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Broad Goals Use

• Universal algebra (operations and equations);

• Coproduct preserving monads;

• Semigroup theory.

all to study almost periodicity in topological dynamics.

Part I. The proximal relation;

Part II. The role of semigroup theory;

Part III. Generalizing compact metric spaces;

Part IV. Finding examples.
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Part I. The proximal relation.

A transformation monoid is a continuous M ×X → X , (t, x) 7→ tx
with M a topological monoid, X a topological space subject to the

action equations

1x = x

(tu)x = t(ux)

Say that M is classical if M is one of IN , ZZ, RR+, RR.

Mainstream topological dynamics: M classical, X compact metric.

x, y ∈ X are proximal if there exists a sequence tn ∈M with lim tnx =

lim tny.

x, y are distal if x, y are not proximal.

X is distal if all x, y ∈ X are.

X is equicontinous if the family πt : X → X (where πtx = tx) is

equicontinuous.

If M is a group, equicontinuous ⇒ distal.
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The set Mx = {tx : t ∈M} is the orbit of x.

A ⊂ X is invariant if x ∈ A, t ∈ M ⇒ tx ∈ A. A ⊂ X is minimal
if it is nonempty, closed and invariant and contains no proper subset

with those properties.

Definition

• For A ⊂ X, t ∈M, t−1A = {x ∈ X : tx ∈ A}.

• A ⊂ M is syndetic if there exists compact K ⊂ M with M =
K−1A.

• x ∈ X is periodic {t ∈M : tx = x} is syndetic.

• x ∈ X is almost periodic if for every neighborhood U of x, {t :

tx ∈ U} is syndetic.

• x ∈ X is discretely almost periodic if it is almost periodic with

M discrete.

Proposition Assume M is one of ZZ , RR, X is Hausdorff and x ∈ X is

periodic. Then the orbit Mx is compact and minimal.

Proof Let A = {t : tx = x}. Then M = KA with K compact. Thus

Mx = KAx = Kx is compact as t 7→ tx is continuous. As Mx is
closed, being compact, and M is a group, Mx is minimal. 2
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Theorem (G. D. Birkhoff, 1912) Let M be classical or a group and

let X be locally compact, Hausdorff. For x ∈ X , the following are
equivalent.

1. x is almost periodic;

2. x is discretely almost periodic (M = KA with K finite);

3. Mx is minimal and compact.

Theorem If X is compact Hausdorff, X contains a minimal set.

Proof Use Zorn’s lemma. The intersection of a chain of non-empty
closed invariant sets is non-empty.
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The differential equation x′ = −x induces the flow RR+ × [0, 1]→ [0, 1],

tx0 = x0 e
−t.

Checking the action equations:

0 x0 = x0e
0 = x0

(t + u)x0 = x0 e
−(t+u) = (x0 e

−u) e−t = t(ux)

As limt→∞ tx0 = 0 = limt→∞ ty0, every x0, y0 are proximal.

What are the minimal sets?
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Poincaré-Bendixon theorem If X is a compact subset of RR2, every
almost periodic point of an action RR×X → X is periodic.

The following plot shows orbits of Duffing’s equation in the plane.

y′′ = y − y3

See Exercise 15 of the handout.
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The Lorenz attractor

This famous system is given the the system

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

For ρ 6= 28, all orbits are periodic. For ρ = 28 the other parameters

may be adjusted so that some pairs of nearby points are strongly not
proximal –this is chaos.

I am unable to figure out if non-periodic almost periodicity exists.
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Example The differential equation y′′′′ + 3y′′ + 2y = 0 induces a flow
RR× RR4→ RR4.

All solutions are almost periodic and only a few are periodic (see Ex-

ercise 16 of the handout).

