Exponentiability in Cat and Top via Double Categories

Susan Niefield

Union College Schenectady, NY

June 14, 2011

Motivation

SBN, 1978 (PhD Thesis) TFAE for $p: Y \rightarrow B$ in Top

- (1) p is exponentiable in Top/B
- (2) $(\bigsqcup_b \mathcal{O} Y_b) \times_B Y \rightarrow 2$ is continuous, where $\bigsqcup_b \mathcal{O} Y_b$ has the "fiberwise" Scott topology
- (3) For all $y \in V_b$ and $V_b \in \mathcal{O}Y_b$, there exists $H \subseteq \bigsqcup_b \mathcal{O}Y_b$ such that H is fiberwise Scott open, $V_b \in H_b$, and $y \in (\bigsqcup_b (\cap H_b))^\circ$

Street, 2001 (Powerful Functors) Using $\operatorname{Cat}/B \simeq \operatorname{Lax}_{\operatorname{N}}(B, \operatorname{\mathbb{C}at})$ $Y \to B$ is exp in Cat/B iff $B \to \operatorname{\mathbb{C}at}$ is pseudo

SBN, 2010 (CT10 paper) $\operatorname{Top}/B \simeq \operatorname{Lax}_N(B, \mathbb{T}\operatorname{op})$, B finite poset

Goal: $Y \rightarrow B$ is exp in Top/B iff $B \rightarrow \mathbb{T}\text{op}$ is pseudo and ?

The Fiberwise Scott Topology

Let $p: Y \to B$. Then $H \subseteq \bigsqcup_b \mathcal{O} Y_b$ is called *fiberwise Scott open* if each H_b is Scott open in $\mathcal{O} Y_b$ and for all $U \in \mathcal{O} Y$

$$\{b \in B \mid U_b \in H_b\} \in \mathcal{O}B \tag{*}$$

If B is a poset with the \downarrow -topology, then (\star) says

$$U_c \in H_c, b < c \Rightarrow U_b \in H_b$$

Recall For a complete lattice L, $H \subseteq L$ is Scott open if $\uparrow H = H$ and $\bigvee S \in H \Rightarrow \bigvee F \in H$, for some finite $F \subseteq S$.

L is *continuous* if $\forall y$, $y = \{x \in L \mid x << y\}$, where x << y if $y \le \bigvee S \Rightarrow x \le \bigvee F$, for some finite $F \subseteq S$.

Exponentiability

Suppose C has finite limits. An object Y is called *exponentiable* if $- \times Y : C \rightarrow C$ has a right adjoint (denoted by $()^Y$).

A morphism $Y \rightarrow B$ is exponentiable if it is exponentiable in C/B.

Y is exponentiable in Top iff OY is continuous (Day/Kelly 1970).

The exponential $Z^Y = Top(Y, Z)$, with the topology generated by

$$\langle H, W \rangle = \{ f \mid f^{-1}W \in H \}$$

where H is Scott open in $\mathcal{O}Y$ and W is open in Z. In particular, $2^Y \cong \mathcal{O}Y$, with the Scott topology.

Double Categories

A (pseudo) double category $\mathbb D$ is a (pseudo) category object in Cat

$$\mathbb{D}_1 \times_{\mathbb{D}_0} \mathbb{D}_1 \xrightarrow[\pi_1]{\frac{\pi_2}{-\mu}} \mathbb{D}_1 \xrightarrow[d_1]{\frac{d_0}{+\Delta}} \mathbb{D}_0$$

Objects: objects of \mathbb{D}_0

Horizontal morphisms: morphisms of \mathbb{D}_0 , $f: X \longrightarrow Y$

Vertical morphism: objects of \mathbb{D}_1 , $m: X_0 \longrightarrow X_1$

The Double Category Top

The other morphisms between spaces

Glueing Maps $m: X_0 \longrightarrow X_1$

$$m: \mathcal{O}X_0 \rightarrow \mathcal{O}X_1 \text{ s.t. } mX_0 = X_1, \ m(U_0 \cap V_0) = mU_0 \cap mV_0$$

Example For $f: X_0 \rightarrow X_1$ continuous, get $f^{-1}: X_1 \rightarrow X_0$, and its right adjoint $f_*: X_0 \rightarrow X_1$, $f_*U_0 = [X_1 \setminus f(X_0 \setminus U_0)]^\circ$

Morphisms of Glueing Maps "glueing squares"

$$\begin{array}{ccc} X_0 \stackrel{f_0}{\longrightarrow} Y_0 \\ m_V^{\dagger} & \supseteq & ^{\dagger}_{N} \\ X_1 \stackrel{f_0}{\longrightarrow} Y_1 \end{array} \qquad \text{i.e., } \frac{f_1^{-1} n \subseteq m f_0^{-1}}{n f_{0*} \subseteq f_{1*} m} \end{array}$$

