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Goals

Develop a theory of (smooth) manifolds based on differential linear
logic. Or perhaps develop a differential linear logic based on
manifolds.

Convenient vector spaces were recently shown to be a model.

There is a well-developed theory of convenient manifolds, including
infinite-dimensional manifolds.

Convenient manifolds reveal additional structure not seen in finite
dimensions. In particular, the notion of tangent space is much more
complex.

Synthetic differential geometry should also provide information.
Convenient vector spaces embed into an extremely good model.
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Convenient vector spaces (Frölicher,Kriegl)

Definition

A vector space is locally convex if it is equipped with a topology such that
each point has a neighborhood basis of convex sets, and addition and
scalar multiplication are continuous.

Locally convex spaces are the most well-behaved topological vector
spaces, and most studied in functional analysis.

Note that in any topological vector space, one can take limits and
hence talk about derivatives of curves. A curve is smooth if it has
derivatives of all orders.

The analogue of Cauchy sequences in locally convex spaces are called
Mackey-Cauchy sequences.

The convergence of Mackey-Cauchy sequences implies the
convergence of all Mackey-Cauchy nets.

The following is taken from a long list of equivalences.
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Convenient vector spaces II: Definition

Theorem

Let E be a locally convex vector space. The following statements are
equivalent:

If c : R→ E is a curve such that ` ◦ c : R→ R is smooth for every
linear, continuous ` : E → R, then c is smooth.

Every Mackey-Cauchy sequence converges.

Any smooth curve c : R→ E has a smooth antiderivative.

Definition

A vector space satisfying any of these conditions is called a convenient
vector space.
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Convenient vector spaces III: Bornology

The theory of bornological spaces axiomatizes the notion of bounded sets.

Definition

A convex bornology on a vector space V is a set of subsets B (the
bounded sets) such that

B is closed under finite unions.

B is downward closed with respect to inclusion.

B contains all singletons.

If B ∈ B, then so are 2B and −B.

B is closed under the convex hull operation.

A map between two such spaces is bornological if it takes bounded sets to
bounded sets.
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Convenient vector spaces IV: More bornology

To any locally convex vector space V , we associate the von Neumann
bornology. B ⊆ V is bounded if for every neighborhood U of 0, there
is a real number λ such that B ⊆ λU.

This is part of an adjunction between locally convex topological
vector spaces and convex bornological vector spaces. The topology
associated to a convex bornology is generated by bornivorous disks.

Theorem

Convenient vector spaces can also be defined as the fixed points of these
two operations, which satisfy Mackey-Cauchy completeness and a
separation axiom.
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Convenient vector spaces V: Frölicher Spaces

Yet another way to define convenient vector spaces:

Definition

Let X be a set. Let CX ⊆ Hom(R,X ) be a set of functions, called the
smooth curves into X . Let FX ⊆ Hom(X ,R) be another set, called the
functionals on X . These determine each other in the sense that:

CX = {f : R→ X |∀g ∈ FX , g ◦ f : R→ R is smooth.}

FX = {g : X → R|∀f ∈ CX , g ◦ f : R→ R is smooth.}

The triple (X , CX ,FX ) is called a Frölicher space.

Let X and Y be Frölicher spaces. A function f : X → Y is a map of
Frölicher spaces if f (CX ) ⊆ CY . This is equivalent to requiring
f ∗(FY ) ⊆ FX .
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Convenient vector spaces V: More Frölicher Spaces

Theorem (Frölicher, Kriegl)

The category of Frolicher spaces and maps is cartesian closed.

A Frölicher space inherits a bornology from its space of functionals.
U ⊆ X is bounded if and only if f (U) ⊆ R is bounded for all f ∈ FX .

Theorem

Convenient vector spaces can also be defined as internal vector spaces in
the category of Frölicher spaces satisfying a completeness condition.
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Convenient vector spaces VI: Key points

The category Con of convenient vector spaces and continuous linear
maps forms a symmetric monoidal closed category. The tensor is a
completion of the algebraic tensor. There is a convenient structure on
the space of linear, continuous maps giving the internal hom.

Since these are topological vector spaces, one can define smooth
curves into them.

Definition

A function f : E → F with E ,F being convenient vector spaces is smooth
if it takes smooth curves in E to smooth curves in F .
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Convenient vector spaces VII: More key points

The category of convenient vector spaces and smooth maps is
cartesian closed. This is an enormous advantage over Euclidean
space, as it allows us to consider function spaces.

