A Differential Model Theory for Resource Lambda Calculi - Part I

Giulio Manzonetto

```
g.manzonetto@cs.ru.nl
Intelligent Systems
Radboud University - Nijmegen
```


FMCS 2011-Calgary - $11^{\text {th }}$ June 2011

The resource calculus Λ^{r}

Non-lazy version of Boudol's resource calculus

- Λ^{r} extends the notion of the λ-calculus application along two directions: MN
(3) a term is applied to a multiset of resources, called bag of resources
(2) the resources can be reusable (available at will) or linear (to be used once)
- Ancestors:
- the λ-calculus with multiplicities by Gérard Boudol (1993)
introduced to study the observational semantics induced on the lazy
λ-calculus by Milner's translation into the π-calculus;
- the differential λ-calculus by Thomas Ehrhard and Laurent Regnier (2003) designed starting from a denotational model of linear logic.
- Syntax formalized by Paolo Tranquilli (2008)
- it corresponds to the minimal fragment of the differential extension of linear logic by Thomas Ehrhard and Laurent Regnier (2006)

The resource calculus Λ^{r}

Non-lazy version of Boudol's resource calculus

- Λ^{r} extends the notion of the λ-calculus application along two directions:

$$
M\left[N_{1}, \ldots, N_{n}\right]
$$

(C) a term is applied to a multiset of resources, called bag of resources

- Ancestors:
- the λ-calculus with multiplicities by Gérard Boudol (1993) introduced to study the observational semantics induced on the lazy λ-calculus by Milner's translation into the π-calculus;
- the differential λ-calculus by Thomas Ehrhard and Laurent Regnier (2003) designed starting from a denotational model of linear logic.
- Syntax formalized by Paolo Tranquilli (2008)
- it corresponds to the minimal fragment of the differential extension of linear logic by Thomas Ehrhard and Laurent Regnier (2006)

The resource calculus Λ^{r}

Non-lazy version of Boudol's resource calculus

- Λ^{r} extends the notion of the λ-calculus application along two directions:

$$
M\left[L_{1}, \ldots, L_{\ell}, N_{1}^{\prime}, \ldots, N_{n}^{!}\right]
$$

(1) a term is applied to a multiset of resources, called bag of resources
(2) the resources can be reusable (available at will) or linear (to be used once)

- Ancestors:
- the λ-calculus with multiplicities by Gérard Boudol (1993)
introduced to study the observational semantics induced on the lazy
λ-calculus by Milner's translation into the π-calculus;
- the differential λ-calculus by Thomas Ehrhard and Laurent Regnier (2003) designed starting from a denotational model of linear logic.
- Syntax formalized by Paolo Tranquill' (2008)
- it corresponds to the minimal fragment of the differential extension of linear logic by Thomas Ehrhard and Laurent Regnier (2006)

The resource calculus Λ^{r}

Non-lazy version of Boudol's resource calculus

- Λ^{r} extends the notion of the λ-calculus application along two directions:

$$
M\left[L_{1}, \ldots, L_{\ell}, N_{1}^{\prime}, \ldots, N_{n}^{!}\right]
$$

(1) a term is applied to a multiset of resources, called bag of resources
(2) the resources can be reusable (available at will) or linear (to be used once)

- Ancestors:
- the λ-calculus with multiplicities by Gérard Boudol (1993) introduced to study the observational semantics induced on the lazy λ-calculus by Milner's translation into the π-calculus;
- the differential λ-calculus by Thomas Ehrhard and Laurent Regnier (2003) designed starting from a denotational model of linear logic.
- Syntax formalized by Paolo Tranquilli (2008)
- it corresponds to the minimal fragment of the differential extension of linear logic by Thomas Ehrhard and Laurent Regnier (2006)

The resource calculus Λ^{r}

Non-lazy version of Boudol's resource calculus

- Λ^{r} extends the notion of the λ-calculus application along two directions:

$$
M\left[L_{1}, \ldots, L_{\ell}, N_{1}^{\prime}, \ldots, N_{n}^{!}\right]
$$

(1) a term is applied to a multiset of resources, called bag of resources
(2) the resources can be reusable (available at will) or linear (to be used once)

- Ancestors:
- the λ-calculus with multiplicities by Gérard Boudol (1993) introduced to study the observational semantics induced on the lazy λ-calculus by Milner's translation into the π-calculus;
- the differential λ-calculus by Thomas Ehrhard and Laurent Regnier (2003) designed starting from a denotational model of linear logic.
- Syntax formalized by Paolo Tranquilli (2008)
- it corresponds to the minimal fragment of the differential extension of linear logic by Thomas Ehrhard and Laurent Regnier (2006)

Just another syntax for Differential Lambda Calculus

Precise link between:

$$
\begin{array}{ccc}
\text { Resource Calculus } & \leftrightarrow & \text { Differential } \lambda \text {-Calculus } \\
\text { linear resources } & \leftrightarrow & \text { syntactic differentiation } \\
M\left[L_{1}, \ldots, L_{\ell}, N_{1}^{\prime}, \ldots, N_{n}^{!}\right] & \leftrightarrow & \mathrm{D}^{\ell}(M) \cdot\left(L_{1}, \ldots, L_{\ell}\right)\left(\sum_{i} N_{i}\right) \\
M\left[L_{1}, \ldots, L_{\ell}\right] & \leftrightarrow & \mathrm{D}^{\ell}(M) \cdot\left(L_{1}, \ldots, L_{\ell}\right)(0)
\end{array}
$$

Just another syntax for Differential Lambda Calculus

Precise link between:

$$
\begin{array}{ccc}
\text { Resource Calculus } & \leftrightarrow & \begin{array}{c}
\text { Differential } \lambda \text {-Calculus } \\
\text { syntactic differentiation }
\end{array} \\
\text { linear resources } & \leftrightarrow & L_{1}^{\prime}(M) \cdot\left(L_{1}, \ldots, L_{\ell}\right)\left(\sum_{i} N_{i}\right) \\
M\left[L_{1}, \ldots, L_{\ell}, N_{1}^{!}, \ldots, N_{n}^{!}\right] & \leftrightarrow & \mathrm{D}^{\ell}(M) \cdot\left(L_{1}, \ldots, L_{\ell}\right)(0)
\end{array}
$$

Taylor Expansion Formula

$$
(M N)^{\circ}=\sum_{n=0}^{\infty} \frac{1}{n!} D^{n}(M) \cdot(\underbrace{N, \ldots, N}_{n \text { times }})(0)
$$

The syntax of Λ^{r}

There are three syntactic categories:

- terms are in functional positions,
- bags of resources are in argument position and represent multisets of linear and reusable terms,
- sums of terms are results of the computation.

