Geometry of interaction and uniformity

Etienne Duchesne

Laboratoire d'informatique fondamentale de Marseille

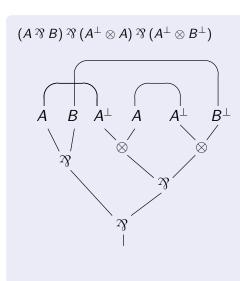
FMCS - june 2011

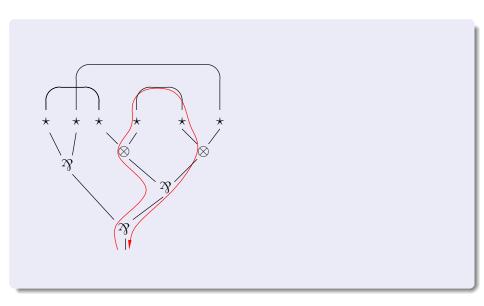
Outline

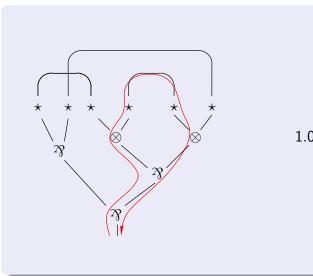
• Introduction: free compact closure

• Handwaving: how to get a linear exponential comonad

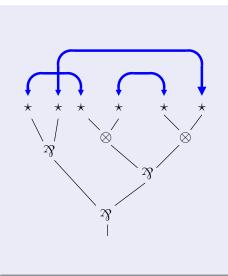
Serious stuff







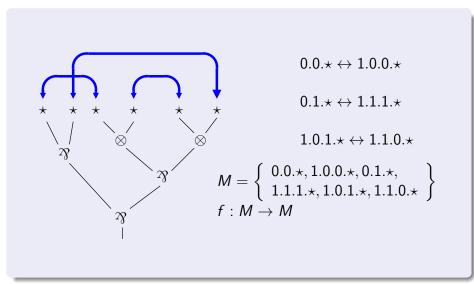
 $1.0.1.\star \rightarrow 1.1.0.\star$

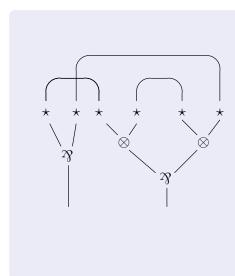


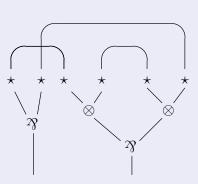
$$0.0.\star \leftrightarrow 1.0.0.\star$$

$$0.1.\star \leftrightarrow 1.1.1.\star$$

$$1.0.1.\star \leftrightarrow 1.1.0.\star$$

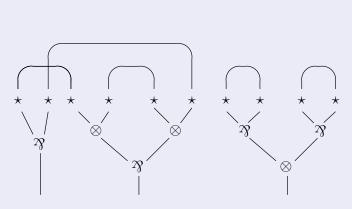






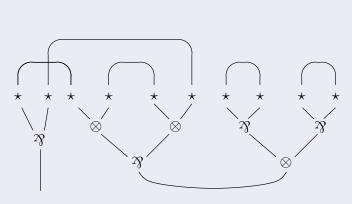
$$f: M_1 \uplus M_2 \to M_1 \uplus M_2$$

$$\begin{aligned} & \textit{M}_1 = \{0.\star, 1.\star\} \\ & \textit{M}_2 = \{0.0.\star, 0.1.\star, 1.0.\star, 1.1.\star\} \end{aligned}$$



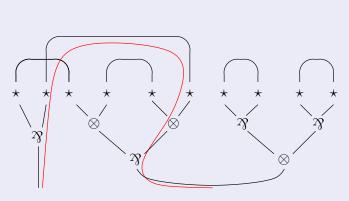
 $f: M_1 \uplus M_2 \to M_1 \uplus M_2$

 $g: M_2 \rightarrow M_2$



 $f: M_1 \uplus M_2 \to M_1 \uplus M_2$

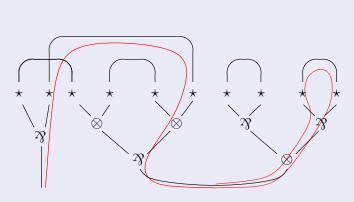
 $g: M_2 \rightarrow M_2$



 $f: M_1 \uplus M_2 \rightarrow M_1 \uplus M_2$

 $g: M_2 \rightarrow M_2$

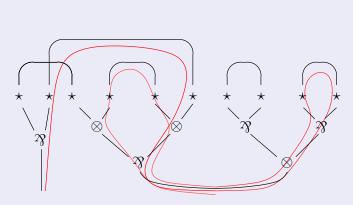
 $f(1.\star) = 1.1.\star$



 $f: M_1 \uplus M_2 \to M_1 \uplus M_2$

 $g:M_2\to M_2$

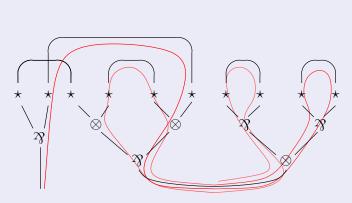
 $gf(1.\star) = 1.0.\star$



 $f: M_1 \uplus M_2 \to M_1 \uplus M_2$

 $g:M_2\to M_2$

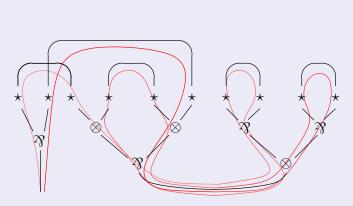
 $fgf(1.\star) = 0.0.\star$



 $f: M_1 \uplus M_2 \to M_1 \uplus M_2$

 $g:M_2\to M_2$

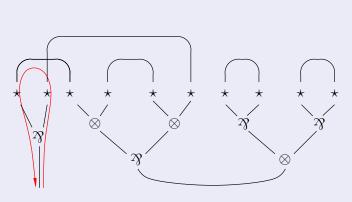
 $gfgf(1.\star) = 0.0.\star$



 $f: M_1 \uplus M_2 \to M_1 \uplus M_2$

 $g:M_2\to M_2$

 $fgfgf(1.\star) = 0.\star$



 $f: M_1 \uplus M_2 \to M_1 \uplus M_2$

 $g:M_2\to M_2$

 $0.\star\leftrightarrow1.\star$

Trace operator

Categorical operator for fixed point, iterator, feedback...

• In a symmetric monoidal category (\mathbb{C}, \otimes, I) :

$$f: A \otimes U \rightarrow B \otimes U \quad \leadsto \quad tr_{A,B}^{U}(f): A \rightarrow B$$

satisfying some conditions (naturality, dinaturality...)

• In partial injections ($\mathbf{PInj}, \uplus, \emptyset$):

$$f: A \uplus U \to B \uplus U \quad \leadsto \quad tr_{A,B}^{U}(f) = \bigsqcup_{n \geq 0} \pi f(\rho f)^{n} U$$

where

- $\iota: A \to A \uplus U$
- \blacksquare $\pi: B \uplus U \rightarrow B$

Trace operator

Categorical operator for fixed point, iterator, feedback...

• In a symmetric monoidal category (\mathbb{C}, \otimes, I) :

$$f: A \otimes U \rightarrow B \otimes U \quad \leadsto \quad tr_{A,B}^{U}(f): A \rightarrow B$$

satisfying some conditions (naturality, dinaturality...)

