^{2} \theta d \theta
$$

By Euler's formula, $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$, so the area is

$$
a b\left[\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right]_{0}^{2 \pi}=\pi a b
$$

Because of the definition of $\pi\left(=180^{\circ}\right)$, more general ∂R are parametrized by $x=f(\theta), y=g(\theta), 0 \leq \theta \leq 2 \pi$, with area

$$
\int_{0}^{2 \pi} f(\theta) g^{\prime}(\theta) d \theta=\left.H(\theta)\right|_{0} ^{2 \pi}
$$

so it's no surprise π appears.

4 What is π ?

- Archimedes: 2 places (inscribed, circumscribed 96-gon)
- François Viète (1540-1603): 9 places
- Mathematica (1980s):

NumberForm[$\mathrm{N}[\pi, 500], 500]$ produces
3.141592653589793238462643383279502884197169399375105820 97494459230781640628620899862803482534211706798214808651 32823066470938446095505822317253594081284811174502841027 01938521105559644622948954930381964428810975665933446128 47564823378678316527120190914564856692346034861045432664 82133936072602491412737245870066063155881748815209209628 29254091715364367892590360011330530548820466521384146951 94151160943305727036575959195309218611738193261179310511 85480744623799627495673518857527248912279381830119491298 33673362

- $\frac{\pi}{4}=\arctan 1=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7} \cdots$. This converges slowly, but it is the basis of the Rabinowitz-Wagon spigot algorithm which is best implemented in a functional language such as Haskell -see J. Gibbons, Monthly 113, 2006.
- Bailey, Borwein and Plouffe 1997:

$$
\pi=\sum_{n=0}^{\infty} \frac{1}{16^{n}}\left(\frac{4}{8 n+1}-\frac{2}{8 n+4}-\frac{1}{8 n+5}-\frac{1}{8 n+6}\right)
$$

Can generate $m t h$ base-16 digit without knowing earlier digits.

Newton's approximation of π

On the board we derive

$$
\pi=24\left(\frac{\sqrt{3}}{32}+\int_{0}^{\frac{1}{4}} x^{\frac{1}{2}}(1-x)^{\frac{1}{2}} d x\right)
$$

Newton had proved the "binomial theorem" to get the Taylor expansion

$$
\begin{aligned}
(1-x)^{\frac{1}{2}}= & 1-\frac{1}{2} x-\frac{1}{8} x^{2}-\frac{1}{16} x^{3}-\frac{5}{128} x^{4}-\frac{7}{256} x^{4} \\
& -\cdots-\frac{883631595}{2^{38}} x^{20}-\cdots
\end{aligned}
$$

Multiplying through by $x^{\frac{1}{2}}$ and taking antiderivatives to integrate, all of which Newton had invented, note that

$$
\left(\frac{1}{4}\right)^{n+\frac{1}{2}}=\frac{1}{2 \cdot 4^{n}}
$$

so, taking the approximation above up to the x^{20} term computes

$$
\pi \sim 3.1415926535897935
$$

which is accurate to 15 places.

5 Taylor's theorem and the irrationality of e

Taylor's theorem Let $z_{0} \neq z_{1}, a_{k}$ be complex numbers such that $\sum_{k=0}^{\infty} a_{k}\left(z_{1}-z_{0}\right)^{k}$ converges. Then $f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ converges and is infinitely differentiable for all z with $\left|z-z_{0}\right|<$ $\left|z_{1}-z_{0}\right|$. Moreover, if $0<s<\left|z_{1}-z_{0}\right|$ then, for $\left|z-z_{0}\right| \leq s$, $f(z)-\sum_{k=0}^{n} a_{k}\left(z-z_{0}\right)^{k}=\frac{f^{(n+1)}(\xi(z))}{(n+1)!}\left(z-z_{0}\right)^{n+1}$ for some $\left|z_{0}-\xi(z)\right| \leq\left|z_{0}-z\right|$.

