Geometry of interaction and uniformity

Etienne Duchesne

Laboratoire d'informatique fondamentale de Marseille

FMCS - june 2011

Outline

- Introduction: free compact closure
- Handwaving: how to get a linear exponential comonad
- Serious stuff

Paths in proof-nets

$(A \ngtr B) \mathcal{Y}\left(A^{\perp} \otimes A\right) \mathcal{Y}\left(A^{\perp} \otimes B^{\perp}\right)$

Paths in proof-nets

Paths in proof-nets

1.0.1. $\star \rightarrow$ 1.1.0. \star

Paths in proof-nets

$$
\begin{aligned}
& 0.0 . \star \leftrightarrow 1.0 .0 . \star \\
& 0.1 . \star \leftrightarrow 1.1 .1 . \star \\
& 1.0 .1 . \star \leftrightarrow 1.1 .0 . \star
\end{aligned}
$$

Paths in proof-nets

Paths in proof-nets

Paths in proof-nets

$$
\begin{aligned}
& M_{1}=\{0 . \star, 1 . \star\} \\
& M_{2}=\{0.0 . \star, 0.1 . \star, 1.0 . \star, 1.1 . \star\}
\end{aligned}
$$

$f: M_{1} \uplus M_{2} \rightarrow M_{1} \uplus M_{2}$

Paths in proof-nets

$f: M_{1} \uplus M_{2} \rightarrow M_{1} \uplus M_{2}$
$g: M_{2} \rightarrow M_{2}$

Paths in proof-nets

$f: M_{1} \uplus M_{2} \rightarrow M_{1} \uplus M_{2}$
$g: M_{2} \rightarrow M_{2}$

Paths in proof-nets

$f: M_{1} \uplus M_{2} \rightarrow M_{1} \uplus M_{2}$
$g: M_{2} \rightarrow M_{2}$

$$
f(1 . \star)=1.1 . \star
$$

Paths in proof-nets

$f: M_{1} \uplus M_{2} \rightarrow M_{1} \uplus M_{2}$
$g: M_{2} \rightarrow M_{2}$

$$
g f(1 . \star)=1.0 . \star
$$

Paths in proof-nets

$f: M_{1} \uplus M_{2} \rightarrow M_{1} \uplus M_{2}$
$g: M_{2} \rightarrow M_{2}$

$$
\operatorname{fgf}(1 . \star)=0.0 . \star
$$

Paths in proof-nets

$f: M_{1} \uplus M_{2} \rightarrow M_{1} \uplus M_{2}$
$g: M_{2} \rightarrow M_{2}$
$\operatorname{ggg} f(1 . \star)=0.0 . \star$

Paths in proof-nets

$f: M_{1} \uplus M_{2} \rightarrow M_{1} \uplus M_{2}$
$g: M_{2} \rightarrow M_{2}$

$$
\operatorname{fgfg}(1 . \star)=0 . \star
$$

Paths in proof-nets

$f: M_{1} \uplus M_{2} \rightarrow M_{1} \uplus M_{2}$
$g: M_{2} \rightarrow M_{2}$
0. $\star \leftrightarrow 1$ 1.

Traced monoidal category

Trace operator
Categorical operator for fixed point, iterator, feedback. . .

- In a symmetric monoidal category (\mathbb{C}, \otimes, I) :

$$
f: A \otimes U \rightarrow B \otimes U \quad \leadsto \quad \operatorname{tr}_{A, B}^{U}(f): A \rightarrow B
$$

satisfying some conditions (naturality, dinaturality...)

- In partial injections (PInj, \uplus, \emptyset):

where:

Traced monoidal category

Trace operator

Categorical operator for fixed point, iterator, feedback. . .

- In a symmetric monoidal category (\mathbb{C}, \otimes, I) :

$$
f: A \otimes U \rightarrow B \otimes U \quad \sim \quad \operatorname{tr}_{A, B}^{U}(f): A \rightarrow B
$$

satisfying some conditions (naturality, dinaturality...)

- In partial injections (PInj, \uplus, \emptyset):

$$
f: A \uplus U \rightarrow B \uplus U \quad \sim \quad \operatorname{tr}_{A, B}^{U}(f)=\bigsqcup_{n \geq 0} \pi f(\rho f)^{n} \iota
$$

where:

- $\iota: A \rightarrow A \uplus U$
- $\pi: B \uplus U \rightarrow B$
- $\rho=\emptyset \uplus i d_{U}: B \uplus U \rightarrow A \uplus U$

Traced monoidal category

Free compact closure
With a TSMC $(\mathbb{C}, \otimes, I, t r)$, Int construction of Joyal et al.:

- objects: $\left(A^{+}, A^{-}\right)$where A^{+}, A^{-}are \mathbb{C}-objects
- morphisms:

- composition: $f:\left(A^{+}, A^{-}\right) \rightarrow\left(B^{+}, B^{-}\right)$and

$$
g \circ f=\operatorname{tr}_{A^{+} \otimes C^{-}, C^{+} \otimes A^{-}}^{B^{+} \otimes B^{-}}(\sigma(f \otimes g))
$$

σ some canonical symmetry

- compact closed structure:

Traced monoidal category

Free compact closure
With a TSMC $(\mathbb{C}, \otimes, I, t r)$, Int construction of Joyal et al.:

- objects: $\left(A^{+}, A^{-}\right)$where A^{+}, A^{-}are \mathbb{C}-objects
- morphisms:

$$
\operatorname{Int}(\mathbb{C})\left(\left(A^{+}, A^{-}\right),\left(B^{+}, B^{-}\right)\right)=\mathbb{C}\left(A^{+} \otimes B^{-}, A^{-} \otimes B^{+}\right)
$$

- composition: $f:\left(A^{+}, A^{-}\right) \rightarrow\left(B^{+}, B^{-}\right)$and

σ some canonical symmetry
- compact closed structure:

$$
l_{\operatorname{lnt}(\mathbb{C})}=(I, I)
$$

Traced monoidal category

Free compact closure
With a TSMC $(\mathbb{C}, \otimes, I, t r)$, Int construction of Joyal et al.:

- objects: $\left(A^{+}, A^{-}\right)$where A^{+}, A^{-}are \mathbb{C}-objects
- morphisms:

$$
\operatorname{lnt}(\mathbb{C})\left(\left(A^{+}, A^{-}\right),\left(B^{+}, B^{-}\right)\right)=\mathbb{C}\left(A^{+} \otimes B^{-}, A^{-} \otimes B^{+}\right)
$$

- composition: $f:\left(A^{+}, A^{-}\right) \rightarrow\left(B^{+}, B^{-}\right)$and

$$
\begin{aligned}
g:\left(B^{+}, B^{-}\right) \rightarrow & \left(C^{+}, C^{-}\right) \\
& g \circ f=\operatorname{tr}_{A^{+} \otimes C^{-}, C^{+} \otimes A^{-}}^{B^{+}}(\sigma(f \otimes g))
\end{aligned}
$$

σ some canonical symmetry

- compact closed structure:

Traced monoidal category

Free compact closure
With a TSMC $(\mathbb{C}, \otimes, I, t r)$, Int construction of Joyal et al.:

- objects: $\left(A^{+}, A^{-}\right)$where A^{+}, A^{-}are \mathbb{C}-objects
- morphisms:

$$
\operatorname{lnt}(\mathbb{C})\left(\left(A^{+}, A^{-}\right),\left(B^{+}, B^{-}\right)\right)=\mathbb{C}\left(A^{+} \otimes B^{-}, A^{-} \otimes B^{+}\right)
$$

- composition: $f:\left(A^{+}, A^{-}\right) \rightarrow\left(B^{+}, B^{-}\right)$and

$$
\begin{aligned}
g:\left(B^{+}, B^{-}\right) \rightarrow & \left(C^{+}, C^{-}\right) \\
& g \circ f=\operatorname{tr}_{A^{+} \otimes C^{-}, C^{+} \otimes A^{-}}^{B^{+}}(\sigma(f \otimes g))
\end{aligned}
$$

σ some canonical symmetry

- compact closed structure:

$$
\begin{aligned}
I_{\operatorname{lnt}(\mathbb{C})} & =(I, I) \\
\left(A^{+}, A^{-}\right) \otimes\left(B^{+}, B^{-}\right) & =\left(A^{+} \otimes B^{+}, A^{-} \otimes B^{-}\right) \\
\left(A^{+}, A^{-}\right)^{\star} & =\left(A^{-}, A^{+}\right)
\end{aligned}
$$

Traced monoidal category

Interpretation of MELL
$\ln \operatorname{Int}(\mathbf{P I n j}):$

- self-dual objects: $\mathbf{A}=(A, A)$

$$
f \in \mathbf{P I n j}(A, B) \quad \leadsto \quad \mathcal{N}(f)=\sigma_{A, B}\left(f \uplus f^{\star}\right) \in \operatorname{Int}(\mathbf{P I n j})(\mathbf{A}, \mathbf{B})
$$

- compact closed: multiplicative linear logic
- exponentials: $!\mathbf{A}=(\mathbb{N} \times A, \mathbb{N} \times A)$

$$
\mathcal{N}\left(e \times i d_{A}\right):!\mathbf{A} \rightarrow!!\mathbf{A}
$$

- c : $\mathbb{N} \rightarrow \mathbb{N} \uplus \mathbb{N}$ bijection

$$
\mathcal{N}\left(e \times i d_{A}\right):!\mathrm{A} \rightarrow!\mathrm{A} \otimes!\mathbf{A}
$$

Traced monoidal category

Interpretation of MELL
$\ln \operatorname{Int}(\mathbf{P I n j})$:

- self-dual objects: $\mathbf{A}=(A, A)$

$$
f \in \mathbf{P I n j}(A, B) \quad \leadsto \quad \mathcal{N}(f)=\sigma_{A, B}\left(f \uplus f^{\star}\right) \in \operatorname{Int}(\mathbf{P I n j})(\mathbf{A}, \mathbf{B})
$$

- compact closed: multiplicative linear logic

$$
\mathcal{N}\left(e \times i d_{A}\right):!\mathbf{A} \rightarrow!!\mathbf{A}
$$

- c : $\mathbb{N} \rightarrow \mathbb{N} \uplus \mathbb{N}$ bijection

$$
\mathcal{N}\left(e \times i d_{A}\right):!\mathrm{A} \rightarrow!\mathrm{A} \otimes!\mathrm{A}
$$

$\rightarrow \emptyset:!\mathrm{A} \rightarrow \operatorname{Int}(\mathrm{PInj})$

Traced monoidal category

Interpretation of MELL
$\operatorname{In} \operatorname{Int}(P \mathbf{I n j}):$

- self-dual objects: $\mathbf{A}=(A, A)$

$$
f \in \mathbf{P I n j}(A, B) \quad \leadsto \quad \mathcal{N}(f)=\sigma_{A, B}\left(f \uplus f^{\star}\right) \in \operatorname{Int}(\mathbf{P I n j})(\mathbf{A}, \mathbf{B})
$$

- compact closed: multiplicative linear logic
- exponentials: $!\mathbf{A}=(\mathbb{N} \times A, \mathbb{N} \times A)$
- $e: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ bijection

$$
\mathcal{N}\left(e \times i d_{A}\right):!\mathbf{A} \rightarrow!!\mathbf{A}
$$

- $d: \mathbb{N} \rightarrow\{\star\}, \quad d(0)=\star$

$$
\mathcal{N}\left(d \times i d_{A}\right):!\mathbf{A} \rightarrow \mathbf{A}
$$

- $c: \mathbb{N} \rightarrow \mathbb{N} \uplus \mathbb{N}$ bijection

$$
\mathcal{N}\left(e \times i d_{A}\right):!\mathbf{A} \rightarrow!\mathbf{A} \otimes!\mathbf{A}
$$

- $\emptyset:!\mathbf{A} \rightarrow I_{\operatorname{Int}(\mathbf{P I n j})}$

Adding some structure

Geometry of interaction:

- formula \leadsto leaves of the syntactic tree
- permutation of these leaves

- objects $\mathbf{A}: \mathrm{m}_{\mathbf{A}}:|A| \rightarrow \mathcal{P}_{f}\left(M_{A}\right)$
- $|A|$: positions (the "abstract trees")
- M_{A} : token (the "leaves")
- morphisms $\sigma=\left(p_{\sigma}, f_{\sigma}\right) \in \mathbb{G}(\mathbf{A}, \mathbf{B})$:
- $p_{\sigma} \subseteq|A| \times|B|$
- $f_{\sigma}: M_{A} \uplus M_{B} \rightarrow M_{A} \uplus M_{A}$ partial injection
- f_{σ} preserves the positions in p_{σ} :

$$
\forall(a, b) \in p_{\sigma}, \quad f_{\sigma}\left(m_{\mathbf{A}}(a) \uplus m_{\mathbf{B}}(b)\right)=m_{\mathbf{A}}(a) \uplus m_{\mathbf{B}}(b)
$$

Adding some structure

Geometry of interaction with additional structure:

- formula \sim abstract trees (i.e. points in Rel)
- abstract trees \leadsto set of leaves
- permutation of leaves preserving the abstract trees

- objects $\mathbf{A}: \mathrm{m}_{\mathrm{A}}:|A| \rightarrow \mathcal{P}_{f}\left(M_{A}\right)$
- $|A|$: positions (the "abstract trees")
- M_{A} : token (the "leaves")
- morphisms $\sigma=\left(p_{\sigma}, f_{\sigma}\right) \in \mathbb{G}(\mathbf{A}, \mathbf{B})$
- $p_{\sigma} \subseteq|A| \times|B|$
- $f_{\sigma}: M_{A} \uplus M_{B} \rightarrow M_{A} \uplus M_{A}$ partial injection
- f_{σ} preserves the positions in p_{σ} :

Adding some structure

Geometry of interaction with additional structure:

- formula \leadsto abstract trees (i.e. points in Rel)
- abstract trees \sim set of leaves
- permutation of leaves preserving the abstract trees