• In partial injections ($\mathbf{PInj}, \uplus, \emptyset$):

$$f: A \uplus U \to B \uplus U \quad \leadsto \quad tr_{A,B}^{U}(f) = \bigsqcup_{n \geq 0} \pi f(\rho f)^{n} \iota$$

where:

- $\iota: A \to A \uplus U$
- \blacksquare $\pi: B \uplus U \rightarrow B$
- $\rho = \emptyset \uplus id_U : B \uplus U \rightarrow A \uplus U$

Free compact closure

With a TSMC (\mathbb{C} , \otimes , I, tr), **Int** construction of Joyal *et al.*:

- ullet objects: (A^+,A^-) where A^+,A^- are $\mathbb C$ -objects
- morphisms:

$$Int(\mathbb{C})((A^+, A^-), (B^+, B^-)) = \mathbb{C}(A^+ \otimes B^-, A^- \otimes B^+)$$

• composition: $f: (A^+, A^-) \to (B^+, B^-)$ and $g: (B^+, B^-) \to (C^+, C^-)$

$$g \circ f = tr_{A^+ \otimes C^-, C^+ \otimes A^-}^{B^+ \otimes B^-} (\sigma(f \otimes g))$$

 σ some canonical symmetry

$$I_{Int(\mathbb{C})} = (I, I)$$

 $(A^+, A^-) \otimes (B^+, B^-) = (A^+ \otimes B^+, A^- \otimes B^-)$
 $(A^+, A^-)^* = (A^-, A^+)$

Free compact closure

With a TSMC $(\mathbb{C}, \otimes, I, tr)$, **Int** construction of Joyal *et al.*:

- objects: (A^+, A^-) where A^+, A^- are \mathbb{C} -objects
- morphisms:

$$\mathbf{Int}(\mathbb{C})((A^+,A^-),(B^+,B^-))=\mathbb{C}(A^+\otimes B^-,A^-\otimes B^+)$$

• composition:
$$f:(A^+,A^-)\to (B^+,B^-)$$
 and $g:(B^+,B^-)\to (C^+,C^-)$
$$g\circ f=tr_{A^+\otimes C^-,C^+\otimes A^-}^{B^+\otimes B^-}(\sigma(f\otimes g))$$

 σ some canonical symmetry

$$I_{Int(\mathbb{C})} = (I, I)$$

 $(A^+, A^-) \otimes (B^+, B^-) = (A^+ \otimes B^+, A^- \otimes B^-)$
 $(A^+, A^-)^* = (A^-, A^+)$

Free compact closure

With a TSMC $(\mathbb{C}, \otimes, I, tr)$, **Int** construction of Joyal *et al.*:

- objects: (A^+, A^-) where A^+, A^- are \mathbb{C} -objects
- morphisms:

$$\mathbf{Int}(\mathbb{C})((A^+,A^-),(B^+,B^-))=\mathbb{C}(A^+\otimes B^-,A^-\otimes B^+)$$

• composition: $f: (A^+, A^-) \to (B^+, B^-)$ and $g: (B^+, B^-) \to (C^+, C^-)$

$$g \circ f = tr_{A^{+} \otimes C^{-}, C^{+} \otimes A^{-}}^{B^{+} \otimes B^{-}} (\sigma(f \otimes g))$$

 σ some canonical symmetry

$$I_{Int(\mathbb{C})} = (I, I)$$

$$(A^+, A^-) \otimes (B^+, B^-) = (A^+ \otimes B^+, A^- \otimes B^-)$$

$$(A^+, A^-)^* = (A^-, A^+)$$

Free compact closure

With a TSMC $(\mathbb{C}, \otimes, I, tr)$, **Int** construction of Joyal *et al.*:

- objects: (A^+, A^-) where A^+, A^- are \mathbb{C} -objects
- morphisms:

$$\mathbf{Int}(\mathbb{C})((A^+,A^-),(B^+,B^-))=\mathbb{C}(A^+\otimes B^-,A^-\otimes B^+)$$

• composition: $f:(A^+,A^-) \rightarrow (B^+,B^-)$ and $g:(B^+,B^-) \rightarrow (C^+,C^-)$

$$g \circ f = tr_{A^+ \otimes C^-, C^+ \otimes A^-}^{B^+ \otimes B^-}(\sigma(f \otimes g))$$

 σ some canonical symmetry

$$I_{Int(\mathbb{C})} = (I, I)$$

 $(A^+, A^-) \otimes (B^+, B^-) = (A^+ \otimes B^+, A^- \otimes B^-)$
 $(A^+, A^-)^* = (A^-, A^+)$

Interpretation of MELL

In Int(PInj):

• self-dual objects: $\mathbf{A} = (A, A)$

$$f \in \mathbf{PInj}(A,B) \quad \leadsto \quad \mathcal{N}(f) = \sigma_{A,B}(f \uplus f^*) \in \mathbf{Int}(\mathbf{PInj})(\mathbf{A},\mathbf{B})$$

- compact closed: multiplicative linear logic
- exponentials: $!A = (\mathbb{N} \times A, \mathbb{N} \times A)$
 - $e: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ bijection

$$\mathcal{N}(e \times id_A) : !\mathbf{A} \rightarrow !!\mathbf{A}$$

 $b d: \mathbb{N} \to \{\star\}, \quad d(0) = \star$

$$\mathcal{N}(d \times id_A) : !\mathbf{A} \to \mathbf{A}$$

 $ightharpoonup c: \mathbb{N} \to \mathbb{N} \uplus \mathbb{N}$ bijection

$$\mathcal{N}(e \times id_A) : |\mathbf{A} \rightarrow |\mathbf{A} \otimes |\mathbf{A}|$$

$$\blacktriangleright \ \emptyset : !A \rightarrow \mathit{I}_{Int(\mathbf{PInj})}$$

Interpretation of MELL

In Int(PInj):

• self-dual objects: $\mathbf{A} = (A, A)$

$$f \in \mathbf{PInj}(A,B) \quad \leadsto \quad \mathcal{N}(f) = \sigma_{A,B}(f \uplus f^{\star}) \in \mathbf{Int}(\mathbf{PInj})(\mathbf{A},\mathbf{B})$$

- compact closed: multiplicative linear logic
- exponentials: $!\mathbf{A} = (\mathbb{N} \times A, \mathbb{N} \times A)$
 - $e: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ bijection

$$\mathcal{N}(e \times id_A) : |\mathbf{A} \rightarrow !|\mathbf{A}$$

 $b d: \mathbb{N} \to \{\star\}, \quad d(0) = \star$

$$\mathcal{N}(d \times id_A) : !\mathbf{A} \rightarrow \mathbf{A}$$

 $ightharpoonup c: \mathbb{N} \to \mathbb{N} \uplus \mathbb{N}$ bijection

$$\mathcal{N}(e \times id_A) : !\mathbf{A} \rightarrow !\mathbf{A} \otimes !\mathbf{A}$$

$$\blacktriangleright \ \emptyset : !A \rightarrow \mathit{I}_{Int(\mathbf{PInj})}$$

Interpretation of MELL

In Int(PInj):

• self-dual objects: $\mathbf{A} = (A, A)$

$$f \in \mathbf{PInj}(A,B) \quad \leadsto \quad \mathcal{N}(f) = \sigma_{A,B}(f \uplus f^*) \in \mathbf{Int}(\mathbf{PInj})(\mathbf{A},\mathbf{B})$$