The a_{k} are unique and satisfy

$$
a_{k}=\frac{f^{(k)}\left(z_{0}\right)}{k!}
$$

Now apply this to $f(z)=e^{z}$ at $z_{0}=0$ which converges everywhere with partial sums

$$
S_{n}(z)=1+z+\frac{z^{2}}{2!}+\cdots+\frac{z^{n}}{n!}
$$

Now suppose $e=\frac{a}{b}$ were rational and seek a contradiction. This proof is due to Euler.

By Taylor's Theorem, $e-S_{n}(1)=\frac{e^{\xi}}{(n+1)!} z^{n}$ for $|z|<1$, so $e-$ $S_{n}(1) \leq \frac{e}{(n+1) n!}$.

Now choose $n>b$ with $\frac{e}{n+1}<1$. Then $e-S_{n}(1)<\frac{1}{n!}$. We have

$$
0<\frac{a}{b}-\left(1+\frac{1}{2!}+\cdots+\frac{1}{n!}\right)<\frac{e^{s}}{(n+1) n!}<\frac{1}{n!}
$$

Now multiply through by $n!$:

$$
0<\frac{a n!}{b}-n!\left(1+\frac{1}{2!}+\cdots+\frac{1}{n!}\right)<1
$$

Since no integer is strictly between 0 and 1 , we have found a contradiction.

6 Continuity

Karl Weierstrass (1815-1897)

Choose

$$
\frac{1+\frac{3}{2} \pi}{a}<b<1, a \text { an odd integer }
$$

and define $W(x)=\sum_{k=0}^{\infty} b^{k} \cos \left(\pi a^{k} x\right)$.

- By the "Weierstrass M-test", the series converges absolutely and uniformly, so W is continuous.
- Differentiating term-by-term yields a divergent series, so W has a continuous derivative nowhere.
- A more delicate proof shows W is differentiable nowhere.

For $b=0.8, a=9$, the first three terms of $W(x)$ are

$$
\cos (\pi x)+0.8 \cos (9 \pi x)+0.64 \cos (81 \pi x)
$$

Here is a plot of this fragment on the interval $[-\pi, \pi]$:
$f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{cases}$
is differentiable, but f^{\prime} is not continuous at 0 .

René Baire, thesis 1899

- In \mathbb{R}, every countable intersection of open dense sets is dense.
- If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, $\left\{x: f^{\prime}\right.$ is continuous at $\left.x\right\}$ is a countable intersection of open dense sets, hence is dense.

If f is differentiable on $[a, b]$ is it true that $\int_{a}^{b} f^{\prime}(x) d x=f(b)-$ $f(a)$?

- With Lebesgue integral, yes.
- (Volterra, 1860-1940). f^{\prime} may fail to be Riemann integrable.

7 Baire spaces

A non-empty $T 1$ topological space is a Baire space if every countable intersection of open dense sets is dense.

Well known theorems:

- A locally compact, Hausdorff space is Baire.
- A complete metric space is Baire.

But also, the irrationals are Baire. What is the general principle?

A compactification of X is a dense subspace embedding $X \rightarrow C$ with C compact Hausdorff.

Thus, a compactification exists $\Leftrightarrow X$ is completely regular, Hausdorff $\Leftrightarrow X$ is uniformizable (and separated).

In a space, a countable union of closed sets is said to be F_{σ}.

Theorem Given (completely regular, Hausdorff) X, there exists a compactification $X \rightarrow C$ with $C \backslash X F_{\sigma} \Leftrightarrow$ for every compactification $X \rightarrow C$ with $C \backslash X F_{\sigma}$.

We say X is C Cech complete in that case.

Examples

- A locally compact, Hausdorff space is C Cech complete.
- The irrationals are C Cech complete.
- \mathbb{R} is Čech complete.
- (harder) A complete metric space is Cech complete.

Theorem (C̆ech 1937) A C̆ech complete space is Baire.

Observation If X is a Baire space in which every non-empty open set has a least two elements, every countable intersection of open dense sets is uncountable. In particular, X is uncountable.

Corollary \mathbb{R} is uncountable.

