Faà di Bruno categories

R.A.G. Seely

John Abbott College
\& McGill University

(Joint work with J.R.B. Cockett)

Francesco Faà di Bruno (1825-1888) was an Italian of noble birth, a soldier, a mathematician, and a priest. In 1988 he was beatified by Pope John Paul II for his charitable work teaching young women mathematics. As a mathematician he studied with Cauchy in Paris. He was a tall man with a solitary disposition who spoke seldom and, when teaching class, not always successfully. Perhaps his most significant mathematical contribution concerned the combinatorics of the higher-order chain rules. These results were the cornerstone of "combinatorial analysis": a subject which never really took off. It is the combinatorics underlying the higher-order chain rule which is of interest to us here.

Outline

- Cartesian differential categories
- The bundle fibration
- Faà di Bruno categories
- The comonad
- The coalgebras

Theorem Cartesian differential categories are exactly standard coalgebras of the Faà di Bruno comonad.

Key structure:

$$
\begin{gathered}
\frac{X \xrightarrow{f} Y: x \mapsto f(x)}{X \times X \xrightarrow{D(f)} Y:\langle a, s\rangle \mapsto \frac{\mathrm{d} f}{\mathrm{~d} x}(s) \cdot a} \\
\quad(\text { linear in } a \text { but not in } s)
\end{gathered}
$$

Example:

If $f:\langle x, y, z\rangle \mapsto\left\langle x^{2}+x y z, z^{3}-x y\right\rangle$
then: $\frac{\mathrm{d}\left\langle x^{2}+x y z, z^{3}-x y\right\rangle}{\mathrm{d}\langle x, y, z\rangle}=\left(\begin{array}{ccc}2 x+y z & x z & x y \\ -y & -x & 3 z^{2}\end{array}\right)$
and $\frac{\mathrm{d}\left\langle x^{2}+x y z, z^{3}-x y\right\rangle}{\mathrm{d}\langle x, y, z\rangle}(\langle r, s, t\rangle)=\left(\begin{array}{ccc}2 r+s t & r t & r s \\ -s & -r & 3 t^{2}\end{array}\right)$
and $\frac{\mathrm{d}\left\langle x^{2}+x y z, z^{3}-x y\right\rangle}{\mathrm{d}\langle x, y, z\rangle}(\langle r, s, t\rangle) \cdot\langle a, b, c\rangle=$

$$
\left\langle(2 r+s t) a+r t b+r s c,-s a-r b+3 t^{2} c\right\rangle
$$

Cartesian Differential Categories

1. Category \mathbb{X}, Cartesian left additive: hom-sets are commutative monoids \& $f(g+h)=(f g)+(f h), f 0=0$.
(h is additive if also $(f+g) h=(f h)+(g h)$ and $0 h=0$.) 'Well-behaved' products: π_{0}, π_{1}, Δ additive f, g additive $\Rightarrow f \times g$ additive.
2. Differential operator D :

$$
\frac{X \xrightarrow{f} Y}{X \times X \xrightarrow[{D[f}]]{\longrightarrow}} Y
$$

(Ref: [Blute-Cockett-Seely] TAC 2009)
Eg (of "left additive"): the category of commutative monoids \& set maps is left additive; the additive maps are homomorphisms.

Satisfying:
[CD.1] $D[f+g]=D[f]+D[g]$ and $D[0]=0$
[CD.2] $\langle h+k, v\rangle D[f]=\langle h, v\rangle D[f]+\langle k, v\rangle D[f]$ and $\langle 0, v\rangle D_{\times}[f]=0$
[CD.3] $D[1]=\pi_{0}, D\left[\pi_{0}\right]=\pi_{0} \pi_{0}$ and $D\left[\pi_{1}\right]=\pi_{0} \pi_{1}$
[CD.4] $D[\langle f, g\rangle]=\langle D[f], D[g]\rangle$
[CD.5] $D[f g]=\left\langle D[f], \pi_{1} f\right\rangle D[g]$
[CD.6] $\langle\langle g, 0\rangle,\langle h, k\rangle\rangle D[D[f]]=\langle g, k\rangle D[f]$
[CD.7] $\langle\langle 0, h\rangle,\langle g, k\rangle\rangle D[D[f]]=\langle\langle 0, g\rangle,\langle h, k\rangle\rangle D[D[f]]$
[Dt.1] $\frac{\mathrm{d}\left(f_{1}+f_{2}\right)}{\mathrm{d} p}(s) \cdot a=\frac{\mathrm{d} f_{1}}{\mathrm{~d} p}(s) \cdot a+\frac{\mathrm{d} f_{2}}{\mathrm{~d} p}(s) \cdot a$ and $\frac{\mathrm{d} 0}{\mathrm{~d} p}(s) \cdot a=0 ;$
[DT.2] $\frac{\mathrm{d} f}{\mathrm{~d} p}(s) \cdot\left(a_{1}+a_{2}\right)=\frac{\mathrm{d} f}{\mathrm{~d} p}(s) \cdot a_{1}+\frac{\mathrm{d} f}{\mathrm{~d} p}(s) \cdot a_{2}$ and $\frac{\mathrm{d} f}{\mathrm{~d} p}(s) \cdot 0=0$;
[Dt.3] $\frac{\mathrm{d} x}{\mathrm{~d} x}(s) \cdot a=a, \frac{\mathrm{~d} f}{\mathrm{~d}\left(p, p^{\prime}\right)}\left(s, s^{\prime}\right) \cdot(a, 0)=\frac{\mathrm{d} f\left[s^{\prime} / p^{\prime}\right]}{\mathrm{d} p}(s) \cdot a$