- compact closed: multiplicative linear logic
- exponentials: $!\mathbf{A} = (\mathbb{N} \times A, \mathbb{N} \times A)$
 - $e: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ bijection

$$\mathcal{N}(e \times id_A) : !\mathbf{A} \rightarrow !!\mathbf{A}$$

 $b d: \mathbb{N} \to \{\star\}, \quad d(0) = \star$

$$\mathcal{N}(d \times id_A) : !\mathbf{A} \to \mathbf{A}$$

 $ightharpoonup c: \mathbb{N} \to \mathbb{N} \uplus \mathbb{N}$ bijection

$$\mathcal{N}(e \times id_A) : !\mathbf{A} \rightarrow !\mathbf{A} \otimes !\mathbf{A}$$

• \emptyset : !**A** \rightarrow $I_{Int(\mathbf{PInj})}$

Geometry of interaction:

- formula → leaves of the syntactic tree
- permutation of these leaves

Category G:

- objects **A**: $m_{\mathbf{A}}: |A| \to \mathcal{P}_f(M_A)$
 - ► |A|: positions (the "abstract trees")
 - $ightharpoonup M_A$: token (the "leaves")
- morphisms $\sigma = (p_{\sigma}, f_{\sigma}) \in \mathbb{G}(\mathbf{A}, \mathbf{B})$:

 - ▶ $f_{\sigma}: M_A \uplus M_B \to M_A \uplus M_A$ partial injection
 - f_{σ} preserves the positions in p_{σ} :

$$\forall (a,b) \in p_{\sigma}, \quad f_{\sigma}(\mathsf{m}_{\mathbf{A}}(a) \uplus \mathsf{m}_{\mathbf{B}}(b)) = \mathsf{m}_{\mathbf{A}}(a) \uplus \mathsf{m}_{\mathbf{B}}(b)$$

Geometry of interaction with additional structure:

- formula \sim abstract trees (i.e. points in **Rel**)
- abstract trees → set of leaves
- permutation of leaves preserving the abstract trees

Category G

- objects **A**: $m_{\mathbf{A}}: |A| \to \mathcal{P}_f(M_A)$
 - ► |A|: positions (the "abstract trees")
 - \blacktriangleright M_A : token (the "leaves")
- morphisms $\sigma = (p_{\sigma}, f_{\sigma}) \in \mathbb{G}(\mathbf{A}, \mathbf{B})$:

 - ▶ $f_{\sigma}: M_A \uplus M_B \to M_A \uplus M_A$ partial injection
 - f_{σ} preserves the positions in p_{σ} :

$$\forall (a,b) \in p_{\sigma}, \quad f_{\sigma}(\mathsf{m}_{\mathbf{A}}(a) \uplus \mathsf{m}_{\mathsf{B}}(b)) = \mathsf{m}_{\mathbf{A}}(a) \uplus \mathsf{m}_{\mathsf{B}}(b)$$

Geometry of interaction with additional structure:

- ullet formula \leadsto abstract trees (i.e. points in **Rel**)
- abstract trees → set of leaves
- permutation of leaves preserving the abstract trees

Category \mathbb{G} :

- objects **A**: $m_{\mathbf{A}}: |A| \to \mathcal{P}_f(M_A)$
 - ► |A|: positions (the "abstract trees")
 - ► M_A: token (the "leaves")
- morphisms $\sigma = (p_{\sigma}, f_{\sigma}) \in \mathbb{G}(\mathbf{A}, \mathbf{B})$:
 - \triangleright $p_{\sigma} \subseteq |A| \times |B|$
 - ▶ $f_{\sigma}: M_A \uplus M_B \to M_A \uplus M_A$ partial injection
 - f_{σ} preserves the positions in p_{σ} :

$$\forall (a,b) \in p_{\sigma}, \quad f_{\sigma}(\mathsf{m}_{\mathbf{A}}(a) \uplus \mathsf{m}_{\mathsf{B}}(b)) = \mathsf{m}_{\mathbf{A}}(a) \uplus \mathsf{m}_{\mathsf{B}}(b)$$

Geometry of interaction with additional structure:

- \bullet formula \leadsto abstract trees (i.e. points in Rel)
- abstract trees → set of leaves
- permutation of leaves preserving the abstract trees

Category \mathbb{G} :

- objects **A**: $m_{\mathbf{A}}: |A| \to \mathcal{P}_f(M_A)$
 - ► |A|: positions (the "abstract trees")
 - ► M_A: token (the "leaves")
- morphisms $\sigma = (p_{\sigma}, f_{\sigma}) \in \mathbb{G}(\mathbf{A}, \mathbf{B})$:
 - ▶ $p_{\sigma} \subseteq |A| \times |B|$
 - $f_{\sigma}: M_A \uplus M_B \to M_A \uplus M_A$ partial injection
 - f_{σ} preserves the positions in p_{σ} :

$$\forall (a,b) \in p_{\sigma}, \quad f_{\sigma}(\mathsf{m}_{\mathsf{A}}(a) \uplus \mathsf{m}_{\mathsf{B}}(b)) = \mathsf{m}_{\mathsf{A}}(a) \uplus \mathsf{m}_{\mathsf{B}}(b)$$

Composition in \mathbb{G} : $\sigma \in \mathbb{G}(\mathbf{A}, \mathbf{B})$, $\tau \in \mathbb{G}(\mathbf{B}, \mathbf{C})$

• on positions: relational composition

$$p_{\tau \circ \sigma} = p_{\tau} \circ p_{\sigma}$$
 in **Rel**

on token: usual Gol compostion (with the trace)

$$f_{\tau \circ \sigma} = tr(f_{\sigma} \uplus f_{\tau}) \quad \text{in } \mathbf{Int}(\mathbf{PInj})$$

G is compact closed, and

- $\bullet \ \ I = (\{\star\}, \emptyset, \star \mapsto \emptyset)$
- $0 = (\emptyset, \emptyset, \emptyset)$

Composition in \mathbb{G} : $\sigma \in \mathbb{G}(\mathbf{A}, \mathbf{B})$, $\tau \in \mathbb{G}(\mathbf{B}, \mathbf{C})$

• on positions: relational composition

$$p_{\tau \circ \sigma} = p_{\tau} \circ p_{\sigma}$$
 in **Rel**

• on token: usual Gol compostion (with the trace)

$$f_{\tau \circ \sigma} = tr(f_{\sigma} \uplus f_{\tau}) \quad \text{in } \mathbf{Int}(\mathbf{PInj})$$

 $\ensuremath{\mathbb{G}}$ is compact closed, and:

- $\bullet \ I = (\{\star\}, \emptyset, \star \mapsto \emptyset)$
- $0 = (\emptyset, \emptyset, \emptyset)$

$!A \in \mathbb{G}$:

• positions: finite subtrees of an infinite branching tree

$$|!A| = \{ \alpha : \mathbb{N} \rightharpoonup |A| \mid \#d(\alpha) < \infty \}$$

- token: $M_{!A} = \mathbb{N} \times M_A$ as usual
- $m_{!A}(\alpha) = \bigcup_{n \in d(\alpha)} \{n\} \times m_{A}(\alpha(n))$

- ullet positions are ordered by "subtree relation" ($\alpha \sqsubseteq \alpha'$: restriction order)
- still the reindexations to define...

