If syntax were a chicken and semantic an egg?

Flavien BREUVART

2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

introduction

 D_{∞} is one of the first fully abstract model of the lambda calculus first proof: Wadsworth in 1976 (see Manzonneto thesis for a new and more general version) It was the construction of successive fully abstract models (η -expanced bohm-trees, $\mathcal{H}*$) in order to reach our model.

introduction

 D_{∞} is one of the first fully abstract model of the lambda calculus first proof: Wadsworth in 1976 (see Manzonneto thesis for a new and more general version)

It was the construction of successive fully abstract models $(\eta$ -expanced bohm-trees, $\mathcal{H}*)$ in order to reach our model. New here: we are using opposite direction: construction a new system from our model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Définition: stability

if $s \to t$ then $\llbracket s \rrbracket = \llbracket t \rrbracket$

Définition: stability

if $s \to t$ then $\llbracket s \rrbracket = \llbracket t \rrbracket$

Définition: abstraction

t is head normalizable iff $\llbracket t \rrbracket$ is empty

full abstraction

Définition: operational equivalence

 $s \equiv_o t$ iff for all context C([.]), C([s]) is head normalizable iff C([t]) is head normalizable

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

full abstraction

Définition: operational equivalence

 $s \equiv_o t$ iff for all context C(], C(]s) is head normalizable iff C(]t) is head normalizable

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Définition: full abstraction

if $s \equiv_o t$ then $\llbracket s \rrbracket = \llbracket t \rrbracket$

Définition: definability

for all α finitarry in your model, there is a terme t such that $[\![t]\!] = \alpha$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Définition: definability

for all α finitarry in your model, there is a terme t such that $[\![t]\!] = \alpha$

Stronger in the case that you have the adequation lemma, and that the application can distinguish both the observational equivalence classes (context lemma) and the elements of the model.

Preorders: model of linear logic

Définition: lolipop

 $a :: \alpha \leq_{e \multimap \epsilon} b :: \beta \text{ iff } a \geq_e b \text{ and } \alpha \leq_{\epsilon} \beta$

Preorders: model of linear logic

Définition: lolipop

 $a :: \alpha \leq_{e \multimap \epsilon} b :: \beta \text{ iff } a \geq_{e} b \text{ and } \alpha \leq_{\epsilon} \beta$

Définition: bang

finites multisets with the order: $a\leq_{!\epsilon}b$ iff for all $\alpha\in a$ we can find a $\beta\in b$ such that $\alpha\leq\beta$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Preorders: model of linear logic

Définition: lolipop

 $a :: \alpha \leq_{e \multimap \epsilon} b :: \beta \text{ iff } a \geq_{e} b \text{ and } \alpha \leq_{\epsilon} \beta$

Définition: bang

finites multisets with the order: $a\leq_{!\epsilon}b$ iff for all $\alpha\in a$ we can find a $\beta\in b$ such that $\alpha\leq\beta$

Définition: orthogonal

 $a \leq_{e^{\perp}} b$ iff $a \geq_{e} b$

from the model...

Définition: D_{∞}

$$D_{\infty} = ((!D_{\infty})^{(\omega)})^{\perp}$$

from the model...

$$D_{\infty}$$

Définition: D_{∞}

$$D_\infty = ((!D_\infty)^{(\omega)})^\perp$$

Définition: initial segment

 $A\subseteq D_inf$ such that $a\leq_{D_\infty}b\in A\Rightarrow a\in A$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Its properties

Proposition : top

* = [] :: * is the first element created by our process and is becoming a top in D_∞

Proposition : complete lattice

finite intersection and infinite union are allowed

... to the system

λ -calculus with tests

Définition: tests

operators:

rules:

$$\begin{array}{lll} (\beta) & (\lambda x.M)N & \to M[N/x] \\ (\kappa) & \tau \overline{\tau}(Q) & \to Q \\ (\tau) & \tau(\lambda x.M) & \to \tau(M[\Omega/x]) \\ (\overline{\tau}) & (\overline{\tau}(Q)) & N & \to \overline{\tau}(Q) \end{array}$$

