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Cartesian Closed Differential Categories

Differential Categories

The differential λ-calculus inspired researchers working on category theory.
Aim: Axiomatize a differential operator D(−) categorically.

Differential categories

Blute, Cockett and Seely proposed:
BCS’06: (monoidal) differential categories

point of view too fine

BCS’09: Cartesian differential categories
sound and complete for their term calculus,
lack of higher order functions!

Not enough for modeling the differential λ-calculus!!!
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Cartesian Closed Differential Categories

Left Additive Categories

We have sums of λ-terms and the application is left-linear:

(
∑

i si )t =
∑

i si t s(
∑

i ti ) 6=
∑

i sti

We need a left-additive sum on morphisms!

A category C is left-additive if:
each homset has a structure of commutative monoid (C(A,B),+AB,0AB),
f ; (g + h) = (f ; g) + (f ; h) and f ; 0 = 0.

When f satisfies also (g + h); f = (g; f ) + (h; f ) and 0; f = 0 it is called
additive. (weak form of linearity)
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Cartesian Closed Differential Categories

Cartesian (Closed) Left-additive Categories

A category C is Cartesian left-additive if:
C is a left-additive category,
it is Cartesian (= it has products),
all projections and pairings of additive maps are additive.

A category C is Cartesian closed left-additive if:
C is Cartesian left-additive,
it is a ccc (Λ(−) = curry, ev =eval),
it satisfies Λ(f + g) = Λ(f ) + Λ(g) and Λ(0) = 0.
(implies 〈f + g,h〉; ev = 〈f ,h〉; ev + 〈g,h〉; ev )
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C is Cartesian left-additive,
it is a ccc (Λ(−) = curry, ev =eval),
it satisfies Λ(f + g) = Λ(f ) + Λ(g) and Λ(0) = 0.
(implies 〈f + g,h〉; ev = 〈f ,h〉; ev + 〈g,h〉; ev )

The Cartesian (closed) structure does not behaves
automatically well with the left-additive enrichment!
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Cartesian Closed Differential Categories

Cartesian Differential Categories

Cartesian differential operator:

D× f : A→ B
D×(f ) : A× A→ B

Satisfying:
D1. D×(f + g) = D×(f ) + D×(g) and D×(0) = 0
D2. 〈h + k , v〉; D×(f ) = 〈h, v〉; D×(f ) + 〈k , v〉; D×(f ) and 〈0, v〉; D×(f ) = 0
D3. D×(Id) = π1, D×(π1) = π1;π1 and D×(π2) = π1;π2

D4. D×(〈f ,g〉) = 〈D×(f ),D×(g)〉
D5. D×(g; f ) = 〈D(g), π2; g〉; D×(f )

D6. 〈〈g,0〉, 〈h, k〉〉; D×(D×(f )) = 〈g, k〉; D×(f )

D7. 〈〈0,h〉, 〈g, k〉〉; D×(D×(f )) = 〈〈0,g〉, 〈h, k〉〉; D×(D×(f ))
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Cartesian Closed Differential Categories

Subcategory of Linear Morphisms

Linear morphisms

A morphism f is linear if its differential is constant: D×(f ) = π1; f .

f linear⇒ f additive
f linear 6⇐ f additive
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Cartesian Closed Differential Categories

Partial differentiation

Imagine we just want to differentiate f : C × A→ B on C.
D×(f ) : (C × A)× (C × A)→ B,

we can obtain the partial derivative D×C (f ) : C × (C × A) by “zeroing out”
the A component,

C × (C × A)
〈IdC ,0C

A 〉×IdC×A // (C × A)× (C × A)

D×(f )

��
B

D×C (f ) = 〈IdC ,0C
A 〉 × IdC×A; D×(f )
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Cartesian Closed Differential Categories

Cartesian closed differential category

Cartesian closed differential category [Bucciarelli-Ehrhard-Manzonetto’10]

C is a Cartesian closed differential category if:
C is a Cartesian differential category,
it is Cartesian closed left-additive,
it satisfies the following rule:

For all f : C × A→ B:

D×(Λ(f )) = Λ(〈π1 × 0A, π2 × IdA〉; D×(f ))