$!A \in \mathbb{G}$:

• positions: finite subtrees of an infinite branching tree

$$|!A| = \{ \alpha : \mathbb{N} \rightharpoonup |A| \mid \#d(\alpha) < \infty \}$$

- token: $M_{!A} = \mathbb{N} \times M_A$ as usual
- $m_{!A}(\alpha) = \bigcup_{n \in d(\alpha)} \{n\} \times m_{A}(\alpha(n))$

- ullet positions are ordered by "subtree relation" ($\alpha \sqsubseteq \alpha'$: restriction order)
- still the reindexations to define...

$!A \in \mathbb{G}$:

• positions: finite subtrees of an infinite branching tree

$$|!A| = \{ \alpha : \mathbb{N} \rightharpoonup |A| \mid \#d(\alpha) < \infty \}$$

- token: $M_{!A} = \mathbb{N} \times M_A$ as usual
- $m_{!A}(\alpha) = \bigcup_{n \in d(\alpha)} \{n\} \times m_{A}(\alpha(n))$

- ullet positions are ordered by "subtree relation" ($\alpha \sqsubseteq \alpha'$: restriction order)
- still the reindexations to define...

$!A \in \mathbb{G}$:

• positions: finite subtrees of an infinite branching tree

$$|!A| = \{ \alpha : \mathbb{N} \rightharpoonup |A| \mid \#d(\alpha) < \infty \}$$

- token: $M_{!A} = \mathbb{N} \times M_A$ as usual
- $m_{!A}(\alpha) = \bigcup_{n \in d(\alpha)} \{n\} \times m_{A}(\alpha(n))$

- ullet positions are ordered by "subtree relation" ($\alpha \sqsubseteq \alpha'$: restriction order)
- still the reindexations to define...

What positions really are

Tree-like structures with partial maps

A category of linear domains pdl:

- objects:
 - ► algebraic dcpo A
 - ▶ $x \in \mathcal{K}(A) \implies \downarrow \{x\}$ finite distributive lattice
 - ▶ $A' \subseteq_s A \iff \mathcal{K}(A') \subseteq \mathcal{K}(A)$ and $\mathcal{K}(A')$ closed by \vee, \wedge $(|A| = \mathcal{K}(A))$
- morphisms are partial, linear and c.m.: $f \in pdl(|A|, |B|)$
 - ightharpoonup f: |A|
 ightharpoonup |B|
 - \triangleright $d(f) \subseteq_s |A|$
 - $a \uparrow b \implies f(a \lor b) = f(a) \lor f(b), \ f(a \land b) = f(a) \land f(b)$
- partial cartesian: $|A \times B| = |A| \times |B|$
- monoidal closed: e.g. N flat

$$|\mathbb{N} \rightharpoonup A| = \{ \alpha : \mathbb{N} \rightharpoonup |A| \mid \#d(\alpha) < \infty \}$$

What positions really are

Tree-like structures with partial maps

A category of linear domains pdl:

- objects:
 - ▶ algebraic dcpo A
 - ▶ $x \in \mathcal{K}(A) \implies \downarrow \{x\}$ finite distributive lattice
 - ▶ $A' \subseteq_s A \iff \mathcal{K}(A') \subseteq \mathcal{K}(A)$ and $\mathcal{K}(A')$ closed by \vee, \wedge $(|A| = \mathcal{K}(A))$
- morphisms are partial, linear and c.m.: $f \in pdl(|A|, |B|)$
 - ▶ *f* : |*A*| → |*B*|
 - $ightharpoonup d(f) \subseteq_s |A|$
 - $a \uparrow b \implies f(a \lor b) = f(a) \lor f(b), \ f(a \land b) = f(a) \land f(b)$
- partial cartesian: $|A \times B| = |A| \times |B|$
- monoidal closed: e.g. N flat

$$|\mathbb{N} \rightharpoonup A| = \{ \alpha : \mathbb{N} \rightharpoonup |A| \mid \#d(\alpha) < \infty \}$$

What positions really are

Tree-like structures with partial maps

A category of linear domains pdl:

- objects:
 - ► algebraic dcpo A
 - ▶ $x \in \mathcal{K}(A) \implies \downarrow \{x\}$ finite distributive lattice
 - ▶ $A' \subseteq_s A \iff \mathcal{K}(A') \subseteq \mathcal{K}(A)$ and $\mathcal{K}(A')$ closed by \vee, \wedge $(|A| = \mathcal{K}(A))$
- morphisms are partial, linear and c.m.: $f \in pdl(|A|, |B|)$
 - ightharpoonup f: |A|
 ightharpoonup |B|
 - $ightharpoonup d(f) \subseteq_s |A|$
 - $a \uparrow b \implies f(a \lor b) = f(a) \lor f(b), \ f(a \land b) = f(a) \land f(b)$
- partial cartesian: $|A \times B| = |A| \times |B|$
- monoidal closed: e.g. N flat

$$|\mathbb{N} \rightharpoonup A| = \{ \alpha : \mathbb{N} \rightharpoonup |A| \mid \#d(\alpha) < \infty \}$$

Building relations of positions:

- pdl is partial cartesian with a class of subobjects:
 - ▶ objects in *Rel*(pdl): as in pdl
 - $\qquad \qquad Rel(pdl)(|A|,|B|) = \{R \subseteq_s |A| \times |B|\}$
- $(Rel(pdl), \times, \bot)$ is (dagger) compact closed
- $R \subseteq_s |A| \times |B| \equiv id_{|R} \in pdl(|A| \times |B|, |A| \times |B|)$

Building relations of positions:

- pdl is partial cartesian with a class of subobjects:
 - ▶ objects in *Rel*(pdl): as in pdl
 - $\qquad \qquad Rel(pdl)(|A|,|B|) = \{R \subseteq_s |A| \times |B|\}$
- ullet ($Rel(pdl), \times, \perp$) is (dagger) compact closed
- $R \subseteq_s |A| \times |B| \equiv id_{|R} \in pdl(|A| \times |B|, |A| \times |B|)$

Building relations of positions:

- pdl is partial cartesian with a class of subobjects:
 - objects in Rel(pdl): as in pdl
 - $Rel(pdl)(|A|,|B|) = \{R \subseteq_s |A| \times |B|\}$
- ullet ($Rel(pdl), \times, \perp$) is (dagger) compact closed
- $R \subseteq_s |A| \times |B| \equiv id_{|R} \in pdl(|A| \times |B|, |A| \times |B|)$

Which relation between token and positions?

Glueing of token to positions

- We know that:
 - ▶ PIni is a TSMC
 - ▶ Int(PInj) is compact closed
- Monoidal functor $\mathcal{P}_f: (\mathbf{PInj}, \uplus) \to (\mathsf{pdl}, \times)$

$$f \in \mathbf{PInj}(M_A, M_B) \rightsquigarrow \mathcal{P}_f(f) : \left\{ egin{array}{ll} \mathcal{P}_f(M_A) & \to & \mathcal{P}_f(M_B) \\ m \subseteq_{fin} d(f) & \to & f(m) \end{array}
ight.$$

$$\varphi_{M_A,M_B}: \mathcal{P}_f(M_A) \times \mathcal{P}_f(M_B) \to \mathcal{P}_f(M_A \uplus M_B)$$

• We can glue \mathbf{PInj} to pdl along \mathcal{P}_f

Which relation between token and positions?