Notation $\mathbb{T}\mathrm{op}_1$, the category of glueing maps

Normal Lax Functors

 $Lax_N(B, Top)$, for a poset B

Objects: vertical normal lax functors $X: B \longrightarrow \mathbb{T}op$, i.e.,

Morphisms: horizontal lax transformations $f: X \longrightarrow Y$, i.e.,

$$X_b \stackrel{f_b}{\longrightarrow} Y_b$$
, for all $b \in B$, s.t. $m_{bc} \stackrel{f_b}{\searrow} \stackrel{Y_b}{\searrow} \stackrel{f_{bc}}{\searrow} f_{oc}$ for all $b < c$
 $X_c \stackrel{f_b}{\longrightarrow} Y_c$

Example T s.t. $T_b = 1$ with $id_{\mathcal{O}1} : 1 \longrightarrow 1$ is a terminal object

Note $\operatorname{Lax}_{N}(1, \mathbb{T}op) \cong \operatorname{Top}$ and $\operatorname{Lax}_{N}(2, \mathbb{T}op) \cong \mathbb{T}op_{1}$

The Glueing Functor

The constant functor $\operatorname{Top} \xrightarrow{\Delta} \operatorname{Lax}_{\operatorname{N}}(B, \mathbb{T}\operatorname{op})$ has a left adjoint Γ

$$\Gamma X = \bigsqcup_b X_b$$
 with $U \subseteq \bigsqcup_b X_b$ open if $U_b \in \mathcal{O}X_b$ and $U_c \subseteq m_{bc}U_b$, where $m_{bc} \colon X_b \twoheadrightarrow X_c$, for $b < c$

When
$$B = 2$$
, write $X_0 +_m X_1$ or X_{01} for $\Gamma(X_0 \xrightarrow{m} X_1)$

Then $U \subseteq X_{01}$ is open if $U_0 \in \mathcal{O}X_0$, $U_1 \in \mathcal{O}X_1$, and $U_1 \subseteq mU_0$

Remarks

- 1. $\Gamma T = B$ with the Alexandroff topology
- 2. Γ induces a functor $\Gamma_B : \operatorname{Lax}_N(B, \mathbb{T}op) \to \operatorname{Top}/B$
- 3. Γ_B is an equivalence when B is finite (CT2010)
- 4. To prove:

Theorem $Y: B \to \mathbb{T}\mathrm{op}$ is exponentiable in $\mathrm{Lax}_{\mathrm{N}}(B, \mathbb{T}\mathrm{op}) \iff$

Y is pseudo and $Y_b riangledown Y_c$ is exponentiable in $\mathbb{T}\mathrm{op}_1, \forall b < c$

Preliminaries

Lemma 1 If A is a subposet of B, then the restriction functor

$$(\)_A\colon \mathrm{Lax}_{\mathrm{N}}(B,\mathbb{T}\mathrm{op}) \!\to\! \mathrm{Lax}_{\mathrm{N}}(A,\mathbb{T}\mathrm{op})$$

has a left adjoint L_A such that () $_A \circ L_A = id$.

Proof Take
$$(L_A X)_b = \begin{cases} X_b & b \in A \\ \emptyset & b \notin A \end{cases}$$

Lemma 2 $Y: 3 \rightarrow \mathbb{T}op$ is pseudo \iff

$$Y_0 \xrightarrow{\eta_{01}} Y_1 \xrightarrow{\eta_{12}} Y_2$$

$$Y_{01} \text{ p.o. } Y_{12}$$

Proof An exercise in lax colimits

Theorem $Y: B \to \mathbb{T}op$ is exponentiable in $\text{Lax}_N(B, \mathbb{T}op) \iff Y$ is pseudo and $n_{bc}: Y_b \to Y_c$ is exponentiable in $\mathbb{T}op_1, \forall b < c$ Proof (\Leftarrow) By Lemma 1, ()_b preserves products, and so the counit for n_{bc} is given by

$$Z_b^{Y_b} \times Y_b \xrightarrow{ev_b} Z_b$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Z_c^{Y_c} \times Y_c \xrightarrow[ev_c]{ev_c} Z_c$$

Thus, it suffices to show that $b\mapsto Z_b^{Y_b}$ is a normal lax functor

* since *Y* is pseudo

(⇒) Suppose $Y: B \to \mathbb{T}op$ is exponentiable in Lax_N($B, \mathbb{T}op$).

