Faà di Bruno categories

R.A.G. Seely

John Abbott College & McGill University

(Joint work with J.R.B. Cockett)

Francesco Faà di Bruno (1825-1888) was an Italian of noble birth, a soldier, a mathematician, and a priest. In 1988 he was beatified by Pope John Paul II for his charitable work teaching young women mathematics. As a mathematician he studied with Cauchy in Paris. He was a tall man with a solitary disposition who spoke seldom and, when teaching class, not always successfully. Perhaps his most significant mathematical contribution concerned the combinatorics of the higher-order chain rules. These results were the cornerstone of "combinatorial analysis": a subject which never really took off. It is the combinatorics underlying the higher-order chain rule which is of interest to us here.

Outline

- Cartesian differential categories
- The bundle fibration
- Faà di Bruno categories
- The comonad
- The coalgebras

Theorem Cartesian differential categories are exactly standard coalgebras of the Faà di Bruno comonad.

Key structure:

$$\frac{X \xrightarrow{f} Y: x \mapsto f(x)}{X \times X \xrightarrow{D(f)} Y: \langle a, s \rangle \mapsto \frac{\mathrm{d}f}{\mathrm{d}x}(s) \cdot a}$$
 (linear in *a* but not in *s*)

Example:

If
$$f: \langle x, y, z \rangle \mapsto \langle x^2 + xyz, z^3 - xy \rangle$$

then: $\frac{d\langle x^2 + xyz, z^3 - xy \rangle}{d\langle x, y, z \rangle} = \begin{pmatrix} 2x + yz & xz & xy \\ -y & -x & 3z^2 \end{pmatrix}$
and $\frac{d\langle x^2 + xyz, z^3 - xy \rangle}{d\langle x, y, z \rangle} (\langle r, s, t \rangle) = \begin{pmatrix} 2r + st & rt & rs \\ -s & -r & 3t^2 \end{pmatrix}$
and $\frac{d\langle x^2 + xyz, z^3 - xy \rangle}{d\langle x, y, z \rangle} (\langle r, s, t \rangle) \cdot \langle a, b, c \rangle = \langle (2r + st)a + rtb + rsc, -sa - rb + 3t^2c \rangle$

Cartesian Differential Categories

- 1. Category X, **Cartesian left additive**: hom-sets are commutative monoids & f(g+h) = (fg) + (fh), f0 = 0. (*h* is **additive** if also (f+g)h = (fh) + (gh) and 0h = 0.) 'Well-behaved' products: π_0 , π_1 , Δ additive *f*, *g* additive $\Rightarrow f \times g$ additive.
- 2. Differential operator D:

$$\frac{X \xrightarrow{f} Y}{X \times X \xrightarrow{f} Y}$$

(Ref: [Blute-Cockett-Seely] TAC 2009)

Eg (of "left additive"): the category of commutative monoids & **set** maps is left additive; the additive maps are homomorphisms.

Satisfying:

[CD.1] D[f+g] = D[f] + D[g] and D[0] = 0

[CD.2] $\langle h+k,v\rangle D[f] = \langle h,v\rangle D[f] + \langle k,v\rangle D[f]$ and $\langle 0,v\rangle D_{\times}[f] = 0$

[CD.3] $D[1] = \pi_0, \ D[\pi_0] = \pi_0 \pi_0 \text{ and } D[\pi_1] = \pi_0 \pi_1$

[CD.4] $D[\langle f, g \rangle] = \langle D[f], D[g] \rangle$

[CD.5] $D[fg] = \langle D[f], \pi_1 f \rangle D[g]$

[CD.6] $\langle \langle g, 0 \rangle, \langle h, k \rangle \rangle D[D[f]] = \langle g, k \rangle D[f]$

[CD.7] $\langle \langle 0, h \rangle, \langle g, k \rangle \rangle D[D[f]] = \langle \langle 0, g \rangle, \langle h, k \rangle \rangle D[D[f]]$

[Dt.1]
$$\frac{\mathsf{d}(f_1 + f_2)}{\mathsf{d}p}(s) \cdot a = \frac{\mathsf{d}f_1}{\mathsf{d}p}(s) \cdot a + \frac{\mathsf{d}f_2}{\mathsf{d}p}(s) \cdot a \text{ and } \frac{\mathsf{d}0}{\mathsf{d}p}(s) \cdot a = 0;$$