Intuitively, the following methods for partial derivatives are equivalent:
1 Do Λ(f ) : C → [A→ B] then apply D×(·),
2 Use the trick by “zeroing out” the A component as before.
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Cartesian Closed Differential Categories

Categorical Interpretation (simply typed)

Define f ? g = 〈〈0, π1; g〉, Id〉; D×(f ):

?
f : C × A→ B g : C → A

f ? g : C × A→ B

Define JΓ `D s : σK = JsσKΓ : JΓK→ JσK by:
JxσKΓ;x :σ = π2,
Jyτ KΓ;x :σ = π1; Jyτ KΓ,
J(sT )τ KΓ = 〈Jsσ→τ KΓ, JTσKΓ〉; ev ,
J(λx .s)σ→τ KΓ = Λ(Jsτ KΓ;x :σ),
J(D(s) · t)σ→τ KΓ = Λ(Λ−(Jsσ→τ KΓ) ? JtσKΓ),
J0σKΓ = 0,
J(s + S)σKΓ = JsσKΓ + JSσKΓ.
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Cartesian Closed Differential Categories

Soundness
If C is a Cartesian closed differential category, then

ThD(C) = {s = t | Γ `D s : σ Γ `D t : σ JsσKΓ = JtσKΓ}

is a differential λ-theory (i.e., it contains =D and it is contextual).

We can interpret the Resource Calculus by translation:

JΓ `R M : σK = J(M◦)σKΓ

we get that ThR(C) is a resource λ-theory.

Soundness Theorem [BEM’10]

Cartesian closed differential categories are sound models for:
Simply Typed Differential λ-calculus

Simply Typed Resource Calculus (by translation (−)◦)
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Soundness
If C is a Cartesian closed differential category, then

ThD(C) = {s = t | Γ `D s : σ Γ `D t : σ JsσKΓ = JtσKΓ}

is a differential λ-theory (i.e., it contains =D and it is contextual).

We can interpret the Resource Calculus by translation:

JΓ `R M : σK = J(M◦)σKΓ

we get that ThR(C) is a resource λ-theory.

Soundness Theorem [BEM’10]

Cartesian closed differential categories are sound models for:
Simply Typed Differential λ-calculus
Simply Typed Resource Calculus (by translation (−)◦)

Every model of the differential λ-calculus is also a model of the
resource calculus
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Cartesian Closed Differential Categories

Modelling the Untyped Differential λ-Calculus

As in the λ-calculus we need a reflexive object U (i.e., [U ⇒ U] / U) in a
Cartesian closed differential category, but it is not enough!

Linear reflexive object

A reflexive object [U ⇒ U] / U is linear if

A : U → [U ⇒ U], λ : [U ⇒ U]→ U

are both linear maps.

We modify the interpretation in the obvious way:
JxiK~x = πi ,
JsT K~x = 〈A ◦ JsK~x , JT K~x〉; ev,
Jλy .sK~x = Λ(JsK~x,y );λ, with y /∈ ~x
JD(s) · tK~x = Λ(Λ−(JsK~x ;A) ? JtK~x );λ.

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 12 / 35



Cartesian Closed Differential Categories

Soundness and Completeness

Theorem [Manzonetto’11]

Cartesian closed differential categories are sound and complete models of
the differential λ-calculus.

Scott-Koymans completeness proof for regular λ-calculus (take T ):

Λ/T
Karoubi envelope // CT = K(Λ/T ) 3 I reflexive obj.

M ∈ Λo [λx .M]T

Completeness Theorem for λ-calculus [Scott ‖ Koymans]

Every λ-theories T is the theory of a reflexive object in a suitable CCC CT .
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the differential λ-calculus.

Scott-Koymans completeness proof for regular λ-calculus (take T ):

Λ/T
Karoubi envelope // CT = K(Λ/T ) Th(I) = T

M ∈ Λo � � J·K // [λx .M]T

Completeness Theorem for λ-calculus [Scott ‖ Koymans]

Every λ-theories T is the theory of a reflexive object in a suitable CCC CT .

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 13 / 35



Cartesian Closed Differential Categories

Soundness and Completeness

Theorem [Manzonetto’11]

Cartesian closed differential categories are sound and complete models of
the differential λ-calculus.

