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Introduction

The resource calculus A’

Non-lazy version of Boudol’s resource calculus

@ A’ extends the notion of the \-calculus application along two directions:

MN

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 2/29



Introduction

The resource calculus A’

Non-lazy version of Boudol’s resource calculus

@ A’ extends the notion of the \-calculus application along two directions:
M[Nh"'aNn]

@ atermis applied to a multiset of resources, called bag of resources

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 2/29



Introduction

The resource calculus A’
Non-lazy version of Boudol’s resource calculus
@ A’ extends the notion of the \-calculus application along two directions:
M[L17"'7L€aN1!7"'7Nr!7]

@ atermis applied to a multiset of resources, called bag of resources
@ the resources can be reusable (available at will) or linear (to be used once)

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 2/29



Introduction

The resource calculus A’

Non-lazy version of Boudol’s resource calculus

@ A’ extends the notion of the \-calculus application along two directions:
M[L17"'7L€aN1!7"'7Nr!7]

@ atermis applied to a multiset of resources, called bag of resources
@ the resources can be reusable (available at will) or linear (to be used once)

@ Ancestors:
e the A-calculus with multiplicities by Gérard Boudol (1993)
introduced to study the observational semantics induced on the lazy
A-calculus by Milner’s translation into the w-calculus;
e the differential A-calculus by Thomas Ehrhard and Laurent Regnier (2003)
designed starting from a denotational model of linear logic.
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Introduction

The resource calculus A’

Non-lazy version of Boudol’s resource calculus

@ A’ extends the notion of the \-calculus application along two directions:
M[L17"'7L€aN1!7"'7Nr!7]

@ atermis applied to a multiset of resources, called bag of resources
@ the resources can be reusable (available at will) or linear (to be used once)
@ Ancestors:
e the A-calculus with multiplicities by Gérard Boudol (1993)
introduced to study the observational semantics induced on the lazy
A-calculus by Milner’s translation into the w-calculus;
e the differential A-calculus by Thomas Ehrhard and Laurent Regnier (2003)
designed starting from a denotational model of linear logic.

@ Syntax formalized by Paolo Tranquilli (2008)

@ it corresponds to the minimal fragment of the differential extension of linear
logic by Thomas Ehrhard and Laurent Regnier (2006)
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Introduction

Just another syntax for Differential Lambda Calculus

Precise link between:

Differential A-Calculus
syntactic differentiation

DYM) - (L, ..., Lo)(3; Ny)
DYM) - (L1, ...,L)(0)

Resource Calculus
linear resources
M[L1,...,L5,N1’7...,N},]
MLy, ..., L]

T e
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Introduction

Just another syntax for Differential Lambda Calculus

Precise link between:

Resource Calculus < Differential A-Calculus
linear resources “ syntactic differentiation
M[L1,...,Lg,N1!,...,N,!7] — DZ(M)(L“,LZ)(ZIN,)
M[Ly...., L] & D(M)-(Ly.....L)0)
Taylor Expansion Formula
A
MN)° = —D"(M)-(N,...,N)(O
(MN)" =3 707 - )(0)

n times
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Resource Calculus

The syntax of A’

There are three syntactic categories:
@ terms are in functional positions,

@ bags of resources are in argument position
and represent multisets of linear and
reusable terms,

@ sums of terms are results of the
computation.
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The syntax of A’

It contains \-calculus

/\r
There are three syntactic categories:

@ terms are in functional positions,

@ bags of resources are in argument position
and represent multisets of linear and
reusable terms,

@ sums of terms are results of the
computation.
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Resource Calculus

The syntax of A’

It contains A-calculus and a nondeterministic extension of A-calculus

exponential
Ny fragment
There are three syntactic categories:
@ terms are in functional positions,

@ bags of resources are in argument position
and represent multisets of linear and
reusable terms,

@ sums of terms are results of the
computation.

