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Introduction

The resource calculus Λr

Non-lazy version of Boudol’s resource calculus

Λr extends the notion of the λ-calculus application along two directions:

MN

1 a term is applied to a multiset of resources, called bag of resources
2 the resources can be reusable (available at will) or linear (to be used once)

Ancestors:
the λ-calculus with multiplicities by Gérard Boudol (1993)
introduced to study the observational semantics induced on the lazy
λ-calculus by Milner’s translation into the π-calculus;
the differential λ-calculus by Thomas Ehrhard and Laurent Regnier (2003)
designed starting from a denotational model of linear logic.

Syntax formalized by Paolo Tranquilli (2008)
it corresponds to the minimal fragment of the differential extension of linear
logic by Thomas Ehrhard and Laurent Regnier (2006)
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Introduction

Just another syntax for Differential Lambda Calculus

Precise link between:

Resource Calculus ↔ Differential λ-Calculus
linear resources ↔ syntactic differentiation

M[L1, . . . ,L`,N !
1, . . . ,N

!
n] ↔ D`(M) · (L1, . . . ,L`)(

∑
i Ni )

M[L1, . . . ,L`] ↔ D`(M) · (L1, . . . ,L`)(0)

Taylor Expansion Formula

(MN)◦ =
∞∑

n=0

1
n!

Dn(M) · (N, . . . ,N︸ ︷︷ ︸
n times

)(0)
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Resource Calculus

The syntax of Λr

It contains λ-calculus and a nondeterministic extension of λ-calculus and a finite resource calculus

There are three syntactic categories:
terms are in functional positions,
bags of resources are in argument position
and represent multisets of linear and
reusable terms,
sums of terms are results of the
computation.

Formally:

M,N,L := x | λx .M | MP terms

P,Q,R := [] | [M] | [M !] | P]Q bags

M,N := 0 | M |M + N sums

Λr

exponential
fragment

Λr
f finite

fragment

λ-calculus
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Resource Calculus

Will we have sums everywhere?

Nope! All operators are linear. . .

λx .(
∑

i Mi ) :=
∑

i λx .Mi
(
∑

i Mi )P :=
∑

i MiP
M(
∑

i Pi ) :=
∑

i MPi
M([

∑
i Ni ] ] P) :=

∑
i M([Ni ] ] P)

except the (·)!:

M([(
∑

i Ni )
!] ] P) := M([N !

1, . . . ,N
!
n] ] P)

0 annihilates everything (except under (·)!)

λx .0 = 0 M([0] ] P) = 0 0P = 0

M([0!] ] P) = MP

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 5 / 29



Resource Calculus

Two kind of substitutions
Usual and Linear Substitution

Two kinds of resources⇒ two kinds of substitution:
M {N/x} : usual capture free substitution,
M〈N/x〉 : linear substitution, N is substituted for exactly one linear
occurrence of x in M.

Usual Substitution
substitute all occurrences!

normalLinear Substitution (idea)
choose non-deterministically
one linear occurrence at time

(∼= differentiation)

M

x

xx
x x !

N
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Resource Calculus

Linear Substitution (formally)

M〈N/x〉 : linear substitution

On terms:

y〈N/x〉 =

{
N if x = y
0 otherwise

(λy .M)〈N/x〉 = λy .M〈N/x〉
(MP)〈N/x〉 = M〈N/x〉P + M(P〈N/x〉)

On Bags:
[]〈N/x〉 = 0
[M]〈N/x〉 = [M〈N/x〉]
[M !]〈N/x〉 = [M〈N/x〉,M !]
(P ] R)〈N/x〉 = P〈N/x〉 ] R + P ] (R〈N/x〉)

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 7 / 29



Resource Calculus

The operational semantics of Λr

β- and η- reductions

The β-reduction:

(λx .M)[L1, . . . ,L`,N !
1, . . . ,N

!
n]

β→ M〈L1/x〉 · · · 〈L`/x〉 {ΣiNi/x}

The η-reduction:
λx .M[x !]