There is a comonad on Con such that the smooth maps form the
coKleisli category:

We have a map δ as follows, with C∞(E ) being the set of smooth,
real-valued maps.:

δ : E → Con(C∞(E ),R) δ(x)(f ) = f (x)

Then we define ! E to be the closure of the span of the set δ(E ).

Theorem (Frölicher,Kriegl)

! is a comonad.

! (E ⊕ F ) ∼= ! E ⊗ ! F .

Each object ! E has canonical bialgebra structure.
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Convenient vector spaces VIII: It’s a model

Theorem (Frölicher,Kriegl)

The category of convenient vector spaces and smooth maps is the coKleisli
category of the comonad ! .

One can then prove:

Theorem (RB, Ehrhard, Tasson)

Con is a model of differential linear logic. In particular, it has a
codereliction map given by:

coder(v) = lim
t→0

δ(tv)− δ(0)

t
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Convenient vector spaces IX: Codereliction

Using this codereliction map, we can build a more general differentiation
operator by precomposition:

Consider f : ! E → F then define df : E ⊗ ! E → F as the composite:

E ⊗ ! E
coder⊗id−→ ! E ⊗ ! E

∇−→ ! E
f→ F

Theorem (Frölicher,Kriegl)

Let E and F be convenient vector spaces. The differentiation operator

d : C∞(E ,F )→ C∞(E ,Con(E ,F ))

defined as

df (x)(v) = lim
t→0

f (x + tv)− f (x)

t

is linear and bounded. In particular, this limit exists and is linear in the
variable v .
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A convenient differential category

The above results show that Con really is an optimal differential category.

The differential inference rule is really modelled by a directional
derivative.

The coKleisli category really is a category of smooth maps.

Both the base category and the coKleisli category are closed, so we
can consider function spaces.

This seems to be a great place to consider manifolds. There is a
well-established theory.

Kriegl, Michor-The convenient setting for global analysis
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Convenient manifolds

Definition

A chart (U, u) on a set M is a bijection u : U → u(U) ⊆ E where E is
a fixed convenient vector space, and u(U) is an open subset.

Given two charts (Uα, uα) and (Uβ, uβ), the mapping uαβ = uα ◦ u−1
β

is called a chart-changing.

An atlas or smooth atlas is a family of charts whose union is all of M
and all of whose chart-changings are smooth.

A (convenient) manifold is a set M with an equivalence class of
smooth atlases.

Smooth maps are defined as usual.

Lemma

A function between convenient manifolds is smooth if and only if it takes
smooth curves to smooth curves.
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This is a complicated subject.

Definition

A manifold M is smoothly hausdorff if smooth real-valued functions
separate points.

Note that this implies:

M is hausdorff in its usual topology, which implies:

The diagonal is closed in the manifold M ×M.

These three notions are equivalent in finite-dimensions. In the convenient
setting, the reverse implications are open. Note that the product topology
on M ×M is different than the manifold topology! Also:

Lemma

There are smooth functions that are not continuous. (Seriously.)
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Smooth real-compactness

We have a map:

δ : E → HomAlg (C∞(E ),R)

Theorem

For finite-dimensional vector spaces and in fact any finite-dimensional
manifolds, this map is a bijection.

It may or may not be a bijection for more general manifolds. We say:

Definition

A convenient vector space is smoothly real-compact, if the above map is a
bijection.

Theorem (Arias-de-Reyna,Kriegl,Michor)

Lots of spaces are smoothly real-compact. Lots are not.
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Tangent spaces

The many equivalent notions of tangent in finite-dimensions now become
distinct. See Kriegl-Michor.

Definition

Let E be a convenient vector space, and let a ∈ E . A kinematic tangent
vector at a is a pair (a,X ) with X ∈ E . Let TaE = E be the space of all
kinematic tangent vectors at a.

The above should be thought of as the set of all tangent vectors at a of all
curves through the point a.

For the second definition, let C∞a (E ) be the quotient of C∞(E ) by the
ideal of those smooth functions vanishing on a neighborhood of a. Then:
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Tangent spaces II

Definition

An operational tangent vector at a is a continuous derivation, i.e. a map

∂ : C∞a (E )→ R

such that

∂(f ◦ g) = ∂(f )g(a) + f (a)∂(g)

Note that every kinematic tangent vector induces an operational one via
the formula

Xa(f ) = df (a)(X )

where d is the directional derivative operator. Let DaE be the space of all
such derivations.
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Tangent spaces III

In finite dimensions, the above definitions are equivalent and the described
operation provides the isomorphism. That is no longer the case here.