Category \mathbb{G} :

- objects $\mathbf{A}: \mathrm{m}_{\mathrm{A}}:|A| \rightarrow \mathcal{P}_{f}\left(M_{A}\right)$
- $|A|$: positions (the "abstract trees")
- M_{A} : token (the "leaves")
- morphisms $\sigma=\left(p_{\sigma}, f_{\sigma}\right) \in \mathbb{G}(\mathbf{A}, \mathbf{B})$:
- $p_{\sigma} \subseteq|A| \times|B|$
- $f_{\sigma}: M_{A} \uplus M_{B} \rightarrow M_{A} \uplus M_{A}$ partial injection
- f_{σ} preserves the positions in p_{σ} :

Adding some structure

Geometry of interaction with additional structure:

- formula \leadsto abstract trees (i.e. points in Rel)
- abstract trees \sim set of leaves
- permutation of leaves preserving the abstract trees

Category \mathbb{G} :

- objects $\mathbf{A}: \mathrm{m}_{\mathbf{A}}:|A| \rightarrow \mathcal{P}_{f}\left(M_{A}\right)$
- $|A|$: positions (the "abstract trees")
- M_{A} : token (the "leaves")
- morphisms $\sigma=\left(p_{\sigma}, f_{\sigma}\right) \in \mathbb{G}(\mathbf{A}, \mathbf{B})$:
- $p_{\sigma} \subseteq|A| \times|B|$
- $f_{\sigma}: M_{A} \uplus M_{B} \rightarrow M_{A} \uplus M_{A}$ partial injection
- f_{σ} preserves the positions in p_{σ} :

$$
\forall(a, b) \in p_{\sigma}, \quad f_{\sigma}\left(\mathrm{m}_{\mathbf{A}}(a) \uplus \mathrm{m}_{\mathbf{B}}(b)\right)=\mathrm{m}_{\mathbf{A}}(a) \uplus \mathrm{m}_{\mathbf{B}}(b)
$$

Adding some structure

Composition in $\mathbb{G}: \sigma \in \mathbb{G}(\mathbf{A}, \mathbf{B}), \quad \tau \in \mathbb{G}(\mathbf{B}, \mathbf{C})$

- on positions: relational composition

$$
p_{\tau \circ \sigma}=p_{\tau} \circ p_{\sigma} \quad \text { in Rel }
$$

- on token: usual Gol compostion (with the trace)

$$
f_{\tau \circ \sigma}=\operatorname{tr}\left(f_{\sigma} \uplus f_{\tau}\right) \quad \text { in } \boldsymbol{\operatorname { I n t }}(\mathbf{P I n j})
$$

\mathbb{G} is compact closed, and:
\square

- $0=(\phi, \phi, \phi)$

Adding some structure

Composition in $\mathbb{G}: \sigma \in \mathbb{G}(\mathbf{A}, \mathbf{B}), \tau \in \mathbb{G}(\mathbf{B}, \mathbf{C})$

- on positions: relational composition

$$
p_{\tau \circ \sigma}=p_{\tau} \circ p_{\sigma} \quad \text { in Rel }
$$

- on token: usual Gol compostion (with the trace)

$$
f_{\tau \circ \sigma}=\operatorname{tr}\left(f_{\sigma} \uplus f_{\tau}\right) \quad \text { in } \boldsymbol{\operatorname { I n t }}(\mathbf{P I n j})
$$

\mathbb{G} is compact closed, and:

- $I=(\{\star\}, \emptyset, \star \mapsto \emptyset)$
- $0=(\emptyset, \emptyset, \emptyset)$

What about exponentials?

$!\mathbf{A} \in \mathbb{G}:$

- positions: finite subtrees of an infinite branching tree

$$
|!A|=\{\alpha: \mathbb{N} \rightharpoonup|A| \mid \# d(\alpha)<\infty\}
$$

- token: $M_{!A}=\mathbb{N} \times M_{A}$ as usual
- $m_{!}(\alpha)=\bigcup_{n \in d(\alpha)}\{n\} \times \mathrm{m}_{\mathbf{A}}(\alpha(n))$
- positions are ordered by "subtree relation" ($\alpha \sqsubseteq \alpha^{\prime}$: restriction order)
- still the reindexations to define...

What about exponentials ?

$!\mathbf{A} \in \mathbb{G}:$

- positions: finite subtrees of an infinite branching tree

$$
|!A|=\{\alpha: \mathbb{N} \rightharpoonup|A| \mid \# d(\alpha)<\infty\}
$$

- token: $M_{!A}=\mathbb{N} \times M_{A}$ as usual
- $m_{!A}(\alpha)=U_{n \in d(\alpha)}\{n\} \times m_{A}(\alpha(n))$
- positions are ordered by "subtree relation" ($\alpha \sqsubseteq \alpha^{\prime}$: restriction order)
- still the reindexations to define...

What about exponentials ?

$!\mathbf{A} \in \mathbb{G}:$

- positions: finite subtrees of an infinite branching tree

$$
|!A|=\{\alpha: \mathbb{N} \rightharpoonup|A| \mid \# d(\alpha)<\infty\}
$$

- token: $M_{!A}=\mathbb{N} \times M_{A}$ as usual
- $\mathrm{m}_{!\mathbf{A}}(\alpha)=\bigcup_{n \in d(\alpha)}\{n\} \times \mathrm{m}_{\mathbf{A}}(\alpha(n))$
- positions are ordered by "subtree relation" ($\alpha \sqsubseteq \alpha^{\prime}$: restriction order)
- still the reindexations to define...

What about exponentials?

$!\mathbf{A} \in \mathbb{G}:$

- positions: finite subtrees of an infinite branching tree

$$
|!A|=\{\alpha: \mathbb{N} \rightharpoonup|A| \mid \# d(\alpha)<\infty\}
$$

- token: $M_{!A}=\mathbb{N} \times M_{A}$ as usual
- $\mathrm{m}_{!\mathbf{A}}(\alpha)=\bigcup_{n \in d(\alpha)}\{n\} \times \mathrm{m}_{\mathbf{A}}(\alpha(n))$

So:

- positions are ordered by "subtree relation" ($\alpha \sqsubseteq \alpha^{\prime}$: restriction order)
- still the reindexations to define...