Formally:
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P,Q,R =] |[M]|[M]|PyQ bags
M, N =0|M|M+N sums
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Resource Calculus
Th ntax of A’
e syntax o
It contains \-calculus and a nondeterministic extension of A-calculus and a finite resource calculus

exponential
fragment

There are three syntactic categories:
@ terms are in functional positions,

@ bags of resources are in argument position
and represent multisets of linear and
reusable terms,

@ sums of terms are results of the
computation.

Formally:
M,N,L :=x]|\x.M|MP terms
P,Q,R =] |[M]|[M]|PyQ bags
M, N =0|M|M+N sums _ ///\;finite

fragment
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Resource Calculus

Will we have sums everywhere?

Nope! All operators are linear. ..

/\X'(ZiMi) = Z,- )\X.M,'
Qi MP = 3, MP
M2 P) = X MP;

M2 Nil @ P) >.iM(INJw P)
except the (-)":
M([(X; Ni)' 1 P) == M([N;, ..., N;] & P)

0 annihilates everything (except under (-)")

Ax0=0 M([O]JuP)=0 O0P=0
M([0'] & P) = MP
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Resource Calculus

Two kind of substitutions

Usual and Linear Substitution

Two kinds of resources = two kinds of substitution:
@ M{N/x} : usual capture free substitution,

@ M(N/x) : linear substitution, N is substituted for exactly one linear
occurrence of x in M.

1% N

Usual Substitution
substitute all occurrences!

Giulio Manzonetto (RU) Differential Model Theory 11/06/11

6/29



Resource Calculus

Two kind of substitutions

Usual and Linear Substitution

Two kinds of resources = two kinds of substitution:
@ M{N/x} : usual capture free substitution,

@ M(N/x) : linear substitution, N is substituted for exactly one linear
occurrence of x in M.

1% N

N
(

Usual Substitution
substitute all occurrences!

Giulio Manzonetto (RU) Differential Model Theory 11/06/11

6/29



Resource Calculus

Two kind of substitutions

Usual and Linear Substitution

Two kinds of resources = two kinds of substitution:
@ M{N/x} : usual capture free substitution,
@ M(N/x) : linear substitution, N is substituted for exactly one linear
occurrence of x in M.

M{N/x}

Usual Substitution
substitute all occurrences!

Giulio Manzonetto (RU) Differential Model Theory 11/06/11

6/29



Resource Calculus

Two kind of substitutions

Usual and Linear Substitution

Two kinds of resources = two kinds of substitution:
@ M{N/x} : usual capture free substitution,
@ M(N/x) : linear substitution, N is substituted for exactly one linear
occurrence of x in M.

M N M(N/x)

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 6/29



Resource Calculus

Two kind of substitutions

Usual and Linear Substitution

Two kinds of resources = two kinds of substitution:
@ M{N/x} : usual capture free substitution,

@ M(N/x) : linear substitution, N is substituted for exactly one linear
occurrence of x in M.

M N M(N/x)

Giulio Manzonetto (RU) Differential Model Theory 11/06/11

6/29



Resource Calculus

Two kind of substitutions

Usual and Linear Substitution

Two kinds of resources = two kinds of substitution:
@ M{N/x} : usual capture free substitution,

@ M(N/x) : linear substitution, N is substituted for exactly one linear
occurrence of x in M.

M N M(N/x)

Giulio Manzonetto (RU) Differential Model Theory 11/06/11

6/29



Resource Calculus

Two kind of substitutions

Usual and Linear Substitution

Two kinds of resources = two kinds of substitution:
@ M{N/x} : usual capture free substitution,

@ M(N/x) : linear substitution, N is substituted for exactly one linear
occurrence of x in M.

M N M(N/x)

Giulio Manzonetto (RU) Differential Model Theory 11/06/11

6/29



Resource Calculus

Two kind of substitutions

Usual and Linear Substitution

Two kinds of resources = two kinds of substitution:
@ M{N/x} : usual capture free substitution,

@ M(N/x) : linear substitution, N is substituted for exactly one linear
occurrence of x in M.