Let Y ∈ E ′′, the second dual space. Y canonically induces an element of
DaE by the formula Ya(f ) = Y (df (a)). This gives us an injective map
E ′′ → DaE . So we have:

TaE ↪→ E ′′ ↪→ DaE

Definition

E satisfies the approximation property if E ′ ⊗ E is dense in Con(E ,E )
(This is basically the MIX map.).

Theorem (Kriegl,Michor)

If E satisfies the approximation property, then E ′′ ∼= DaE . If E is also
reflexive, then TaE ∼= DaE .
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Embedding into models of SDG

Convenient vector spaces embed nicely into a well-behaved model of
synthetic differential geometry.

In SDG, the (kinematic) tangent bundle takes on a particularly simple
form. It is an exponential.

A model of SDG is, roughly speaking, a universe (a topos) in which
all functions are smooth, and yet the category is cartesian closed. So
the motivation is very much the same as ours.

The model in question is called the Cahiers topos, and is due to E.
Dubuc. The embedding is based on the notion of Weil Prolongation,
due to A. Kock, and the final steps in the embedding are due to A.
Kock and G. Reyes.
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Embedding into models of SDG II

The difference between DG and SDG is the existence of infinitesimals.
Weil prolongation is a way of adding them. The nLab calls this thickening
by infinitesimals.

Definition

A Weil algebra is a R-bilinear map µ : Rn × Rn → Rn making Rn into a
commutative algebra such that the element (1, 0, 0, . . . , 0) is the unit and
the set I = {(0, r1, r2, . . . , rn)} is a nilpotent ideal with nilpotence degree
less than or equal to n.

The primary example is the ring R[x ]/(x2) or R[ε] where ε2 = 0, the ring
of dual numbers.
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More examples of Weil algebras

Generalizing our previous example, R[x ]/(xn) is a Weil algebra.

Theorem

Let A be an R-algebra. The following are equivalent, with m being the
relevant maximal ideal.

A is a Weil algebra.

A is of the form R[x1, x2, . . . , xn]/I , where for each variable xi there is
a natural number n with X n

i ∈ I .

A is isomorphic to R[[x1, x2, . . . , xn]]/I , with I a power of the unique
maximal ideal.

A is isomorphic to a ring C∞0 (Rn)/I which is finite-dimensional as a
real vector space.
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Weil prolongation

Definition

In the following X is a convenient vector space, and let X ′ be its linear,
continuous dual space. Let I be an ideal in the ring C∞(Rn).

Suppose f , g ∈ C∞(Rn,X ).

Say that f ∼I g if ϕ ◦ f − ϕ ◦ g ∈ I for all ϕ ∈ X ′. This is an equivalence
relation on the set C∞(Rn,X ).

An equivalence class is called a mod I jet into X . We denote the set of
equivalence classes by X ⊗W .

In the following, let CVS denote the category of convenient vector spaces,
and smooth maps. Let We denote the category of Weil algebras and
homomorphisms.
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Weil prolongation II

Theorem (Kock)

The Weil prolongation process gives a functor −⊗− : CVS×We→ CVS.
Furthermore, the action of the monoidal category We on CVS is
associative, in the sense that there is a natural isomorphism

X ⊗ (W1 ⊗W2) ∼= (X ⊗W1)⊗W2

compatible with all relevant structure.

The Cahiers topos is a Grothendieck topos, i.e. a category of sheaves for a
(very generalized) notion of topology. Instead of a topological space, one
has a category called the site of definition equipped with a Grothendieck
topology.
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Weil prolongation III-Skipping many details

For this topos, the site of definition D has objects of the form
C∞(Rn)⊗W , with W a Weil algebra.

Theorem (Kock-Reyes)

The above action lifts to an action −⊗− : CVS×D → CVS

Now given such an action, we consider the exponential transpose of the
composite:

CVS×D −→ CVS −→ Set

This is a functor J : CVS→ SetD.

Theorem (Kock-Reyes)

For all convenient vector spaces X , the functor J(X ) is a sheaf with
respect to the Grothendieck topology.

The functor J is full and faithful.

J preserves all finite limits, and the exponential structure.
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Conclusion

Lifting the embedding to convenient manifolds?

If this works, does the construction preserve the tangent bundle for
either notion of tangent bundle?

But are convenient manifolds the right thing? That category is not
cartesian closed.

Nishimura argues one should forget manifolds and generalize to some
other class of Frölicher spaces. He has a specific proposal on the right
class, but the existence of the embedding depends on a conjecture he
hasn’t managed to prove.

Do any of these structures shed any light on the idea of differential
linear logic for manifolds?
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