What positions really are

Tree-like structures with partial maps
A category of linear domains pdl:

- objects:
- algebraic dcpo A
- $x \in \mathcal{K}(A) \Longrightarrow \downarrow\{x\}$ finite distributive lattice
- $A^{\prime} \subseteq_{s} A \Longleftrightarrow \mathcal{K}\left(A^{\prime}\right) \subseteq \mathcal{K}(A)$ and $\mathcal{K}\left(A^{\prime}\right)$ closed by \vee, \wedge $(|A|=\mathcal{K}(A))$
- morphisms are partial, linear and c.m.: $f \in \operatorname{pdl}(|A|,|B|)$

- partial cartesian: $|A \times B|=|A| \times|B|$
- monoidal closed: e.g. IV flat

$$
|\mathbb{N} \rightharpoonup A|=\{\alpha: \mathbb{N} \rightharpoonup|A| \mid \# d(\alpha)<\infty\}
$$

What positions really are

Tree-like structures with partial maps

A category of linear domains pdl:

- objects:
- algebraic dcpo A
- $x \in \mathcal{K}(A) \Longrightarrow \downarrow\{x\}$ finite distributive lattice
- $A^{\prime} \subseteq_{s} A \Longleftrightarrow \mathcal{K}\left(A^{\prime}\right) \subseteq \mathcal{K}(A)$ and $\mathcal{K}\left(A^{\prime}\right)$ closed by \vee, \wedge

$$
(|A|=\mathcal{K}(A))
$$

- morphisms are partial, linear and c.m.: $f \in \operatorname{pdl}(|A|,|B|)$
- $f:|A| \rightharpoonup|B|$
- $d(f) \subseteq_{s}|A|$
- $a \uparrow b \Longrightarrow f(a \vee b)=f(a) \vee f(b), f(a \wedge b)=f(a) \wedge f(b)$
- partial cartesian: $|A \times B|=|A| \times|B|$
- monoidal closed: e.g. \mathbb{N} flat

What positions really are

Tree-like structures with partial maps

A category of linear domains pdl:

- objects:
- algebraic dcpo A
- $x \in \mathcal{K}(A) \Longrightarrow \downarrow\{x\}$ finite distributive lattice
- $A^{\prime} \subseteq_{s} A \Longleftrightarrow \mathcal{K}\left(A^{\prime}\right) \subseteq \mathcal{K}(A)$ and $\mathcal{K}\left(A^{\prime}\right)$ closed by \vee, \wedge

$$
(|A|=\mathcal{K}(A))
$$

- morphisms are partial, linear and c.m.: $f \in \operatorname{pdl}(|A|,|B|)$
- $f:|A| \rightarrow|B|$
- $d(f) \subseteq_{s}|A|$
- $a \uparrow b \Longrightarrow f(a \vee b)=f(a) \vee f(b), f(a \wedge b)=f(a) \wedge f(b)$
- partial cartesian: $|A \times B|=|A| \times|B|$
- monoidal closed: e.g. \mathbb{N} flat

$$
|\mathbb{N} \rightharpoonup A|=\{\alpha: \mathbb{N} \rightharpoonup|A| \mid \# d(\alpha)<\infty\}
$$

What positions really are

Relations on positions

Building relations of positions:

- pdl is partial cartesian with a class of subobjects:
- objects in $\operatorname{Rel}($ pdl): as in pdl
- $\operatorname{Re} l(\mathrm{pdl})(|A|,|B|)=\left\{R \subseteq_{s}|A| \times|B|\right\}$
- ($\operatorname{Rel}($ pdl $), \times, \perp)$ is (dagger) compact closed

What positions really are

Relations on positions

Building relations of positions:

- pdl is partial cartesian with a class of subobjects:
- objects in $\operatorname{Rel}($ pdl): as in pdl
- $\operatorname{Re} l(\mathrm{pdl})(|A|,|B|)=\left\{R \subseteq_{s}|A| \times|B|\right\}$
- ($\operatorname{Rel}(\mathrm{pdl}), \times, \perp)$ is (dagger) compact closed

What positions really are

Relations on positions

Building relations of positions:

- pdl is partial cartesian with a class of subobjects:
- objects in $\operatorname{Rel}($ pdl): as in pdl
- $\operatorname{Re} l(\mathrm{pdl})(|A|,|B|)=\left\{R \subseteq_{s}|A| \times|B|\right\}$
- ($\operatorname{Rel}(\mathrm{pdl}), \times, \perp)$ is (dagger) compact closed
- $R \subseteq_{s}|A| \times|B| \equiv i d_{\mid R} \in \operatorname{pdl}(|A| \times|B|,|A| \times|B|)$

Which relation between token and positions ?
Glueing of token to positions

- We know that:
- PInj is a TSMC
- $\boldsymbol{\operatorname { I n t }}(\mathbf{P I n j})$ is compact closed
- Monoidal functor $\mathcal{P}_{f}:(\mathbf{P I n j}, \uplus) \rightarrow($ pdl,$\times)$

$$
\begin{aligned}
& f \in \mathbf{P I n j}\left(M_{A}, M_{B}\right) \leadsto \mathcal{P}_{f}(f):\left\{\begin{array}{clc}
\mathcal{P}_{f}\left(M_{A}\right) & \rightarrow & \mathcal{P}_{f}\left(M_{B}\right) \\
m \subseteq \text { fin } d(f) & \rightarrow & f(m)
\end{array}\right. \\
& \varphi_{M_{A}, M_{B}}: \mathcal{P}_{f}\left(M_{A}\right) \times \mathcal{P}_{f}\left(M_{B}\right) \rightarrow \mathcal{P}_{f}\left(M_{A} \uplus M_{B}\right)
\end{aligned}
$$

- We can glue PInj to pdl along \mathcal{P}_{f}

Which relation between token and positions ?
Glueing of token to positions

- We know that:
- PInj is a TSMC
- $\boldsymbol{\operatorname { I n t }}(\mathbf{P I n j})$ is compact closed
- Monoidal functor $\mathcal{P}_{f}:(\mathbf{P I n j}, \uplus) \rightarrow($ pdl,$\times)$

$$
\begin{aligned}
& f \in \mathbf{P I n j}\left(M_{A}, M_{B}\right) \leadsto \mathcal{P}_{f}(f):\left\{\begin{array}{clc}
\mathcal{P}_{f}\left(M_{A}\right) & \rightarrow & \mathcal{P}_{f}\left(M_{B}\right) \\
m \subseteq \text { fin } d(f) & \rightarrow & f(m)
\end{array}\right. \\
& \varphi_{M_{A}, M_{B}}: \mathcal{P}_{f}\left(M_{A}\right) \times \mathcal{P}_{f}\left(M_{B}\right) \rightarrow \mathcal{P}_{f}\left(M_{A} \uplus M_{B}\right)
\end{aligned}
$$

- We can glue PInj to pdl along \mathcal{P}_{f}

Lax glueing

Let $\mathbb{C}=\left(I d_{\mathrm{pdI}} \downharpoonright \mathcal{P}_{f}\right)$

- objects: $\mathbf{A}=\left(|A|, M_{A}, \mathrm{~m}_{\mathbf{A}}:|A| \rightarrow \mathcal{P}_{f}\left(M_{A}\right)\right) \quad\left(\mathrm{m}_{\mathbf{A}}\right.$ total)
- morphisms: pairs p, f such that:

- monoidal product:
$\mathbf{A} \otimes \mathbf{B}=\left(|A| \times|B|, \quad M_{A} \uplus M_{B}, \varphi_{M_{A}, M_{B}} \circ\left(m_{A} \times m_{B}\right)\right)$

Lax glueing

Let $\mathbb{C}=\left(I d_{\mathrm{pdI}} \downharpoonright \mathcal{P}_{f}\right)$