The syntax of Λ^{r}

There are three syntactic categories:

- terms are in functional positions,
- bags of resources are in argument position and represent multisets of linear and reusable terms,
- sums of terms are results of the computation.

Formally:

$$
\begin{array}{llr}
M, N, L & :=x|\lambda x . M| M P & \text { terms } \\
P, Q, R & :=[] \mid M]\left|\left[M^{!}\right]\right| P \uplus Q & \text { bags } \\
\mathbb{M}, \mathbb{N} & :=0|M| \mathbb{M}+\mathbb{N} & \text { sums }
\end{array}
$$

The syntax of Λ^{r}

It contains λ-calculus

There are three syntactic categories:

- terms are in functional positions,
- bags of resources are in argument position and represent multisets of linear and reusable terms,
- sums of terms are results of the computation.

Formally:

$$
\begin{array}{llr}
M, N, L & :=x|\lambda x . M| M P & \text { terms } \\
P, Q, R & :=[]|[M]|\left[M^{!}\right] \mid P \uplus Q & \text { bags } \\
\mathbb{M}, \mathbb{N} & :=0|M| \mathbb{M}+\mathbb{N} & \text { sums }
\end{array}
$$

The syntax of Λ^{r}

It contains λ-calculus and a nondeterministic extension of λ-calculus

There are three syntactic categories:

- terms are in functional positions,
- bags of resources are in argument position and represent multisets of linear and reusable terms,
- sums of terms are results of the computation.

Formally:

$$
\begin{array}{llr}
M, N, L & :=x|\lambda x . M| M P & \text { terms } \\
P, Q, R & :=[] \mid M]\left|\left[M^{!}\right]\right| P \uplus Q & \text { bags } \\
\mathbb{M}, \mathbb{N} & :=0|M| \mathbb{M}+\mathbb{N} & \text { sums }
\end{array}
$$

The syntax of Λ^{r}

It contains λ-calculus and a nondeterministic extension of λ-calculus and a finite resource calculus

There are three syntactic categories:

- terms are in functional positions,
- bags of resources are in argument position and represent multisets of linear and reusable terms,
- sums of terms are results of the computation.

Formally:

$$
\begin{array}{llr}
M, N, L & :=x|\lambda x \cdot M| M P & \text { terms } \\
P, Q, R & :=[]|[M]|\left[M^{!}\right] \mid P \uplus Q & \text { bags } \\
\mathbb{M}, \mathbb{N} & :=0|M| \mathbb{M}+\mathbb{N} & \text { sums }
\end{array}
$$

Will we have sums everywhere?

Nope! All operators are linear. . .

$$
\begin{aligned}
\lambda x .\left(\sum_{i} M_{i}\right) & :=\sum_{i} \lambda x \cdot M_{i} \\
\left(\sum_{i} M_{i}\right) P & :=\sum_{i} M_{i} P \\
M\left(\sum_{i} P P_{i}\right) & :=\sum_{i} M P_{i} \\
M\left(\left[\sum_{i} N_{i}\right] \uplus P\right) & :=\sum_{i} M\left(\left[N_{i}\right] \uplus P\right)
\end{aligned}
$$

except the $(\cdot)!$:

$$
M\left(\left[\left(\sum_{i} N_{i}\right)^{!}\right] \uplus P\right):=M\left(\left[N_{i}^{!}, \ldots, N_{n}^{!}\right] \uplus P\right)
$$

0 annihilates everything (except under $\left.(\cdot)^{!}\right)$

$$
\begin{array}{ccc}
\lambda x .0=0 & M([0] \uplus P)=0 & O P=0 \\
& M\left(\left[0^{!}\right] \uplus P\right)=M P
\end{array}
$$

Two kind of substitutions

Usual and Linear Substitution
Two kinds of resources \Rightarrow two kinds of substitution:

- $M\{N / x\}$: usual capture free substitution,
- $M\langle N / x\rangle$: linear substitution, N is substituted for exactly one linear occurrence of x in M.

Usual Substitution substitute all occurrences!

Two kind of substitutions

Usual and Linear Substitution
Two kinds of resources \Rightarrow two kinds of substitution:

- $M\{N / x\}$: usual capture free substitution,
- $M\langle N / x\rangle$: linear substitution, N is substituted for exactly one linear occurrence of x in M.

> Usual Substitution substitute all occurrences!

Two kind of substitutions

Usual and Linear Substitution
Two kinds of resources \Rightarrow two kinds of substitution:

- $M\{N / x\}$: usual capture free substitution,
- $M\langle N / x\rangle$: linear substitution, N is substituted for exactly one linear occurrence of x in M.

Usual Substitution substitute all occurrences!

Two kind of substitutions

Usual and Linear Substitution
Two kinds of resources \Rightarrow two kinds of substitution:

- $M\{N / x\}$: usual capture free substitution,
- $M\langle N / x\rangle$: linear substitution, N is substituted for exactly one linear occurrence of x in M.
 (\cong differentiation)

Two kind of substitutions

Usual and Linear Substitution
Two kinds of resources \Rightarrow two kinds of substitution:

- $M\{N / x\}$: usual capture free substitution,
- $M\langle N / x\rangle$: linear substitution, N is substituted for exactly one linear occurrence of x in M.