η→ M , where x /∈ FV(M)
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Resource Calculus

Simple Type System

Types: σ, τ ::= α | σ → τ

(Rx)
Γ(x) = σ

Γ `R x : σ
(Rλ)

Γ, x : σ `R M : τ

Γ `R λx .M : σ → τ

(R@)
Γ `R M : σ → τ Γ `R P : σ

Γ `R MP : τ

(Rb)
Γ `R N : σ Γ `R P : σ

Γ `R [N(!)] ] P : σ
(R[])

Γ `R [] : σ

(R+)
Γ `R Ai : σ for all i

Γ `R
∑

i Ai : σ

Remark
Sums and bags are typed uniformly. . .

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 9 / 29



Resource Calculus

The differential λ-calculus: Syntax

Differential Lambda Terms:

s, t ,u ::= x | λx .s | sT | D(s) · t

S,T ,U ::= s | s + T | 0

Reduction Rules (→D =→β ∪ →βD ):

(β) (λx .s)t →β s{t/x}
(βD) D(λx .s) · t →βD λx . ∂s

∂x · t

Ideas:
st = usual application of λ-calculus (∼= s[t !])
D(· · · (D(s) · t1) · · · · ) · tk = linear application (∼= s[t1, . . . , tk ])
∂s
∂x · t = differential substitution (∼= s〈t/x〉)

∂(sU)
∂x · t = ( ∂s

∂x · t)U + (D(s) · ( ∂U
∂x · t))U

(∼= (s[U !])〈t/x〉 = s〈t/x〉[U !] + s[U〈t/x〉,U !])

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 10 / 29
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(β) (λx .s)t →β s{t/x}
(βD) D(λx .s) · t →βD λx . ∂s

∂x · t

Ideas:
st = usual application of λ-calculus (∼= s[t !])
D(· · · (D(s) · t1) · · · · ) · tk = linear application (∼= s[t1, . . . , tk ])
∂s
∂x · t = differential substitution (∼= s〈t/x〉)

∂(sU)
∂x · t = ( ∂s

∂x · t)U + (D(s) · ( ∂U
∂x · t))U

(∼= (s[U !])〈t/x〉 = s〈t/x〉[U !] + s[U〈t/x〉,U !])
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Resource Calculus

Translation between the two calculi

We can define a translation map

(·)◦ : Resource calculus→ Differential λ-calculus

x◦ = x ,
(λx .M)◦ = λx .M◦,

(M[~L, ~N !])◦ = (Dk (M◦) · L◦1 · · · L◦k )(
∑

i N◦i ),
0◦ = 0,
(
∑

i Mi )
◦ =

∑
i M◦i .

The translation is ‘faithful’
For M,N resource terms: M →β N implies M◦ →?

D N◦
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Resource Calculus

Simple Types in Differential Calculus

x
Γ(x) = σ

Γ `D x : σ
λ

Γ; x : σ `D s : τ

Γ `D λx .s : σ → τ

@
Γ `D s : σ → τ Γ `D t : σ

Γ `D st : τ
D

Γ `D s : σ → τ Γ `D t : σ

Γ `D D(s) · t : σ → τ

0
Γ `D 0 : σ

sum
Γ `D si : σ for all i

Γ `D
∑

i si : σ

Remark: Linear application does not decrease types.

The translation remains ‘faithful’
Let M be a resource term. If Γ `R M : σ then Γ `D M◦ : σ

Corollary

Every model of the (typed/untyped) differential λ-calculus will also be a model
of the resource calculus.
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Resource Calculus

Taylor Expansion: intuition

Lambda Calculus: Taylor Expansion Formula

For λ-terms M,N we have

(MN)◦ =
∞∑

n=0

1
n!

(Dn(M) · (N, . . . ,N︸ ︷︷ ︸
n times

))(0)
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For λ-terms M,N we have

(MN)◦ =
∞∑

n=0

1
n!
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Extension: From λ-calculus to resource calculus. . .
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Resource Calculus

Taylor Expansion: intuition

Lambda Calculus: Taylor Expansion Formula

For λ-terms M,N we have

(MN)◦ =
∞⋃

n=0

{M[N, . . . ,N︸ ︷︷ ︸
n times

]}

Extension: From λ-calculus to resource calculus. . .
For the sake of simplicity we consider an idempotent sum
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Resource Calculus

Resource Calculus: Full Taylor Expansion

Λr P(Λr
f )

(·)◦

The (support of the full) Taylor Expansion M◦ of a term M:
x◦ = {x},
(λx .M)◦ = λx .M◦ (= {λx .M ′ : M ′ ∈ M◦}),
(M[L1, . . . ,L`,N !

