If syntax were a chicken and semantic an egg?

Flavien BREUVART

2011

introduction

D_{∞} is one of the first fully abstract model of the lambda calculus first proof: Wadsworth in 1976 (see Manzonneto thesis for a new and more general version)
It was the construction of successive fully abstract models (η-expanced bohm-trees, $\mathcal{H} *$) in order to reach our model.

introduction

D_{∞} is one of the first fully abstract model of the lambda calculus first proof: Wadsworth in 1976 (see Manzonneto thesis for a new and more general version)
It was the construction of successive fully abstract models (η-expanced bohm-trees, $\mathcal{H} *$) in order to reach our model. New here: we are using opposite direction: construction a new system from our model

The full abstraction of the Lambda-Calculus by D_{∞} via a deffinissable intermediate language
modelization

Définition: stability

if $s \rightarrow t$ then $\llbracket s \rrbracket=\llbracket t \rrbracket$

Définition: stability

if $s \rightarrow t$ then $\llbracket s \rrbracket=\llbracket t \rrbracket$

Définition: abstraction

t is head normalizable iff $\llbracket t \rrbracket$ is empty

full abstraction

Définition: operational equivalence

$s \equiv_{o} t$ iff for all context $C(\mid),. C(|s|)$ is head normalizable iff $C(|t|)$ is head normalizable

The full abstraction of the Lambda-Calculus by D_{∞} via a deffinissable intermediate language

full abstraction

Définition: operational equivalence

$s \equiv{ }_{o} t$ iff for all context $C(\mid),. C(|s|)$ is head normalizable iff $C(\mid t)$ is head normalizable

Définition: full abstraction

if $s \equiv{ }_{o} t$ then $\llbracket s \rrbracket=\llbracket t \rrbracket$

Définition: definability

for all α finitarry in your model, there is a terme t such that $\llbracket t \rrbracket=\alpha$

Définition: definability

for all α finitarry in your model, there is a terme t such that $\llbracket t \rrbracket=\alpha$

Stronger in the case that you have the adequation lemma, and that the application can distinguish both the observational equivalence classes (context lemma) and the elements of the model.

The full abstraction of the Lambda-Calculus by D_{∞} via a deffinissable intermediate language from the model.

Preorders: model of linear logic

Définition: lolipop

$$
a:: \alpha \leq_{e-\odot \epsilon} b:: \beta \text { iff } a \geq_{e} b \text { and } \alpha \leq_{\epsilon} \beta
$$

The full abstraction of the Lambda-Calculus by D_{∞} via a deffinissable intermediate language from the model..

Preorders: model of linear logic

Définition: lolipop

$$
a:: \alpha \leq_{e \rightarrow \epsilon} b:: \beta \text { iff } a \geq_{e} b \text { and } \alpha \leq_{\epsilon} \beta
$$

Définition: bang

finites multisets with the order: $a \leq_{!} b$ iff for all $\alpha \in a$ we can find a $\beta \in b$ such that $\alpha \leq \beta$

The full abstraction of the Lambda-Calculus by D_{∞} via a deffinissable intermediate language from the model..

Preorders: model of linear logic

Définition: lolipop

$$
a:: \alpha \leq_{e \rightarrow \epsilon} b:: \beta \text { iff } a \geq_{e} b \text { and } \alpha \leq_{\epsilon} \beta
$$

Définition: bang

finites multisets with the order: $a \leq!\epsilon b$ iff for all $\alpha \in a$ we can find a $\beta \in b$ such that $\alpha \leq \beta$

Définition: orthogonal

$$
a \leq_{e^{\perp}} b \text { iff } a \geq_{e} b
$$

The full abstraction of the Lambda-Calculus by D_{∞} via a deffinissable intermediate language from the model..
D_{∞}

Définition: D_{∞}

$D_{\infty}=\left(\left(!D_{\infty}\right)^{(\omega)}\right)^{\perp}$

The full abstraction of the Lambda-Calculus by D_{∞} via a deffinissable intermediate language from the model..
D_{∞}

Définition: D_{∞}

$D_{\infty}=\left(\left(!D_{\infty}\right)^{(\omega)}\right)^{\perp}$
Définition: initial segment
$A \subseteq D_{i} n f$ such that $a \leq D_{\infty} b \in A \Rightarrow a \in A$

Its properties

Proposition : top

$*=[]:: *$ is the first element created by our process and is becoming a top in D_{∞}

Proposition : complete lattice
finite intersection and infinite union are allowed