$$
\text { and } \frac{\mathrm{d} f f}{\mathrm{~d}\left(p, p^{\prime}\right)}\left(s, s^{\prime}\right) \cdot\left(0, a^{\prime}\right)=\frac{\mathrm{d} f[s / p]}{\mathrm{d} p^{\prime}}\left(s^{\prime}\right) \cdot a^{\prime} ;
$$

[Dt.4] $\frac{\mathrm{d}\left(f_{1}, f_{2}\right)}{\mathrm{d} p}(s) \cdot a=\left(\frac{\mathrm{d} f_{1}}{\mathrm{~d} p}(s) \cdot a, \frac{\mathrm{~d} f_{1}}{\mathrm{~d} p}(s) \cdot a\right) ;$
[Dt.5] $\frac{\mathrm{d} g\left[f / p^{\prime}\right]}{\mathrm{d} p}(s) \cdot a=\frac{\mathrm{d} g}{\mathrm{~d} p^{\prime}}(f[s / p]) \cdot\left(\frac{\mathrm{d} f}{\mathrm{~d} p}(s) \cdot a\right)$ (no variable of p may occur in f);
[Dt.6] $\frac{\mathrm{d} \frac{\mathrm{d} f}{\mathrm{~d} p}(s) \cdot p^{\prime}}{\mathrm{d} p^{\prime}}(r) \cdot a=\frac{\mathrm{d} f}{\mathrm{~d} p}(s) \cdot a$.
[Dt.7] $\frac{\mathrm{d} \frac{\mathrm{d} f}{d p_{1}}\left(s_{1}\right) \cdot a_{1}}{\mathrm{~d} p_{2}}\left(s_{2}\right) \cdot a_{2}=\frac{\mathrm{d} \frac{\mathrm{d} f}{\mathrm{~d} p_{2}}\left(s_{2}\right) \cdot a_{2}}{\mathrm{~d} p_{1}}\left(s_{1}\right) \cdot a_{1}$

The Chain Rule

$D[f g]=\left\langle D[f], \pi_{1} f\right\rangle D[g]$
$\frac{\mathrm{d} g\left[f / x^{\prime}\right]}{\mathrm{d} x}(s) \cdot a=\frac{\mathrm{d} g}{\mathrm{~d} x^{\prime}}(f[s / x]) \cdot\left(\frac{\mathrm{d} f}{\mathrm{~d} x}(s) \cdot a\right)$
$(f g)^{(1)}(s) \cdot a=g^{(1)}(f) \cdot\left(f^{(1)}(s) \cdot a\right)$

The Bundle Fibration over \mathbb{X}

Objects: (A, X) (pairs of objects of \mathbb{X})

Morphisms: $\left(f_{*}, f_{1}\right):(A, X) \longrightarrow(B, Y): f_{*}: X \longrightarrow Y$ in \mathbb{X}; $f_{1}: A \times X \longrightarrow B$ in \mathbb{X}, additive in its first argument.

Composition: $\left(f_{*}, f_{1}\right)\left(g_{*}, g_{1}\right)=\left(f_{*} g_{*},\left\langle f_{1}, \pi_{1} f_{*}\right\rangle g_{1}\right)$
(Think $f_{1}=D\left(f_{*}\right)$)

Additive structure: defined "component-wise" $(A, X) \mapsto X ;\left(f_{*}, f_{1}\right) \mapsto f_{*}$ is a fibration
If \mathbb{X} is Cartesian left additive, so are the fibres, and so is the total category

2nd Order Chain Rule

$$
\begin{aligned}
& \frac{\mathrm{d}^{(2)} g(f(x))}{\mathrm{d} x}(s) \cdot a_{1} \cdot a_{2} \\
& =\frac{\mathrm{d} g}{\mathrm{~d} x}(f(s)) \cdot\left(\frac{\mathrm{d}^{(2)} f}{\mathrm{~d} x}(s) \cdot a_{1} \cdot a_{2}\right) \\
& \quad+\frac{\mathrm{d}^{(2)} g}{\mathrm{~d} x}(f(s)) \cdot\left(\frac{\mathrm{d} f}{\mathrm{~d} x}(s) \cdot a_{1}\right) \cdot\left(\frac{\mathrm{d} f}{\mathrm{~d} x}(s) \cdot a_{2}\right) \\
& \text { i.e. } \\
& \begin{array}{l}
(f g)^{(2)}(s) \cdot a_{1} \cdot a_{2} \\
\left.=g^{(1)}(f(s)) \cdot\left(f^{(2)}(s) \cdot a_{1} \cdot a_{2}\right)\right) \\
\quad+g^{(2)}(f(s)) \cdot\left(f^{(1)}(s) \cdot a_{1}\right) \cdot\left(f^{(1)}(s) \cdot a_{2}\right)
\end{array}
\end{aligned}
$$