Glueing of token to positions

- We know that:
 - ▶ PInj is a TSMC
 - ▶ Int(PInj) is compact closed
- Monoidal functor $\mathcal{P}_f: (\mathbf{PInj}, \uplus) \to (\mathsf{pdl}, \times)$

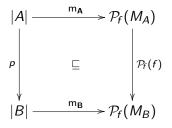
$$f \in \mathbf{PInj}(M_A, M_B) \rightsquigarrow \mathcal{P}_f(f) : \left\{ egin{array}{ll} \mathcal{P}_f(M_A) & o & \mathcal{P}_f(M_B) \\ m \subseteq_{fin} d(f) & o & f(m) \end{array}
ight.$$

$$\varphi_{M_A,M_B}: \mathcal{P}_f(M_A) \times \mathcal{P}_f(M_B) \to \mathcal{P}_f(M_A \uplus M_B)$$

ullet We can glue \mathbf{PInj} to pdl along $\mathcal{P}_{\!f}$

Let
$$\mathbb{C} = (Id_{\mathsf{pdI}} \mid \mathcal{P}_f)$$

- objects: $\mathbf{A} = (|A|, M_A, \mathsf{m}_{\mathbf{A}} : |A| \to \mathcal{P}_f(M_A))$ ($\mathsf{m}_{\mathbf{A}}$ total)
- morphisms: pairs *p*, *f* such that:

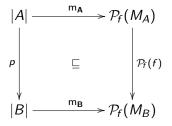


monoidal product:

$$\mathbf{A} \otimes \mathbf{B} = (|A| \times |B|, \ M_A \uplus M_B, \ \varphi_{M_A, M_B} \circ (\mathsf{m_A} \times \mathsf{m_B}))$$

Let
$$\mathbb{C} = (Id_{\mathsf{pdI}} \mid \mathcal{P}_f)$$

- objects: $\mathbf{A} = (|A|, M_A, \mathsf{m}_{\mathbf{A}} : |A| \to \mathcal{P}_f(M_A))$ ($\mathsf{m}_{\mathbf{A}}$ total)
- morphisms: pairs p, f such that:



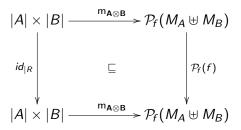
monoidal product:

$$\mathbf{A} \otimes \mathbf{B} = (|A| \times |B|, M_A \uplus M_B, \varphi_{M_A,M_B} \circ (\mathbf{m_A} \times \mathbf{m_B}))$$

Compact closure

Let
$$\mathbb{G} = (\mathit{Id}_{\mathsf{Rel}(\mathsf{pdl})} \mid \mathsf{Int}(\mathcal{P}_f))$$

- ullet objects: as in ${\mathbb C}$
- morphisms: pairs $R \subseteq_s |A| \times |B|$ and $f: M_A \uplus M_B \to M_A \uplus M_B$ such that

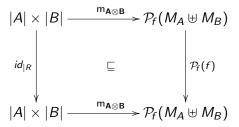


ullet $\Bbb G$ is compact closed and $\Bbb G(A,B)\subseteq\Bbb C(A\otimes B,A\otimes B)$

Compact closure

Let
$$\mathbb{G} = (\mathit{Id}_{\mathsf{Rel}(\mathsf{pdl})} \mid \mathsf{Int}(\mathcal{P}_f))$$

- ullet objects: as in ${\mathbb C}$
- morphisms: pairs $R \subseteq_s |A| \times |B|$ and $f: M_A \uplus M_B \to M_A \uplus M_B$ such that



ullet $\Bbb G$ is compact closed and $\Bbb G(A,B)\subseteq\Bbb C(A\otimes B,A\otimes B)$

- Interpretation of ! modality:
 - in pdl: !_ = N → _
 - in \mathbf{PInj} : !_ = $\mathbb{N} \times \mathbb{I}$
- We have a "linear distribution": $\kappa: !\mathcal{P}_f(_) \to \mathcal{P}_f(!_)$
- $|\mathbf{A} = (\mathbb{N} \rightharpoonup |A|, \mathbb{N} \times M_A, \kappa_{M_A} \circ |\mathbf{m_A})$
- again we have:
 - ▶ $der_A \in \mathbb{G}(!\mathbf{A}, \mathbf{A})$
 - $dig_A \in \mathbb{G}(!A, !!A)$
 - $ightharpoonup contr_A \in \mathbb{G}(!A, !A \otimes !A)$
 - $w_A \in \mathbb{G}(!\mathbf{A}, I)$

- Interpretation of ! modality:
 - ▶ in pdl: !_ = $\mathbb{N} \rightharpoonup$ _
 - in \mathbf{PInj} : !_ = $\mathbb{N} \times \mathbb{I}$
- We have a "linear distribution": $\kappa: !\mathcal{P}_f(_) \to \mathcal{P}_f(!_)$
- $|\mathbf{A} = (\mathbb{N} \rightharpoonup |A|, \mathbb{N} \times M_A, \kappa_{M_A} \circ |\mathbf{m_A})$
- again we have:
 - ▶ $der_A \in \mathbb{G}(!\mathbf{A}, \mathbf{A})$
 - $dig_A \in \mathbb{G}(!A, !!A)$
 - $ightharpoonup contr_A \in \mathbb{G}(!A, !A \otimes !A)$
 - $w_A \in \mathbb{G}(!\mathbf{A}, I)$

- Interpretation of ! modality:
 - ▶ in pdl: !_ = $\mathbb{N} \rightharpoonup$ _
 - in \mathbf{PInj} : !_ = $\mathbb{N} \times \mathbb{I}$
- We have a "linear distribution": $\kappa: !\mathcal{P}_f(_) \to \mathcal{P}_f(!_)$
- $|\mathbf{A} = (\mathbb{N} \rightharpoonup |A|, \mathbb{N} \times M_A, \kappa_{M_A} \circ |\mathbf{m_A})$
- again we have:
 - ▶ $der_A \in \mathbb{G}(!\mathbf{A}, \mathbf{A})$
 - $ightharpoonup dig_A \in \mathbb{G}(!A, !!A)$
 - $ightharpoonup contr_A \in \mathbb{G}(!A, !A \otimes !A)$
 - $w_A \in \mathbb{G}(!\mathbf{A}, I)$

- Interpretation of ! modality:
 - ▶ in pdl: !_ = $\mathbb{N} \rightharpoonup$ _
 - in \mathbf{PInj} : !_ = $\mathbb{N} \times \mathbb{I}$
- We have a "linear distribution": $\kappa: !\mathcal{P}_f(_) \to \mathcal{P}_f(!_)$
- $|\mathbf{A} = (\mathbb{N} \rightharpoonup |A|, \mathbb{N} \times M_A, \kappa_{M_A} \circ |\mathbf{m_A})$
- again we have:
 - $der_A \in \mathbb{G}(!\mathbf{A}, \mathbf{A})$
 - $b dig_A \in \mathbb{G}(!\mathbf{A}, !!\mathbf{A})$
 - $ightharpoonup contr_A \in \mathbb{G}(!\mathbf{A}, !\mathbf{A} \otimes !\mathbf{A})$
 - $w_A \in \mathbb{G}(!\mathbf{A}, I)$