M N M(N/x)

Giulio Manzonetto (RU) Differential Model Theory 11/06/11

6/29



Resource Calculus

Two kind of substitutions

Usual and Linear Substitution

Two kinds of resources = two kinds of substitution:
@ M{N/x} : usual capture free substitution,

@ M(N/x) : linear substitution, N is substituted for exactly one linear
occurrence of x in M.

M N M(N/x)

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 6/29



Resource Calculus

Two kind of substitutions

Usual and Linear Substitution

Two kinds of resources = two kinds of substitution:
@ M{N/x} : usual capture free substitution,

@ M(N/x) : linear substitution, N is substituted for exactly one linear
occurrence of x in M.

M N M(N/x)

Giulio Manzonetto (RU) Differential Model Theory 11/06/11

6/29



Resource Calculus

Linear Substitution (formally)

M(N/x) : linear substitution

On terms: N it
fx=y
y{N/x) = { 0 otherwise
(Ay-M){N/x) = Ay-M(N/x)
(MP)(N/x) = M(N/x)P + M(P(N/x))
On Bags:

[l(N/x) =0

[MI(N/x) = [M(N/x)]

[MT(N/x) = [M(N/x), M']

(Pu R)(N/x) = PIN/x) & R + Pw (R(N/X))
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Resource Calculus

The operational semantics of A’

(3- and 7- reductions

The B-reduction:

OXM)[Li, ... Lo, N, N 2 M(Ly /)

Giulio Manzonetto (RU) Differential Model Theory

- (Le/X) {ZiNi/ x}
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Resource Calculus

The operational semantics of A’

(3- and 7- reductions

The B-reduction:

OXM)[Lt, . Lo N NS 2 MLy /XY -+ (L /x) (SN /x)

The n-reduction:
Ax.M[x'] L M, where x ¢ FV(M)
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Resource Calculus

The operational semantics of A’

(3- and 7- reductions
The S-reduction:

OXM)[La, .. Lo N NS D MLy /XY - (L /x) {ZiN;/x )}

The n-reduction:
AX.M[x'] 2 M, where x ¢ FV(M)

Example

L((a;)l( )7)[|] 2 x(l/x) {0/x} =1{0/x} =1 nice term

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 8/29



Resource Calculus

The operational semantics of A’

(3- and 7- reductions
The S-reduction:

OXM)[La, .. Lo N NS D MLy /XY - (L /x) {ZiN;/x )}

The n-reduction:
AX.M[x'] 2 M, where x ¢ FV(M)

Example

Letl:= Ax.x:
(M.x)[] - x{0/x} =0 starvation
(A X)L — x{1/x){1/x) {0/x} =Kl/x){0/x} =0 surfeit
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Resource Calculus

The operational semantics of A’

(3- and 7- reductions
The S-reduction:

OXM)[La, .. Lo N NS D MLy /XY - (L /x) {ZiN;/x )}

The n-reduction:
AX.M[x'] 2 M, where x ¢ FV(M)

Example
Letl:= \x.x:

(YD 215 ylllzl[z) + yiZINiZ] + vl nondeterminism
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Resource Calculus

The operational semantics of A’

(3- and 7- reductions

The S-reduction:

OXM)[La, .. Lo N NS D MLy /XY - (L /x) {ZiN;/x )}

The n-reduction:
AX.M[x'] 2 M, where x ¢ FV(M)

Example

Letl:=

(Ax. x)[I] —> x<l/x> {0/x} =1{0/x} =1 nice term
(M.x)[] - x{0/x} =0 starvation
(A X)L — x{1/x){1/x) {0/x} =Kl/x){0/x} =0 surfeit
Ox.y[x][X][XDI, 2] i yiz]l[z] + y[zl[z] + y[z][z][l] nondeterminism
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Resource Calculus