The differential of a symmetric tree

Faà(X), the Fàa di Bruno Fibration over \mathbb{X}

Objects: (A, X) (pairs of objects of \mathbb{X})

Morphisms: $f=\left(f_{*}, f_{1}, f_{2}, \ldots\right):(A, X) \longrightarrow(B, X)$, where:
$f_{*}: X \longrightarrow Y$ in $\mathbb{X} ;$
for $r>0: \quad f_{r}: \underbrace{A \times \ldots \times A}_{r} \times X \longrightarrow B$ a "symmetric form" (i.e.
additive and symmetric in the first r arguments
(think $f_{r}: A^{\otimes^{r}} / r!\times X \longrightarrow B$, even though \mathbb{X} need not have \otimes)

Composition? This is where the higher order chain rules come in ...

Faà di Bruno convolution

τ : a symmetric tree of height 2 , width r, on variables $\left\{a_{1}, \ldots, a_{r}\right\}$; $(A, X) \xrightarrow{f}(B, Y) \xrightarrow{g}(C, Z)$ in Faà (\mathbb{X}).

Then $(f \star g)_{\tau}: \underbrace{A \times \ldots \times A}_{r} \times X \longrightarrow C$ is defined thus (for example): for τ the tree on the left, interpret it as the tree on the right:

$(f \star g)_{\tau}=g_{2}\left(f_{*}(x), f_{1}\left(a_{3}, x\right), f_{3}\left(a_{1}, a_{2}, a_{4}, x\right)\right): A \times A \times A \times A \times X \longrightarrow C$.
NB: $(f \star g)_{\tau}$ is additive in each argument except the last whenever the components of f and g have this property.
$\iota_{2}^{a_{1}}$ is the (unique) height 2 width 1 tree (with variable a_{1})
$\mathcal{T}_{2}^{a_{1}, \ldots, a_{r}}=\partial_{a_{2}, \ldots, a_{r}}\left(\iota_{2}^{a_{1}}\right)$,
i.e. the bag of trees obtained by "deriving" $\iota_{2}^{a_{1}} r$-times with respect to the given variables. (This is the set of all symmetric trees of height 2 and width r.)

The Faà di Bruno convolution (composition in Faà(\mathbb{X})) of f and g is given by setting $(f g)_{*}=f_{*} g_{*}$, and for $r>0$

$$
(f g)_{r}=(f \star g)_{\mathcal{T}_{2}\left\{a_{1}, \ldots, a_{r}\right\}}=\sum_{n \cdot \tau \in \mathcal{T}_{2}^{a_{1}, \ldots, a_{r}}} n \cdot(f \star g)_{\tau}
$$

(This is well-defined: permuting the variables of any $\tau \in \mathcal{T}_{2}^{a_{1}, \ldots, a_{r}}$ either leaves τ fixed or produces a new tree in $\mathcal{T}_{2}^{a_{1}, \ldots, a_{r}}$.)

Proposition For any Cartesian left additive category \mathbb{X}, Faà(\mathbb{X}) is a Cartesian left additive category.

Faà: CLAdd \longrightarrow CLAdd is a functor:

$$
\mathbb{X} \mapsto \text { Faà }(\mathbb{X}) ;\left(f_{*}, f_{1}, \ldots\right) \mapsto\left(F\left(f_{*}\right), F\left(f_{1}\right), \ldots\right)
$$

$\epsilon:$ Faà $(\mathbb{X}) \longrightarrow \mathbb{X}:(A, X) \mapsto X,\left(f_{*}, f_{1}, \ldots\right) \mapsto f$ is a fibration. (and a natural transformation)

There is a functor (indeed, a natural transformation) $\delta: F a a ̀(\mathbb{X}) \longrightarrow F a a ̀(F a a ̀(\mathbb{X}))$ so that (Faà, ϵ, δ) is a comonad on CLAdd.