- objects: $\mathbf{A}=\left(|A|, M_{A}, \mathrm{~m}_{\mathbf{A}}:|A| \rightarrow \mathcal{P}_{f}\left(M_{A}\right)\right) \quad\left(\mathrm{m}_{\mathbf{A}}\right.$ total)
- morphisms: pairs p, f such that:

- monoidal product:

$$
\mathbf{A} \otimes \mathbf{B}=\left(|A| \times|B|, M_{A} \uplus M_{B}, \varphi_{M_{A}, M_{B}} \circ\left(\mathrm{~m}_{\mathbf{A}} \times \mathrm{m}_{\mathbf{B}}\right)\right)
$$

Lax glueing

Compact closure
Let $\mathbb{G}=\left(I d_{\text {Rel }(\mathrm{pdl})} \downharpoonright \operatorname{Int}\left(\mathcal{P}_{f}\right)\right)$

- objects: as in \mathbb{C}
- morphisms: pairs $R \subseteq_{s}|A| \times|B|$ and $f: M_{A} \uplus M_{B} \rightarrow M_{A} \uplus M_{B}$ such that

- \mathbb{G} is compact closed and $\mathbb{G}(\mathbf{A}, \mathbf{B}) \subseteq \mathbb{C}(\mathbf{A} \otimes \mathbf{B}, \mathbf{A} \otimes \mathbf{B})$

Lax glueing

Compact closure
Let $\mathbb{G}=\left(I d_{\text {Rel }(\mathrm{pdl})} \downharpoonright \operatorname{Int}\left(\mathcal{P}_{f}\right)\right)$

- objects: as in \mathbb{C}
- morphisms: pairs $R \subseteq_{s}|A| \times|B|$ and $f: M_{A} \uplus M_{B} \rightarrow M_{A} \uplus M_{B}$ such that

- \mathbb{G} is compact closed and $\mathbb{G}(\mathbf{A}, \mathbf{B}) \subseteq \mathbb{C}(\mathbf{A} \otimes \mathbf{B}, \mathbf{A} \otimes \mathbf{B})$

Exponentials

- Interpretation of ! modality:
- in pdl: ! $=\mathbb{N} \rightharpoonup_{-}$
- in PInj: ! $=\mathbb{N} \times$.
- We have a "linear distribution": $\kappa:!\mathcal{P}_{f}(-) \rightarrow \mathcal{P}_{f}(!+)$
- $!\mathbf{A}=\left(\mathbb{N} \rightharpoonup|A|, \mathbb{N} \times M_{A}, \kappa_{M_{A}} \circ!\mathrm{m}_{\mathrm{A}}\right)$
- again we have:
- $\operatorname{der}_{A} \in \mathbb{G}(!\mathbf{A}, \mathrm{A})$
- $\operatorname{dig}_{A} \in \mathbb{G}(!\mathbf{A},!!\mathbf{A})$
- contr $_{A} \in \mathbb{G}(!\mathbf{A},!\mathbf{A} \otimes!\mathrm{A})$
- $w_{A} \in \mathbb{G}(!A, /)$

What is reindexation then ?

Exponentials

- Interpretation of ! modality:
- in pdl: ! $=\mathbb{N} \rightharpoonup_{\text {_ }}$
- in PInj: ! $=\mathbb{N} \times$.
- We have a "linear distribution" : $\kappa:!\mathcal{P}_{f}(-) \rightarrow \mathcal{P}_{f}(!-)$
- $!\mathbf{A}=\left(\mathbb{N}-|A|, \mathbb{N} \times M_{A}, \kappa_{M_{A}} \circ!m_{A}\right)$
- again we have:
- $\operatorname{der}_{A} \in \mathbb{G}(!\mathbf{A}, \mathrm{A})$
- $\operatorname{dig}_{A} \in \mathbb{G}(!\mathrm{A},!!\mathrm{A})$
- contr $A \in \mathbb{G}(!\mathrm{A},!\mathrm{A} \otimes!\mathrm{A})$
- $w_{A} \in \mathbb{G}(!\mathbf{A}, I)$

What is reindexation then ?

Exponentials

- Interpretation of ! modality:
- in pdl: ! $=\mathbb{N} \rightharpoonup_{\text {_ }}$
- in PInj: ! $=\mathbb{N} \times$ -
- We have a "linear distribution" $: \kappa:!\mathcal{P}_{f}(-) \rightarrow \mathcal{P}_{f}(!-)$
- $!\mathbf{A}=\left(\mathbb{N} \rightharpoonup|A|, \mathbb{N} \times M_{A}, \kappa_{M_{A}} \circ!\mathrm{m}_{\mathbf{A}}\right)$
- again we have:
- $\operatorname{der}_{\mathbf{A}} \in \mathbb{G}(!\mathbf{A}, \mathbf{A})$
- $\operatorname{dig}_{A} \in \mathbb{G}(!\mathbf{A},!!\mathbf{A})$
- contra $\in \mathbb{G}(!\mathrm{A},!\mathrm{A} \otimes!\mathrm{A})$
- $w_{A} \in \mathbb{G}(!A, I)$

What is reindexation then ?

Exponentials

- Interpretation of ! modality:
- in pdl: ! $=\mathbb{N} \rightharpoonup_{\text {_ }}$
- in PInj: ! $=\mathbb{N} \times$.
- We have a "linear distribution": $\kappa:!\mathcal{P}_{f}(-) \rightarrow \mathcal{P}_{f}\left(!{ }_{-}\right)$
- $!\mathbf{A}=\left(\mathbb{N} \rightharpoonup|A|, \mathbb{N} \times M_{A}, \kappa_{M_{A}} \circ!\mathrm{m}_{\mathbf{A}}\right)$
- again we have:
- $\operatorname{der}_{\mathbf{A}} \in \mathbb{G}(!\mathbf{A}, \mathbf{A})$
- $\operatorname{dig}_{A} \in \mathbb{G}(!\mathbf{A},!!\mathbf{A})$
- contr $_{A} \in \mathbb{G}(!\mathbf{A},!\mathbf{A} \otimes!\mathbf{A})$
- $w_{A} \in \mathbb{G}(!\mathbf{A}, I)$

Exponentials

- Interpretation of ! modality:
- in pdl: ! $=\mathbb{N} \rightharpoonup_{\text {_ }}$
- in PInj: ! $=\mathbb{N} \times$.
- We have a "linear distribution": $\kappa:!\mathcal{P}_{f}\left({ }_{-}\right) \rightarrow \mathcal{P}_{f}\left(!_{-}\right)$
- $!\mathbf{A}=\left(\mathbb{N} \rightharpoonup|A|, \mathbb{N} \times M_{A}, \kappa_{M_{A}} \circ!\mathrm{m}_{\mathbf{A}}\right)$
- again we have:
- $\operatorname{der}_{\mathbf{A}} \in \mathbb{G}(!\mathbf{A}, \mathbf{A})$
- $\operatorname{dig}_{A} \in \mathbb{G}(!\mathbf{A},!!\mathbf{A})$
- contr $_{A} \in \mathbb{G}(!\mathbf{A},!\mathbf{A} \otimes!\mathbf{A})$
- $w_{A} \in \mathbb{G}(!\mathbf{A}, I)$

What is reindexation then ?