[Dt.2]
$$\frac{\mathrm{d}f}{\mathrm{d}p}(s) \cdot (a_1 + a_2) = \frac{\mathrm{d}f}{\mathrm{d}p}(s) \cdot a_1 + \frac{\mathrm{d}f}{\mathrm{d}p}(s) \cdot a_2$$
 and $\frac{\mathrm{d}f}{\mathrm{d}p}(s) \cdot 0 = 0$;

[Dt.3]
$$\frac{\mathrm{d}x}{\mathrm{d}x}(s) \cdot a = a, \quad \frac{\mathrm{d}f}{\mathrm{d}(p,p')}(s,s') \cdot (a,0) = \frac{\mathrm{d}f[s'/p']}{\mathrm{d}p}(s) \cdot a$$

and
$$\frac{\mathrm{d}f}{\mathrm{d}(p,p')}(s,s') \cdot (0,a') = \frac{\mathrm{d}f[s/p]}{\mathrm{d}p'}(s') \cdot a';$$

[Dt.4]
$$\frac{\mathsf{d}(f_1, f_2)}{\mathsf{d}p}(s) \cdot a = \left(\frac{\mathsf{d}f_1}{\mathsf{d}p}(s) \cdot a, \frac{\mathsf{d}f_1}{\mathsf{d}p}(s) \cdot a\right);$$

[Dt.5]
$$\frac{\mathrm{d}g[f/p']}{\mathrm{d}p}(s) \cdot a = \frac{\mathrm{d}g}{\mathrm{d}p'}(f[s/p]) \cdot \left(\frac{\mathrm{d}f}{\mathrm{d}p}(s) \cdot a\right)$$
 (no variable of p may occur in f);

[Dt.6]
$$\frac{\mathrm{d}\frac{\mathrm{d}f}{\mathrm{d}p}(s) \cdot p'}{\mathrm{d}p'}(r) \cdot a = \frac{\mathrm{d}f}{\mathrm{d}p}(s) \cdot a.$$

[Dt.7]
$$\frac{d\frac{df}{dp_1}(s_1) \cdot a_1}{dp_2}(s_2) \cdot a_2 = \frac{d\frac{df}{dp_2}(s_2) \cdot a_2}{dp_1}(s_1) \cdot a_1$$

The Chain Rule

$$D[fg] = \langle D[f], \pi_1 f \rangle D[g]$$

$$\frac{\mathrm{d}g[f/x']}{\mathrm{d}x}(s) \cdot a = \frac{\mathrm{d}g}{\mathrm{d}x'}(f[s/x]) \cdot \left(\frac{\mathrm{d}f}{\mathrm{d}x}(s) \cdot a\right)$$

$$(fg)^{(1)}(s) \cdot a = g^{(1)}(f) \cdot (f^{(1)}(s) \cdot a)$$

a

The Bundle Fibration over $\ensuremath{\mathbb{X}}$

Objects: (A, X) (pairs of objects of X)

Morphisms: $(f_*, f_1): (A, X) \longrightarrow (B, Y): f_*: X \longrightarrow Y$ in X; $f_1: A \times X \longrightarrow B$ in X, additive in its first argument.

Composition: $(f_*, f_1)(g_*, g_1) = (f_*g_*, \langle f_1, \pi_1 f_* \rangle g_1)$ (Think $f_1 = D(f_*)$)

Additive structure: defined "component-wise" $(A, X) \mapsto X$; $(f_*, f_1) \mapsto f_*$ is a fibration If X is Cartesian left additive, so are the fibres, and so is the total category

2nd Order Chain Rule

$$\frac{\mathrm{d}^{(2)}g(f(x))}{\mathrm{d}x}(s) \cdot a_1 \cdot a_2$$

$$= \frac{\mathrm{d}g}{\mathrm{d}x}(f(s)) \cdot \left(\frac{\mathrm{d}^{(2)}f}{\mathrm{d}x}(s) \cdot a_1 \cdot a_2\right)$$

$$+ \frac{\mathrm{d}^{(2)}g}{\mathrm{d}x}(f(s)) \cdot \left(\frac{\mathrm{d}f}{\mathrm{d}x}(s) \cdot a_1\right) \cdot \left(\frac{\mathrm{d}f}{\mathrm{d}x}(s) \cdot a_2\right)$$

The differential of a symmetric tree

11

Faà(X), the Fàa di Bruno Fibration over X

Objects: (A, X) (pairs of objects of X)

Morphisms: $f = (f_*, f_1, f_2, ...): (A, X) \longrightarrow (B, X)$, where:

 $f_*: X \longrightarrow Y$ in \mathbb{X} ;

for r > 0: $f_r: \underbrace{A \times \ldots \times A}_r \times X \longrightarrow B$ a "symmetric form" (*i.e.* additive and symmetric in the first r arguments

(think $f_r: A^{\otimes^r}/r! \times X \longrightarrow B$, even though \mathbb{X} need not have \otimes)

Composition? This is where the higher order chain rules come in ...