1, . . . ,N
!
n])
◦

= ∪P∈Mf (∪i Ni
◦)M◦([L1

◦, . . . ,L`◦] · P),
It is extended to sums M by setting:

(
∑

i Mi )
◦ = ∪iMi

◦.

Example

M◦ := (λz.x [z !])
◦

= {λz.x [zn] : n ∈ Nat},
N◦ := (λz.x [] + λz.x [z, z !])

◦
= {λz.x []} ∪ {λz.x [zn+1] : n ∈ Nat}.
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Resource Calculus

What about semantics?

Semantics
The differential/resource calculi are born from the analysis of the semantics of
LL. . . however their semantical investigations are only at the beginning!

Categorical description:

λ-calculus ks +3 CCC

SMCC

Differential Categories (Blute, Cockett & Seely ’06)

Axiomatic characterization of a derivative operator in (possibly non-closed)
Symmetric Monoidal Categories + the “!” is not necessarily monoidal.

SMCCs + monoidal “!” constitute interesting instances.
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(Monoidal) Differential Categories

(Monoidal) Differential Categories
Additive Symmetric Monoidal Categories

Sum on terms 7→ sum on morphisms

A symmetric monoidal category is additive if all homsets are enriched with
commutative monoids:

(f + g); h = f ; h + g; h h; (f + g) = h; f + h; g 0; f = 0 = f ; 0

The tensor product preserves the commutative monoid structure:

(f + g)⊗ h = f ⊗ h + g ⊗ h 0⊗ f = 0

Remark
“Additive” becomes left additive in the coKleisli.
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(Monoidal) Differential Categories

(Monoidal) Differential Categories
Coalgebra Modalities

A comonad (!, δ, ε) is a coalgebra modality if each !A comes equipped with a
natural coalgebra structure

∆ : !A→ !A⊗ !A, e : !A→ >, such that:

1 (!,∆,e) is a comonoid

!A

∆

��

Id

{{

Id

##

!A ∆ //

∆

��

!A⊗ !A

∆⊗Id
��

!A !A⊗ !A
e⊗Idoo Id⊗e // !A !A⊗ !A

Id⊗∆
// !A⊗ !A⊗ !A

2 δ is a morphism of comonoids:

!A δ //

e   

!!A

e
~~

!A δ //

∆
��

!!A

∆
��

> !A⊗ !A
δ⊗δ

// !!A⊗ !!A
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e
~~
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∆
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!!A

∆
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δ⊗δ

// !!A⊗ !!A

The “!” is not (necessarily) monoidal!
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(Monoidal) Differential Categories

(Monoidal) Differential Categories
Differential Combinator

Intuitions:
A map f : A→ B ∼= linear map,
A coKleisli map f : !A→ B ∼= abstract differentiable map from A to B,
coKleisli C!

∼= category of abstract differentiable maps.

Differential Combinator

D⊗ : C(A,B)→ C(A⊗ !A,B)

f : !A→ B
D⊗(f ) : A⊗ !A→ B D⊗

that must satisfy suitable equations. . . (see later)
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(Monoidal) Differential Categories

(Monoidal) Differential Categories
Differential Combinator - Additivity & functoriality

Additivity:

D⊗(0) = 0, D⊗(f + g) = D⊗(f ) + D⊗(g).