The solution curve with initial state x0 = (1, 1,−2,−1) is

y(t) = sin t+ cos
√

2 t

so that the orbit is

{(y(t), y′(t), y′′(t), y′′′(t)) : t ∈ RR}

x0 is not periodic, but is almost periodic as we explore on the next
slide.
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Plot of ||(y(t), y′(t), y′′(t), y′′′(t))−(1, 1,−2,−1)|| on two different ranges

of length 200.
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The following is a plot of (y(t), y′(t), y′′(t)) for −200 ≤ t ≤ 200.
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Part II. The role of semigroup theory.

Definition

• A semigroup is a left group (A. H. Clifford, 1933) if ∀ x, y ∃ ! z

with zx = y.

• A (non-empty) left ideal of a semigroup is an lg-ideal if, as a

semigroup, it is a left group.

• An lg-semigroup is a semigroup which has an lg-ideal.

Dually, right group, rg-ideal, rg-semigroup.

Observe that if I, J are (non-empty, two-sided) ideals in a semigroup

then IJ is again an ideal. Thus a semigroup can have at most one

minimal ideal. If S has a minimal ideal it is called the kernel of S,

written K(S).

Green’s equivalence relations in a semigroup:

• xL y if x = y or ∃ t, u with tx = y, uy = x;

• xR y if x = y or ∃ t, u with xt = y, yu = x;

• D = L ∨R = LR = RL;

• H = L ∩ R.
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The Clifford-Preston eggbox picture of a D-class:

a c

d b

The columns are the L-classes. The rows are the R-classes. The cells
are the H-classes. Every H-class with an idempotent is a group.

Theorem The following hold in any lg-semigroup:

1. K(S) exists and is a single D-class.

2. In the eggbox of K(S), the columns are the lg-ideals of S and

the rows are the rg-ideals of S. Each two lg-ideals and each two
rg-ideals are isomorphic as semigroups.

3. All the cells (= H-classes) are groups and all these groups are

isomorphic.

4. If R is a row and L is a column, RL = R ∩ L is a group, whereas

LR = K(S).

In particular, every lg-semigroup is an rg-semigroup. The group of
K(S) defines the Ellis group of S.
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Paragroups

The term “paragroup” is due to Hofmann and Mostert (1966). Other

names include Rees matrix semigroup and completely simple semigroup.

Definition A paragroup is a semigroup isomorphic to J × G × Λ
where J,Λ are non-empty sets, G is a group, [·, ·] : Λ × J → G is any

function and the multiplication is given by

(j, g, λ) (k, h, µ) = (j, g [λ, k]h, µ)

Theorem Let P be a semigroup. Then P is a paragroup if and only if
there exists an lg-semigroup S with P ∼= K(S).

The construction of a paragroup structure of K(S) for lg-semigroup S

is as follows. Let e2 = e ∈ K(S). Define

J = Le, Λ = Re, G = He

[λ, j] = λj

The isomorphism ψ : K(S) → J × G × Λ is given by ψa = (u, eae, v)

where u is the unit of Hae and v is the unit of Hea.
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lg-monads

For any monad D in Set, the free algebra D1 on one generator is a

monoid. The multiplication is

xy = (D1
y#

−→ D1) x

Definition Monad D is an lg-monad if D∅ = ∅ and if D1 is an lg-

monoid.

Definition An object in a category C is coalescent if each of its en-

domorphisms is an isomorphism. If P is a subcategory, U ∈ P is a
universal P-object if U is coalescent and each object in P admits a

P-morphism from U .

Evidentally, such U is unique up to isomorphism.
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Theorem (R. Ellis, Universal Minimal, 1960). For an lg-monad D, if

U is an lg-ideal of D1 then U is a D-subalgebra of D1 and U is the
universal minimal D-algebra.

Corollary Every non-empty D-algebra for lg-monad D has a minimal

subalgebra.

Proof Let X be an algebra, x ∈ X . Let ψ : D1 → X map the free

generator to x. If U ⊂ D1 is the universal minimal algebra, ψ(U) is

minimal.
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Proposition Let D be any monad and let X be one of its algebras.
Then the unique homomorphism D1 → XX to the product algebra

mapping the free generator to idX is a monoid homomorphism.