> Linear Substitution (idea) choose non-deterministically one linear occurrence at time (\cong differentiation)

Two kind of substitutions

Usual and Linear Substitution
Two kinds of resources \Rightarrow two kinds of substitution:

- $M\{N / x\}$: usual capture free substitution,
- $M\langle N / x\rangle$: linear substitution, N is substituted for exactly one linear occurrence of x in M.

> Linear Substitution (idea) choose non-deterministically one linear occurrence at time (œ differentiation)

Two kind of substitutions

Usual and Linear Substitution
Two kinds of resources \Rightarrow two kinds of substitution:

- $M\{N / x\}$: usual capture free substitution,
- $M\langle N / x\rangle$: linear substitution, N is substituted for exactly one linear occurrence of x in M.

Linear Substitution (idea) choose non-deterministically one linear occurrence at time (\cong differentiation)

Two kind of substitutions

Usual and Linear Substitution
Two kinds of resources \Rightarrow two kinds of substitution:

- $M\{N / x\}$: usual capture free substitution,
- $M\langle N / x\rangle$: linear substitution, N is substituted for exactly one linear occurrence of x in M.

Linear Substitution (idea) choose non-deterministically one linear occurrence at time (\cong differentiation)

Two kind of substitutions

Usual and Linear Substitution
Two kinds of resources \Rightarrow two kinds of substitution:

- $M\{N / x\}$: usual capture free substitution,
- $M\langle N / x\rangle$: linear substitution, N is substituted for exactly one linear occurrence of x in M.

> Linear Substitution (idea) choose non-deterministically one linear occurrence at time (\cong differentiation)

Two kind of substitutions

Usual and Linear Substitution
Two kinds of resources \Rightarrow two kinds of substitution:

- $M\{N / x\}$: usual capture free substitution,
- $M\langle N / x\rangle$: linear substitution, N is substituted for exactly one linear occurrence of x in M.

Linear Substitution (idea) choose non-deterministically one linear occurrence at time (\cong differentiation)

Linear Substitution (formally)

$M\langle N / x\rangle$: linear substitution

On terms:

$$
\begin{aligned}
& y\langle N / x\rangle=\left\{\begin{aligned}
N & \text { if } x=y \\
0 & \text { otherwise }
\end{aligned}\right. \\
& (\lambda y . M)\langle N / x\rangle=\lambda y \cdot M\langle N / x\rangle \\
& (M P)\langle N / x\rangle=M\langle N / x\rangle P+M(P\langle N / x\rangle)
\end{aligned}
$$

On Bags:

$$
\begin{aligned}
& {[]\langle N / x\rangle=0} \\
& {[M]\langle N / x\rangle=[M\langle N / x\rangle]} \\
& {\left[M^{!}\right]\langle N / x\rangle=\left[M\langle N / x\rangle, M^{!}\right]} \\
& (P \uplus R)\langle N / x\rangle=P\langle N / x\rangle \uplus R+P \uplus(R\langle N / x\rangle)
\end{aligned}
$$

The operational semantics of Λ^{r}

β - and η - reductions

The β-reduction:

$$
(\lambda x . M)\left[L_{1}, \ldots, L_{\ell}, N_{1}^{!}, \ldots, N_{n}^{!}\right] \xrightarrow{\beta} M\left\langle L_{1} / x\right\rangle \cdots\left\langle L_{\ell} / x\right\rangle\left\{\Sigma_{i} N_{i} / x\right\}
$$

The operational semantics of Λ^{r}

β - and η - reductions

The β-reduction:

$$
(\lambda x . M)\left[L_{1}, \ldots, L_{\ell}, N_{1}^{!}, \ldots, N_{n}^{!}\right] \xrightarrow{\beta} M\left\langle L_{1} / x\right\rangle \cdots\left\langle L_{\ell} / x\right\rangle\left\{\Sigma_{i} N_{i} / x\right\}
$$

The η-reduction:

$$
\lambda x \cdot M\left[x^{!}\right] \xrightarrow{\eta} M, \text { where } x \notin \mathrm{FV}(M)
$$

The operational semantics of Λ^{r}

β - and η - reductions

The β-reduction:

$$
(\lambda x . M)\left[L_{1}, \ldots, L_{\ell}, N_{1}^{!}, \ldots, N_{n}^{!}\right] \xrightarrow{\beta} M\left\langle L_{1} / x\right\rangle \cdots\left\langle L_{\ell} / x\right\rangle\left\{\Sigma_{i} N_{i} / x\right\}
$$

The η-reduction:

$$
\lambda x \cdot M\left[x^{!}\right] \xrightarrow{\eta} M, \text { where } x \notin \mathrm{FV}(M)
$$

Example

Let $\mathbf{I}:=\lambda x . x$:
$(\lambda x . x)[\mathbf{I}] \rightarrow x\langle\mathbf{I} / x\rangle\{0 / x\} \equiv \mathbf{I}\{0 / x\} \equiv \mathbf{I}$

The operational semantics of Λ^{r}

β - and η - reductions

The β-reduction:

$$
(\lambda x . M)\left[L_{1}, \ldots, L_{\ell}, N_{1}^{!}, \ldots, N_{n}^{!}\right] \xrightarrow{\beta} M\left\langle L_{1} / x\right\rangle \cdots\left\langle L_{\ell} / x\right\rangle\left\{\Sigma_{i} N_{i} / x\right\}
$$

The η-reduction:

$$
\lambda x \cdot M\left[x^{!}\right] \xrightarrow{\eta} M, \text { where } x \notin \mathrm{FV}(M)
$$

Example

Let $\mathbf{I}:=\lambda x \cdot x$:

$(\lambda x . x)[] \rightarrow x\{0 / x\} \equiv 0$	starvation
$(\lambda x . x)[\mathbf{I}, \mathbf{I}] \rightarrow x\langle\mathbf{I} / x\rangle\langle\mathbf{I} / x\rangle\{0 / x\} \equiv \mathbf{I}\langle\mathbf{I} / x\rangle\{0 / x\} \equiv 0$	surfeit

\square

The operational semantics of Λ^{r}

β - and η - reductions

The β-reduction:

$$
(\lambda x . M)\left[L_{1}, \ldots, L_{\ell}, N_{1}^{!}, \ldots, N_{n}^{!}\right] \xrightarrow{\beta} M\left\langle L_{1} / x\right\rangle \cdots\left\langle L_{\ell} / x\right\rangle\left\{\Sigma_{i} N_{i} / x\right\}
$$

The η-reduction:

$$
\lambda x \cdot M\left[x^{!}\right] \xrightarrow{\eta} M, \text { where } x \notin \mathrm{FV}(M)
$$

Example
Let $\mathbf{I}:=\lambda x \cdot x$:

[^0]
The operational semantics of Λ^{r}

β - and η - reductions

The β-reduction:

$$
(\lambda x . M)\left[L_{1}, \ldots, L_{\ell}, N_{1}^{!}, \ldots, N_{n}^{!}\right] \xrightarrow{\beta} M\left\langle L_{1} / x\right\rangle \cdots\left\langle L_{\ell} / x\right\rangle\left\{\Sigma_{i} N_{i} / x\right\}
$$

The η-reduction:

$$
\lambda x \cdot M\left[x^{!}\right] \xrightarrow{\eta} M, \text { where } x \notin \mathrm{FV}(M)
$$

Example

Let $\mathbf{I}:=\lambda x . x$:
$(\lambda x . x)[\mathbf{I}] \rightarrow x\langle\mathbf{I} / x\rangle\{0 / x\} \equiv \mathbf{I}\{0 / x\} \equiv \mathbf{I}$
$(\lambda x . x)[] \rightarrow x\{0 / x\} \equiv 0$
$(\lambda x . x)[\mathbf{I}, \mathbf{I}] \rightarrow x\langle\mathbf{I} / x\rangle\langle\mathbf{I} / x\rangle\{0 / x\} \equiv \mathbf{I}\langle\mathbf{I} / x\rangle\{0 / x\} \equiv 0$
nice term
starvation
surfeit
$(\lambda x . y[x][x][x])\left[\mathbf{I}, z^{!}\right] \xrightarrow{\beta *} y[I][z][z]+y[z][1][z]+y[z][z][I] \quad$ nondeterminism

The operational semantics of Λ^{r}

β - and η - reductions

The β-reduction:

$$
(\lambda x . M)\left[L_{1}, \ldots, L_{\ell}, N_{i}^{!}, \ldots, N_{n}^{!}\right] \xrightarrow{\beta} M\left\langle L_{1} / x\right\rangle \cdots\left\langle L_{\ell} / x\right\rangle\left\{\Sigma_{i} N_{i} / x\right\}
$$

The η-reduction:

$$
\lambda x \cdot M\left[x^{!}\right] \xrightarrow{\eta} M, \text { where } x \notin \mathrm{FV}(M)
$$

Theorem [Pagani-Tranquilli APLAS'09]

- \rightarrow_{β} is confluent.
- \rightarrow_{β} enjoys a standardization property.

Simple Type System

$$
\begin{gathered}
\text { Types: } \sigma, \tau::=\alpha \mid \sigma \rightarrow \tau \\
(\mathrm{Rx}) \frac{\Gamma(x)=\sigma}{\Gamma \vdash_{R} x: \sigma} \quad(\mathrm{R} \lambda) \frac{\Gamma, x: \sigma \vdash_{R} M: \tau}{\Gamma \vdash_{R} \lambda x \cdot M: \sigma \rightarrow \tau} \\
(\mathrm{R}) \frac{\Gamma \vdash_{R} M: \sigma \rightarrow \tau \quad \Gamma \vdash_{R} P: \sigma}{\Gamma \vdash_{R} M P: \tau} \\
(\mathrm{Rb}) \frac{\Gamma \vdash_{R} N: \sigma \quad \Gamma \vdash_{R} P: \sigma}{\Gamma \vdash_{R}[N(!)] \uplus P: \sigma} \quad(\mathrm{R}[]) \overline{\Gamma \vdash_{R}[]: \sigma} \\
(\mathrm{R}+) \frac{\Gamma \vdash_{R} A_{i}: \sigma \quad \text { for all } i}{\Gamma \vdash_{R} \sum_{i} A_{i}: \sigma}
\end{gathered}
$$

Remark

Sums and bags are typed uniformly...

The differential λ-calculus: Syntax

Differential Lambda Terms:

$$
\begin{gathered}
s, t, u::=x|\lambda x . s| s T \mid D(s) \cdot t \\
S, T, U::=s|s+T| 0
\end{gathered}
$$

Reduction Rules $\left(\rightarrow_{D}=\rightarrow_{\beta} \cup \rightarrow_{\beta_{D}}\right)$:

$$
\begin{array}{ll}
(\beta) & (\lambda x . s) t \rightarrow_{\beta} s\{t / x\} \\
\left(\beta_{D}\right) & D(\lambda x . s) \cdot t \rightarrow_{\beta_{D}} \lambda x \cdot \frac{\partial s}{\partial x} \cdot t
\end{array}
$$

Ideas:

- st $=$ usual application of λ-calculus
- $D\left(\cdots\left(D(s) \cdot t_{1}\right) \cdots \cdot\right) \cdot t_{k}=$ linear application
- $\frac{\partial s}{\partial x} \cdot t=$ differential substitution
- $\frac{\partial(s U)}{\partial x} \cdot t=\left(\frac{\partial s}{\partial x} \cdot t\right) U+\left(D(s) \cdot\left(\frac{\partial U}{\partial x} \cdot t\right)\right) U$