- Interpretation of ! modality:
 - ▶ in pdl: !_ = $\mathbb{N} \rightharpoonup$ _
 - in \mathbf{PInj} : !_ = $\mathbb{N} \times \mathbb{I}$
- We have a "linear distribution": $\kappa: !\mathcal{P}_f(_) \to \mathcal{P}_f(!_)$
- $|\mathbf{A} = (\mathbb{N} \rightharpoonup |A|, \mathbb{N} \times M_A, \kappa_{M_A} \circ |\mathbf{m_A}|)$
- again we have:
 - $der_A \in \mathbb{G}(!\mathbf{A}, \mathbf{A})$
 - $b dig_A \in \mathbb{G}(!\mathbf{A}, !!\mathbf{A})$
 - $ightharpoonup contr_A \in \mathbb{G}(!\mathbf{A}, !\mathbf{A} \otimes !\mathbf{A})$
 - $w_A \in \mathbb{G}(!\mathbf{A}, I)$

Reindexation by conjugation

• Let $f \in \mathbb{C}(\mathbf{A}, \mathbf{A})$ an iso; f acts on $\mathbb{C}(\mathbf{A}, \mathbf{A})$ by conjugation

$$f: \left\{ \begin{array}{ccc} \mathbb{G}(I,\mathbf{A}) \subseteq \mathbb{C}(\mathbf{A},\mathbf{A}) & \to & \mathbb{G}(I,\mathbf{A}) \\ \sigma & \to & f \cdot \sigma = f \circ \sigma \circ f^{-1} \end{array} \right.$$

• $F \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ a group (of total maps)

 $\overline{F} \simeq \text{closure of } F \text{ by restriction and directed lub}$ $\overline{F} \subseteq_s \mathbb{C}(\mathbf{A},\mathbf{A})$

• $f \in \overline{F}$ defines a partial action on $\mathbb{G}(I, \mathbf{A})$

$$f \cdot \sigma$$
 is defined $\iff d(\sigma) \subseteq d(f)$

$$\sigma \sim \tau \iff \overline{F} \cdot \sigma = \overline{F} \cdot \tau$$

Reindexation by conjugation

• Let $f \in \mathbb{C}(\mathbf{A}, \mathbf{A})$ an iso; f acts on $\mathbb{C}(\mathbf{A}, \mathbf{A})$ by conjugation

$$f: \left\{ \begin{array}{ccc} \mathbb{G}(I,\mathbf{A}) \subseteq \mathbb{C}(\mathbf{A},\mathbf{A}) & \to & \mathbb{G}(I,\mathbf{A}) \\ \sigma & \to & f \cdot \sigma = f \circ \sigma \circ f^{-1} \end{array} \right.$$

• $F \subseteq \mathbb{C}(A, A)$ a group (of total maps)

 $\overline{F} \simeq \text{closure of } F \text{ by restriction and directed lub}$ $\overline{F} \subseteq_s \mathbb{C}(\mathbf{A},\mathbf{A})$

• $f \in \overline{F}$ defines a partial action on $\mathbb{G}(I, \mathbf{A})$

$$f \cdot \sigma$$
 is defined $\iff d(\sigma) \subseteq d(f)$

$$\sigma \sim \tau \iff \overline{F} \cdot \sigma = \overline{F} \cdot \tau$$

Reindexation by conjugation

• Let $f \in \mathbb{C}(\mathbf{A}, \mathbf{A})$ an iso; f acts on $\mathbb{C}(\mathbf{A}, \mathbf{A})$ by conjugation

$$f: \left\{ \begin{array}{ccc} \mathbb{G}(I,\mathbf{A}) \subseteq \mathbb{C}(\mathbf{A},\mathbf{A}) & \to & \mathbb{G}(I,\mathbf{A}) \\ \sigma & \to & f \cdot \sigma = f \circ \sigma \circ f^{-1} \end{array} \right.$$

• $F \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ a group (of total maps)

 $\overline{F} \simeq \text{ closure of } F \text{ by restriction and directed lub}$ $\overline{F} \subseteq_{s} \mathbb{C}(\mathbf{A},\mathbf{A})$

• $f \in \overline{F}$ defines a partial action on $\mathbb{G}(I, \mathbf{A})$

$$f \cdot \sigma$$
 is defined $\iff d(\sigma) \subseteq d(f)$

$$\sigma \sim \tau \iff \overline{F} \cdot \sigma = \overline{F} \cdot \tau$$

Reindexation by conjugation

• Let $f \in \mathbb{C}(\mathbf{A}, \mathbf{A})$ an iso; f acts on $\mathbb{C}(\mathbf{A}, \mathbf{A})$ by conjugation

$$f: \left\{ \begin{array}{ccc} \mathbb{G}(I,\mathbf{A}) \subseteq \mathbb{C}(\mathbf{A},\mathbf{A}) & \to & \mathbb{G}(I,\mathbf{A}) \\ \sigma & \to & f \cdot \sigma = f \circ \sigma \circ f^{-1} \end{array} \right.$$

• $F \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ a group (of total maps)

 $\overline{F}\simeq \text{ closure of } F$ by restriction and directed lub $\overline{F}\subseteq_{s}\mathbb{C}(\mathbf{A},\mathbf{A})$

• $f \in \overline{F}$ defines a partial action on $\mathbb{G}(I, \mathbf{A})$

$$f \cdot \sigma$$
 is defined $\iff d(\sigma) \subseteq d(f)$

$$\sigma \sim \tau \iff \overline{F} \cdot \sigma = \overline{F} \cdot \tau$$

Reindexation by conjugation

• Let $f \in \mathbb{C}(\mathbf{A}, \mathbf{A})$ an iso; f acts on $\mathbb{C}(\mathbf{A}, \mathbf{A})$ by conjugation

$$f: \left\{ \begin{array}{ccc} \mathbb{G}(I,\mathbf{A}) \subseteq \mathbb{C}(\mathbf{A},\mathbf{A}) & \to & \mathbb{G}(I,\mathbf{A}) \\ \sigma & \to & f \cdot \sigma = f \circ \sigma \circ f^{-1} \end{array} \right.$$

• $F \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ a group (of total maps)

 $\overline{F}\simeq \text{ closure of } F$ by restriction and directed lub $\overline{F}\subseteq_{s}\mathbb{C}(\mathbf{A},\mathbf{A})$

• $f \in \overline{F}$ defines a partial action on $\mathbb{G}(I, \mathbf{A})$

$$f \cdot \sigma$$
 is defined $\iff d(\sigma) \subseteq d(f)$

$$\sigma \sim \tau \iff \overline{F} \cdot \sigma = \overline{F} \cdot \tau$$

Reindexation by conjugation

Let $F, H \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ be groups

orbits define sets of morphisms:

$$F: \left\{ \begin{array}{ccc} \mathbb{G}(I,\mathbf{A}) & \to & Sub(\mathbb{G}(I,\mathbf{A})) \\ \sigma & \to & F \cdot \sigma \end{array} \right.$$

• F and H define a subset of $\mathbb{G}(I, \mathbf{A})$:

$$\{\,\sigma\in\mathbb{G}(1,\mathbf{A})\,|\,F\cdot\sigma\subseteq H\cdot\sigma\,\}$$

Reindexation by conjugation

Let $F, H \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ be groups

orbits define sets of morphisms:

$$F: \left\{ \begin{array}{ccc} \mathbb{G}(I,\mathbf{A}) & \to & Sub(\mathbb{G}(I,\mathbf{A})) \\ \sigma & \to & F \cdot \sigma \end{array} \right.$$