Thus the image of the above homomorphism, E(X) ⊂ XX is both a
subalgebra and a submonoid. It is called the enveloping semigroup

of X .

Theorem Let D be a monad, X an algebra and let SetE be the variety

generated by X . The following hold.

1. If D is lg, so is E.

2. (Manes, 1969) E(X) is the free E-algebra on one generator. Thus

E(X) is an lg-semigroup.
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The following are due to Ellis.

Definition Let D be an lg-monad, X an algebra. Then

• X is distal if E(X) is a group;

• X is equicontinuous if, on the product algebra X ×X

(x, y)R (a, b) ⇔ (x, y) ∈ <(a, b)>

is a congruence.

• x, y ∈ X are proximal, xPy, if there exists t ∈ K(E(X)) with

tx = ty.

If xPy, {t ∈ K(E(X)) : tx = ty} always contains an lg-ideal, an

idempotent in particular.
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Theorem (Ellis 1960, J. Auslander 1960) The following are equivalent.

1. Proximal is an equivalence relation on X .

2. E(X) has a unique lg-ideal.

3. If xPy then tx = ty for all t ∈ K(E(X)).

Theorem (J. Auslander, 1960) If Y ⊂<x>with Y minimal then there

exists y ∈ Y with xP y.

Theorem (J. Auslander, 1960) Let <x> be minimal for all x. Let J be

the set of idempotents of K(E(X)). Then for all x, {y : xP y} = Jx.
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Part III. Generalizing compact Metric spaces.

Varieties

A variety is an equationally-definable class, e.g.

semigroups: Ω2 = {·}, x(yz) = (xy)z.

monoid actions: Ω1 = M , 1x = x, (tu)x = t(ux).

Theorem (G. Birkhoff, 1938) If V is a variety andA ⊂ V thenA arises

as a variety by imposing further equations (in the same operations) if

and only if A is closed under subalgebras, products and quotients.

The variety generated by A is QSP (A and the equations are precisely
those satisfied by A.

Theorem (Zürich triples gang, 1960s) Varieties are precisely SetT for

T a monad in set.
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Compact metric spaces via universal algebra.

The most highly developed form of universal algebra is the finitary case

–operations have finitely many variables. However, many important

structures can be described using infinitary operations, not always in
an obvious way.

For example, Isbell showed in 1982 that real commutatative C∗-algebras

(with algebra maps of norm at most 1 and with the unit disc as the

“underlying set”) could be equationally described with five operations
on the unit disc, the only infinitary one being

∑
2−nxn. The equations

are precisely those satisfied by RR.

For compact metric spaces, every sequence has a convergent subse-
quence. How can we choose one?
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Let an ultrafilter choose for us

Let βX be the set of ultrafilters on the set X . β is an endofunctor of

the category Set of sets and functions: for f : X → Y , let (βf)U =

{B ⊂ Y : f−1B ∈ U}.

Topologists write fU for (βf)U and we will too.

Fix a non-principal ultrafilter r ∈ βω\ω. Such r will do the choosing

for us. If X is any compact Hausdorff space, define an operation δr :

Xω → X by
fr ⇁ δr(f)

Thus X is a Σ-algebra where the signature Σ has exactly one operation,

the ω-ary operation δr.

Definition Let Vr be the variety of Σ-algebras generated by all compact

metric spaces.

To learn more about Vr we must enter the murky world of . . .
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Coproduct preserving monads

Definition A functor C : Set→ Set is CP (Coproduct Preserving for

binary coproducts) if whenever A ⊂ X with complement A′,

CA→ CX ← CA′

is a coproduct.

Monad C = (C, η, µ) is CP if C is.

Example Any subfunctor of β is CP.

Theorem For an algebra of a CP monad, the subalgebras form the
closed sets of a topology.

• The clopen subsets of (CX, µX ) are {CA : A ⊂ X}.

• Every compact Hausdorff space arises this way.