Exponentials

Reindexation by conjugation

- Let $f \in \mathbb{C}(\mathbf{A}, \mathbf{A})$ an iso; f acts on $\mathbb{C}(\mathbf{A}, \mathbf{A})$ by conjugation

- $F \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ a group (of total maps)

$$
\begin{aligned}
& \bar{F} \simeq \text { closure of } F \text { by restriction and directed lub } \\
& \bar{F} \subseteq_{S} \mathbb{C}(\mathrm{~A}, \mathrm{~A})
\end{aligned}
$$

- $f \in \bar{F}$ defines a partial action on $\mathbb{G}(I, \mathbf{A})$

$$
f \cdot \sigma \text { is defined } \longleftrightarrow d(\sigma) \subseteq d(f)
$$

- we can quotient by F :

$$
\sigma \sim \tau \Longleftrightarrow \bar{F} \cdot \sigma=\bar{F} \cdot \tau
$$

Exponentials

Reindexation by conjugation

- Let $f \in \mathbb{C}(\mathbf{A}, \mathbf{A})$ an iso; f acts on $\mathbb{C}(\mathbf{A}, \mathbf{A})$ by conjugation

$$
f:\left\{\begin{array}{clc}
\mathbb{G}(I, \mathbf{A}) \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A}) & \rightarrow & \mathbb{G}(I, \mathbf{A}) \\
\sigma & \rightarrow & f \cdot \sigma=f \circ \sigma \circ f^{-1}
\end{array}\right.
$$

- $F \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ a group (of total maps)

$$
\begin{aligned}
& \bar{F} \simeq \text { closure of } F \text { by restriction and directed lub } \\
& \bar{F} \subseteq_{s} \mathbb{C}(\mathrm{~A}, \mathrm{~A})
\end{aligned}
$$

- $f \in \bar{F}$ defines a partial action on $\mathbb{G}(I, \mathbf{A})$

$$
f \cdot \sigma \text { is defined } \longleftrightarrow d^{\prime}(\sigma) \subseteq d(f)
$$

- we can quotient by F :

Exponentials

Reindexation by conjugation

- Let $f \in \mathbb{C}(\mathbf{A}, \mathbf{A})$ an iso; f acts on $\mathbb{C}(\mathbf{A}, \mathbf{A})$ by conjugation

$$
f:\left\{\begin{array}{clc}
\mathbb{G}(I, \mathbf{A}) \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A}) & \rightarrow & \mathbb{G}(I, \mathbf{A}) \\
\sigma & \rightarrow & f \cdot \sigma=f \circ \sigma \circ f^{-1}
\end{array}\right.
$$

- $F \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ a group (of total maps)

$$
\begin{aligned}
& \bar{F} \simeq \text { closure of } F \text { by restriction and directed lub } \\
& \bar{F} \subseteq_{s} \mathbb{C}(\mathbf{A}, \mathbf{A})
\end{aligned}
$$

- $f \in \bar{F}$ defines a partial action on $\mathbb{G}(I, A)$

$$
f \cdot \sigma \text { is defined } \Longleftrightarrow d(\sigma) \subseteq d(f)
$$

- we can quotient by F :

Exponentials

Reindexation by conjugation

- Let $f \in \mathbb{C}(\mathbf{A}, \mathbf{A})$ an iso; f acts on $\mathbb{C}(\mathbf{A}, \mathbf{A})$ by conjugation

$$
f:\left\{\begin{array}{ccc}
\mathbb{G}(I, \mathbf{A}) \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A}) & \rightarrow & \mathbb{G}(I, \mathbf{A}) \\
\sigma & \rightarrow & f \cdot \sigma=f \circ \sigma \circ f^{-1}
\end{array}\right.
$$

- $F \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ a group (of total maps)

$$
\begin{aligned}
& \bar{F} \simeq \text { closure of } F \text { by restriction and directed lub } \\
& \bar{F} \subseteq_{s} \mathbb{C}(\mathbf{A}, \mathbf{A})
\end{aligned}
$$

- $f \in \bar{F}$ defines a partial action on $\mathbb{G}(I, \mathbf{A})$

$$
f \cdot \sigma \text { is defined } \Longleftrightarrow d(\sigma) \subseteq d(f)
$$

- we can quotient by F :

Exponentials

Reindexation by conjugation

- Let $f \in \mathbb{C}(\mathbf{A}, \mathbf{A})$ an iso; f acts on $\mathbb{C}(\mathbf{A}, \mathbf{A})$ by conjugation

$$
f:\left\{\begin{array}{ccc}
\mathbb{G}(I, \mathbf{A}) \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A}) & \rightarrow & \mathbb{G}(I, \mathbf{A}) \\
\sigma & \rightarrow & f \cdot \sigma=f \circ \sigma \circ f^{-1}
\end{array}\right.
$$

- $F \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ a group (of total maps)

$$
\begin{aligned}
& \bar{F} \simeq \text { closure of } F \text { by restriction and directed lub } \\
& \bar{F} \subseteq_{s} \mathbb{C}(\mathbf{A}, \mathbf{A})
\end{aligned}
$$

- $f \in \bar{F}$ defines a partial action on $\mathbb{G}(I, \mathbf{A})$

$$
f \cdot \sigma \text { is defined } \Longleftrightarrow d(\sigma) \subseteq d(f)
$$

- we can quotient by F :

$$
\sigma \sim \tau \Longleftrightarrow \bar{F} \cdot \sigma=\bar{F} \cdot \tau
$$

Exponentials

Reindexation by conjugation

Let $F, H \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ be groups

- orbits define sets of morphisms:

$$
F:\left\{\begin{array}{ccc}
\mathbb{G}(I, \mathbf{A}) & \rightarrow & \operatorname{Sub}(\mathbb{G}(I, \mathbf{A})) \\
\sigma & \rightarrow & F \cdot \sigma
\end{array}\right.
$$

- F and H define a subset of $\mathbb{G}(I, \mathbf{A})$:

Exponentials

Reindexation by conjugation

Let $F, H \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ be groups

- orbits define sets of morphisms:

$$
F:\left\{\begin{array}{ccc}
\mathbb{G}(I, \mathbf{A}) & \rightarrow & \operatorname{Sub}(\mathbb{G}(I, \mathbf{A})) \\
\sigma & \rightarrow & F \cdot \sigma
\end{array}\right.
$$

- F and H define a subset of $\mathbb{G}(I, \mathbf{A})$:

$$
\{\sigma \in \mathbb{G}(1, \mathbf{A}) \mid F \cdot \sigma \subseteq H \cdot \sigma\}
$$

Exponentials

Category with uniformity

Define \mathbb{U} as the category with:

- objects $\left(\mathbf{A}, F_{A}, H_{A}\right)$:
- $A \in \mathbb{G}$
- $F_{A}, H_{A} \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ groups
- $F_{A} H_{A}=H_{A} F_{A}$ and $F_{A} \cap H_{A}=\left\{i d_{A}\right\}$
- morphisms $\sigma: l_{U} \rightarrow\left(\mathbf{A}, F_{A}, H_{A}\right)$
- $\sigma \in \mathbb{G}(I, \mathbf{A})$
- $F_{A} \cdot \sigma \subseteq H_{A} \cdot \sigma$
- compact closed structure:

Exponentials

Category with uniformity

Define \mathbb{U} as the category with:

- objects $\left(\mathbf{A}, F_{A}, H_{A}\right)$:
- $\mathbf{A} \in \mathbb{G}$
- $F_{A}, H_{A} \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ groups
- $F_{A} H_{A}=H_{A} F_{A}$ and $F_{A} \cap H_{A}=\left\{i d_{A}\right\}$
- morphisms $\sigma: I_{\mathbb{U}} \rightarrow\left(\mathbf{A}, F_{A}, H_{A}\right)$
- $\sigma \in \mathbb{G}(I, \mathbf{A})$
- $F_{A} \cdot \sigma \subseteq H_{A} \cdot \sigma$
- compact closed structure:

Exponentials

Category with uniformity

Define \mathbb{U} as the category with:

- objects $\left(\mathbf{A}, F_{A}, H_{A}\right)$:
- $\mathbf{A} \in \mathbb{G}$
- $F_{A}, H_{A} \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ groups
- $F_{A} H_{A}=H_{A} F_{A}$ and $F_{A} \cap H_{A}=\left\{i d_{\mathbf{A}}\right\}$
- morphisms $\sigma: I_{\mathbb{U}} \rightarrow\left(\mathbf{A}, F_{A}, H_{A}\right)$
- $\sigma \in \mathbb{G}(I, \mathbf{A})$
- $F_{A} \cdot \sigma \subseteq H_{A} \cdot \sigma$
- compact closed structure:
- $\left(\mathbf{A}, F_{A}, H_{A}\right) \otimes\left(\mathbf{B}, F_{A}, H_{A}\right)=\left(\mathbf{A} \otimes \mathbf{B}, F_{A} \times F_{B}, H_{A} \times H_{B}\right)$
- $\left(\mathbf{A}, F_{A}, H_{A}\right)^{\star}=\left(\mathbf{A}^{\star}, H_{A}, F_{A}\right)$

Exponentials

Category with uniformity

Interpretation of the! modality: ! $\left(\mathbf{A}, F_{A}, H_{A}\right)=\left(!\mathbf{A}, F_{!A}, H_{!A}\right)$

- $\left.F_{!A} \simeq F_{A}\right\} \mathfrak{S}(\mathbb{N})$
- $H_{!A} \simeq \prod_{n \in \mathbb{N}} H_{A}$

Can we quotient by $F_{A} H_{A}$?
Is it a congruence for composition ?

Exponentials

Category with uniformity

Interpretation of the! modality: ! $\left(\mathbf{A}, F_{A}, H_{A}\right)=\left(!\mathbf{A}, F_{!A}, H_{!A}\right)$

- $\left.F_{!A} \simeq F_{A}\right\} \mathfrak{S}(\mathbb{N})$
- $H_{!A} \simeq \prod_{n \in \mathbb{N}} H_{A}$

Can we quotient by $F_{A} H_{A}$?
Is it a congruence for composition ?

Composition and quotient

Let $\sigma:\left(\mathbf{A}, F_{A}, H_{A}\right) \rightarrow\left(\mathbf{B}, F_{B}, H_{B}\right)$ and $\tau: I_{\mathbb{U}} \rightarrow\left(\mathbf{A}, F_{A}, H_{A}\right)$
Let $G_{A}=F_{A} H_{A}$ and $G_{B}=F_{B} H_{B}$

- $h \in H_{A}$, we want $\sigma \circ(h \cdot \tau) \sim \sigma \circ \tau$;

- we only have by definition:

$$
\forall h \in H_{A}, \exists\left(f^{\prime}, h^{\prime}\right) \in F_{A} \times H_{B},\left(f^{\prime} h, h^{\prime}\right) \in \operatorname{Stab}_{G_{A} \times G_{B}}(\tau)
$$

Composition and quotient

Let $\sigma:\left(\mathbf{A}, F_{A}, H_{A}\right) \rightarrow\left(\mathbf{B}, F_{B}, H_{B}\right)$ and $\tau: I_{\mathbb{U}} \rightarrow\left(\mathbf{A}, F_{A}, H_{A}\right)$
Let $G_{A}=F_{A} H_{A}$ and $G_{B}=F_{B} H_{B}$

- $h \in H_{A}$, we want $\sigma \circ(h \cdot \tau) \sim \sigma \circ \tau$; i.e.:

$$
\forall h \in H_{A}, \exists g_{A}, g_{B} \in G_{A} \times G_{B}\left\{\begin{array}{l}
g_{A} h \cdot \tau=h \cdot \tau \\
\left(g_{A} h, g_{B}\right) \cdot \sigma=\sigma
\end{array}\right.
$$

so that $\sigma \circ(h \cdot \tau)=\left(\left(g_{A} h, g_{B}\right) \cdot \sigma\right) \circ\left(g_{A} h \cdot \tau\right)=g_{B}(\sigma \circ \tau) \sim \sigma \circ \tau$

- we only have by definition:

Composition and quotient

Let $\sigma:\left(\mathbf{A}, F_{A}, H_{A}\right) \rightarrow\left(\mathbf{B}, F_{B}, H_{B}\right)$ and $\tau: I_{\mathbb{U}} \rightarrow\left(\mathbf{A}, F_{A}, H_{A}\right)$
Let $G_{A}=F_{A} H_{A}$ and $G_{B}=F_{B} H_{B}$

- $h \in H_{A}$, we want $\sigma \circ(h \cdot \tau) \sim \sigma \circ \tau$; i.e.:

$$
\forall h \in H_{A}, \exists g_{A}, g_{B} \in G_{A} \times G_{B}\left\{\begin{array}{l}
g_{A} h \cdot \tau=h \cdot \tau \\
\left(g_{A} h, g_{B}\right) \cdot \sigma=\sigma
\end{array}\right.
$$

so that $\sigma \circ(h \cdot \tau)=\left(\left(g_{A} h, g_{B}\right) \cdot \sigma\right) \circ\left(g_{A} h \cdot \tau\right)=g_{B}(\sigma \circ \tau) \sim \sigma \circ \tau$

- we only have by definition:

$$
F_{A} \cdot \tau \subseteq H_{A} \cdot \tau \Longrightarrow \forall f \in F_{A}, \exists h^{\prime} \in H_{A}, h^{\prime} f \in \operatorname{Stab}_{G_{A}}(\tau)
$$

and:

$$
\begin{aligned}
& \left(H_{A} \times F_{B}\right) \cdot \sigma \subseteq\left(F_{A} \times H_{B}\right) \cdot \sigma \Longrightarrow \\
& \quad \forall h \in H_{A}, \exists\left(f^{\prime}, h^{\prime}\right) \in F_{A} \times H_{B},\left(f^{\prime} h, h^{\prime}\right) \in \operatorname{Stab}_{G_{A} \times G_{B}}(\tau)
\end{aligned}
$$