The differential λ-calculus: Syntax

Differential Lambda Terms:

$$
\begin{gathered}
s, t, u::=x|\lambda x . s| s T \mid D(s) \cdot t \\
s, T, U::=s|s+T| 0
\end{gathered}
$$

Reduction Rules $\left(\rightarrow_{D}=\rightarrow_{\beta} \cup \rightarrow_{\beta_{D}}\right)$:

$$
\begin{array}{ll}
(\beta) & (\lambda x . s) t \rightarrow_{\beta} s\{t / x\} \\
\left(\beta_{D}\right) & D(\lambda x . s) \cdot t \rightarrow_{\beta_{D}} \lambda x \cdot \frac{\partial s}{\partial x} \cdot t
\end{array}
$$

Ideas:

- $s t=$ usual application of λ-calculus $(\cong s[t!])$
- $D\left(\cdots\left(D(s) \cdot t_{1}\right) \cdots \cdot\right) \cdot t_{k}=$ linear application
- $\frac{\partial s}{\partial x} \cdot t=$ differential substitution
- $\frac{\partial(s U)}{\partial x} \cdot t=\left(\frac{\partial s}{\partial x} \cdot t\right) U+\left(D(s) \cdot\left(\frac{\partial U}{\partial x} \cdot t\right)\right) U$

The differential λ-calculus: Syntax

Differential Lambda Terms:

$$
\begin{gathered}
s, t, u::=x|\lambda x . s| s T \mid D(s) \cdot t \\
s, T, U::=s|s+T| 0
\end{gathered}
$$

Reduction Rules $\left(\rightarrow_{D}=\rightarrow_{\beta} \cup \rightarrow_{\beta_{D}}\right)$:

$$
\begin{array}{ll}
(\beta) & (\lambda x . s) t \rightarrow_{\beta} s\{t / x\} \\
\left(\beta_{D}\right) & D(\lambda x . s) \cdot t \rightarrow_{\beta_{D}} \lambda x \cdot \frac{\partial s}{\partial x} \cdot t
\end{array}
$$

Ideas:

- $s t=$ usual application of λ-calculus $(\cong s[t!])$
- $\left(D\left(\cdots\left(D(s) \cdot t_{1}\right) \cdots\right) \cdot t_{k}\right) 0=$ linear application $\left(\cong s\left[t_{1}, \ldots, t_{k}\right]\right)$
- $\frac{\partial s}{\partial x} \cdot t=$ differential substitution
- $\frac{\partial(s U)}{\partial x} \cdot t=\left(\frac{\partial s}{\partial x} \cdot t\right) U+\left(D(s) \cdot\left(\frac{\partial U}{\partial x} \cdot t\right)\right) U$

The differential λ-calculus: Syntax

Differential Lambda Terms:

$$
\begin{gathered}
s, t, u::=x|\lambda x . s| s T \mid D(s) \cdot t \\
s, T, U::=s|s+T| 0
\end{gathered}
$$

Reduction Rules $\left(\rightarrow_{D}=\rightarrow_{\beta} \cup \rightarrow_{\beta_{D}}\right)$:

$$
\begin{array}{ll}
(\beta) & (\lambda x . s) t \rightarrow_{\beta} s\{t / x\} \\
\left(\beta_{D}\right) & D(\lambda x . s) \cdot t \rightarrow_{\beta_{D}} \lambda x \cdot \frac{\partial s}{\partial x} \cdot t
\end{array}
$$

Ideas:

- $s t=$ usual application of λ-calculus $\left(\cong s\left[t^{!}\right]\right)$
- $D\left(\cdots\left(D(s) \cdot t_{1}\right) \cdots\right) \cdot t_{k}=$ linear application $\left(\cong s\left[t_{1}, \ldots, t_{k}\right]\right)$
- $\frac{\partial s}{\partial x} \cdot t=$ differential substitution $(\cong s\langle t / x\rangle)$
- $\frac{\partial(s U)}{\partial x} \cdot t=\left(\frac{\partial s}{\partial x} \cdot t\right) U+\left(D(s) \cdot\left(\frac{\partial U}{\partial x} \cdot t\right)\right) U$

$$
\left(\cong\left(s\left[U^{\prime}\right]\right)\langle t / x\rangle=s\langle t / x\rangle\left[U^{\prime}\right]+s\left[U\langle t / x\rangle, U^{\prime}\right]\right)
$$

Translation between the two calculi

We can define a translation map
$(\cdot)^{\circ}$: Resource calculus \rightarrow Differential λ-calculus

- $x^{\circ}=x$,
- $(\lambda x \cdot M)^{\circ}=\lambda x \cdot M^{\circ}$,
- $\left(M\left[\vec{L}, \vec{N}^{!}\right]\right)^{\circ}=\left(D^{k}\left(M^{\circ}\right) \cdot L_{i}^{\circ} \cdots L_{k}^{\circ}\right)\left(\sum_{i} N_{i}^{\circ}\right)$,
- $0^{\circ}=0$,
- $\left(\sum_{i} M_{i}\right)^{\circ}=\sum_{i} M_{i}^{\circ}$.