• F and H define a subset of $\mathbb{G}(I, \mathbf{A})$:

$$\{\,\sigma\in\mathbb{G}(1,\mathbf{A})\,|\,F\cdot\sigma\subseteq H\cdot\sigma\,\}$$

Category with uniformity

Define ${\mathbb U}$ as the category with:

- objects (**A**, *F*_A, *H*_A):
 - ightharpoonup $A\in\mathbb{G}$
 - ▶ $F_A, H_A \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ groups
 - $F_A H_A = H_A F_A \text{ and } F_A \cap H_A = \{id_A\}$
- morphisms $\sigma: I_{\mathbb{U}} \to (\mathbf{A}, F_A, H_A)$
 - $\sigma \in \mathbb{G}(I, \mathbf{A})$
 - $ightharpoonup F_A \cdot \sigma \subseteq H_A \cdot \sigma$
- compact closed structure:
 - $(A, F_A, H_A) \otimes (B, F_A, H_A) = (A \otimes B, F_A \times F_B, H_A \times H_B)$
 - $(A, F_A, H_A)^* = (A^*, H_A, F_A)$

Category with uniformity

Define $\ensuremath{\mathbb{U}}$ as the category with:

- objects (\mathbf{A}, F_A, H_A) :
 - ightharpoonup $A\in\mathbb{G}$
 - $F_A, H_A \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ groups
 - $F_A H_A = H_A F_A \text{ and } F_A \cap H_A = \{id_A\}$
- morphisms $\sigma: I_{\mathbb{U}} \to (\mathbf{A}, F_A, H_A)$
 - $\sigma \in \mathbb{G}(I, \mathbf{A})$
 - \blacktriangleright $F_A \cdot \sigma \subseteq H_A \cdot \sigma$
- compact closed structure:
 - $(\mathbf{A}, F_A, H_A) \otimes (\mathbf{B}, F_A, H_A) = (\mathbf{A} \otimes \mathbf{B}, F_A \times F_B, H_A \times H_B)$
 - $(A, F_A, H_A)^* = (A^*, H_A, F_A)$

Category with uniformity

Define ${\mathbb U}$ as the category with:

- objects (**A**, *F*_A, *H*_A):
 - ightharpoonup $A\in\mathbb{G}$
 - ▶ $F_A, H_A \subseteq \mathbb{C}(\mathbf{A}, \mathbf{A})$ groups
 - $F_A H_A = H_A F_A \text{ and } F_A \cap H_A = \{id_A\}$
- morphisms $\sigma: I_{\mathbb{U}} \to (\mathbf{A}, F_A, H_A)$
 - $\sigma \in \mathbb{G}(I, \mathbf{A})$
 - $F_A \cdot \sigma \subseteq H_A \cdot \sigma$
- compact closed structure:
 - $(\mathbf{A}, F_A, H_A) \otimes (\mathbf{B}, F_A, H_A) = (\mathbf{A} \otimes \mathbf{B}, F_A \times F_B, H_A \times H_B)$
 - $(A, F_A, H_A)^* = (A^*, H_A, F_A)$

Category with uniformity

Interpretation of the ! modality: $!(\mathbf{A}, F_A, H_A) = (!\mathbf{A}, F_{!A}, H_{!A})$

- $F_{!A} \simeq F_A \wr \mathfrak{S}(\mathbb{N})$
- $H_{!A} \simeq \prod_{n \in \mathbb{N}} H_A$

Can we quotient by F_AH_A ? Is it a congruence for composition?

Category with uniformity

Interpretation of the ! modality: $!(\mathbf{A}, F_A, H_A) = (!\mathbf{A}, F_{!A}, H_{!A})$

- $F_{!A} \simeq F_A \wr \mathfrak{S}(\mathbb{N})$
- $H_{!A} \simeq \prod_{n \in \mathbb{N}} H_A$

Can we quotient by F_AH_A ? Is it a congruence for composition?

Let
$$\sigma: (\mathbf{A}, F_A, H_A) \to (\mathbf{B}, F_B, H_B)$$
 and $\tau: I_{\mathbb{U}} \to (\mathbf{A}, F_A, H_A)$
Let $G_A = F_A H_A$ and $G_B = F_B H_B$

• $h \in H_A$, we want $\sigma \circ (h \cdot \tau) \sim \sigma \circ \tau$; i.e.:

$$\forall h \in H_A, \exists g_A, g_B \in G_A \times G_B \begin{cases} g_A h \cdot \tau = h \cdot \tau \\ (g_A h, g_B) \cdot \sigma = \sigma \end{cases}$$

so that
$$\sigma \circ (h \cdot \tau) = ((g_A h, g_B) \cdot \sigma) \circ (g_A h \cdot \tau) = g_B(\sigma \circ \tau) \sim \sigma \circ \tau$$

we only have by definition:

$$F_A \cdot \tau \subseteq H_A \cdot \tau \implies \forall f \in F_A, \ \exists h' \in H_A, \ h'f \in \mathsf{Stab}_{G_A}(\tau)$$

and:

$$(H_A \times F_B) \cdot \sigma \subseteq (F_A \times H_B) \cdot \sigma \implies$$

$$\forall h \in H_A, \ \exists (f', h') \in F_A \times H_B, \ (f'h, h') \in \mathsf{Stab}_{G_A \times G_B}(\tau)$$

Let
$$\sigma: (\mathbf{A}, F_A, H_A) \to (\mathbf{B}, F_B, H_B)$$
 and $\tau: I_{\mathbb{U}} \to (\mathbf{A}, F_A, H_A)$
Let $G_A = F_A H_A$ and $G_B = F_B H_B$

• $h \in H_A$, we want $\sigma \circ (h \cdot \tau) \sim \sigma \circ \tau$; i.e.:

$$\forall h \in H_A, \exists g_A, g_B \in G_A \times G_B \left\{ \begin{array}{l} g_A h \cdot \tau = h \cdot \tau \\ (g_A h, g_B) \cdot \sigma = \sigma \end{array} \right.$$

so that
$$\sigma \circ (h \cdot \tau) = ((g_A h, g_B) \cdot \sigma) \circ (g_A h \cdot \tau) = g_B(\sigma \circ \tau) \sim \sigma \circ \tau$$

• we only have by definition:

$$F_A \cdot \tau \subseteq H_A \cdot \tau \implies \forall f \in F_A, \ \exists h' \in H_A, \ h'f \in \mathsf{Stab}_{G_A}(\tau)$$

and:

$$(H_A \times F_B) \cdot \sigma \subseteq (F_A \times H_B) \cdot \sigma \implies \forall h \in H_A, \ \exists (f', h') \in F_A \times H_B, \ (f'h, h') \in \mathsf{Stab}_{G_A \times G_B}(\tau)$$

Let
$$\sigma: (\mathbf{A}, F_A, H_A) \to (\mathbf{B}, F_B, H_B)$$
 and $\tau: I_{\mathbb{U}} \to (\mathbf{A}, F_A, H_A)$
Let $G_A = F_A H_A$ and $G_B = F_B H_B$