Composition and quotient

Uniformity and biorthogonality
Let $\sigma: I \rightarrow(\mathbf{A}, F, H)$ and $\tau: I \rightarrow\left(\mathbf{A}^{\star}, H, F\right)$:

- orthogonality relation: $\sigma \perp \tau$ iff. $\forall\left(f_{n}\right) \in F^{\mathbb{N}}, \forall\left(h_{n}\right) \in H^{\mathbb{N}}$

$$
\begin{aligned}
& \forall i \in \mathbb{N}\left\{\begin{array}{l}
h_{i} \ldots h_{0} f_{0} \in \operatorname{Stab}_{F H}(\sigma) \\
f_{i+1} \ldots f_{1} h_{0} \in \operatorname{Stab}_{F H}(\tau)
\end{array}\right. \\
& \text { or } \forall i \in \mathbb{N}\left\{\begin{array}{l}
h_{i+1} \ldots h_{1} f_{0} \in \operatorname{Stab}_{F H}(\sigma) \\
f_{i} \ldots f_{0} h_{0} \in \operatorname{Stab}_{\text {FH }}(\tau)
\end{array}\right.
\end{aligned}
$$

then $\left(h_{i}\right),\left(f_{i}\right)$ is stationnery in $i d_{\mathbf{A}}$

- $P_{A} \subseteq \mathbb{U}(I,(\mathbf{A}, F, H))$ such that $P_{A-\perp}^{-\perp}=P_{A}$
- $\mathcal{T}(\mathbb{U}) \equiv \sigma:\left(\mathbf{A}, F_{A}, H_{A}, P_{A}\right) \rightarrow\left(\mathbf{B}, F_{B}, H_{B}, P_{B}\right)$ $\forall \tau \in P_{A}, \sigma \circ \tau \in P_{B}$
- $\mathcal{T}(\mathbb{U}) / \sim$ is category *-autonomous and has a linear exponential

Composition and quotient

Uniformity and biorthogonality
Let $\sigma: I \rightarrow(\mathbf{A}, F, H)$ and $\tau: I \rightarrow\left(\mathbf{A}^{\star}, H, F\right)$:

- orthogonality relation: $\sigma \perp \tau$ iff. $\forall\left(f_{n}\right) \in F^{\mathbb{N}}, \forall\left(h_{n}\right) \in H^{\mathbb{N}}$

$$
\begin{aligned}
& \forall i \in \mathbb{N}\left\{\begin{array}{l}
h_{i} \ldots h_{0} f_{0} \in \operatorname{Stab}_{F H}(\sigma) \\
f_{i+1} \ldots f_{1} h_{0} \in \operatorname{Stab}_{F H}(\tau)
\end{array}\right. \\
& \text { or } \forall i \in \mathbb{N}\left\{\begin{array}{l}
h_{i+1} \ldots h_{1} f_{0} \in \operatorname{Stab}_{F H}(\sigma) \\
f_{i} \ldots f_{0} h_{0} \in \operatorname{Stab}_{\text {FH }}(\tau)
\end{array}\right.
\end{aligned}
$$

then $\left(h_{i}\right),\left(f_{i}\right)$ is stationnery in $i d_{\mathbf{A}}$

- $P_{A} \subseteq \mathbb{U}(I,(\mathbf{A}, F, H))$ such that $P_{A}^{\perp \perp}=P_{A}$

Composition and quotient

Uniformity and biorthogonality
Let $\sigma: I \rightarrow(\mathbf{A}, F, H)$ and $\tau: I \rightarrow\left(\mathbf{A}^{\star}, H, F\right)$:

- orthogonality relation: $\sigma \perp \tau$ iff. $\forall\left(f_{n}\right) \in F^{\mathbb{N}}, \forall\left(h_{n}\right) \in H^{\mathbb{N}}$

$$
\begin{aligned}
& \forall i \in \mathbb{N}\left\{\begin{array}{l}
h_{i} \ldots h_{0} f_{0} \in \operatorname{Stab}_{F H}(\sigma) \\
f_{i+1} \ldots f_{1} h_{0} \in \operatorname{Stab}_{F H}(\tau)
\end{array}\right. \\
& \text { or } \forall i \in \mathbb{N}\left\{\begin{array}{l}
h_{i+1} \ldots h_{1} f_{0} \in \operatorname{Stab}_{F H}(\sigma) \\
f_{i} \ldots f_{0} h_{0} \in \operatorname{Stab}_{F H}(\tau)
\end{array}\right.
\end{aligned}
$$

then $\left(h_{i}\right),\left(f_{i}\right)$ is stationnery in $i d_{\mathbf{A}}$

- $P_{A} \subseteq \mathbb{U}(I,(\mathbf{A}, F, H))$ such that $P_{A}^{\perp \perp}=P_{A}$
- $\mathcal{T}(\mathbb{U}) \equiv \sigma:\left(\mathbf{A}, F_{A}, H_{A}, P_{A}\right) \rightarrow\left(\mathbf{B}, F_{B}, H_{B}, P_{B}\right)$

$$
\forall \tau \in P_{A}, \sigma \circ \tau \in P_{B}
$$

- $\mathcal{T}(\mathbb{U}) / \sim$ is category $*$-autonomous and has a linear exponential

Composition and quotient

Uniformity and biorthogonality
Let $\sigma: I \rightarrow(\mathbf{A}, F, H)$ and $\tau: I \rightarrow\left(\mathbf{A}^{\star}, H, F\right)$:

- orthogonality relation: $\sigma \perp \tau$ iff. $\forall\left(f_{n}\right) \in F^{\mathbb{N}}, \forall\left(h_{n}\right) \in H^{\mathbb{N}}$

$$
\begin{aligned}
& \forall i \in \mathbb{N}\left\{\begin{array}{l}
h_{i} \ldots h_{0} f_{0} \in \operatorname{Stab}_{F H}(\sigma) \\
f_{i+1} \ldots f_{1} h_{0} \in \operatorname{Stab}_{F H}(\tau)
\end{array}\right. \\
& \text { or } \forall i \in \mathbb{N}\left\{\begin{array}{l}
h_{i+1} \ldots h_{1} f_{0} \in \operatorname{Stab}_{F H}(\sigma) \\
f_{i} \ldots f_{0} h_{0} \in \operatorname{Stab}_{F H}(\tau)
\end{array}\right.
\end{aligned}
$$

then $\left(h_{i}\right),\left(f_{i}\right)$ is stationnery in $i d_{\mathbf{A}}$

- $P_{A} \subseteq \mathbb{U}(I,(\mathbf{A}, F, H))$ such that $P_{A}^{\perp \perp}=P_{A}$
- $\mathcal{T}(\mathbb{U}) \equiv \sigma:\left(\mathbf{A}, F_{A}, H_{A}, P_{A}\right) \rightarrow\left(\mathbf{B}, F_{B}, H_{B}, P_{B}\right)$

$$
\forall \tau \in P_{A}, \sigma \circ \tau \in P_{B}
$$

- $\mathcal{T}(\mathbb{U}) / \sim$ is category $*$-autonomous and has a linear exponential comonad