8 Classical PDEs and complex analysis

Laplacian of $u(x, y, z, t)$

$$
\nabla u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
$$

Wave equation: $\nabla u=\frac{\partial^{2} u}{\partial t^{2}}$

Fourier heat equation for $u(x, y, z, t)$ the temperature at (x, y, z) at time t :

$$
\nabla u=\frac{\partial u}{\partial t}
$$

$u(x, y, z)$ or $u(x, y)$ is harmonic if $\nabla u=0$. This is the heat equation at thermal equilibrium, and is also the Laplace equation.

For U an open subset of the complex plane \mathbb{C} and for f : $U \rightarrow \mathbb{C}$ the following conditions are equivalent and we say f is holomorphic on U if any, hence all, hold.

- $f^{\prime}(z)=\lim _{w \rightarrow 0} \frac{f(z+w)-f(z)}{w}$ exists
- Writing $f=u+i v$, the Cauchy-Riemann equations hold:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

- For $z_{0} \in U$ there exists $r>0$ with $S_{r}\left(z_{0}\right) \subset U$ and

$$
f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}, \quad z \in S_{r}\left(z_{0}\right)
$$

For holomorphic $f=u(x, y)+i v(x, y), f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$.

First properties of holomorphic functions

- Every holomorphic function is infinitely differentiable inside any of its circles of convergence.
- As a real function $U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, because of the CauchyRiemann equations, the Jacobian matrix is

$$
\left(\begin{array}{cc}
\frac{\partial u}{\partial x} & -\frac{\partial v}{\partial x} \\
\frac{\partial v}{\partial x} & \frac{\partial u}{\partial x}
\end{array}\right)=\left(\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

where $\tan \theta=\frac{\partial v}{\partial x} / \frac{\partial u}{\partial x}$ and $r^{2}=\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}$.

- Two functions holomorphic on an open set U, if they agree on infinitely many points in a closed and bounded subset of U, must agree everywhere in U.
- If $u+i v$ is holomorphic, u and v are harmonic functions.

Using complex line integrals to expand a holomorphic function

Let $f(z)$ be holomorphic on and inside a closed curve C.

Cauchy's theorem.

$$
\int_{C} f(z) d z=0
$$

Cauchy's integral formulas. For C a simple curve and z_{0} inside C,

$$
\begin{aligned}
f\left(z_{0}\right) & =\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-z_{0}} d z \\
f^{(n)}\left(z_{0}\right) & =\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
\end{aligned}
$$

Thus, Taylor coefficients can be found by

$$
\frac{f^{(n)}\left(z_{0}\right)}{n!}=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}}
$$

9 From Legendre to wiggly polynomials

Our goal: To approximate a wiggly curve on an interval by a polynomial.

The story begins with Legendre's study of the gravational potential V between point mass at (a, b, c) and a solid with typical point (x, y, z) (see blackboard picture), $V(x, y, z)=\frac{K}{\delta}$, $\delta=\sqrt{(x-a)^{2}+(y-b)^{2}+(z-c)^{2}}$.

Indeed the gradient is given by

$$
\nabla V=\left(\frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}, \frac{\partial V}{\partial z}\right)=-\frac{K}{\delta^{2}}\left(\frac{(x-a)}{\delta}, \frac{(y-b)}{\delta}, \frac{(z-c)}{\delta}\right)
$$

By the law of cosines (Euclidean!), $\delta^{2}=\alpha^{2}+\rho^{2}-2 \alpha \rho \cos \theta$. Define $\alpha=\tau \rho$ so that

$$
\begin{aligned}
\delta^{2} & =\rho^{2} \tau^{2}+\rho^{2}-2 \tau \rho^{2} \cos \theta \\
& =\rho^{2}\left(1-2 \tau \cos \theta+\tau^{2}\right)
\end{aligned}
$$

Choose units with $K=\rho$. Then

$$
V=\frac{\rho}{\delta}=\frac{1}{\sqrt{1-2 \tau \cos \theta+\tau^{2}}}
$$

Write $x=\cos \theta, \tau=z \in \mathbb{C}$ so that

$$
V(x, z)=\frac{1}{\sqrt{1-2 x z+z^{2}}}
$$

(from previous slide)

$$
V(x, z)=\frac{1}{\sqrt{1-2 x z+z^{2}}}
$$

Fix x. At this point, following the example of Newton and Euler, Legendre used the binomial theorem to expand $V(x, z)$. We do the same thing, in effect, but by virtue of regarding V as a holomorphic function in a radius about 0 .