The operational semantics of A’

(3- and 7- reductions

The B-reduction:

OXM)[La, .o Lo N NS 2 MLy /XY -+ (L /x) TSN/ x )}

The n-reduction:
Ax.M[x'] 2 M, where x ¢ FV(M)

Theorem [Pagani-Tranquilli APLAS’09]
@ — 3 is confluent.
@ — 3 enjoys a standardization property.
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Resource Calculus

Simple Type System

Types: 0,7 i=«a |0 =T

N MNx)=o . Mx:obFpM:7
(Rx) lFprXx:o (RA) TR AXM:o— 1
(RO) Fr'YeM:0 -7 TFRP:0o

Fr~r MP : 1

|_|—RN:CT |_|—RPZO'
Mg [N(!)]&JP:U

(Rb) (R)

rl—,c,v []ZU
Fr-pA:o for all i

(R+) Mg jAi:o

Remark
Sums and bags are typed uniformly. ..
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Resource Calculus

The differential A-calculus: Syntax

Differential Lambda Terms:
s,tbuz=x|Ax.s|sT|D(s)-t

ST,U:=s|s+T|0

Reduction Rules (—p = —3 U —g,):

(B)  (Ax.s)t =5 s{t/x}
(Bp) D(AX.S) -t —p, AXx.25 -t

Ideas:
@ st = usual application of A-calculus
@ D(---(D(s)- 1) - ---) - Iy = linear application
o 9.t = differential substitution
o WUt = (2. U+ (D(s)- (2 -t)U
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Resource Calculus

The differential A-calculus: Syntax

Differential Lambda Terms:
s,tbuz=x|Ax.s|sT|D(s)-t
S, T,U:=s|s+T|O0
Reduction Rules (—p = —3 U —g,):

(B)  (Ax.s)t =5 s{t/x}
(Bp) D(AX.S) -t —p, AXx.25 -t

Ideas:
@ st = usual application of A-calculus (= s[t'])
@ (D(---(D(s)-t)----)- t)0 = linear application (= s[ti, ..., k])
e 9.t = differential substitution
o WU t— (2. U+ (D(s)- (2L -t)U
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Resource Calculus

The differential A-calculus: Syntax

Differential Lambda Terms:
s,tbuz=x|Ax.s|sT|D(s)-t

ST,U:=s|s+T|0

Reduction Rules (—p = —3 U —g,):

(8)  (Ax.s)t —p s{t/x}
(ﬁD) D()\X.S) t—3, )\X -t

Ideas:
@ st = usual application of A-calculus (= s[t'])
@ D(---(D(s) - t4)---+) - tx = linear application (= s[t1, ..., &])
o I t_d|fferent|al substitution (= s(t/x))

= (5 - U+ (D(s)- (55 - HHU

(slUN)(t/x) = s(t/x)[U] + s[U(t/x), UT])

W
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Resource Calculus

Translation between the two calculi

We can define a translation map

(-)° : Resource calculus — Differential A-calculus

@ X° = X,

@ (Ax.M)° = Ax.M°,

o (ML, N')° = (D¥(M°) - L3 -+ L3)(32; N?),
@ 0°=0,

o (X, M) =M.

The translation is ‘faithful’
For M, N resource terms: M —3 N implies M° —7 N°

Giulio Manzonetto (RU) Differential Model Theory 11/06/11
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Resource Calculus

Simple Types in Differential Calculus

. rMx)=o Mx:oFps:t
FpXx:o lFpAX.S:0o—T
ltkps:o—71 Thpt:o ltFps:o—71 Thpt:o
Mepst:r o D(s) - t:o— T

Npsi:o foralli
o—— sum

NFpO:o Fp>si:o
Remark: Linear application does not decrease types.