Faà di Bruno convolution

 τ : a symmetric tree of height 2, width r, on variables $\{a_1, \ldots, a_r\}$; $(A, X) \xrightarrow{f} (B, Y) \xrightarrow{g} (C, Z)$ in Faà(X).

Then $(f \star g)_{\tau}: \underbrace{A \times \ldots \times A}_{r} \times X \longrightarrow C$ is defined thus (for example): for τ the tree on the left, interpret it as the tree on the right:

 $(f \star g)_{\tau} = g_2(f_*(x), f_1(a_3, x), f_3(a_1, a_2, a_4, x)): A \times A \times A \times A \times X \longrightarrow C.$ **NB:** $(f \star g)_{\tau}$ is additive in each argument except the last whenever

the components of f and g have this property.

 $\iota_2^{a_1}$ is the (unique) height 2 width 1 tree (with variable a_1)

$$\mathcal{T}_2^{a_1,\ldots,a_r} = \partial_{a_2,\ldots,a_r}(\iota_2^{a_1}),$$

i.e. the bag of trees obtained by "deriving" $\iota_2^{a_1}$ *r*-times with respect to the given variables. (This is the set of *all* symmetric trees of height 2 and width *r*.)

The Faà di Bruno convolution (composition in Faà(X)) of f and g is given by setting $(fg)_* = f_*g_*$, and for r > 0

$$(fg)_r = (f \star g)_{\mathcal{T}_2^{\{a_1, \dots, a_r\}}} = \sum_{n \cdot \tau \in \mathcal{T}_2^{a_1, \dots, a_r}} n \cdot (f \star g)_{\tau}$$

(This is well-defined: permuting the variables of any $\tau \in \mathcal{T}_2^{a_1, \dots, a_r}$ either leaves τ fixed or produces a new tree in $\mathcal{T}_2^{a_1, \dots, a_r}$.)

Proposition For any Cartesian left additive category X, Faà(X) is a Cartesian left additive category.

Faà: CLAdd \rightarrow CLAdd is a functor: $\mathbb{X} \mapsto \mathsf{Faà}(\mathbb{X}) ; (f_*, f_1, \dots) \mapsto (F(f_*), F(f_1), \dots)$

 ϵ : Faà(X) \longrightarrow X: $(A, X) \mapsto X, (f_*, f_1, ...) \mapsto f$ is a fibration. (and a natural transformation)

There is a functor (indeed, a natural transformation) δ : Faà(X) \longrightarrow Faà(Faà(X)) so that (Faà, ϵ , δ) is a comonad on CLAdd.

On objects,
$$\delta: (A, X) \mapsto ((A, A), A, X)$$

On morphisms, things are a bit "complicated". Some notation: we write $f = (f_*, f_1, f_2, ...): (A, X) \longrightarrow (B, Y)$ as follows

$$f_*: X \longrightarrow Y : x \mapsto f_*(x)$$

$$f_n: A^n \times X \longrightarrow B : (a_{*1}, \dots, a_{*n}, x) \mapsto f_n(x) \cdot a_{*1} \cdot \dots \cdot a_{*n}$$

We then define δ : Faà(X) \longrightarrow Faà(Faà(X)) as follows:

on objects, δ takes (A, X) to ((A, A), A, X). On arrows, $f \mapsto \delta(f) = (f, f^{[1]}, f^{[2]}, \dots)$ by setting $f_*^{[n]}: A^n \times X \longrightarrow B: (a_{*1}, \ldots, a_{*n}, x) \mapsto f_n(x) \cdot a_{*1} \cdot \ldots \cdot a_{*n}$ $f_r^{[n]}: (A^n \times A)^r \times (A^n \times X) \longrightarrow B:$ $\begin{pmatrix} a_{11} \dots a_{1n} & a_{1*} \\ \vdots & & \vdots \\ a_{r1} \dots a_{rn} & a_{r*} \\ \hline a_{*1} \dots a_{*n} & x \end{pmatrix} \mapsto \sum_{\substack{s \leq n \& s \leq r \\ \& \operatorname{ramp}_{r,n}^{s}(\alpha \mid \gamma)}} f_{r+n-s}(x) \cdot a_{\alpha_{1}1} \cdots \cdot a_{\alpha_{n}n} \cdot a_{\gamma_{1}*} \cdots \cdot a_{\gamma_{r-s*}}$

where the "ramp" condition amounts to choosing (for each $s \leq \min(r, n)$) s elements from $(a_{ij})_{i \leq r, j \leq n}$, at most one from each row and column, (this amounts to choosing a partial isomorphism) and constructing the function term as follows (for example,):