Thus $V(x)$ expands as follows:

$$
\begin{aligned}
\frac{1}{\sqrt{1-2 x z+z^{2}}} & =P_{0}(x)+P_{1}(x) z+P_{2}(x) z^{2}+\cdots \\
P_{n}(x) & =\frac{1}{2 \pi i} \int_{C} \frac{1}{z^{n+1} \sqrt{1-2 x z+z^{2}}} d z
\end{aligned}
$$

Where the heck is this going?

Schäfli observed that if $w=\sqrt{1-2 \frac{x}{z}+\frac{1}{z^{2}}}+\frac{1}{z}$ then, on a large circle E centered at x,

$$
P_{n}(x)=\frac{1}{2 \pi i} \int_{E} \frac{\left(w^{2}-1\right)^{n}}{2^{n}(w-x)^{n+1}} d w
$$

so, if $g(w)=\left(w^{2}-1\right)^{n}$, we have

$$
g^{(n)}(x)=\frac{n!}{2 \pi i} \int_{E} \frac{\left(w^{2}-1\right)^{n}}{(w-x)^{n+1}} d w=2^{n} n!P_{n}(x)
$$

and we arrive at Rodrigue's formula

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

We thus learn that $P_{n}(x)$ is a polynomial of degree n. These polynomials are called the Legendre polynomials.

Summary: $V=\frac{1}{\delta}$ as a function of $\cos \theta$ and $\frac{\rho}{\alpha}$ expands as

$$
\sum_{n=0}^{\infty} P_{n}(\cos \theta)\left(\frac{\rho}{\alpha}\right)^{n}
$$

Since $\operatorname{deg}\left(P_{n}\right)=n$, the P_{n} are linearly independent in $C[a, b]$. Can we find $[a, b]$ such that the P_{n} are orthogonal? If so, one suspects it would be an orthogonal basis for the Hilbert space $C[a, b]$ by the Stone-Weierstrass theorem, and this can be shown rigorously.

Toward finding $[a, b]$, differentiate!

$$
\begin{aligned}
y & =\left(x^{2}-1\right)^{n} \\
y^{\prime} & =2 n x\left(x^{2}-1\right)^{n-1}
\end{aligned}
$$

so...

$$
\begin{aligned}
\left(x^{2}-1\right) y^{\prime}-2 n x y & =0 \\
\left(x^{2}-1\right) y^{\prime \prime}-2 x(n-1) y^{\prime}+2 n y & =0 \\
& \cdots \\
\left(x^{2}-1\right) y^{(n+2)}+2 x y^{(n+1)}-n(n+1) y^{(n)} & =0
\end{aligned}
$$

Thus the P_{n} satisfy Legendre's differential equation

$$
\left(1-x^{2}\right) P_{n}^{\prime \prime}-2 x P_{n}^{\prime}+n(n+1) P_{n}=0
$$

Multiplying the equations for P_{n}, P_{m} By P_{m}, P_{n} and subtracting gives
$\frac{d}{d x}\left(1-x^{2}\right)\left(P_{n}^{\prime} P_{m}-P_{m}^{\prime} P_{n}\right)=(n(n+1)-m(m+1)) P_{m} P_{n}$ so that
$\int_{a}^{b} P_{m}(x) P_{n}(x) d x=\left.\frac{1-x^{2}}{n(n+1)-m(m+1)}\left(P_{m} P_{n}^{\prime}-P_{m}^{\prime} P_{n}\right)\right|_{a} ^{b}$

So we choose $[a, b]=[-1,1]$ since $1-x^{2}$ has roots $1,-1$.