• RR cannot arise this way.
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For T ⊂ β we set out to identify the T-algebras.

Definition For T a subfunctor of β and X a topological space,

• A ⊂ X is T -closed if A ∈ U ∈ TX, U ⇁ x ⇒ x ∈ A.

• X is a T -space if every T -closed set is closed.

• X is T -compact if each ultrafilter in TX converges.

• X is T -Hausdorff if each ultrafilter in TX converges to at most

one point.

Theorem (Manes 2010) For T ⊂ β, SetT is a full subcategory of
topological spaces, namely is the T -compact, T -Hausdorff T -spaces.

The closed sets of an algebra coincide with the subalgebras.
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Countable tightness

Recall that a space is countably tight if whenever x ∈ A there exists

countable C ⊂ A with x ∈ C.

Metrizable ⇒ first countable ⇒ Fréchet ⇒ sequential ⇒ countably
tight.

For a compact Hausdorff space, metrizable ⇔ second countable.

From Robert Ellis, The Furstenberg structure theorem, 1978: “It has

been fourteen years since Furstenberg proved his beautiful structure
theorem for metrizable minimal distal flows. Since then there have been

many attempts to do without the assumption that the phase space of

the flow be metrizable. These have only been partially successful; some
sort of countability assumption has always seemed necessary...”.
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Example βωX = {U ∈ βX : ∃ countable C ∈ U} is a submonad.

• βω-space = countably tight space.

• βω-compact spaces were called ultracompact by (Bernstein 1970).
We note that a space is βω-compact if and only if for each open

cover, each countable subset has a finite subcover.

• For every submonad T of βω, every compact metric space is a T-

algebra and every T-algebra is countably tight.

Observe that for S ⊂ T ⊂ β, every S-space is a T -space.

Our model for “generalized compact metrizable spaces”, then, is T-

algebras for T a submonad of βω.
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The monad Tr.

Theorem (Manes 2011) The variety Vr of Σ-algebras generated by the

r-convergence of compact metric spaces is precisely SetTr where Tr is

the submonad of βω generated by r.

Corollary The equations defining Vr are precisely those satisfied by

the operation χr : 2ω → 2.

Proof

TrX 22X-

χ
TrA

@
@

@
@

@@R
2
?

pr
A
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Theorem (R. Börger, 1987) For CP C there exists a unique natural

transformation C → β which is a monad map if C is a monad.

For a proof, see Exercise 18.

It follows that no two distinct submonads of β can be isomorphic.

Theorem There are 22ω

non-isomorphic varieties Vr.

First proof This past March, Neil Hindman told me that whatever

one wants to count in βω, the answer is 22ω

.

Second proof Garcia-Fereirra (1993) showed that there are 22ω

Com-

fort types. It turns out that a Comfort type is no more and no less than
a submonad of form Tr. Different submonads are not isomorphic by

Börger’s theorem. Thus their categories of algebras are not isomorphic

(over Set).
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Dynamic monads

Given a submonad T of β and a discrete monoid M , the class of all

continuous left actions M×X → X with X a T-algebra is the algebras

of a monad TM with TMX = T (M ×X). This is well known and arises
from a Beck distributive law, a detail which is important in some of the

proofs.

We are interested in CP varieties of TM -algebras. By “CP variety” we

mean that the monad for such a variety is itself CP.

Definition A monad is pre-dynamic if its algebras form a CP variety

of some TM . It is dynamic if it is pre-dynamic and lg.
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Examples of CP varieties of dynamic monads

• Distal;

• Equicontinuous;

• Putting a topology on M .

For the last one, M should be a T -space and M⊗X → X is continuous

where ⊗ is the product in the category of T spaces.

What are the exponentiable T -spaces? A continuous monoid homo-
morphism M → XX is a natural idea.
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Characterizing pre-dynamic monads

Definition For CP C, factor the unique map into its image as

C
ρ−→ T i−→ β

The submonad T of β is called the topological part of C.