If σ is the following partial iso (here n = 4, r = 5, and s = 3):

$(a_{11}a_{12}a_{13}a_{14})$	$ a_{1*}\rangle$		$a_{11}a_{12}a_{13}a_{14}$	$ a_{1*}\rangle$
$a_{21}a_{22}a_{23}a_{24}$	a _{2*}		$a_{21} a_{22} a_{23} a_{24}$	a_{2*}
<i>a</i> ₃₁ <i>a</i> ₃₂ <i>a</i> ₃₃ <i>a</i> ₃₄	a_{3*}	\sim	$a_{31} a_{32} a_{33} a_{34}$	a_{3*}
<i>a</i> ₄₁ <i>a</i> ₄₂ <i>a</i> ₄₃ <i>a</i> ₄₄	a_{4*}		<i>a</i> ₄₁ <i>a</i> ₄₂ <i>a</i> ₄₃ <i>a</i> ₄₄	a_{4*}
<i>a</i> ₅₁ <i>a</i> ₅₂ <i>a</i> ₅₃ <i>a</i> ₅₄	a_{5*}		$a_{51} a_{52} a_{53} a_{54}$	a_{5*}
$(a_{*1}a_{*2}a_{*3}a_{*4})$	$\left x \right $		$a_{*1}a_{*2}a_{*3}a_{*4}$	$\left[x \right]$

Then construct

$$f^{\sigma} = f_6(x) \cdot a_{11} \cdot a_{52} \cdot a_{*3} \cdot a_{34} \cdot a_{2*} \cdot a_{4*}$$

 f_6 since we need n + r - s = 6 linear arguments. The linear arguments of f are determined by putting in the selected arguments and arguments from the bottom row and rightmost column corresponding to the rows and columns **not** containing a selected argument. Then we set $f_r^{[n]}$ to be the sum of all such expressions:

$$f_r^{[n]} = \sum_{\sigma \in \mathsf{ParIso}(r,n)} f^{\sigma}$$

Remark: The intended interpretation of $f_r^{[n]}$ is the r^{th} higher order differential term

$$\frac{\mathsf{d}^r f(x) \cdot a_1 \cdot \cdots \cdot a_n}{\mathsf{d}(x, a_1, \dots, a_n)} (x, a_1, \dots, a_n) \cdot (a_1, a_{11}, \dots, a_{1n}) \cdot \cdots \cdot (a_r, a_{r1}, \dots, a_{rn})$$

Properties: $f_r^{[n]}$ is additive, symmetric in its first r arguments.

$$(f+g)_r^{[n]} = f_r^{[n]} + g_r^{[n]}$$

If F is Cartesian left additive, $Faa(F)(f^{[n]}) = (Faa(F)(f))^{[n]}$

 δ : Faà(X) \longrightarrow Faà(Faà(X)) is a functor, and is natural (as a natural transformation).

(Faà, ϵ , δ) is a comonad on CLAdd.

An example of the proofs:

Let's show that $\delta(f)\delta(g) = \delta(fg)$:

For the most part (as seen in the sequence of equations on the next slide) this involves expanding the definitions, followed by several applications of additivity; only the last step requires comment, as it involves a combinatorial argument.

$$\begin{split} \delta(f)\delta(g) &= \sum_{\tau_1,\tau_2} (\delta(f) \star \delta(g))_{\tau_1 \times \tau_2} \\ &= \sum_{\tau_1,\tau_2} \left(\left(\sum_{\sigma:i \longrightarrow j} f^{\sigma} \right)_{ij} \star \left(\sum_{\sigma':k \longrightarrow l} g^{\sigma'} \right)_{kl} \right)_{\tau_1 \times \tau_2} \\ &= \sum_{\tau_1,\tau_2} \left(\sum_{\sigma'} g^{\sigma'} \right) \left(\sum_{\sigma_{ij}:\alpha_i \longrightarrow \beta_j} f^{\sigma_{ij}} \right)_{ij} \\ &= \sum_{\tau_1,\tau_2} \sum_{\sigma'} g^{\sigma'} \left(\sum_{\sigma_{ij}} f^{\sigma_{ij}} \right)_{ij} \\ &= \sum_{\tau_1,\tau_2} \sum_{\sigma'} g^{\sigma'} \left(\sum_{\sigma_{ij}} f^{\sigma_{ij}} \right)_{ij \in \sigma'} \\ &= \sum_{\tau_1,\tau_2} \sum_{\sigma',\sigma_{ij},ij \in \sigma'} g^{\sigma} (\dots, f^{\sigma_{ij}}, \dots) \\ &= \sum_{\sigma:n \longrightarrow m} \sum_{\tau \in T_{n+m-|\sigma|}} (f \star g)_{\tau}^{\sigma} = \delta(fg) \end{split}$$