On objects, $\delta:(A, X) \mapsto((A, A), A, X)$

On morphisms, things are a bit "complicated". Some notation: we write $f=\left(f_{*}, f_{1}, f_{2}, \ldots\right):(A, X) \longrightarrow(B, Y)$ as follows

$$
\begin{aligned}
f_{*}: X \longrightarrow Y & : x \mapsto f_{*}(x) \\
f_{n}: A^{n} \times X \longrightarrow B & :\left(a_{* 1}, \ldots, a_{* n}, x\right) \mapsto f_{n}(x) \cdot a_{* 1} \cdot \ldots \cdot a_{* n}
\end{aligned}
$$

We then define $\delta: \operatorname{Faà}(\mathbb{X}) \longrightarrow \operatorname{Faa}(F a a ̀(\mathbb{X}))$ as follows:
on objects, δ takes (A, X) to $((A, A), A, X)$.
On arrows, $f \mapsto \delta(f)=\left(f, f^{[1]}, f^{[2]}, \ldots\right)$ by setting
$f_{*}^{[n]}: A^{n} \times X \longrightarrow B:\left(a_{* 1}, \ldots, a_{* n}, x\right) \mapsto f_{n}(x) \cdot a_{* 1} \cdot \ldots \cdot a_{* n}$
$f_{r}^{[n]}:\left(A^{n} \times A\right)^{r} \times\left(A^{n} \times X\right) \longrightarrow B:$
$\left(\begin{array}{l|l}a_{11} \ldots a_{1 n} & a_{1 *} \\ \vdots & \vdots \\ a_{r 1} \ldots a_{r n} & a_{r *}\end{array}\right) \mapsto \sum_{\begin{array}{l}s \leq n \& s \leq r \\ \& \operatorname{rramp}_{r, n}^{s}(\alpha \mid \gamma)\end{array}} f_{r}$
where the "ramp" condition amounts to choosing (for each $s \leq \min (r, n)) s$ elements from $\left(a_{i j}\right)_{i \leq r, j \leq n}$, at most one from each row and column, (this amounts to choosing a partial isomorphism) and constructing the function term as follows (for example,):

If σ is the following partial iso (here $n=4, r=5$, and $s=3$):

$$
\begin{aligned}
& \left(\begin{array}{cccc|c}
a_{11} & a_{12} & a_{13} & a_{14} & a_{1 *} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{2 *} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{3 *} \\
a_{41} & a_{42} & a_{43} & a_{44} & a_{4 *} \\
a_{51} & a_{52} & a_{53} & a_{54} & a_{5 *} \\
\hline a_{* 1} & a_{* 2} & a_{* 3} & a_{* 4} & x
\end{array}\right) \\
& \left(\begin{array}{cccc|c}
\begin{array}{|c|c|c}
a_{11} & a_{12} & a_{13}
\end{array} a_{14} & a_{1 *} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{2 *} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{3 *} \\
a_{41} & a_{42} & a_{43} & a_{44} & a_{4 *} \\
a_{51} & a_{52} & a_{53} & a_{54} & a_{5 *} \\
\hline a_{* 1} & a_{* 2} & a_{* 3} & a_{* 4} & x
\end{array}\right)
\end{aligned}
$$

Then construct

$$
f^{\sigma}=f_{6}(x) \cdot a_{11} \cdot a_{52} \cdot a_{* 3} \cdot a_{34} \cdot a_{2 *} \cdot a_{4 *}
$$

f_{6} since we need $n+r-s=6$ linear arguments. The linear arguments of f are determined by putting in the selected arguments and arguments from the bottom row and rightmost column corresponding to the rows and columns not containing a selected argument. Then we set $f_{r}^{[n]}$ to be the sum of all such expressions:

$$
f_{r}^{[n]}=\sum_{\sigma \in \operatorname{ParIso}(r, n)} f^{\sigma}
$$

Remark: The intended interpretation of $f_{r}^{[n]}$ is the $r^{\text {th }}$ higher order differential term
$\frac{\mathrm{d}^{r} f(x) \cdot a_{1} \cdots \cdots a_{n}}{\mathrm{~d}\left(x, a_{1}, \ldots, a_{n}\right)}\left(x, a_{1}, \ldots, a_{n}\right) \cdot\left(a_{1}, a_{11}, \ldots, a_{1 n}\right) \cdots\left(a_{r}, a_{r 1}, \ldots, a_{r n}\right)$
Properties: $f_{r}^{[n]}$ is additive, symmetric in its first r arguments.
$(f+g)_{r}^{[n]}=f_{r}^{[n]}+g_{r}^{[n]}$
If F is Cartesian left additive, Faà $(F)\left(f^{[n]}\right)=(\operatorname{Faà}(F)(f))^{[n]}$
$\delta: F a a ̀(\mathbb{X}) \longrightarrow F a a ̀(F a a ̀(\mathbb{X}))$ is a functor, and is natural (as a natural transformation).
(Faà, ϵ, δ) is a comonad on CLAdd.

