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The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

introduction

D∞ is one of the first fully abstract model of the lambda calculus
first proof: Wadsworth in 1976 (see Manzonneto thesis for a new
and more general version)
It was the construction of successive fully abstract models
(η-expanced bohm-trees, H∗) in order to reach our model.

New
here: we are using opposite direction: construction a new system
from our model
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Définition: stability

if s → t then [[s]] = [[t]]

Définition: abstraction

t is head normalizable iff [[t]] is empty
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modelization

Définition: definability

for all α finitarry in your model, there is a terme t such that
[[t]] = α

Stronger in the case that you have the adequation lemma, and that
the application can distinguish both the observational equivalence
classes (context lemma) and the elements of the model.
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from the model...

Preorders: model of linear logic

Définition: lolipop

a :: α ≤e(ε b :: β iff a ≥e b and α ≤ε β

Définition: bang

finites multisets with the order: a ≤!ε b iff for all α ∈ a we can find
a β ∈ b such that α ≤ β

Définition: orthogonal

a ≤e⊥ b iff a ≥e b
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Définition: orthogonal

a ≤e⊥ b iff a ≥e b



The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

from the model...

D∞
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D∞ = ((!D∞)(ω))⊥

Définition: initial segment
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Définition: initial segment

A ⊆ Dinf such that a ≤D∞ b ∈ A⇒ a ∈ A



The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

from the model...

Its properties

Proposition : top

∗ = [] :: ∗ is the first element created by our process and is
becoming a top in D∞

Proposition : complete lattice

finite intersection and infinite union are allowed
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... to the system

λ-calculus with tests

Définition: tests

operators:

(terms) M,N : λx .M | M N | τ̄(Q)

(test) Q,R : ε | τ(M)

rules:

(β) (λx .M)N → M[N/x ]

(κ) τ τ̄(Q) → Q

(τ) τ(λx .M) → τ(M[Ω/x ])

(τ̄) (τ̄(Q)) N → τ̄(Q)
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... to the system

it’s interpretation

[[yi ]]
ȳ = ↓{(ū;α)|ui = [α]!}

[[λx .M]]ȳ = ↓{(ū; v::α)|(v .ū;α) ∈ [[M]]x .ȳ}
[[M N]]ȳ = ↓{(ū;α)|∃β1 · · ·βn, (ū; [β1 · · ·βn]::α) ∈ [[M]]ȳ

∧
i

(ū;βi ) ∈ [[N]]ȳ}

[[τ̄(Q)]]ȳ = ↓{(ū; ∗)|ū ∈ [[Q]]ȳ}
[[τ(M)]]ȳ = ↓{ū|(ū; ∗) ∈ [[M]]ȳ}
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... to the system

operational equivalence

Proposition :

For every pairs of terms of the λ-calculus that are separated with a
context C (|.|) of the λ-calculus with tests, we can find a new
context without tests that can separate them.
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... to the system

lambda-calculus with tests

Définition: product

we can add the following test operator:

(test)Q,R : Q|R

with the rules:

(ε|) Q|ε → Q

(ε′|) ε|Q → Q
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... to the system

lambda-calculus with tests

Définition: sum

and its dual:
(test)Q,R : Q|R

(ε+) Q + ε → ε

(ε′+) ε+ Q → ε
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... to the system

it’s interpretation

[[Q|R]]ȳ = [[Q]]ȳ ∩ [[R]]ȳ

[[Q + R]]ȳ = [[Q]]ȳ ∪ [[R]]ȳ
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... to the system

operational equivalence

Proposition :

For every pairs of terms of the λ-calculus that are separated with a
context C (|.|) from the λ-calculus with tests, we can find a new
context without sum nor product that can separate them.



The full abstraction of the Lambda-Calculus by D∞ via a deffinissable intermediate language

... to the system

operational equivalence

Theoreme :

the restriction to the λ-calculus of the operational equivalence is
identical when working with test or not. In particular the full
abstraction for the λ-calculus with test imply the full abstraction
for the usual one.
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... to the system

definissability

Définition: α+ and α−

Given α = u1:: · · ·::ur::∗ with ui = [αi
1 · · ·α1

ki
] we can define:

α− = λx̄ r .τ̄ [ (||i ||j(αi
j)

+(|xi |)) ]

α+(|.|) = τ((|.|) (Σj(α
1
j )−) · · · (Σj(α

r
j )−))

Proposition :

For all α ∈ D∞:

` α− :a⇔ a vD∞ α

x :u ` α+(|x |)⇔ u w!(D∞) [α]
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... to the system

conclusion

Other directions:

relational model and the λ-calculus with resources

coherent model and the λ-calculus

relation with extensional collapse
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