The key combinatorial lemma is the equivalence of the following data:

- Partitions $\tau_1 = (\alpha_1, \dots, \alpha_k), \tau_2 = (\beta_1, \dots, \beta_l)$ and partial isomorphisms $\sigma': k \longrightarrow l$ and $\sigma_{ij}: \alpha_i \longrightarrow \beta_j$ for $(i, j) \in \sigma'$
- Partial isomorphism $\sigma: n \longrightarrow m$ and partition of $n + m |\sigma|$.

where *n* is the set partitioned by τ_1 , *m* the set partitioned by τ_2 , and σ is the union of the σ_{ij} .

We sketch the proof, with an example as illustration.

We shall frequently identify an integer n with the set of integers from 1 to n, unless otherwise stated. We shall represent a partial isomorphim by listing the pairs (i, j) where $i \mapsto j$.

Suppose we are given partitions $\tau_1 = (\alpha_1, \ldots, \alpha_k), \tau_2 = (\beta_1, \ldots, \beta_l)$ and partial isomorphisms $\sigma': k \longrightarrow l$ and $\sigma_{ij}: \alpha_i \longrightarrow \beta_j$ for $(i, j) \in \sigma'$

Consider the following example:

$$\tau_{1} = ((1,3), (2,5), (4,6))$$

$$\tau_{2} = ((1,2,4), (3), (5)) \text{ (so } k = l = 3)$$

$$\sigma': 3 \longrightarrow 3 = \{(1,3), (3,1)\} \text{ (so } e.g. (2,2) \text{ is not in } \sigma)$$

$$\sigma_{13}: \{1,3\} \longrightarrow \{5\} = \{(3,5)\}$$

$$\sigma_{31}: \{4,6\} \longrightarrow \{1,2,4\} = \{(4,4), (6,1)\}$$

Then $n = 6, m = 5, |\sigma| = 3$, and $\sigma: 6 \longrightarrow 5 = \{(3, 5), (4, 4), (6, 1)\}$

It remains to construct τ , a partition of an 8-element set.

From $\tau_1 = (\alpha_1, \ldots, \alpha_k), \tau_2 = (\beta_1, \ldots, \beta_l)$ we construct a set S with $n + m - |\sigma|$ elements, where n is the set partitioned by τ_1 , m the set partitioned by τ_2 , and σ is the union of the σ_{ij} .

S consists of pairs
$$(x, y) \in (n \cup \{*\}) \times (m \cup \{*\})$$
 as follows:
 $(x, y) \in S$ if $(x, y) \in \sigma_{ij}$, $(i, j) \in \sigma'$.
 $(x, *) \in S$ if $x \notin \pi_1 \sigma$ $(\pi_1 \sigma = 1^{st}$ components of elements of σ)
 $(*, y) \in S$ if $y \notin \pi_2 \sigma$ $(\pi_2 \sigma = 2^{nd}$ components of elements of σ)

For our example, this gives $S = \{(3,5), (4,4), 6, 1), (1,*), (2,*), (5,*), (*,2), (*,3)\}.$ We partition S as follows (write $a \sim b$ to mean a and b are in the same set of the partition S):

if $(x,y), (x',y') \in \sigma_{ij}$, then $(x,y) \sim (x',y')$

(this includes pairs containing *: if $x \notin \pi_1 \sigma$, $x \in \alpha_i$ (*i.e.* x "comes from" σ_{ij} , but is not in its domain) then (x, *) is in this same partition set, as is (*, y) for $y \notin \pi_2 \sigma$, $y \in \beta_j$ (*i.e.* y "comes from" σ_{ij} but is not in its codomain)

if
$$x, x' \in \alpha_i$$
 (so $x \sim x'$ in τ_1), then $(x, *) \sim (x', *)$

if
$$y, y' \in \beta_j$$
 (so $y \sim y'$ in τ_2), then $(*, y) \sim (*, y')$

In our example, this gives the 4-fold partition of S

$$\tau = (((4,4),(6,1),(*,2)),((3,5),(1,*)),((2,*),(5,*)),((*,3)))$$

(This completes one direction of the equivalence)

What's going on?