An example of the proofs:

Let's show that $\delta(f) \delta(g)=\delta(f g)$:

For the most part (as seen in the sequence of equations on the next slide) this involves expanding the definitions, followed by several applications of additivity; only the last step requires comment, as it involves a combinatorial argument.

$$
\begin{aligned}
& \delta(f) \delta(g)=\sum_{\tau_{1}, \tau_{2}}(\delta(f) \star \delta(g))_{\tau_{1} \times \tau_{2}} \\
& =\sum_{\tau_{1}, \tau_{2}}\left(\left(\sum_{\sigma: i \longrightarrow j} f^{\sigma}\right)_{i j} \star\left(\sum_{\sigma^{\prime}: k \longrightarrow l} g^{\sigma^{\prime}}\right)_{k l}\right)_{\tau_{1} \times \tau_{2}} \\
& =\sum_{\tau_{1}, \tau_{2}}\left(\sum_{\sigma^{\prime}} g^{\sigma^{\prime}}\right)\left(\sum_{\sigma_{i j}: \alpha_{i} \longrightarrow \beta_{j}} f^{\sigma_{i j}}\right)_{i j} \\
& =\sum_{\tau_{1}, \tau_{2}} \sum_{\sigma^{\prime}} g^{\sigma^{\prime}}\left(\sum_{\sigma_{i j}} f^{\sigma_{i j}}\right)_{i j} \\
& =\sum_{\tau_{1}, \tau_{2}} \sum_{\sigma^{\prime}} g^{\sigma^{\prime}}\left(\sum_{\sigma_{i j}} f^{\sigma_{i j}}\right)_{i j \in \sigma^{\prime}} \\
& =\sum_{\tau_{1}, \tau_{2}} \sum_{\sigma^{\prime}, \sigma_{i j}, i j \in \sigma^{\prime}} g^{\sigma}\left(\ldots, f^{\sigma_{i j}}, \ldots\right) \\
& =\sum_{\sigma: n \longrightarrow m} \sum_{\tau \in \mathcal{T}_{n+m-|\sigma|}}(f \star g)_{\tau}^{\sigma}=\delta(f g)
\end{aligned}
$$

The key combinatorial lemma is the equivalence of the following data:

- Partitions $\tau_{1}=\left(\alpha_{1}, \ldots, \alpha_{k}\right), \tau_{2}=\left(\beta_{1}, \ldots, \beta_{l}\right)$ and partial isomorphisms $\sigma^{\prime}: k \longrightarrow l$ and $\sigma_{i j}: \alpha_{i} \longrightarrow \beta_{j}$ for $(i, j) \in \sigma^{\prime}$
- Partial isomorphism $\sigma: n \longrightarrow m$ and partition of $n+m-|\sigma|$.
where n is the set partitioned by τ_{1}, m the set partitioned by τ_{2}, and σ is the union of the $\sigma_{i j}$.

We sketch the proof, with an example as illustration.

We shall frequently identify an integer n with the set of integers from 1 to n, unless otherwise stated. We shall represent a partial isomorphim by listing the pairs (i, j) where $i \mapsto j$.

Suppose we are given partitions $\tau_{1}=\left(\alpha_{1}, \ldots, \alpha_{k}\right), \tau_{2}=\left(\beta_{1}, \ldots, \beta_{l}\right)$ and partial isomorphisms $\sigma^{\prime}: k \longrightarrow l$ and $\sigma_{i j}: \alpha_{i} \longrightarrow \beta_{j}$ for $(i, j) \in \sigma^{\prime}$

Consider the following example:

$$
\begin{aligned}
& \tau_{1}=((1,3),(2,5),(4,6)) \\
& \tau_{2}=((1,2,4),(3),(5))(\text { so } k=l=3) \\
& \left.\sigma^{\prime}: 3 \longrightarrow 3=\{(1,3),(3,1)\} \text { (so e.g. }(2,2) \text { is not in } \sigma\right) \\
& \sigma_{13}:\{1,3\} \longrightarrow\{5\}=\{(3,5)\} \\
& \sigma_{31}:\{4,6\} \longrightarrow\{1,2,4\}=\{(4,4),(6,1)\}
\end{aligned}
$$

Then $n=6, m=5,|\sigma|=3$, and $\sigma: 6 \longrightarrow 5=\{(3,5),(4,4),(6,1)\}$

It remains to construct τ, a partition of an 8 -element set.

From $\tau_{1}=\left(\alpha_{1}, \ldots, \alpha_{k}\right), \tau_{2}=\left(\beta_{1}, \ldots, \beta_{l}\right)$ we construct a set S with $n+m-|\sigma|$ elements, where n is the set partitioned by τ_{1}, m the set partitioned by τ_{2}, and σ is the union of the $\sigma_{i j}$.
S consists of pairs $(x, y) \in(n \cup\{*\}) \times(m \cup\{*\})$ as follows:
$(x, y) \in S$ if $(x, y) \in \sigma_{i j},(i, j) \in \sigma^{\prime}$.
$(x, *) \in S$ if $x \notin \pi_{1} \sigma\left(\pi_{1} \sigma=1^{\text {st }}\right.$ components of elements of σ)
$(*, y) \in S$ if $y \notin \pi_{2} \sigma$ ($\pi_{2} \sigma=2^{\text {nd }}$ components of elements of σ)

For our example, this gives
$S=\{(3,5),(4,4), 6,1),(1, *),(2, *),(5, *),(*, 2),(*, 3)\}$.