The translation is 'faithful'
For M, N resource terms: $M \rightarrow_{\beta} N$ implies $M^{\circ} \rightarrow_{D}^{\star} N^{\circ}$

Simple Types in Differential Calculus

$$
\begin{array}{cc}
x \frac{\Gamma(x)=\sigma}{\Gamma \vdash_{D} x: \sigma} & \lambda \frac{\Gamma ; x: \sigma \vdash_{D} s: \tau}{\Gamma \vdash_{D} \lambda x . S: \sigma \rightarrow \tau} \\
@ \frac{\Gamma \vdash_{D} s: \sigma \rightarrow \tau \quad \Gamma \vdash_{D} t: \sigma}{\Gamma \vdash_{D} s t: \tau} & D \frac{\Gamma \vdash_{D} s: \sigma \rightarrow \tau \quad \Gamma \vdash_{D} t: \sigma}{\Gamma \vdash_{D} D(s) \cdot t: \sigma \rightarrow \tau} \\
0 \frac{\Gamma \vdash_{D} 0: \sigma}{} & \text { sum } \frac{\Gamma \vdash_{D} s_{i}: \sigma \text { for all } i}{\Gamma \vdash_{D} \sum_{i} s_{i}: \sigma}
\end{array}
$$

Remark: Linear application does not decrease types.
The translation remains 'faithful'
Let M be a resource term. If $\Gamma \vdash_{R} M: \sigma$ then $\Gamma \vdash_{D} M^{\circ}: \sigma$ of the resource calculus.

Simple Types in Differential Calculus

$$
\begin{array}{cc}
x \frac{\Gamma(x)=\sigma}{\Gamma \vdash_{D} x: \sigma} & \lambda \frac{\Gamma ; x: \sigma \vdash_{D} s: \tau}{\Gamma \vdash_{D} \lambda x . S: \sigma \rightarrow \tau} \\
@ \frac{\Gamma \vdash_{D} s: \sigma \rightarrow \tau \quad \Gamma \vdash_{D} t: \sigma}{\Gamma \vdash_{D} s t: \tau} & D \frac{\Gamma \vdash_{D} s: \sigma \rightarrow \tau \quad \Gamma \vdash_{D} t: \sigma}{\Gamma \vdash_{D} D(s) \cdot t: \sigma \rightarrow \tau} \\
0 \frac{\Gamma \vdash_{D} 0: \sigma}{} & \text { sum } \frac{\Gamma \vdash_{D} s_{i}: \sigma \text { for all } i}{\Gamma \vdash_{D} \sum_{i} s_{i}: \sigma}
\end{array}
$$

Remark: Linear application does not decrease types.
The translation remains 'faithful'
Let M be a resource term. If $\Gamma \vdash_{R} M: \sigma$ then $\Gamma \vdash_{D} M^{\circ}: \sigma$

Corollary

Every model of the (typed/untyped) differential λ-calculus will also be a model of the resource calculus.

Taylor Expansion: intuition

Lambda Calculus: Taylor Expansion Formula

For λ-terms M, N we have

$$
(M N)^{\circ}=\sum_{n=0}^{\infty} \frac{1}{n!}(\mathrm{D}^{\mathrm{n}}(M) \cdot(\underbrace{N, \ldots, N}_{n \text { times }}))(0)
$$

Taylor Expansion: intuition

Lambda Calculus: Taylor Expansion Formula

For λ-terms M, N we have

$$
(M N)^{\circ}=\sum_{n=0}^{\infty} \frac{1}{n!} M[\underbrace{N, \ldots, N}_{n \text { times }}]
$$

Extension: From λ-calculus to resource calculus. . .

Taylor Expansion: intuition

Lambda Calculus: Taylor Expansion Formula
For λ-terms M, N we have

$$
(M N)^{\circ}=\bigcup_{n=0}^{\infty}\{M[\underbrace{N, \ldots, N}_{n \text { times }}]\}
$$

Extension: From λ-calculus to resource calculus...
For the sake of simplicity we consider an idempotent sum

Resource Calculus: Full Taylor Expansion

The (support of the full) Taylor Expansion M° of a term M :

- $x^{\circ}=\{x\}$,
- $(\lambda x \cdot M)^{\circ}=\lambda x \cdot M^{\circ} \quad\left(=\left\{\lambda x \cdot M^{\prime}: M^{\prime} \in M^{\circ}\right\}\right)$,
- $\left(M\left[L_{1}, \ldots, L_{\ell}, N_{1}^{1}, \ldots, N_{n}^{!}\right]\right)^{\circ}=\cup_{P \in \mathcal{M}_{f}\left(\cup_{i} N_{i}{ }^{\circ}\right)} M^{\circ}\left(\left[L_{1}{ }^{\circ}, \ldots, L_{\ell}{ }^{\circ}\right] \cdot P\right)$,

It is extended to sums \mathbb{M} by setting:

- $\left(\sum_{i} M_{i}\right)^{\circ}=\cup_{i} M_{i}^{\circ}$.

Resource Calculus: Full Taylor Expansion

The (support of the full) Taylor Expansion M° of a term M :

- $(\lambda \times \cdot M)^{\circ}=\lambda \times \cdot M^{\circ} \quad\left(=\left\{\lambda \times \cdot M^{\prime}: M^{\prime} \in M^{0}\right\}\right)$,
- $\left(M\left[L_{1}, \ldots, L_{\ell}, N_{1}^{!}, \ldots, N_{n}^{!}\right]\right)^{\circ}=\cup_{P \in \mathcal{M}_{f}\left(\cup \cup_{i} N_{i}{ }^{\circ}\right)} M^{\circ}\left(\left[L_{1}{ }^{\circ}, \ldots, L_{\ell}{ }^{\circ}\right] \cdot P\right)$,

It is extended to sums \mathbb{M} by setting:

- $\left(\sum_{i} M_{i}\right)^{\circ}=\cup_{i} M_{i}{ }^{\circ}$ Example
- $\mathbb{M}^{\circ}:=\left(\lambda z \cdot x\left[z^{!}\right]\right)^{\circ}=\left\{\lambda z \cdot x\left[z^{n}\right]: n \in\right.$ Nat $\}$,
- $\mathbb{N}^{\circ}:=\left(\lambda z \cdot x[]+\lambda z \cdot x\left[z, z^{!}\right]\right)^{\circ}=\{\lambda z \cdot x[]\} \cup\left\{\lambda z \cdot x\left[z^{n+1}\right]: n \in N a t\right\}$