Then $Y_b \longrightarrow Y_c$ is exponentiable in $\mathbb{T}op_1$ since

$$X \times Y_{\{b,c\}} \to Z = (L_{\{b,c\}}Z)_{\{b,c\}}$$

$$L_{\{b,c\}}(X \times Y_{\{b,c\}}) \to L_{\{b,c\}}Z$$

$$L_{\{b,c\}}X \times Y \to L_{\{b,c\}}Z$$

$$L_{\{b,c\}}X \to (L_{\{b,c\}}Z)^{Y}$$

$$X \to ((L_{\{b,c\}}Z)^{Y})_{\{b,c\}}$$

Similarly, $Y_{\{b,c,d\}}$ is exp in $\text{Lax}_{\mathbb{N}}(\mathfrak{J},\mathbb{T}\text{op})$, for all b < c < d, and so

pb along $Y_{\{b,c,d\}}$ takes the pushout on the left to the one in the middle. Applying Γ , the diagram on the right is a pushout, and it follows that Y is pseudo, by Lemma 2.

Corollary If B is a finite T_0 space, then $Y \to B$ is exponentiable in $\operatorname{Top}/B \iff$ the normal lax functor $B \to \operatorname{Top}$ is a pseudo-functor and $Y \times_B 2 \to 2$ is exponentiable in $\operatorname{Top}/2$, for all $2 \to B$.

Exponentiability in $\mathbb{T}op_1 \simeq \text{Top}/2$

Given $n: Y_0 \longrightarrow Y_1$, consider $\tilde{n}: \mathcal{O}Y_0 \longrightarrow \mathcal{O}Y_1$, defined by

$$\tilde{n}H_0 = \bigcup \{H_1 \mid n^{-1}H_1 \subseteq H_0\}$$

where $\mathcal{O}Y_0$ and $\mathcal{O}Y_1$ are given the Scott topology.

Note $H_1 \subseteq \tilde{n}H_0$ iff $n^{-1}H_1 \subseteq H_0$, but $n^{-1}H_1$ need not be Scott open

Write $U_1 << V_1 \pmod{Y_0}$ if $\exists H_0 \subseteq \mathcal{O} Y_0$ Scott open such that

$$V_1 \in \tilde{n}H_0$$
 and $U_1 \subseteq n(\wedge H_0)$,

We say $n: Y_0 - Y_1$ is doubly continuous if $\mathcal{O}Y_0$ and $\mathcal{O}Y_1$ are continuous lattices and

$$V_1 = \bigcup \{U_1 \mid U_1 << V_1 \pmod{Y_0}\}$$

for all $V_1 \in \mathcal{O} Y_1$

Proposition Suppose $n: Y_0 \longrightarrow Y_1$. Then n is exponentiable in $\mathbb{T}op_1 \iff n$ is doubly continuous.

Proof Show:
$$\begin{array}{ccc} \mathcal{O}Y_0 \times Y_0 \rightarrow 2 \\ \tilde{n} \times n \downarrow & \supseteq & \downarrow id \iff m \text{ is doubly continuous} \\ \mathcal{O}Y_1 \times Y_1 \rightarrow 2 \end{array}$$

Corollary If Y is a T_1 -space and $p: Y \rightarrow 2$ is exponentiable in Top/2, then $Y = Y_0 + Y_1$. If, in addition, Y is a connected, then p is constant.

Exercise If $n: Y_0 \longrightarrow Y_1$ is exponentiable, then $n: \mathcal{O}Y_0 \longrightarrow \mathcal{O}Y_1$ is continuous in the Scott topology, but not conversely.

Alternate Proof of Theorem (\Leftarrow)

To show $Y: B \to \mathbb{T}\mathrm{op}$ is exponentiable in $\mathrm{Lax}_{\mathrm{N}}(B, \mathbb{T}\mathrm{op})$, it suffices to show that the exponential $(\Delta 2)^Y$ exists in $\mathrm{Lax}_{\mathrm{N}}(B, \mathbb{T}\mathrm{op})$. Since $Y_b \to Y_c$ is exponentiable,

$$\begin{array}{ccc}
\mathcal{O}Y_b \times Y_b \to 2 \\
\tilde{n}_{bc} \times n_{bc} & & \downarrow id \\
\mathcal{O}Y_c \times Y_c \to 2
\end{array}$$

Thus, it suffices to show \tilde{n} is a lax functor, i.e., $\tilde{n}_{cd}\tilde{n}_{bc}\supseteq \tilde{n}_{bd}$, for all b < c < d. But, $H_d \subseteq \tilde{n}_{bd}H_b \iff n_{bd}^{-1}H_d \subseteq H_b \iff_{pseudo} n_{bc}^{-1}n_{cd}^{-1}H_d \subseteq H_b \iff_{n_{cd} \text{ cont since exp}} n_{cd}^{-1}H_d \subseteq \tilde{n}_{bc}H_b \iff H_d \subseteq \tilde{n}_{cd}\tilde{n}_{bc}H_b$

Note If H_b and H_c are Scott open, $H_c \subseteq \tilde{n}_{bc}H_b$ iff $n_{bc}^{-1}H_c \subseteq H_b$, but $n_{cd}^{-1}H_d$ is not, in general, Scott open. However, it is by the Exercise on the previous slide.