Thus for $f \in C[-1,1], f=\sum_{k=0}^{\infty} a_{n} P_{n}$ (both mean and pointwise convergence) where

$$
a_{n}=\frac{\left\langle f, P_{n}\right\rangle}{\left\|P_{n}\right\|^{2}}=\frac{2}{2 n+1} \int_{-1}^{1} f(x) P_{n}(x) d x
$$

Facts about Legendre polynomials

- $P_{n+1}=\frac{2 n+1}{n+1} x P_{n}-\frac{n}{n+1} P_{n-1}$
- P_{n} has n distinct roots in $[-1,1]$.
- The kernel function for the nth partial sum $S_{f, n}(x)$ in the Legendre series for f is $K_{n}(t, x)=\sum_{k=0}^{n} \frac{2 k+1}{2} P_{k}(t) P_{k}(x)$, so that

$$
S_{f, n}(x)=\int_{-1}^{1} K_{n}(t, x) f(t) d t
$$

Let $f(x)=\frac{e^{x}}{8} \sin 10 x$.

The degree-15 Taylor expansion of f about 0 is

$$
\begin{aligned}
& \frac{5 x}{4}+\frac{5 x^{2}}{4}-\frac{485 x^{3}}{24}-\frac{165 x^{4}}{8}+\frac{9005 x^{5}}{96}+\frac{29003 x^{6}}{288}-\frac{793493 x^{7}}{4032}- \\
& \frac{14773 x^{8}}{64}+\frac{65251609 x^{9}}{290304}+\frac{88250801 x^{10}}{290304}-\frac{4825396489 x^{11}}{31933440}-\frac{83151601 x^{12}}{322560}+ \\
& \frac{289796841413 x^{13}}{4981616640}+\frac{5278393991807 x^{14}}{34871316480}-\frac{1631181003097 x^{15}}{209227898880}
\end{aligned}
$$

The degree- 15 Legendre approximant of f on $[-1,1]$ is
$0.00033828682209426086+1.249714795203168 x+$ $1.20272761705514 x^{2}-20.194127413740084 x^{3}$
$-19.53972960572615 x^{4}+93.59841403204769 x^{5}$
$+91.15027962415643 x^{6}-195.51192014695948 x^{7}$
$-188.91521865333604 x^{8}+220.59378321239416 x^{9}$
$+201.2424491124213 x^{10}-143.95071152099672 x^{11}$
$-109.83398669386563 x^{12}+52.66100043325236 x^{13}$
$+24.614622828224174 x^{14}-8.551179016273345 x^{15}$

The Taylor approximation is only good near 0 :

The Legendre approximation is awesome. Plotted is the difference between the two functions.

A Dirichlet problem

Find the steady state temperature $u(\rho, \phi)$ (spherical coordinates (ρ, θ, ϕ)) on and inside the unit ball $\rho=1$, assuming independence of θ and given the temperature on the surface. Thus

$$
\begin{aligned}
\nabla u(\rho, \phi) & =0 \\
u(1, \phi) & =f(\phi)
\end{aligned}
$$

It turns out the solution is as follows and involves Legendre polynomials.

Expand $f(\arccos x)=\sum_{k=0}^{\infty} a_{k} P_{k}(x)$ on $[-1,1]$. Then

$$
u(\rho, \phi)=\sum_{k=0}^{\infty} a_{k} \rho^{k} P_{k}(\cos \phi)
$$

10 The Basel problem

What is $\zeta(2)=\sum_{k=1}^{\infty} \frac{1}{k^{2}}$?

Some background:

- Nicole Oresme (1323-1382): $\Sigma \frac{1}{k}$ diverges.
- $H_{n}=\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}$ is the maximum overhang distance of n cards of length 2.
- Euler (1707-1783) $\gamma=\lim \left(H_{n}-\ln n\right) \sim 0.5772156 \ldots$
- Abel (1828) showed $\Sigma \frac{1}{k \ln k}$ diverges.
- Mathematica: For $S_{n}=\frac{1}{1}+\frac{1}{4}+\cdots+\frac{1}{n^{2}}$
$-S_{100}=1.6349 \ldots$
$-S_{10000}=1.6448 \ldots$
- Johann Bernoulli (1667-1748): $\lim S_{n}<2$
- The true first four places are 1.6449.