We partition S as follows (write $a \sim b$ to mean a and b are in the same set of the partition S):
if $(x, y),\left(x^{\prime}, y^{\prime}\right) \in \sigma_{i j}$, then $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$
(this includes pairs containing $*$: if $x \notin \pi_{1} \sigma, x \in \alpha_{i}$ (i.e. x "comes from" $\sigma_{i j}$, but is not in its domain) then ($x, *$) is in this same partition set, as is ($*, y$) for $y \notin \pi_{2} \sigma, y \in \beta_{j}$ (i.e. y "comes from" $\sigma_{i j}$ but is not in its codomain)
if $x, x^{\prime} \in \alpha_{i}$ (so $x \sim x^{\prime}$ in τ_{1}), then $(x, *) \sim\left(x^{\prime}, *\right)$
if $y, y^{\prime} \in \beta_{j}$ (so $y \sim y^{\prime}$ in τ_{2}), then $(*, y) \sim\left(*, y^{\prime}\right)$
In our example, this gives the 4 -fold partition of S
$\tau=(((4,4),(6,1),(*, 2)),((3,5),(1, *)),((2, *),(5, *)),((*, 3)))$
(This completes one direction of the equivalence)

What's going on?

The given partitions and partial isos amount to this selection from a variable base:

$$
\left(\begin{array}{lll}
\left(\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,4} \\
a_{3,1} & a_{3,2} & a_{3,4}
\end{array}\right) & \binom{a_{1,3}}{a_{3,3}} & \boxed{\binom{a_{1,5}}{a_{3,5}}} \\
\left(\begin{array}{lll}
a_{2,1} & a_{2,2} & a_{2,4} \\
a_{5,1} & a_{5,2} & a_{5,4}
\end{array}\right) & \binom{a_{2,3}}{a_{5,3}} & \binom{a_{2,5}}{a_{5,5}} \\
\begin{array}{|cc|}
\left(\begin{array}{lll}
a_{4,1} & a_{4,2} & a_{4,4} \\
a_{6,1} & a_{6,2} & a_{6,4}
\end{array}\right) & \binom{a_{4,3}}{a_{6,3}}
\end{array}\binom{a_{4,5}}{a_{6,5}}
\end{array}\right)
$$

and it's clear that what both sets of data are defining is the following term from the sums that define $\delta(f) \delta(g)$ and $\delta(f g)$:
$g_{4}(x) \cdot\left(f_{3}(x) \cdot a_{44} \cdot a_{61} \cdot a_{* 2}\right) \cdot\left(f_{2}(x) \cdot a_{35} \cdot a_{1 *}\right) \cdot\left(f_{2}(x) \cdot a_{2 *} \cdot a_{5 *}\right)$. $\left(f_{1}(x) \cdot a_{* 3}\right)$

The other direction:
Suppose we are given a partial isomorphism $\sigma: n \longrightarrow m$ and a partition of $n+m-|\sigma|$.

We must construct partitions $\tau_{1}=\left(\alpha_{1}, \ldots, \alpha_{k}\right), \tau_{2}=\left(\beta_{1}, \ldots, \beta_{l}\right)$ and partial isomorphisms $\sigma^{\prime}: k \longrightarrow l$ and $\sigma_{i j}: \alpha_{i} \longrightarrow \beta_{j}$ for $(i, j) \in \sigma^{\prime}$, of appropriate sizes.

Re-notate τ, so that it is a partition of the following set S, containing the pairs $(i, j) \in \sigma,(i, *)$ for $i \in n$ but $\notin \pi_{1} \sigma,(*, j)$ for $j \in m$ but $\notin \pi_{2} \sigma$.

Example: If $\sigma: 6 \longrightarrow 5=\{(3,5),(4,4),(6,1)\}$, and $\tau=((1),(2,3),(4,5,8),(6,7))$, then
$S=\{(6,1)),(*, 2),(*, 3),(4,4),(3,5),(1, *),(2, *),(5, *)\}$ and
$\tau=(((6,1)),((*, 2),(*, 3)),((4,4),(3,5),(5, *)),((1, *),(2, *)))$

From the re-notated version of τ, it is easy to express $\tau=\tau_{1} \times$ τ_{2} as a product of partitions: consider the first components (ignoring $*$ s) and the second components (ignoring $*$ s). In our example, this gives
$\tau=((6),(4,3,5),(1,2)) \times((1),(2,3),(4,5))$
(so $k=l=3$, and $n=6, m=5$ as required)

We can also construct (from τ) two partial isos, by ignoring the pairs with $*$ s, and taking the remaining pairs from each partition. Note that by this construction, σ is the union of these partial isos, as required.

In our example, we get $\{(6,1)\}$ and $\{(4,4),(3,5)\}$, whose union is the $\sigma: 6 \longrightarrow 5=\{(3,5),(4,4),(6,1)\}$ we started with.