The category CT is described as follows (where M; N = λz.N(Mz)):

Objects: {A ∈ Λ/T | A; A = A}
Hom(A,B): {f ∈ Λ/T | A; f ; B = f}
Identity: IdA = A
Composition: f ; g

Completeness Theorem for λ-calculus [Scott ‖ Koymans]

Every λ-theories T is the theory of a reflexive object in a suitable CCC CT .
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Cartesian Closed Differential Categories

Soundness and Completeness

Theorem [Manzonetto’11]

Cartesian closed differential categories are sound and complete models of
the differential λ-calculus.

Idea: encode the categorical constructions via λ-terms:
Products:

〈f ,g〉 = λz.[fz,gz] πA1,A2
i = pi ; Ai

where [M,N] = λy .yMN, p1 = λx .xK and p2 = λx .xK ∗ (Church encoding).

Exponents:
[A⇒ B] = λz.A; z; B
evA,B = λz.B(p1z(A(p2z)))
Λ(f ) = λxy .f [x , y ]

Completeness Theorem for λ-calculus [Scott ‖ Koymans]

Every λ-theories T is the theory of a reflexive object in a suitable CCC CT .
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Cartesian Closed Differential Categories

Soundness and Completeness

Theorem [Manzonetto’11]

Cartesian closed differential categories are sound and complete models of
the differential λ-calculus.

The category CT is described as follows (where M; N = λz.N(Mz)):

Objects: {A ∈ Λ/T | A; A = A, A(x + y) = Ax + Ay}
Hom(A,B): {f ∈ Λ/T | A; f ; B = f}
Identity: IdA = A
Composition: f ; g

Additive structure: the sum in the category is the sum of terms.

Completeness Theorem for differential λ-calculus [Manzonetto’11]

Every differential λ-theory T is the theory of a linear reflexive object in a
suitable Cartesian closed differential category CT .
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Cartesian Closed Differential Categories

Soundness and Completeness

Theorem [Manzonetto’11]

Cartesian closed differential categories are sound and complete models of
the differential λ-calculus.

Problem: Church’s pairing is not additive!

[M+M ′,N+N ′] = λy .y(M+M ′)(N+N ′) 6= λy .yMN+λy .yM ′N ′ = [M,N]+[M ′,N ′]

⇒ 〈f + f ′,g + g′〉 6= 〈f ,g〉+ 〈f ′,g′〉

Completeness Theorem for differential λ-calculus [Manzonetto’11]

Every differential λ-theory T is the theory of a linear reflexive object in a
suitable Cartesian closed differential category CT .
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Cartesian Closed Differential Categories

Soundness and Completeness

Theorem [Manzonetto’11]

Cartesian closed differential categories are sound and complete models of
the differential λ-calculus.

Solution: set-like encoding exploiting resource consciousness

[M,N] = λy .M + λy .D(y) · N p1 = λx .x0 p2 = λx .(D(x) · I)00

We need to restrict to theories with idempotent sum!

Completeness Theorem for differential λ-calculus [Manzonetto’11]

Every differential λ-theory T with idempotent sum is the theory of a linear
reflexive object in a suitable Cartesian closed differential category CT .
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Cartesian Closed Differential Categories

Soundness and Completeness

Theorem [Manzonetto’11]

Cartesian closed differential categories are sound and complete models of
the differential λ-calculus.

The encoding of the differential operator is straightforward:

D×(f ) = λz.B((D(f ) · (A(p1z)))(A(p2z))) : A× A→ B

Completeness Theorem for differential λ-calculus [Manzonetto’11]

Every differential λ-theory T with idempotent sum is the theory of a linear
reflexive object in a suitable Cartesian closed differential category CT .
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Cartesian Closed Differential Categories

Soundness and Completeness

Theorem [Manzonetto’11]

Cartesian closed differential categories are sound and complete models of
the differential λ-calculus.

Completeness proof for differential λ-calculus (take T ):

Λd/T
Karoubi envelope // CT = K(Λd/T ) 3 I linear refl. obj.

M ∈ Λo
d

� J·K // [λx .M̃]T

(̃·) : D(M) · N 7→ λy .(D(M̃) · Ñ)y , the identity otherwise.