Fourier series

$C[-\pi, \pi]$ with $<f, g>=\int_{-\pi}^{\pi} f(x) g(x) d x$ is a real Hilbert space with orthogonal basis

$$
1, \cos x, \sin x, \cos 2 x, \sin 2 x, \ldots
$$

so that continuous $f:[-\pi, \pi] \rightarrow \mathbb{R}$ has Fourier series

$$
f=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos k x+b_{k} \sin k x
$$

- The Fourier series of a differentiable function f converges pointwise to f everywhere. This is not true for Taylor series!
- A. Kolmogorov (1903-1987): There exists an L^{1} function whose Fourier series does not converge pointwise anywhere.
- L. Carleson (1966): The Fourier series of an L^{2} function f converges pointwise to f almost everywhere.
- R. Hunt (1968): For $1<p \leq \infty$, the Fourier series of an L^{p} function converges pointwise to f almost everywhere.

To solve the Basel problem we look for $f \in C[-\pi, \pi]$ with Fourier coefficients a constant multiple of

$$
\epsilon_{1} \frac{1}{1}, \epsilon_{2} \frac{1}{2}, \epsilon_{3} \frac{1}{3}, \ldots \quad \text { with } \epsilon_{k} \in\{-1,1\}
$$

with the idea of applying Parsival's equality.

The simplest example $f(x)=x$ does the job. As $f(-x)=$ $-f(x)$ is odd, $a_{k}=0$, whereas

$$
b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} x \cos k x d x=(-1)^{k} \frac{2}{k}
$$

On the other hand,

$$
\|f\|^{2}=\int_{-\pi}^{\pi} x^{2} d x=\left.\frac{1}{3} x^{3}\right|_{-\pi} ^{\pi}=\frac{2}{3} \pi^{3}
$$

This gives

$$
\frac{2}{3} \pi^{3}=\sum_{k=1}^{\infty}\left(\sqrt{\pi}(-1)^{k} \frac{2}{k}\right)^{2}
$$

from which we have the desired result

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

11 Finding ζ of an even positive integer

Euler solved the Basel problem at the beginning of his career and toward the end found $\zeta(2 n)=\sum_{k=1}^{\infty} \frac{1}{k^{2 n}}$ in general.

His calculation, which uses the Bernoulli numbers, appears with few changes in modern advanced texts.

The Bernoulli numbers B_{k} may be defined through their exponential generating function by

$$
\frac{z}{e^{z}-1}=\sum_{k=0}^{\infty} B_{k} \frac{z^{k}}{k!}
$$

Properties of the Bernoulli numbers

- The B_{k} are rational and $B_{3}, B_{5}, B_{7}, \ldots=0$. The sequence $B_{2 k}$ alternates in sign. $B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{4}=$ $-\frac{1}{30}, \ldots$.
- The numbers are named after Jakob Bernoulli who showed

$$
1^{m}+2^{m}+\cdots+(n-1)^{m}=\frac{1}{m+1} \sum_{k=0}^{m}\binom{m+1}{k} B_{k} n^{m-k+1}
$$

- Kummer (1850): A prime p is regular if it does not divide the numerator of any B_{2}, \ldots, B_{p-1}. For regular $p, x^{p}+y^{p}=$ z^{p} has no integer solutions.