Resource Calculus: Full Taylor Expansion

The (support of the full) Taylor Expansion M° of a term M :

- $x^{\circ}=\{x\}$,
- $(\lambda x \cdot M)^{\circ}=\lambda x \cdot M^{\circ} \quad\left(=\left\{\lambda x \cdot M^{\prime}: M^{\prime} \in M^{\circ}\right\}\right)$,
- $\left(M\left[L_{1}, \ldots, L_{\ell}, N_{1}^{!}, \ldots, N_{n}^{!}\right]\right)^{\circ}=\cup_{P \in \mathcal{M}_{f}\left(\cup_{i} N_{i}{ }^{\circ}\right)} M^{\circ}\left(\left[L_{1}{ }^{\circ}, \ldots, L_{\ell}{ }^{\circ}\right] \cdot P\right)$,

It is extended to sums \mathbb{M} by setting:

- $\left(\sum_{i} M_{i}\right)^{\circ}=\cup_{i} M_{i}^{\circ}$.

Example

- $\mathbb{M}^{\circ}:=\left(\lambda z \cdot x\left[z^{!}\right]\right)^{\circ}=\left\{\lambda z \cdot x\left[z^{n}\right]: n \in\right.$ Nat $\}$,
- $\mathbb{N}^{\circ}:=\left(\lambda z \cdot x[]+\lambda z \cdot x\left[z, z^{!}\right]\right)^{\circ}=\{\lambda z \cdot x[]\} \cup\left\{\lambda z \cdot x\left[z^{n+1}\right]: n \in \mathrm{Nat}\right\}$.

What about semantics?

Semantics

The differential/resource calculi are born from the analysis of the semantics of LL...

What about semantics?

Semantics

The differential/resource calculi are born from the analysis of the semantics of LL. . . however their semantical investigations are only at the beginning!

What about semantics?

Semantics

The differential/resource calculi are born from the analysis of the semantics of LL. . . however their semantical investigations are only at the beginning!

Categorical description:
λ-calculus $\Longleftarrow \mathrm{CCC}$

What about semantics?

Semantics

The differential/resource calculi are born from the analysis of the semantics of LL. . . however their semantical investigations are only at the beginning!

Categorical description:

What about semantics?

Semantics

The differential/resource calculi are born from the analysis of the semantics of LL. . . however their semantical investigations are only at the beginning!

Categorical description:
differential λ-calculus $\Longleftarrow \mathrm{CCC}+$ differential structure

What about semantics?

Semantics

The differential/resource calculi are born from the analysis of the semantics of LL. . . however their semantical investigations are only at the beginning!

Categorical description:
differential λ-calculus $\Longleftarrow \mathrm{CCC}+$ differential structure
SMCC + differential structure

Differential Categories (Blute, Cockett \& Seely ’06)
Axiomatic characterization of a derivative operator in (possibly non-closed) Symmetric Monoidal Categories + the "!" is not necessarily monoidal.

- SMCCs + monoidal "!" constitute interesting instances.

(Monoidal) Differential Categories

Additive Symmetric Monoidal Categories
Sum on terms $\quad \mapsto \quad$ sum on morphisms

A symmetric monoidal category is additive if all homsets are enriched with commutative monoids:

$$
(f+g) ; h=f ; h+g ; h \quad h ;(f+g)=h ; f+h ; g \quad 0 ; f=0=f ; 0
$$

The tensor product preserves the commutative monoid structure:

$$
(f+g) \otimes h=f \otimes h+g \otimes h \quad 0 \otimes f=0
$$

Remark

"Additive" becomes left additive in the coKleisli.

(Monoidal) Differential Categories

Coalgebra Modalities
A comonad $(!, \delta, \varepsilon)$ is a coalgebra modality if each ! A comes equipped with a natural coalgebra structure

$$
\Delta:!A \rightarrow!A \otimes!A, \quad e:!A \rightarrow \top
$$

© $(!, \Delta, e)$ is a comonoid

(2) δ is a morphism of comonoids:

(Monoidal) Differential Categories

Coalgebra Modalities
A comonad $(!, \delta, \varepsilon)$ is a coalgebra modality if each $!A$ comes equipped with a natural coalgebra structure

$$
\Delta:!A \rightarrow!A \otimes!A, \quad e:!A \rightarrow T, \text { such that: }
$$

- $(!, \Delta, e)$ is a comonoid

(2) δ is a morphism of comonoids:

(Monoidal) Differential Categories

Coalgebra Modalities
A comonad $(!, \delta, \varepsilon)$ is a coalgebra modality if each $!A$ comes equipped with a natural coalgebra structure

$$
\Delta:!A \rightarrow!A \otimes!A, \quad e:!A \rightarrow T, \text { such that: }
$$

- $(!, \Delta, e)$ is a comonoid

(2) δ is a morphism of comonoids:

(Monoidal) Differential Categories

Coalgebra Modalities

$$
\Delta:!A \rightarrow!A \otimes!A, \quad e:!A \rightarrow T, \text { such that: }
$$

- $(!, \Delta, e)$ is a comonoid

(2) δ is a morphism of comonoids:

(Monoidal) Differential Categories

Differential Combinator

Intuitions:

- A map $f: A \rightarrow B \cong$ linear map,
- A coKleisli map $f:!A \rightarrow B \cong$ abstract differentiable map from A to B,
- coKleisli $\mathbf{C}_{!} \cong$ category of abstract differentiable maps.