Completeness Theorem for differential λ-calculus [Manzonetto’11]

Every differential λ-theory T with idempotent sum is the theory of a linear
reflexive object in a suitable Cartesian closed differential category CT .
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Cartesian Closed Differential Categories

Soundness and Completeness

Theorem [Manzonetto’11]

Cartesian closed differential categories are sound and complete models of
the differential λ-calculus.

Completeness proof for differential λ-calculus (take T ):

Λd/T
Karoubi envelope // CT = K(Λd/T ) Th(I) ⊆ T

M ∈ Λo
d

� J·K // [λx .M̃]T

We add equations Th(I) ` D(M) · N = λy .(D(M) · N)y
(differentially extensional axiom)

Completeness Theorem for differential λ-calculus [Manzonetto’11]

Every differential λ-theory T with idempotent sum is the theory of a linear
reflexive object in a suitable Cartesian closed differential category CT .
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Cartesian Closed Differential Categories

Soundness and Completeness

Theorem [Manzonetto’11]

Cartesian closed differential categories are sound and complete models of
the differential λ-calculus.

Completeness proof for differential λ-calculus (take T ):

Λd/T
Karoubi envelope // CT = K(Λd/T ) Th(I) = T

M ∈ Λo
d
� � J·K // [λx .M]T

We restrict to differentially extensional T

Completeness Theorem for differential λ-calculus [Manzonetto’11]

Every differentionally extensional differential λ-theory T with idempotent sum
is the theory of a linear reflexive object in a suitable Cartesian closed
differential category CT .
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Cartesian Closed Differential Categories

Soundness and Completeness

Theorem [Manzonetto’11]

Cartesian closed differential categories are sound and complete models of
the differential λ-calculus.

Completeness proof for differential λ-calculus (take T ):

Λd/T
Karoubi envelope // CT = K(Λd/T ) Th(I) = T

M ∈ Λo
d
� � J·K // [λx .M]T

Completeness Theorem for differential λ-calculus [Manzonetto’11]

Every differentionally extensional differential λ-theory T with idempotent sum
is the theory of a linear reflexive object in a suitable Cartesian closed
differential category CT .

All models arising naturally are differentionally extensional,
also the non-extensional ones!
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Cartesian Closed Differential Categories

Examples

1 MFin: Finiteness Spaces. [Ehrhard] [No reflexive objects in it!]
2 MRel: The Relational Semantics. The coKleisli of Rel + Mf (−).
3 Its variations with “Infinite Multiplicities” [Carraro-Ehrhard-Salibra]
4 Convenient differential category [Blute-Ehrhard-Tasson]
5 Categories of games. . . [Laird-Manzonetto-MCusker] (see later)

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 15 / 35



Cartesian Closed Differential Categories

Main Example: The Relational Semantics

MRel
Objects: sets,
Morphisms: MRel(A,B) = P(Mf (A)× B)
(relations between Mf (A) and B).

Given f : A→ B we can define:

D(f ) = {(([a],m),b) | (m ] [a],b) ∈ f} : A× A→ B.

Theorem [BEM’10]

The category MRel is a Cartesian closed differential category.

Corollary

MRel is a model of the simply typed differential λ-calculus.
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Cartesian Closed Differential Categories

Main Example: The Relational Semantics

Untyped Models in MRel

D: relational analogous of Scott’s D∞ (extensional),
E : relational analogous of Engelers’ graph model
(non extensional, but differentially extensional),

MRel models the Taylor Expansion

In every linear reflexive object U of MRel we have

JSKU
~x = JS∗KU

~x

Full Abstraction [Bucciarelli-Carraro-Ehrhard-Manzonetto’11]

D is a fully abstract model of the resource calculus with tests.

JMK ⊆ JNK ⇐⇒ [∀C(·) C(M) ⇓ ⇒ C(N) ⇓]
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Building Differential Categories

Building Differential Categories

SMC C
sup-lattice enrichment

countable biproducts
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differential operator
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Building Differential Categories

Building Differential Categories

SMC C
sup-lattice enrichment

countable biproducts

Differential category
K(C)

sup-lattice enrichment

Karoubi
envelope

Cart. differential K!(C)
cpo-enriched

co-Kleisli

all R-exponentials
A ( R

⊇ R-exponentials cat.
Cartesian closed
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Building Differential Categories

General recipe for coalgebra modalities

Take an SMC. In presence of the equalizer An (as in many models of LL):

A⊗n A⊗n... n! permutationsA⊗n
equalizer

An gives the n-th layer of the free commutative monoid !A.