We began with the Fourier series of $\cos \alpha x, \alpha$ not an integer. Since this is an even function, the $\sin k x$ coefficients are zero.

$$
\cos \alpha x=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos k x
$$

We have

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} \cos \alpha x d x=2 \frac{\sin \alpha \pi}{\alpha \pi}
$$

and, for $k>0$,

$$
a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} \cos \alpha x \cos k x d x
$$

An antiderivative is

$$
\frac{\sin (x(k-\alpha))}{2(k-\alpha)}+\frac{\sin (x(k+\alpha))}{2(k+\alpha)}
$$

so that for $k>0$,

$$
a_{k}=\frac{2 \alpha \sin \alpha \pi}{\pi} \frac{(-1)^{k+1}}{k^{2}-\alpha^{2}}
$$

So far:

$$
\cos \alpha x=\frac{\sin \alpha \pi}{\pi}\left(\frac{1}{\alpha}+2 \alpha \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{2}-\alpha^{2}} \cos k x\right)
$$

Letting $x=\pi$,

$$
\cot \alpha \pi=\frac{\cos \alpha \pi}{\sin \alpha \pi}=\frac{1}{\alpha \pi}-2 \sum_{k=1}^{\infty} \frac{\alpha}{k^{2}-\alpha^{2}}
$$

But now, letting $u=\alpha \pi$ for $0<u<\pi$ (so that α is never an integer) we get

$$
u \cot u=1-2 \sum_{k=1}^{\infty} \frac{u^{2}}{k^{2} \pi^{2}-u^{2}}
$$

Note: Expansions of this type result from what is called the Mittag-Leffler expansion theorem; using Fourier series is not the usual route.

So what on earth does this have to do with $\zeta(2 n)$?????

Here's the idea: noting $\left|\frac{u}{k \pi}\right|<1$,

$$
\begin{aligned}
\frac{1-u \cot u}{2}=\sum_{k=1}^{\infty} \frac{u^{2}}{k^{2} \pi^{2}-u^{2}} & =\sum_{k=1}^{\infty} \frac{u^{2}}{k^{2} \pi^{2}} \frac{1}{1-\left(\frac{u}{k \pi}\right)^{2}} \\
& =\sum_{k=1}^{\infty} \frac{u^{2}}{k^{2} \pi^{2}} \sum_{n=0}^{\infty}\left(\frac{u}{k \pi}\right)^{2 n} \\
& =\sum_{n=1}^{\infty} \sum_{k=1}^{\infty}\left(\frac{u}{k \pi}\right)^{2 n} \\
& =\sum_{n=1}^{\infty} \frac{u^{2 n}}{\pi^{2 n}} \sum_{k=1}^{\infty}\left(\frac{1}{k}\right)^{2 n} \\
& =\sum_{n=1}^{\infty} \frac{u^{2 n}}{\pi^{2 n}} \zeta(2 n)
\end{aligned}
$$

a power series!

Thus to find $\zeta(2 n)$ we seek another power series for $u \cot u$ and equate coefficients.

We know $e^{i u}=\cos u+i \sin u, e^{-i u}=\cos u-i \sin u$ which allows us to solve for $\sin u, \cos u$ in terms of $e^{i u}, e^{-i u}$. Recalling the generating function defining the Bernoulli numbers, we get

$$
u \cot u=i u \frac{e^{2 i u}}{e^{2 i u}-1}+\frac{i u}{e^{2 i u}-1}=1+\sum_{k=2}^{\infty} B_{k} \frac{(2 i u)^{k}}{k!}
$$

Thus equating coefficients leads to the amazing formula

$$
\zeta(2 n)=\sum_{k-1}^{\infty} \frac{1}{k^{2 n}}=(-1)^{n+1} \frac{(2 \pi)^{2 n}}{2(2 n)!} B_{2 n}
$$

Here are the first ten values:
$\frac{\pi^{2}}{6}, \frac{\pi^{4}}{90}, \frac{\pi^{6}}{945}, \frac{\pi^{8}}{9450}, \frac{\pi^{10}}{93555}, \frac{691 \pi^{12}}{638512875}$,
$\frac{2 \pi^{14}}{18243225}, \frac{3617 \pi^{16}}{325641566250}, \frac{43867 \pi^{18}}{38979295480125}$,
$174611 \pi^{20}$
$\overline{1531329465290625}$

What about $\zeta(2 n+1)$?
$1.08232<\zeta(3)<1.64493$

The exact value of $\zeta(3)=\sum_{k=1}^{\infty} \frac{1}{k^{3}}$ is unknown to this day!

That's it!