The translation remains ‘faithful’
Let M be aresourceterm. lf g M : o thenl Fp M° : o
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Resource Calculus

Simple Types in Differential Calculus

rx)=o Mx:ockFps:t
Trox:o TFp \X.S:0 T
ltkps:o—71 Thpt:o ltFps:o—71 Thpt:o
Mepst:r o D(s) - t:o— T
0 sum Npsi:o foralli
NFpO:o Fp>si:o

Remark: Linear application does not decrease types.

The translation remains ‘faithful’
Let M be aresourceterm. lf g M : o thenl Fp M° : o

Corollary

Every model of the (typed/untyped) differential A-calculus will also be a model
of the resource calculus.
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Resource Calculus

Taylor Expansion: intuition

Lambda Calculus: Taylor Expansion Formula
For A-terms M, N we have

(MN)° ZO; (N,...,N))0)

n times
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Resource Calculus

Taylor Expansion: intuition

Lambda Calculus: Taylor Expansion Formula
For A-terms M, N we have

——
n times

(MN)* =" %M[N, ...,N]
n=0

Extension: From A-calculus to resource calculus. ..
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Resource Calculus

Taylor Expansion: intuition

Lambda Calculus: Taylor Expansion Formula
For A-terms M, N we have

(MN)® U{M[N NI}

n times

Extension: From A-calculus to resource calculus. . .
For the sake of simplicity we consider an idempotent sum
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Resource Calculus

Resource Calculus: Full Taylor Expansion

P(A7)

The (support of the full) Taylor Expansion M° of a term M:

@ x° = {x},

o (M\X.M)° = Ix.M° (={>xM: M e M},

® (M[Li,....Le, Nj,... NS = Upea,umeyMe([L1°, ... L] - P),
It is extended to sums M by setting:

() (Z/ M,')O = U;M°.
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Resource Calculus: Full Taylor Expansion

P(A7)
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Resource Calculus

Resource Calculus: Full Taylor Expansion

P(A7)

The (support of the full) Taylor Expansion M° of a term M:

@ x° = {x},

o (M\X.M)° = Ix.M° (={>xM: M e M},

® (M[Li,....Le, Nj,... NS = Upea,umeyMe([L1°, ... L] - P),
It is extended to sums M by setting:

() (Z/ M,’)O = U;M°.

Example

@ M° := (\z.x[Z])° = {\z.x[2"] : n € Nat},
@ N° = (\z.x[] + Az.x[z,2'])° = {\z.x[]} U {\z.x[2"""] : n € Nat}.

Giulio Manzonetto (RU) Differential Model Theory 11/06/11

14/29



Resource Calculus

What about semantics?

Semantics

The differential/resource calculi are born from the analysis of the semantics of
LL...
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Resource Calculus

What about semantics?

Semantics

The differential/resource calculi are born from the analysis of the semantics of
LL...however their semantical investigations are only at the beginning!

Categorical description:

A-calculus <——= CCC

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 15/29



Resource Calculus

What about semantics?

Semantics

The differential/resource calculi are born from the analysis of the semantics of
LL...however their semantical investigations are only at the beginning!

Categorical description:

A-calculus <——= CCC
A
coKleisli

I
I
I
[
I

SMCC
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Resource Calculus

What about semantics?

Semantics

The differential/resource calculi are born from the analysis of the semantics of
LL...however their semantical investigations are only at the beginning!

Categorical description:

differential \-calculus <——= CCC + differential structure
coKleisli
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SMCC + differential structure
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Resource Calculus

What about semantics?

Semantics

The differential/resource calculi are born from the analysis of the semantics of
LL...however their semantical investigations are only at the beginning!

Categorical description:

differential \-calculus <——= CCC + differential structure

I
I
coKleisli |
|

\
SMCC + differential structure
Differential Categories (Blute, Cockett & Seely '06)

Axiomatic characterization of a derivative operator in (possibly non-closed)
Symmetric Monoidal Categories + the “I” is not necessarily monoidal.

@ SMCCs + monoidal “I” constitute interesting instances.