λ-calculus with tests

Définition: tests

operators:

$$
\begin{aligned}
\text { (terms) } & M, N: \\
\text { (test) } & Q, R:
\end{aligned}
$$

rules:
(β) $(\lambda x . M) N \rightarrow M[N / x]$
$(\kappa) \quad \tau \bar{\tau}(Q) \rightarrow Q$
$(\tau) \quad \tau(\lambda x . M) \rightarrow \tau(M[\Omega / x])$
$(\bar{\tau}) \quad(\bar{\tau}(Q)) N \rightarrow \bar{\tau}(Q)$

it's interpretation

$$
\begin{aligned}
\llbracket y i \rrbracket^{\bar{y}} & =\downarrow\left\{(\bar{u} ; \alpha) \mid u_{i}=[\alpha]!\right\} \\
\llbracket \lambda x \cdot M \rrbracket^{\bar{y}} & =\downarrow\left\{(\bar{u} ; v:: \alpha) \mid(v . \bar{u} ; \alpha) \in \llbracket M \rrbracket^{\times \bar{y}}\right\} \\
\llbracket M N \rrbracket^{\bar{y}} & =\downarrow\left\{(\bar{u} ; \alpha) \mid \exists \beta_{1} \cdots \beta_{n},\left(\bar{u} ;\left[\beta_{1} \cdots \beta_{n} \rrbracket:: \alpha\right) \in \llbracket M \rrbracket^{\bar{y}} \bigwedge_{i}\left(\bar{u} ; \beta_{i}\right) \in \mathbb{I}\right.\right. \\
\mathbb{\llbracket}(Q) \rrbracket^{\bar{y}} & =\downarrow\left\{(\bar{u} ; *) \mid \bar{u} \in \llbracket Q \rrbracket^{\bar{y}}\right\} \\
\mathbb{\tau}(M) \rrbracket^{\bar{y}} & =\downarrow\left\{\bar{u} \mid(\bar{u} ; *) \in \llbracket M \rrbracket^{\bar{y}}\right\}
\end{aligned}
$$

operational equivalence

Proposition :

For every pairs of terms of the λ-calculus that are separated with a context $C(\mid$.$) of the \lambda$-calculus with tests, we can find a new context without tests that can separate them.

lambda-calculus with tests

Définition: product

we can add the following test operator:

$$
(\text { test }) Q, R: Q \mid R
$$

with the rules:

$$
\begin{array}{lll}
\left(\epsilon_{\mid}\right) & Q \mid \epsilon & \rightarrow Q \\
\left(\epsilon_{\mid}^{\prime}\right) & \epsilon \mid Q & \rightarrow Q
\end{array}
$$

lambda-calculus with tests

Définition: sum

and its dual:

$$
\left.\begin{array}{c}
\text { (test) } Q, R: Q \mid R \\
\left(\epsilon_{+}\right) \quad Q+\epsilon \rightarrow \epsilon \\
\left(\epsilon_{+}^{\prime}\right) \quad \epsilon+Q
\end{array}\right)
$$

$$
\begin{aligned}
\llbracket Q \mid R \rrbracket^{\bar{y}} & =\llbracket Q \rrbracket^{\bar{y}} \cap \llbracket R \rrbracket^{\bar{y}} \\
\llbracket Q+R \rrbracket^{\bar{y}} & =\llbracket Q \rrbracket^{\bar{y}} \cup \llbracket R \rrbracket^{\bar{y}}
\end{aligned}
$$

operational equivalence

Proposition :

For every pairs of terms of the λ-calculus that are separated with a context $C(||$.$) from the \lambda$-calculus with tests, we can find a new context without sum nor product that can separate them.

operational equivalence

Theoreme:

the restriction to the λ-calculus of the operational equivalence is identical when working with test or not. In particular the full abstraction for the λ-calculus with test imply the full abstraction for the usual one.

definissability

Définition: α^{+}and α^{-}
Given $\alpha=u_{1}:: \cdots:: u_{r}:: *$ with $u_{i}=\left[\alpha_{1}^{i} \cdots \alpha_{k_{i}}^{1}\right]$ we can define:

$$
\begin{gathered}
\alpha^{-}=\lambda \bar{x}^{r} . \bar{\tau}\left[\left(\| \|_{i} \|_{j}\left(\alpha_{j}^{i}\right)^{+}\left(\left|x_{i}\right|\right)\right)\right] \\
\alpha^{+}(\cap \mid)=\tau\left((\mid \cdot)\left(\Sigma_{j}\left(\alpha_{j}^{1}\right)^{-}\right) \cdots\left(\Sigma_{j}\left(\alpha_{j}^{r}\right)^{-}\right)\right)
\end{gathered}
$$

Proposition :

For all $\alpha \in D_{\infty}$:

- $\vdash \alpha^{-}: a \Leftrightarrow a \sqsubseteq D_{\infty} \alpha$
- $x: u \vdash \alpha^{+}(x \mid) \Leftrightarrow u{\sqsupseteq!\left(D_{\infty}\right)}[\alpha]$

conclusion

Other directions:

- relational model and the λ-calculus with resources
- coherent model and the λ-calculus
- relation with extensional collapse