• $h \in H_A$, we want $\sigma \circ (h \cdot \tau) \sim \sigma \circ \tau$; i.e.:

$$\forall h \in H_A, \exists g_A, g_B \in G_A \times G_B \left\{ \begin{array}{l} g_A h \cdot \tau = h \cdot \tau \\ (g_A h, g_B) \cdot \sigma = \sigma \end{array} \right.$$

so that
$$\sigma \circ (h \cdot \tau) = ((g_A h, g_B) \cdot \sigma) \circ (g_A h \cdot \tau) = g_B(\sigma \circ \tau) \sim \sigma \circ \tau$$

• we only have by definition:

$$F_A \cdot \tau \subseteq H_A \cdot \tau \implies \forall f \in F_A, \ \exists h' \in H_A, \ h'f \in \mathsf{Stab}_{G_A}(\tau)$$

and:

$$(H_A \times F_B) \cdot \sigma \subseteq (F_A \times H_B) \cdot \sigma \implies \\ \forall h \in H_A, \ \exists (f', h') \in F_A \times H_B, \ (f'h, h') \in \mathsf{Stab}_{G_A \times G_B}(\tau)$$

Uniformity and biorthogonality

Let
$$\sigma: I \to (\mathbf{A}, F, H)$$
 and $\tau: I \to (\mathbf{A}^*, H, F)$:

• orthogonality relation: $\sigma \bot \tau$ iff. $\forall (f_n) \in F^{\mathbb{N}}, \ \forall (h_n) \in H^{\mathbb{N}}$

$$orall i \in \mathbb{N} \; \left\{ egin{array}{l} h_i \ldots h_0 f_0 \in \mathsf{Stab}_{FH}(\sigma) \ f_{i+1} \ldots f_1 h_0 \in \mathsf{Stab}_{FH}(au) \end{array}
ight. \ \text{or} \; orall i \in \mathbb{N} \; \left\{ egin{array}{l} h_{i+1} \ldots h_1 f_0 \in \mathsf{Stab}_{FH}(\sigma) \ f_i \ldots f_0 h_0 \in \mathsf{Stab}_{FH}(au) \end{array}
ight.
ight.$$

then (h_i) , (f_i) is stationnery in $id_{\mathbf{A}}$

- $P_A \subseteq \mathbb{U}(I, (\mathbf{A}, F, H))$ such that $P_A^{\perp \perp} = P_A$
- $\mathcal{T}(\mathbb{U}) \equiv \sigma : (\mathbf{A}, F_A, H_A, P_A) \rightarrow (\mathbf{B}, F_B, H_B, P_B)$

$$\forall \tau \in P_A, \ \sigma \circ \tau \in P_B$$

• $\mathcal{T}(\mathbb{U})/\!\!\sim$ is category *-autonomous and has a linear exponential comonad

Uniformity and biorthogonality

Let
$$\sigma: I \to (\mathbf{A}, F, H)$$
 and $\tau: I \to (\mathbf{A}^*, H, F)$:

• orthogonality relation: $\sigma \perp \tau$ iff. $\forall (f_n) \in F^{\mathbb{N}}, \ \forall (h_n) \in H^{\mathbb{N}}$

$$\forall i \in \mathbb{N} \ \left\{ \begin{array}{l} h_i \ldots h_0 f_0 \in \mathsf{Stab}_{FH}(\sigma) \\ f_{i+1} \ldots f_1 h_0 \in \mathsf{Stab}_{FH}(\tau) \end{array} \right.$$
or $\forall i \in \mathbb{N} \ \left\{ \begin{array}{l} h_{i+1} \ldots h_1 f_0 \in \mathsf{Stab}_{FH}(\sigma) \\ f_i \ldots f_0 h_0 \in \mathsf{Stab}_{FH}(\tau) \end{array} \right.$

then (h_i) , (f_i) is stationnery in $id_{\mathbf{A}}$

- ullet $P_A\subseteq \mathbb{U}(I,(\mathbf{A},F,H))$ such that $P_A^{\perp\perp}=P_A$
- $\mathcal{T}(\mathbb{U}) \equiv \sigma : (\mathbf{A}, F_A, H_A, P_A) \to (\mathbf{B}, F_B, H_B, P_B)$ $\forall \tau \in P_A, \sigma \circ \tau \in P_B$
- $\mathcal{T}(\mathbb{U})/\!\!\sim$ is category *-autonomous and has a linear exponential comonad

Uniformity and biorthogonality

Let $\sigma: I \to (\mathbf{A}, F, H)$ and $\tau: I \to (\mathbf{A}^*, H, F)$:

• orthogonality relation: $\sigma \bot \tau$ iff. $\forall (f_n) \in F^{\mathbb{N}}, \ \forall (h_n) \in H^{\mathbb{N}}$

$$orall i \in \mathbb{N} \; \left\{ egin{array}{l} h_i \ldots h_0 f_0 \in \operatorname{Stab}_{FH}(\sigma) \ f_{i+1} \ldots f_1 h_0 \in \operatorname{Stab}_{FH}(au) \end{array}
ight.$$
 or $orall i \in \mathbb{N} \; \left\{ egin{array}{l} h_{i+1} \ldots h_1 f_0 \in \operatorname{Stab}_{FH}(\sigma) \ f_i \ldots f_0 h_0 \in \operatorname{Stab}_{FH}(au) \end{array}
ight.$

then (h_i) , (f_i) is stationnery in id_A

- $P_A\subseteq \mathbb{U}(I,(\mathbf{A},F,H))$ such that $P_A^{\perp\perp}=P_A$
- $\mathcal{T}(\mathbb{U}) \equiv \sigma : (\mathbf{A}, F_A, H_A, P_A) \to (\mathbf{B}, F_B, H_B, P_B)$ $\forall \tau \in P_A, \ \sigma \circ \tau \in P_B$
- $\mathcal{T}(\mathbb{U})/\!\!\sim$ is category *-autonomous and has a linear exponential comonad

Uniformity and biorthogonality

Let $\sigma: I \to (\mathbf{A}, F, H)$ and $\tau: I \to (\mathbf{A}^*, H, F)$:

• orthogonality relation: $\sigma \perp \tau$ iff. $\forall (f_n) \in F^{\mathbb{N}}, \ \forall (h_n) \in H^{\mathbb{N}}$

$$orall i \in \mathbb{N} \; \left\{ egin{array}{l} h_i \ldots h_0 f_0 \in \mathsf{Stab}_{FH}(\sigma) \ f_{i+1} \ldots f_1 h_0 \in \mathsf{Stab}_{FH}(au) \end{array}
ight. \ \text{or} \; orall i \in \mathbb{N} \; \left\{ egin{array}{l} h_{i+1} \ldots h_1 f_0 \in \mathsf{Stab}_{FH}(\sigma) \ f_i \ldots f_0 h_0 \in \mathsf{Stab}_{FH}(au) \end{array}
ight.$$

then (h_i) , (f_i) is stationnery in $id_{\mathbf{A}}$

- $P_A\subseteq \mathbb{U}(I,(\mathbf{A},F,H))$ such that $P_A^{\perp\perp}=P_A$
- $\mathcal{T}(\mathbb{U}) \equiv \sigma : (\mathbf{A}, F_A, H_A, P_A) \to (\mathbf{B}, F_B, H_B, P_B)$ $\forall \tau \in P_A, \ \sigma \circ \tau \in P_B$
- $\mathcal{T}(\mathbb{U})/\!\!\sim$ is category *-autonomous and has a linear exponential comonad