Functoriality:

!A f //

!u

��

B

v

��

A⊗ !A
D⊗(f ) //

u⊗!u

��

B

v

��

7→

!C
g // D C ⊗ !C

D⊗(g) // D
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(Monoidal) Differential Categories

(Monoidal) Differential Categories
Differential Combinator - Axiom D1

[D1] Constant maps:
D⊗(eA) = 0
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(Monoidal) Differential Categories

(Monoidal) Differential Categories
Differential Combinator - Axiom D1

[D1] Constant maps:
D⊗(eA) = 0

Constant functions have derivative 0.
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(Monoidal) Differential Categories

(Monoidal) Differential Categories
Differential Combinator - Axiom D2

[D2] Product rule:

D⊗(∆; (f ⊗ g)) = (Id⊗∆); (D⊗(f )⊗ g) + (Id⊗∆); (f ⊗ D⊗(g))
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(Monoidal) Differential Categories

(Monoidal) Differential Categories
Differential Combinator - Axiom D2

[D2] Product rule:

D⊗(∆; (f ⊗ g)) = (Id⊗∆); (D⊗(f )⊗ g) + (Id⊗∆); (f ⊗ D⊗(g))

The tensor of two functions on the same arguments is
morally the product of two functions.
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(Monoidal) Differential Categories

(Monoidal) Differential Categories
Differential Combinator - Axiom D3

[D3] Linear maps:
D⊗(εA; f ) = (Id⊗ eA); f
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(Monoidal) Differential Categories

(Monoidal) Differential Categories
Differential Combinator - Axiom D3

[D3] Linear maps:
D⊗(εA; f ) = (Id⊗ eA); f

The derivative of a map which is linear is constant.
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(Monoidal) Differential Categories

(Monoidal) Differential Categories
Differential Combinator - Axiom D4

[D4] The chain rule:

D⊗(δ; !f ; g) = (Id⊗∆); (D⊗(f )⊗ δ; !f ); D⊗(g)
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(Monoidal) Differential Categories

(Monoidal) Differential Categories
Differential Combinator - Axiom D4

[D4] The chain rule:

D⊗(δ; !f ; g) = (Id⊗∆); (D⊗(f )⊗ δ; !f ); D⊗(g)

The derivative of the composite of f and g is the derivative
of f composed with the derivative of g
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(Monoidal) Differential Categories

Differential Combinator - a simpler characterization

The whole differential structure is generated by the derivative of the identity!

!A
Id!A //

!IdA

��

!A

f

��

A⊗ !A
D⊗(Id!A) //

IdA⊗!IdA

��

!A

f

��

7→

!A f // !A A⊗ !A
D⊗(f ) // !A

dA = D⊗(Id!A) is a deriving transformation, namely a transformation (natural
in A) satisfying [D1-D4] rephrased.
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(Monoidal) Differential Categories

Differential Categories - a simpler characterization

This is the reason why the differential box is “bottomless”:

Differential Category - Def. 2

A differential category is an additive symmetric monoidal category with a
deriving transformation dA : A⊗ !A→ !A.
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(Monoidal) Differential Categories

Examples of Differential Categories

Finiteness Spaces,
Sets and relations + the “bag functor” Mf (·) (finite multisets):

dA : A⊗ !A→ !A : a0, [a1, . . . ,an] 7→ [a0,a1, . . . ,an]⋂
Sup-lattices + dual of the free ⊕-algebra (see later)
Vector spacesop

K + opposite of free commutative algebra monad
Convenient differential category
Harmer-McCusker’s category of games
Other categories of games. . .
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(Monoidal) Differential Categories

Differential Storage Categories

Storage modality

The comonad (!, δ,e) is a storage modality if:
it is symmetric monoidal,
(!A,∆,e) commutative monoids,
the comonoid is a morphism of the coalgebras for the comonad.

Differential storage category

A storage differential category is a differential category if:
it has products,
it has a storage modality.

Theorem [Blute, Cockett, Seely’09]

The coKleisly C! of a (monoidal closed) differential storage category C is a
Cartesian (closed) differential category. What’s that?

We will see after the break. . .
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Conclusion

Conclusions

We have:
Defined the resource calculus Λr ,
Shown the relationship with the differential λ-calculus,
Explained the notion of a (monoidal) differential category
(not enough to model differential λ-calculus!)

After the break we will:
Introduced the Cartesian closed differential categories,
Show that they model the differential λ-calculus⇒ the resource calculus,
Give types/untyped models modeling the Taylor expansion,
Give a canonical construction SMC 7→ Differential CCC,
Apply the construction to categories of games

full abstraction of MRel for Resource PCF.
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Conclusion

Thanks for your attention!

Questions?
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