The given partitions and partial isos amount to this selection from a variable base:

and it's clear that what both sets of data are defining is the following term from the sums that define $\delta(f)\delta(g)$ and $\delta(fg)$:

 $g_{4}(x) \cdot (f_{3}(x) \cdot a_{44} \cdot a_{61} \cdot a_{*2}) \cdot (f_{2}(x) \cdot a_{35} \cdot a_{1*}) \cdot (f_{2}(x) \cdot a_{2*} \cdot a_{5*}) \cdot (f_{1}(x) \cdot a_{*3})$

The other direction:

Suppose we are given a partial isomorphism $\sigma: n \longrightarrow m$ and a partition of $n + m - |\sigma|$.

We must construct partitions $\tau_1 = (\alpha_1, \ldots, \alpha_k), \tau_2 = (\beta_1, \ldots, \beta_l)$ and partial isomorphisms $\sigma' : k \longrightarrow l$ and $\sigma_{ij} : \alpha_i \longrightarrow \beta_j$ for $(i, j) \in \sigma'$, of appropriate sizes.

Re-notate τ , so that it is a partition of the following set S, containing the pairs $(i, j) \in \sigma$, (i, *) for $i \in n$ but $\notin \pi_1 \sigma$, (*, j) for $j \in m$ but $\notin \pi_2 \sigma$.

Example: If $\sigma: 6 \longrightarrow 5 = \{(3,5), (4,4), (6,1)\}$, and $\tau = ((1), (2,3), (4,5,8), (6,7))$, then

 $S = \{(6,1)), (*,2), (*,3), (4,4), (3,5), (1,*), (2,*), (5,*)\} \text{ and}$ $\tau = (((6,1)), ((*,2), (*,3)), ((4,4), (3,5), (5,*)), ((1,*), (2,*)))$ From the re-notated version of τ , it is easy to express $\tau = \tau_1 \times \tau_2$ as a product of partitions: consider the first components (ignoring *s) and the second components (ignoring *s). In our example, this gives

 $\tau = ((6), (4, 3, 5), (1, 2)) \times ((1), (2, 3), (4, 5))$ (so k = l = 3, and n = 6, m = 5 as required)

We can also construct (from τ) two partial isos, by ignoring the pairs with *s, and taking the remaining pairs from each partition. Note that by this construction, σ is the union of these partial isos, as required.

In our example, we get $\{(6,1)\}$ and $\{(4,4), (3,5)\}$, whose union is the $\sigma: 6 \to 5 = \{(3,5), (4,4), (6,1)\}$ we started with.

Finally, we can construct $\sigma': k \longrightarrow l$ by pairing the positions in τ_1 and τ_2 (equivalently the pairs in τ) which correspond to the partial isos above.

In our example this gives $\sigma' = \{(1,1), (2,3)\}$ (since $\{(6,1)\}$ assigns the first partition in τ_1 to the first partition in τ_2 , and $\{(4,4), (3,5)\}$ assigns the second partition in τ_1 to the third partition in τ_2).

So $\sigma_{11} = \{(6,1)\}$ and $\sigma_{23} = \{(4,4), (3,5)\}$. And this completes the construction.

What's going on?

This time we have the following selection from the variable base:

$$\begin{pmatrix} \boxed{\begin{pmatrix} a_{6,1} \end{pmatrix}} & \begin{pmatrix} a_{6,2} & a_{6,3} \end{pmatrix} & \begin{pmatrix} a_{6,4} & a_{6,5} \end{pmatrix} \\ \begin{pmatrix} a_{4,1} \\ a_{3,1} \\ a_{5,1} \end{pmatrix} & \begin{pmatrix} a_{4,2} & a_{4,3} \\ a_{3,2} & a_{3,3} \\ a_{5,2} & a_{5,3} \end{pmatrix} & \boxed{\begin{pmatrix} a_{4,4} & a_{4,5} \\ a_{3,4} & a_{3,5} \\ a_{5,4} & a_{5,5} \end{pmatrix}} \\ \begin{pmatrix} a_{1,1} \\ a_{2,1} \end{pmatrix} & \begin{pmatrix} a_{1,2} & a_{1,3} \\ a_{2,2} & a_{2,3} \end{pmatrix} & \begin{pmatrix} a_{1,4} & a_{1,5} \\ a_{2,3} & a_{2,5} \end{pmatrix} \end{pmatrix}$$

and the common function term corresponding to this is $g_4(x) \cdot (f_1(x) \cdot a_{61}) \cdot (f_2(x) \cdot a_{*2} \cdot a_{*3}) \cdot (f_3(x) \cdot a_{44} \cdot a_{35} \cdot a_{5*}) \cdot (f_2(x) \cdot a_{1*} \cdot a_{2*})$