Giulio Manzonetto (RU)
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(Monoidal) Differential Categories

(Monoidal) Differential Categories

Additive Symmetric Monoidal Categories

Sum on terms — sum on morphisms

A symmetric monoidal category is additive if all homsets are enriched with
commutative monoids:

(f+g);h=Ffh+gh h,(f+g)=hf+hg 0;f=0=f;0

The tensor product preserves the commutative monoid structure:

(f+g)eoh=feoh+goh 0®f=0

Remark
“Additive” becomes left additive in the coKleisli.

Giulio Manzonetto (RU) Differential Model Theory 11/06/11
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(Monoidal) Differential Categories

(Monoidal) Differential Categories

Coalgebra Modalities

A comonad (!, 4,¢) is a coalgebra modality if each !A comes equipped with a
natural coalgebra structure

A:A=STAR A, e:'A—>T,

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 17/29



(Monoidal) Differential Categories

(Monoidal) Differential Categories

Coalgebra Modalities

A comonad (!, 4,¢) is a coalgebra modality if each !A comes equipped with a
natural coalgebra structure

A:TA-S TAR A, e:!A— T, such that:

@ (!, A, e)is a comonoid

A
A A A® A
Id Id
A A\L lA@Id
e®lId Id®e
IA<—AQRIA——|A AQIA———— = TARQ AR A
ld®A
Giulio Manzonetto (RU) Differential Model Theory
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(Monoidal) Differential Categories

(Monoidal) Differential Categories

Coalgebra Modalities

A comonad (!, 4,¢) is a coalgebra modality if each !A comes equipped with a
natural coalgebra structure

A:TA-S TAR A, e:!A— T, such that:

@ (!, A, e)is a comonoid

1A 1A A AR IA
1d A d A\L lA@Id
A< A 14128 A AGIA——— = 1ABIAB A

@ J is a morphism of comonoids:

A IA 0 A

SN
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(Monoidal) Differential Categories

(Monoidal) Differential Categories

Coalgebra Modalities

A co with a
li'” 3 . . '
natura The “1” is not (necessarily) monoidal!

A A— TAR A, e:!A— T, such that:
@ (!, A, e)is a comonoid

A 1A a IA® 1A
Id A Id Al lA@Id
AL 0014120 2 4 !A®!AT®A>!A®!A®!A

@ J is a morphism of comonoids:

A% A 1A i A

~ A . 5
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(Monoidal) Differential Categories

(Monoidal) Differential Categories

Differential Combinator

Intuitions:
@ Amap f: A— B2 linear map,
@ A coKleislimap f: |A — B = abstract differentiable map from A to B,
@ coKleisli C, = category of abstract differentiable maps.

Differential Combinator
D® :C(A,B) -~ C(A® A B)

fi1A- B
D%(f): A® 1A — B

D®

that must satisfy suitable equations. . . (see later)
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(Monoidal) Differential Categories

(Monoidal) Differential Categories

Differential Combinator - Additivity & functoriality

Additivity:
D%(0) =0, D®(f + g) = D*(f) + D%(g).
Functoriality:
D¥(f)
A" .pB A A————=B
lu l/v — u®'lu v
[Y
c— 9% .p coic—29 . p
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(Monoidal) Differential Categories

(Monoidal) Differential Categories

Differential Combinator - Axiom D1

[D1] Constant maps:
D®(ea) =0
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(Monoidal) Differential Categories

(Monoidal) Differential Categories

Differential Combinator - Axiom D1

[D1] Constant maps:
D®(6A) =0

Constant functions have derivative 0.
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(Monoidal) Differential Categories
(Monoidal) Differential Categories
Differential Combinator - Axiom D2
[D2] Product rule:
D#(A;(f®g)) = (lde A); (D®(f)® g) + (Id® A); (f® D(g))
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(Monoidal) Differential Categories
(Monoidal) Differential Categories
Differential Combinator - Axiom D2
[D2] Product rule:
D®(A;(f®g)) = (1d® A); (D®(f)® g) + (1d@ A); (f ® D(g))

The tensor of two functions on the same arguments is
morally the product of two functions.