Finally, we can construct $\sigma^{\prime}: k \longrightarrow l$ by pairing the positions in τ_{1} and τ_{2} (equivalently the pairs in τ) which correspond to the partial isos above.

In our example this gives $\sigma^{\prime}=\{(1,1),(2,3)\}$ (since $\{(6,1)\}$ assigns the first partition in τ_{1} to the first partition in τ_{2}, and $\{(4,4),(3,5)\}$ assigns the second partition in τ_{1} to the third partition in τ_{2}).

So $\sigma_{11}=\{(6,1)\}$ and $\sigma_{23}=\{(4,4),(3,5)\}$. And this completes the construction.

What's going on?

This time we have the following selection from the variable base:

$$
\left(\begin{array}{ccc}
\left.\begin{array}{|c||}
\hline a_{6,1}
\end{array}\right) & \left(\begin{array}{ll}
a_{6,2} & a_{6,3}
\end{array}\right) & \left(\begin{array}{cc}
a_{6,4} & a_{6,5}
\end{array}\right) \\
\left(\begin{array}{l}
a_{4,1} \\
a_{3,1} \\
a_{5,1}
\end{array}\right) & \left(\begin{array}{ll}
a_{4,2} & a_{4,3} \\
a_{3,2} & a_{3,3} \\
a_{5,2} & a_{5,3}
\end{array}\right) & \boxed{\left(\begin{array}{|cc|}
\hline a_{4,4} & a_{4,5} \\
a_{3,4} & \boxed{a_{3,5}} \\
a_{5,4} & a_{5,5}
\end{array}\right)} \\
\binom{a_{1,1}}{a_{2,1}} & \left(\begin{array}{ll}
a_{1,2} & a_{1,3} \\
a_{2,2} & a_{2,3}
\end{array}\right) & \left(\begin{array}{ll}
a_{1,4} & a_{1,5} \\
a_{2,3} & a_{2,5}
\end{array}\right)
\end{array}\right)
$$

and the common function term corresponding to this is $g_{4}(x) \cdot\left(f_{1}(x) \cdot a_{61}\right) \cdot\left(f_{2}(x) \cdot a_{* 2} \cdot a_{* 3}\right) \cdot\left(f_{3}(x) \cdot a_{44} \cdot a_{35} \cdot a_{5 *}\right)$. $\left(f_{2}(x) \cdot a_{1 *} \cdot a_{2 *}\right)$

Coalgebras

Suppose $\mathbb{X}, D: \mathbb{X} \longrightarrow$ Faà $(\mathbb{X}$) is a coalgebra (so $\epsilon D=1, D$ Faà $(D)=$ $D \delta$). Since the bundle fibration is included in the Faà di Bruno fibration, we know (BCS, TAC2009) D induces a differential structure satisfying [CD.1]-[CD.5]. But [CD.6], [CD.7] ... ?

On objects: Let $D(X)=\left(D_{0}(X), D_{1}(X)\right.$; then
$X=\varepsilon(D(X))=\varepsilon\left(D_{0}(X), D_{1}(X)\right)=D_{1}(X)$ so $D_{1}(X)=X$.
Also

$$
\begin{aligned}
& (D \text { Faà }(D))(X)=\text { Faà }(D)(D(X))= \\
& \quad \text { Faà }(D)\left(D_{0}(X), X\right)=\left(\left(D_{0}\left(D_{0}(X)\right), D_{0}(X)\right)\left(D_{0}(X), X\right)\right)
\end{aligned}
$$

And
$(D \delta)(X)=\delta\left(D_{0}(X), X\right)=\left(\left(D_{0}(X), D_{0}(X)\right),\left(D_{0}(X), X\right)\right)$
so $D_{0}\left(D_{0}(X)\right)=D_{0}(X)$, i.e. D_{0} is an idempotent.
Call such a coalgebra in which D_{0} is the identity on objects a standard coalgebra. Inside each coalgebra there always sits a standard coalgebra determined by the objects with $D_{0}(X)=X$.

On morphisms: Write $D(f)=\left(f, f^{(1)}, f^{(2)}, \ldots\right)$. The coalgebra equation for δ tells us these are equal:
(which is enough to guarantee(!) [CD.6] \& [CD.7])
(Why?)
Since $\left(f^{(1)}\right)^{(1)}=D(f)_{1}^{[1]}$,

$$
\begin{aligned}
\left(\begin{array}{l|l}
a_{1,1} & x_{1} \\
a_{*, 1} & x
\end{array}\right) & \mapsto\left(f^{(1)}\right)^{(1)}\binom{x_{1}}{x} \cdot\binom{a_{1,1}}{a_{*, 1}} \\
& =f^{(2)}(x) \cdot a_{*, 1} \cdot x_{1}+f^{(1)}(x) \cdot a_{1,1}
\end{aligned}
$$