Coalgebras

Suppose X, $D: X \longrightarrow Faà(X)$ is a coalgebra (so $\epsilon D = 1$, $DFaà(D) = D\delta$). Since the bundle fibration is included in the Faà di Bruno fibration, we know (BCS, TAC2009) D induces a differential structure satisfying [CD.1]–[CD.5]. But [CD.6], [CD.7] ...?

On objects: Let $D(X) = (D_0(X), D_1(X))$; then $X = \varepsilon(D(X)) = \varepsilon(D_0(X), D_1(X)) = D_1(X)$ so $D_1(X) = X$.

Also

(DFaà(D))(X) = Faà(D)(D(X)) =Faà $(D)(D_0(X), X) = ((D_0(D_0(X)), D_0(X))(D_0(X), X))$ And

 $(D\delta)(X) = \delta(D_0(X), X) = ((D_0(X), D_0(X)), (D_0(X), X))$

so $D_0(D_0(X)) = D_0(X)$, *i.e.* D_0 is an idempotent.

Call such a coalgebra in which D_0 is the identity on objects a **standard coalgebra**. Inside each coalgebra there always sits a standard coalgebra determined by the objects with $D_0(X) = X$.

On morphisms: Write $D(f) = (f, f^{(1)}, f^{(2)}, ...)$. The coalgebra equation for δ tells us these are equal:

$$\mathsf{Faà}(D)(D(f)) = \begin{pmatrix} f & f^{(1)} & f^{(2)} & f^{(3)} & f^{(4)} & \dots \\ f^{(1)} & (f^{(1)})^{(1)} & (f^{(2)})^{(1)} & (f^{(3)})^{(1)} & (f^{(4)})^{(1)} & \dots \\ f^{(2)} & (f^{(1)})^{(2)} & (f^{(2)})^{(2)} & (f^{(3)})^{(2)} & (f^{(4)})^{(2)} & \dots \\ f^{(3)} & (f^{(1)})^{(3)} & (f^{(2)})^{(3)} & (f^{(3)})^{(3)} & (f^{(4)})^{(3)} & \dots \\ f^{(4)} & (f^{(1)})^{(4)} & (f^{(2)})^{(4)} & (f^{(3)})^{(4)} & (f^{(4)})^{(4)} & \dots \end{pmatrix}$$

$$\delta(D(f)) = \begin{pmatrix} f & D(f)_{*}^{[1]} & D(f)_{*}^{[2]} & D(f)_{*}^{[3]} & D(f)_{*}^{[4]} & \dots \\ f^{(1)} & D(f)_{1}^{[1]} & D(f)_{1}^{[2]} & D(f)_{1}^{[3]} & D(f)_{1}^{[4]} & \dots \\ f^{(2)} & D(f)_{2}^{[1]} & D(f)_{2}^{[2]} & D(f)_{2}^{[3]} & D(f)_{2}^{[4]} & \dots \\ f^{(3)} & D(f)_{3}^{[1]} & D(f)_{3}^{[2]} & D(f)_{3}^{[3]} & D(f)_{3}^{[4]} & \dots \\ f^{(4)} & D(f)_{4}^{[1]} & D(f)_{4}^{[2]} & D(f)_{4}^{[3]} & D(f)_{4}^{[4]} & \dots \\ \dots & & & \end{pmatrix}$$

(which is enough to guarantee(!) [CD.6] & [CD.7])

(Why?)

