
The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

If syntax were a chicken and semantic an egg?

Flavien BREUVART

2011

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

introduction

D∞ is one of the first fully abstract model of the lambda calculus
first proof: Wadsworth in 1976 (see Manzonneto thesis for a new
and more general version)
It was the construction of successive fully abstract models
(η-expanced bohm-trees, H∗) in order to reach our model.

New
here: we are using opposite direction: construction a new system
from our model

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

introduction

D∞ is one of the first fully abstract model of the lambda calculus
first proof: Wadsworth in 1976 (see Manzonneto thesis for a new
and more general version)
It was the construction of successive fully abstract models
(η-expanced bohm-trees, H∗) in order to reach our model. New
here: we are using opposite direction: construction a new system
from our model

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

modelization

Définition: stability

if s → t then [[s]] = [[t]]

Définition: abstraction

t is head normalizable iff [[t]] is empty

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

modelization

Définition: stability

if s → t then [[s]] = [[t]]

Définition: abstraction

t is head normalizable iff [[t]] is empty

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

modelization

full abstraction

Définition: operational equivalence

s ≡o t iff for all context C (|.|), C (|s|) is head normalizable iff C (|t|)
is head normalizable

Définition: full abstraction

if s ≡o t then [[s]] = [[t]]

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

modelization

full abstraction

Définition: operational equivalence

s ≡o t iff for all context C (|.|), C (|s|) is head normalizable iff C (|t|)
is head normalizable

Définition: full abstraction

if s ≡o t then [[s]] = [[t]]

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

modelization

Définition: definability

for all α finitarry in your model, there is a terme t such that
[[t]] = α

Stronger in the case that you have the adequation lemma, and that
the application can distinguish both the observational equivalence
classes (context lemma) and the elements of the model.

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

modelization

Définition: definability

for all α finitarry in your model, there is a terme t such that
[[t]] = α

Stronger in the case that you have the adequation lemma, and that
the application can distinguish both the observational equivalence
classes (context lemma) and the elements of the model.

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

from the model...

Preorders: model of linear logic

Définition: lolipop

a :: α ≤e(ε b :: β iff a ≥e b and α ≤ε β

Définition: bang

finites multisets with the order: a ≤!ε b iff for all α ∈ a we can find
a β ∈ b such that α ≤ β

Définition: orthogonal

a ≤e⊥ b iff a ≥e b

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

from the model...

Preorders: model of linear logic

Définition: lolipop

a :: α ≤e(ε b :: β iff a ≥e b and α ≤ε β

Définition: bang

finites multisets with the order: a ≤!ε b iff for all α ∈ a we can find
a β ∈ b such that α ≤ β

Définition: orthogonal

a ≤e⊥ b iff a ≥e b

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

from the model...

Preorders: model of linear logic

Définition: lolipop

a :: α ≤e(ε b :: β iff a ≥e b and α ≤ε β

Définition: bang

finites multisets with the order: a ≤!ε b iff for all α ∈ a we can find
a β ∈ b such that α ≤ β

Définition: orthogonal

a ≤e⊥ b iff a ≥e b

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

from the model...

D∞

Définition: D∞

D∞ = ((!D∞)(ω))⊥

Définition: initial segment

A ⊆ Dinf such that a ≤D∞ b ∈ A⇒ a ∈ A

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

from the model...

D∞

Définition: D∞

D∞ = ((!D∞)(ω))⊥

Définition: initial segment

A ⊆ Dinf such that a ≤D∞ b ∈ A⇒ a ∈ A

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

from the model...

Its properties

Proposition : top

∗ = [] :: ∗ is the first element created by our process and is
becoming a top in D∞

Proposition : complete lattice

finite intersection and infinite union are allowed

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

... to the system

λ-calculus with tests

Définition: tests

operators:

(terms) M,N : λx .M | M N | τ̄(Q)

(test) Q,R : ε | τ(M)

rules:

(β) (λx .M)N → M[N/x]

(κ) τ τ̄(Q) → Q

(τ) τ(λx .M) → τ(M[Ω/x])

(τ̄) (τ̄(Q)) N → τ̄(Q)

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

... to the system

it’s interpretation

[[yi]]
ȳ = ↓{(ū;α)|ui = [α]!}

[[λx .M]]ȳ = ↓{(ū; v::α)|(v .ū;α) ∈ [[M]]x .ȳ}
[[M N]]ȳ = ↓{(ū;α)|∃β1 · · ·βn, (ū; [β1 · · ·βn]::α) ∈ [[M]]ȳ

∧
i

(ū;βi) ∈ [[N]]ȳ}

[[τ̄(Q)]]ȳ = ↓{(ū; ∗)|ū ∈ [[Q]]ȳ}
[[τ(M)]]ȳ = ↓{ū|(ū; ∗) ∈ [[M]]ȳ}

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

... to the system

operational equivalence

Proposition :

For every pairs of terms of the λ-calculus that are separated with a
context C (|.|) of the λ-calculus with tests, we can find a new
context without tests that can separate them.

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

... to the system

lambda-calculus with tests

Définition: product

we can add the following test operator:

(test)Q,R : Q|R

with the rules:

(ε|) Q|ε → Q

(ε′|) ε|Q → Q

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

... to the system

lambda-calculus with tests

Définition: sum

and its dual:
(test)Q,R : Q|R

(ε+) Q + ε → ε

(ε′+) ε+ Q → ε

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

... to the system

it’s interpretation

[[Q|R]]ȳ = [[Q]]ȳ ∩ [[R]]ȳ

[[Q + R]]ȳ = [[Q]]ȳ ∪ [[R]]ȳ

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

... to the system

operational equivalence

Proposition :

For every pairs of terms of the λ-calculus that are separated with a
context C (|.|) from the λ-calculus with tests, we can find a new
context without sum nor product that can separate them.

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

... to the system

operational equivalence

Theoreme :

the restriction to the λ-calculus of the operational equivalence is
identical when working with test or not. In particular the full
abstraction for the λ-calculus with test imply the full abstraction
for the usual one.

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

... to the system

definissability

Définition: α+ and α−

Given α = u1:: · · ·::ur::∗ with ui = [αi
1 · · ·α1

ki
] we can define:

α− = λx̄ r .τ̄ [(||i ||j(αi
j)

+(|xi |))]

α+(|.|) = τ((|.|) (Σj(α
1
j)−) · · · (Σj(α

r
j)−))

Proposition :

For all α ∈ D∞:

` α− :a⇔ a vD∞ α

x :u ` α+(|x |)⇔ u w!(D∞) [α]

The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

... to the system

conclusion

Other directions:

relational model and the λ-calculus with resources

coherent model and the λ-calculus

relation with extensional collapse

	modelization
	from the model...
	... to the system