... to the system

it's interpretation

 $\llbracket \tau(M) \rrbracket^{\bar{y}} = \bigcup \{ \bar{u} | (\bar{u}; *) \in \llbracket M \rrbracket^{\bar{y}} \}$

$$\begin{bmatrix} y_i \end{bmatrix}^{\bar{y}} = \downarrow \{(\bar{u}; \alpha) | u_i = [\alpha]! \}$$

$$\begin{bmatrix} \lambda \times .M \end{bmatrix}^{\bar{y}} = \downarrow \{(\bar{u}; v :: \alpha) | (v . \bar{u}; \alpha) \in \llbracket M \rrbracket^{\times .\bar{y}} \}$$

$$\llbracket M N \rrbracket^{\bar{y}} = \downarrow \{(\bar{u}; \alpha) | \exists \beta_1 \cdots \beta_n, (\bar{u}; [\beta_1 \cdots \beta_n] :: \alpha) \in \llbracket M \rrbracket^{\bar{y}} \bigwedge_i (\bar{u}; \beta_i) \in [\bar{\tau}(Q) \rrbracket^{\bar{y}} = \downarrow \{(\bar{u}; *) | \bar{u} \in \llbracket Q \rrbracket^{\bar{y}} \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

... to the system

operational equivalence

Proposition :

For every pairs of terms of the λ -calculus that are separated with a context C(|.|) of the λ -calculus with tests, we can find a new context without tests that can separate them.

... to the system

lambda-calculus with tests

Définition: product

we can add the following test operator:

(test)Q, R: Q|R

with the rules:

$$egin{array}{ccc} (\epsilon_{|}) & Q|\epsilon &
ightarrow Q \ (\epsilon_{|}') & \epsilon|Q &
ightarrow Q \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

... to the system

lambda-calculus with tests

Définition: sum

and its dual:

(test)Q, R: Q|R

 $\begin{array}{ll} (\epsilon_+) & Q + \epsilon & \to \epsilon \\ (\epsilon'_+) & \epsilon + Q & \to \epsilon \end{array}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めんの

$\llbracket Q | R \rrbracket^{\bar{y}} = \llbracket Q \rrbracket^{\bar{y}} \cap \llbracket R \rrbracket^{\bar{y}}$ $\llbracket Q + R \rrbracket^{\bar{y}} = \llbracket Q \rrbracket^{\bar{y}} \cup \llbracket R \rrbracket^{\bar{y}}$

it's interpretation

... to the system

The full abstraction of the Lambda-Calculus by D_∞ via a deffinissable intermediate language

... to the system

operational equivalence

Proposition :

For every pairs of terms of the λ -calculus that are separated with a context C(|.|) from the λ -calculus with tests, we can find a new context without sum nor product that can separate them.

... to the system

operational equivalence

Theoreme :

the restriction to the λ -calculus of the operational equivalence is identical when working with test or not. In particular the full abstraction for the λ -calculus with test imply the full abstraction for the usual one.

... to the system

definissability

Définition: α^+ and α^-

Given
$$\alpha = u_1 :: \cdots :: u_r :: *$$
 with $u_i = [\alpha_1^i \cdots \alpha_{k_i}^1]$ we can define:

$$\alpha^{-} = \lambda \bar{\mathbf{x}}^{r} . \bar{\tau} [(||_{i}||_{j} (\alpha_{j}^{i})^{+} (|\mathbf{x}_{i}|))]$$
$$\alpha^{+} (|.|) = \tau ((|.|) (\Sigma_{j} (\alpha_{j}^{1})^{-}) \cdots (\Sigma_{j} (\alpha_{j}^{r})^{-}))$$

Proposition :

For all $\alpha \in D_{\infty}$: • $\vdash \alpha^- : a \Leftrightarrow a \sqsubseteq_{D_{\infty}} \alpha$ • $x : u \vdash \alpha^+(|x|) \Leftrightarrow u \sqsupseteq_{!(D_{\infty})} [\alpha]$

... to the system

conclusion

Other directions:

 $\bullet\,$ relational model and the $\lambda\text{-calculus}$ with resources

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- coherent model and the $\lambda\text{-calculus}$
- relation with extensional collapse