Setting $a_{*, 1}=0$ which yields [CD.6]:

$$
\left(f^{(1)}\right)^{(1)}\binom{x_{1}}{x} \cdot\binom{a_{1,1}}{0}=f^{(1)}(x) \cdot a_{1,1}
$$

and setting $a_{1,1}=0$ yields [CD.7]:

$$
\begin{aligned}
& \left(f^{(1)}\right)^{(1)}\binom{x_{1}}{x} \cdot\binom{0}{a_{*, 1}} \\
& =f^{(2)}(x) \cdot a_{*, 1} \cdot x_{1} \\
& =f^{(2)}(x) \cdot x_{1} \cdot a_{*, 1} \\
& =\left(f^{(1)}\right)^{(1)}\binom{a_{*, 1}}{x} \cdot\binom{0}{x_{1}}
\end{aligned}
$$

So we have proved

Proposition Every standard coalgebra of the Faà di Bruno comonad is a Cartesian differential category.

To prove the converse involves some calculations using the term calculus of Cartesian differential categories. Here are some highlights.

Higher order derivatives

Define $\quad \frac{\mathrm{d}^{(1)} t}{\mathrm{~d} x}(s) \cdot a=\frac{\mathrm{d} t}{\mathrm{~d} x}(s) \cdot a \quad$ and
$\frac{\mathrm{d}^{(n)} t}{\mathrm{~d} x}(s) \cdot a_{1} \cdot \ldots \cdot a_{n}=\frac{\frac{\mathrm{d}^{(\mathrm{d}}(\mathrm{n}-1) t}{\mathrm{~d} x}(x) \cdot a_{1} \cdot \ldots \cdot a_{n-1}}{\mathrm{~d} x}(s) \cdot a_{n}$
Then

$$
\frac{\mathrm{d} t[x+s / y]}{\mathrm{d} x}(0) \cdot a=\frac{\mathrm{d} t}{\mathrm{~d} y}(s) \cdot a \quad(x \text { not free in } s)
$$

$$
\frac{\mathrm{d}^{(2)} t}{\mathrm{~d} x}(s) \cdot a_{1} \cdot a_{2}=\frac{\mathrm{d}^{(2)} t}{\mathrm{~d} x}(s) \cdot a_{2} \cdot a_{1} \quad\left(x \text { not free in } a_{1}, a_{2}\right)
$$

$$
\frac{\mathrm{d}^{(n)} t}{\mathrm{~d} x}(s) \cdot a_{1} \cdot \ldots \cdot a_{n}=\frac{\mathrm{d}^{(n)} t}{\mathrm{~d} x}(s) \cdot a_{\sigma(1)} \cdot \ldots \cdot a_{\sigma(n)}\left(\text { for any } \sigma \in \mathcal{S}_{n} .\right)
$$

$$
\frac{\frac{\mathrm{d}}{}\left(\mathrm{~d}(\mathrm{n})_{t}(s) \cdot a_{1} \cdot \ldots \cdot x \ldots \cdot a_{n}\right.}{\mathrm{d} x}\left(s^{\prime}\right) \cdot a_{r}=\frac{\mathrm{d}^{(n)} t}{\mathrm{~d} z}(s) \cdot a_{1} \cdot \ldots \cdot a_{r} \cdot \ldots \cdot a_{n}
$$

$$
\frac{\mathrm{d} \frac{\mathrm{~d} t}{\mathrm{~d} x}(p) \cdot a}{\mathrm{~d} y}\left(p^{\prime}\right) \cdot a^{\prime}=\frac{\mathrm{d}^{(2)} t}{\mathrm{~d} x}\left(p\left[p^{\prime} / y\right]\right) \cdot a\left[p^{\prime} / y\right] \cdot\left(\frac{\mathrm{d} p}{\mathrm{~d} y}\left(p^{\prime}\right) \cdot a^{\prime}\right)
$$

$$
+\frac{\mathrm{d} t}{\mathrm{~d} x}\left(p\left[p^{\prime} / y\right]\right) \cdot\left(\frac{\mathrm{d} a}{\mathrm{~d} y}\left(p^{\prime}\right) \cdot a^{\prime}\right) \quad(\text { for } y \notin t)
$$

Corollary: In any cartesian differential category:
$\frac{\mathrm{d}^{(n)} g(f(x))}{\mathrm{d} x}(z) \cdot a_{1} \cdot \ldots \cdot a_{n}=(f \star g)_{\mathcal{T}_{2}^{a_{1}, \ldots, a_{n}}}(z)$
Furthermore
$\frac{\mathrm{d}^{(m)} f_{n}\left(f_{n-1}(\ldots(f(x)) \cdots)\right)}{\mathrm{d} x}(z) \cdot a_{1} \cdots a_{m}=\left(f_{1} \star f_{2} \star \cdots \star f_{n}\right)_{\mathcal{T}_{n}^{a_{1}, \ldots, a_{m}}}(z)$

In other words, the higher order derivatives connect with the Faà di Bruno convolution in exactly the right way, ...
... and so (after some technical calculations!):

Theorem Cartesian differential categories are exactly standard coalgebras of the Faà di Bruno comonad.