Proposition Say that a topological space is completely separated
if distinct points can be separated by clopen sets. Then for each set X ,

ρX : CX → TX is the completely separated reflection of CX and is a

quotient mapping.

See Exercises 20, 23.

Theorem A monad is pre-dynamic if and only if it is CP and admits

a monad map from its topological part.

Open question Is every CP monad pre-dynamic?
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Part IV. Finding examples.

It is high time to show dynamic monads exist! We want the phase
space to be countably tight which does not happen classically.

Definition

• A semigroup S is compactible if it is non-empty and admits a

compact Hausdorff topology with all right translations ρtu = ut
continuous.

• A semigroup S is tight if it is non-empty and if for every function

f : Γ → S, {Γ f−→ S
λt−→ S : t ∈ S} is closed in the topology of

pointwise convergence induced by discrete S. (λtu = tu).

• Right cancellable ⇒ tight.

Definition In a semigroup S, ∆ ⊂ S is a division set if

∀ x ∈ S ∀ y ∈ S1 ∃z ∈ S ∀ δ ∈ ∆ zxδ = yδ

Hierarchy theorem (Manes 1969) Compactible ⇒ tight⇒ there ex-
ists a minimal left ideal and a maximal division set ⇒ lg.

No implications are reversible. A countable group is tight but not

compactible.
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It is well known that for any semigroup S, βS is canonically a com-
pactible semigroup. This is major in Ellis’ work and is the subject of a

whole book (N. Hindman and D. Strauss, 1998).

Now let D be any monad in Set. Given m : X × X → X , freeness
induces a natural lift

X ×DX → DX

DX ×DX m̂−→ DX

Note that m̂(·, v) is a D-homomorphism for each v ∈ DX .

In a 2007 paper on distributive laws, Mulry and I observed that when

D is a commutative monad, every linear equation (e.g. x(yz) = (xy)z,

xy = yx, same variables both sides, no repetition) which holds for m
also holds for m̂.

But β is not commutative. Remarkably,

the associative law lifts for all monads.

βS is rarely a commutative semigroup, even if S is.

If E is a submonad of D then ES is a subsemigroup of DS.

For the particular case of the pre-dynamic monad TM ,

TM = T (M × 1) = TM1

is already known to be a monoid and it is the same monoid as above.

Thus βM is a dynamic monad, the standard case.
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A dynamic monad with all spaces countably tight

In any semigroup, the idempotents are partially ordered by

e ≤ f ⇔ ef = e = fe

A minimal idempotent in this order is called primitive.

Theorem In an lg-semigroup S, the primitive idempotents are pre-

cisely the units of the H-classes of K(S).

Definition A semigroup is weakly left cancellative if for all x, y the

set {z : xz = y} is finite (possibly empty).

The next result can be used to show that many dynamic monads exist.

Theorem If M is weakly left cancellative then there exists a primitive

idempotent p ∈ βM\M and the monad (Tp)M is a dynamic monad.
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βω-actions have almost periodic points

Theorem Let RR×X → X be a continuous left action with X a non-

empty βω-algebra. Then X has an almost periodic point.

Proof comments:

βωZZ is different topological space than βZZ but, as TM is always a

submonoid of βM , the two are exactly the same monoid.

As βωZZ is free on one generator and an lg-semigroup, it has a universal

minimal set U , namely any lg-ideal.

Restrict the given RR×X → X to ZZ ×X → X . Using U , there exists

x with ZZx minimal.

ZZx minimal ⇒ x is discretely almost periodic under ZZ –this uses the
covering property of βω-compactness.

ZZ ⊂ RR is a closed, syndetic normal subgroup so, by a well-known

“inheritance theorem”, x is almost periodic under RR.
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Three papers

• Varieties generated by compact metric spaces (submitted)

• r-algebras (submitted)

• Monads in topology (2010)

I’m wearing them around my neck.

manes@math.umass.edu



37

Mega-congratulations

for surviving

yet another

Manes tutorial!