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 21/29



(Monoidal) Differential Categories

(Monoidal) Differential Categories

Differential Combinator - Axiom D3

[D3] Linear maps:
D®(ea; f) = (1d ® en); f

AR

1A

- LA
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(Monoidal) Differential Categories

(Monoidal) Differential Categories

Differential Combinator - Axiom D3

[D3] Linear maps:
D®(ea; f) = (1d ® en); f

The derivative of a map which is linear is constant.

A A

1A @
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(Monoidal) Differential Categories

(Monoidal) Differential Categories

Differential Combinator - Axiom D4

[D4] The chain rule:

D®(5;1f;9) = (Id ® A); (D®(f) @ 6;'f); D®(g)

\
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(Monoidal) Differential Categories

(Monoidal) Differential Categories

Differential Combinator - Axiom D4

[D4] The chain rule:

D®(5;1f;9) = (Id ® A); (D®(f) @ 6;'f); D®(g)

The derivative of the composite of f and g is the derivative
of f composed with the derivative of g
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(Monoidal) Differential Categories

Differential Combinator - a simpler characterization

The whole differential structure is generated by the derivative of the identity!

Idia D® (1d,a)

1A A ApiA— 21D 4
Ida f — Ida®!da f
A—" A AiA— 20 a

da = D®(1d,4) is a deriving transformation, namely a transformation (natural
in A) satisfying [D1-D4] rephrased.
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(Monoidal) Differential Categories

Differential Categories - a simpler characterization

This is the reason why the differential box is “bottomless”:

Differential Category - Def. 2

A differential category is an additive symmetric monoidal category with a

deriving transformation da : A® A — |A.
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(Monoidal) Differential Categories

Examples of Differential Categories

@ Finiteness Spaces,
@ Sets and relations + the “bag functor” M;(-) (finite multisets):

da: AR A= 1A ap,[a1,...,an — lao, a1, ..., an)
N
@ Sup-lattices + dual of the free @®-algebra (see later)
@ Vector spaces%D + opposite of free commutative algebra monad
@ Convenient differential category
@ Harmer-McCusker’s category of games
@ Other categories of games...
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(Monoidal) Differential Categories

Differential Storage Categories

Storage modality
The comonad (!, 4, e) is a storage modality if:
@ it is symmetric monoidal,
@ (!A A, e) commutative monoids,
@ the comonoid is a morphism of the coalgebras for the comonad.

Differential storage category

A storage differential category is a differential category if:
@ it has products,
@ it has a storage modality.
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(Monoidal) Differential Categories

Differential Storage Categories

Storage modality
The comonad (!, 4, e) is a storage modality if:
@ it is symmetric monoidal,
@ (!A, A, e) commutative monoids,
@ the comonoid is a morphism of the coalgebras for the comonad.

Differential storage category

A storage differential category is a differential category if:
@ it has products,
@ it has a storage modality.

Theorem [Blute, Cockett, Seely’09]

The coKleisly C, of a (monoidal closed) differential storage category C is a
Cartesian (closed) differential category. What's that?

We will see after the break. ..
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Conclusion

Conclusions

We have:
@ Defined the resource calculus A’
@ Shown the relationship with the differential A-calculus,

@ Explained the notion of a (monoidal) differential category
(not enough to model differential A-calculus!)

After the break we will:
@ Introduced the Cartesian closed differential categories,
@ Show that they model the differential A-calculus =- the resource calculus,
@ Give types/untyped models modeling the Taylor expansion,
@ Give a canonical construction SMC — Differential CCC,

@ Apply the construction to categories of games
o full abstraction of MRel for Resource PCF.
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Conclusion

Thanks for your attention!

Questions?
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