Since
$$(f^{(1)})^{(1)} = D(f)_1^{[1]}$$
,
 $\begin{pmatrix} a_{1,1} & x_1 \\ a_{*,1} & x \end{pmatrix} \mapsto (f^{(1)})^{(1)} \begin{pmatrix} x_1 \\ x \end{pmatrix} \cdot \begin{pmatrix} a_{1,1} \\ a_{*,1} \end{pmatrix}$
 $= f^{(2)}(x) \cdot a_{*,1} \cdot x_1 + f^{(1)}(x) \cdot a_{1,1}$

Setting $a_{*,1} = 0$ which yields **[CD.6]**:

$$(f^{(1)})^{(1)} \begin{pmatrix} x_1 \\ x \end{pmatrix} \cdot \begin{pmatrix} a_{1,1} \\ 0 \end{pmatrix} = f^{(1)}(x) \cdot a_{1,1}$$

and setting $a_{1,1} = 0$ yields [CD.7]:

$$(f^{(1)})^{(1)} \begin{pmatrix} x_1 \\ x \end{pmatrix} \cdot \begin{pmatrix} 0 \\ a_{*,1} \end{pmatrix}$$

= $f^{(2)}(x) \cdot a_{*,1} \cdot x_1$
= $f^{(2)}(x) \cdot x_1 \cdot a_{*,1}$
= $(f^{(1)})^{(1)} \begin{pmatrix} a_{*,1} \\ x \end{pmatrix} \cdot \begin{pmatrix} 0 \\ x_1 \end{pmatrix}$

So we have proved

Proposition Every standard coalgebra of the Faà di Bruno comonad is a Cartesian differential category.

To prove the converse involves some calculations using the term calculus of Cartesian differential categories. Here are some highlights.

Higher order derivatives

Define
$$\frac{d^{(1)}t}{dx}(s) \cdot a = \frac{dt}{dx}(s) \cdot a$$
 and
 $\frac{d^{(n)}t}{dx}(s) \cdot a_1 \cdot \ldots \cdot a_n = \frac{d\frac{d^{(n-1)}t}{dx}(x) \cdot a_1 \cdot \ldots \cdot a_{n-1}}{dx}(s) \cdot a_n$

Then

$$\frac{dt[x+s/y]}{dx}(0) \cdot a = \frac{dt}{dy}(s) \cdot a \quad (x \text{ not free in } s)$$

$$\frac{d^{(2)}t}{dx}(s) \cdot a_1 \cdot a_2 = \frac{d^{(2)}t}{dx}(s) \cdot a_2 \cdot a_1 \quad (x \text{ not free in } a_1, a_2)$$

$$\frac{d^{(n)}t}{dx}(s) \cdot a_1 \cdot \ldots \cdot a_n = \frac{d^{(n)}t}{dx}(s) \cdot a_{\sigma(1)} \cdot \ldots \cdot a_{\sigma(n)} \text{ (for any } \sigma \in S_n.)$$

$$\frac{\mathsf{d}\frac{\mathsf{d}^{(n)}t}{\mathsf{d}z}(s)\cdot a_{1}\cdot\ldots\cdot x\cdot\ldots\cdot a_{n}}{\mathsf{d}x}(s')\cdot a_{r} = \frac{\mathsf{d}^{(n)}t}{\mathsf{d}z}(s)\cdot a_{1}\cdot\ldots\cdot a_{r}\cdot\ldots\cdot a_{n}$$

$$\frac{\frac{\mathrm{d}\frac{\mathrm{d}t}{\mathrm{d}x}(p)\cdot a}{\mathrm{d}y}(p')\cdot a' = \frac{\mathrm{d}^{(2)}t}{\mathrm{d}x}(p[p'/y])\cdot a[p'/y]\cdot \left(\frac{\mathrm{d}p}{\mathrm{d}y}(p')\cdot a'\right) \\ + \frac{\mathrm{d}t}{\mathrm{d}x}(p[p'/y])\cdot \left(\frac{\mathrm{d}a}{\mathrm{d}y}(p')\cdot a'\right) \quad \text{(for } y \notin t\text{)}$$

Corollary: In any cartesian differential category:

$$\frac{\mathsf{d}^{(n)}g(f(x))}{\mathsf{d}x}(z) \cdot a_1 \cdot \ldots \cdot a_n = (f \star g)_{\mathcal{T}_2^{a_1,\ldots,a_n}}(z)$$

Furthermore

$$\frac{\mathsf{d}^{(m)}f_n(f_{n-1}(\dots(f(x))\dots))}{\mathsf{d}x}(z)\cdot a_1\cdots a_m = (f_1\star f_2\star\cdots\star f_n)_{\mathcal{T}_n^{a_1,\dots,a_m}}(z)$$

In other words, the higher order derivatives connect with the Faà di Bruno convolution in exactly the right way, ...

... and so (after some technical calculations!):

Theorem Cartesian differential categories are exactly standard coalgebras of the Faà di Bruno comonad.