Differential Combinator
$D^{\otimes}: \mathbf{C}(A, B) \rightarrow \mathbf{C}(A \otimes!A, B)$

$$
\frac{f:!A \rightarrow B}{D^{\otimes}(f): A \otimes!A \rightarrow B} D^{\otimes}
$$

that must satisfy suitable equations. . . (see later)

(Monoidal) Differential Categories

Differential Combinator - Additivity \& functoriality

Additivity:

$$
D^{\otimes}(0)=0,
$$

$$
D^{\otimes}(f+g)=D^{\otimes}(f)+D^{\otimes}(g)
$$

Functoriality:

(Monoidal) Differential Categories

Differential Combinator - Axiom D1
[D1] Constant maps:

$$
D^{\otimes}\left(e_{A}\right)=0
$$

(Monoidal) Differential Categories

Differential Combinator - Axiom D1
[D1] Constant maps:

$$
D^{\otimes}\left(e_{A}\right)=0
$$

Constant functions have derivative 0 .

(Monoidal) Differential Categories

Differential Combinator - Axiom D2
[D2] Product rule:

$$
D^{\otimes}(\Delta ;(f \otimes g))=(\operatorname{Id} \otimes \Delta) ;\left(D^{\otimes}(f) \otimes g\right)+(\operatorname{Id} \otimes \Delta) ;\left(f \otimes D^{\otimes}(g)\right)
$$

(Monoidal) Differential Categories

Differential Combinator - Axiom D2
[D2] Product rule:

$$
D^{\otimes}(\Delta ;(f \otimes g))=(\operatorname{Id} \otimes \Delta) ;\left(D^{\otimes}(f) \otimes g\right)+(\operatorname{Id} \otimes \Delta) ;\left(f \otimes D^{\otimes}(g)\right)
$$

The tensor of two functions on the same arguments is morally the product of two functions.

(Monoidal) Differential Categories

Differential Combinator - Axiom D3
[D3] Linear maps:

$$
D^{\otimes}\left(\varepsilon_{A} ; f\right)=\left(\operatorname{Id} \otimes e_{A}\right) ; f
$$

(Monoidal) Differential Categories

Differential Combinator - Axiom D3
[D3] Linear maps:

$$
D^{\otimes}\left(\varepsilon_{A} ; f\right)=\left(\operatorname{Id} \otimes e_{A}\right) ; f
$$

The derivative of a map which is linear is constant.

(Monoidal) Differential Categories

Differential Combinator - Axiom D4
[D4] The chain rule:

$$
D^{\otimes}(\delta ;!f ; g)=(\operatorname{Id} \otimes \Delta) ;\left(D^{\otimes}(f) \otimes \delta ;!f\right) ; D^{\otimes}(g)
$$

(Monoidal) Differential Categories

Differential Combinator - Axiom D4
[D4] The chain rule:

$$
D^{\otimes}(\delta ;!f ; g)=(\operatorname{Id} \otimes \Delta) ;\left(D^{\otimes}(f) \otimes \delta ;!f\right) ; D^{\otimes}(g)
$$

The derivative of the composite of f and g is the derivative of f composed with the derivative of g

Differential Combinator - a simpler characterization

The whole differential structure is generated by the derivative of the identity!

$d_{A}=D^{\otimes}\left(\operatorname{Id}_{I}\right)$ is a deriving transformation, namely a transformation (natural in A) satisfying [D1-D4] rephrased.

Differential Categories - a simpler characterization

This is the reason why the differential box is "bottomless":

Differential Category - Def. 2
A differential category is an additive symmetric monoidal category with a deriving transformation $d_{A}: A \otimes!A \rightarrow!A$.

Examples of Differential Categories

- Finiteness Spaces,
- Sets and relations + the "bag functor" $M_{f}(\cdot)$ (finite multisets):

$$
d_{A}: A \otimes!A \rightarrow!A: a_{0},\left[a_{1}, \ldots, a_{n}\right] \mapsto\left[a_{0}, a_{1}, \ldots, a_{n}\right]
$$

\cap

- Sup-lattices + dual of the free \oplus-algebra (see later)
- Vector spaces ${ }_{K}^{o p}+$ opposite of free commutative algebra monad
- Convenient differential category
- Harmer-McCusker's category of games
- Other categories of games...

Differential Storage Categories

Storage modality
The comonad $(!, \delta, e)$ is a storage modality if:

- it is symmetric monoidal,
- (! $A, \Delta, e)$ commutative monoids,
- the comonoid is a morphism of the coalgebras for the comonad.

Differential storage category
A storage differential category is a differential category if:

- it has products,
- it has a storage modality.

Theorem [Blute, Cockett, Seely'09]
The coKleisly $\mathbf{C}_{!}$of a (monoidal closed) differential storage category \mathbf{C} is a Cartesian (closed) differential category.

We will see after the break.

Differential Storage Categories

Storage modality
The comonad $(!, \delta, e)$ is a storage modality if:

- it is symmetric monoidal,
- (! $A, \Delta, e)$ commutative monoids,
- the comonoid is a morphism of the coalgebras for the comonad.

Differential storage category
A storage differential category is a differential category if:

- it has products,
- it has a storage modality.

Theorem [Blute, Cockett, Seely'09]
The coKleisly $\mathbf{C}_{\text {! }}$ of a (monoidal closed) differential storage category \mathbf{C} is a Cartesian (closed) differential category. What's that?

We will see after the break...

Conclusions

We have:

- Defined the resource calculus Λ^{r},
- Shown the relationship with the differential λ-calculus,
- Explained the notion of a (monoidal) differential category (not enough to model differential λ-calculus!)

After the break we will:

- Introduced the Cartesian closed differential categories,
- Show that they model the differential λ-calculus \Rightarrow the resource calculus,
- Give types/untyped models modeling the Taylor expansion,
- Give a canonical construction SMC \mapsto Differential CCC,
- Apply the construction to categories of games
- full abstraction of MRel for Resource PCF.

Thanks for your attention!

Questions?

[^0]: $(\lambda x . y[x][x][x])\left[\mathbf{I}, z^{\prime}\right] \xrightarrow{\beta *} y[1][z][z]+y[z][1][z]+y[z][z][I] \quad$ nondeterminism