Coalgebra modality

!A =
∏
n∈ω

An

This works for symmetric monoidal categories where the tensor distributes
over the infinite product:

X ⊗ (
∏
n∈ω

An) ∼=
∏
n∈ω

(X ⊗ An)
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Building Differential Categories

Always works in the Karoubi Envelope

K(C) (for sup-semilattice enriched C with infinite biproducts):

Obj: (A, f ), A ∈ C, f : A→ A idempotent
Hom((A,f),(B,g)): h ∈ C(A,B), such that f ; h = h ∧ g; h = h

We can construct the symmetric tensor product An using ΘA,n =
∑
σ∈Sn

σ

(A⊗n, f⊗n) (A⊗n, f⊗n)
... n! permutations(A⊗n, f⊗n; ΘA,n)

f⊗n; ΘA,n

Storage modality

!(A, f ) =
⊕
n∈ω

(A, f )n (free commutative comonoid)
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Building Differential Categories

Always works in the Karoubi Envelope

Differential transformation

d : (A, f )⊗ !(A, f )→ !(A, f )

1 For each n we have:

(A, f )⊗ (A, f )n (A, f )n+1
f⊕n+1; ΘA,n+1

(A, f )⊗ !(A, f )
∼=;πn

2 Tupling all these gives a map

(A, f )⊗ !(A, f )→
⊕
n∈ω

(A, f )n+1

3 Finally pairing with 0 : (A, f )⊗ !(A, f )→ > gives

(A, f )⊗ !(A, f )→ !(A, f )
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Building Differential Categories

Always works in the Karoubi Envelope

Differential transformation

d : (A, f )⊗
⊕
n∈ω

(A, f )n →
⊕
n∈ω

(A, f )n

1 For each n we have:

(A, f )⊗ (A, f )n (A, f )n+1
f⊕n+1; ΘA,n+1

(A, f )⊗ !(A, f )
∼=;πn

2 Tupling all these gives a map

(A, f )⊗ !(A, f )→
⊕
n∈ω

(A, f )n+1

3 Finally pairing with 0 : (A, f )⊗ !(A, f )→ > gives

(A, f )⊗ !(A, f )→ !(A, f )

What if I don’t have sup-lattice enrichment or infinite biproducts?
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Building Differential Categories

Free completions

SMC C
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Building Differential Categories

Free completions

SMC C

SMC C+

sup-lattice enrichment

sup-lattice completion

SMC BP(C+)
sup-lattice enrichment

countable biproducts

biproduct completion

Differential category
K(BP(C+))

sup-lattice enrichment

Karoubi envelope

Cartesian differential
K!(BP(C+))

cpo-enriched

co-Kleisli
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Building Differential Categories

Easy way to Build Models of Resource PCF

Resource PCF
Simply Typed Resource Calculus
+ Constants for natural numbers (of ground type Nat)
+ Fixed Point Combinator Y,
+ “If-zero?” instruction.

Operational semantics: Linear Head Reduction.

Denotational Models
Cartesian Closed Differential Categories,
+ Fixpoints,
+ (weak) Natural number object.

Remark on the construction
We recover MRel and build categories of games.
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Building Differential Categories

Example from SMCC 1 (1 object, 1 morphism)

Terminal SMCC 1
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Terminal SMCC 1

SMCC 1+

sup-lattice completion

SMCC BP(1+) ∼= Rel

biproduct completion
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Building Differential Categories

Example from SMCC 1 (1 object, 1 morphism)

Terminal SMCC 1

SMCC 1+

sup-lattice completion

SMCC BP(1+) ∼= Rel

biproduct completion

Differential category
K(Rel)

im(Rel), ! = Mf

Karoubi envelope

Cart. closed differential
MRel ⊆ K!(BP(C+))

co-Kleisli
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Building Differential Categories

Playing with games. . .

Arena
An arena A is given by:

a finite bipartite forest over two sets of moves MP
A and MO

A ,
an edge relation ` (enabling),
a labelling function (Questions and Answers).

Strategies

Given an arena A, a strategy over A is:
a set of complete sequences (= every question is answered exactly once),
the Opponent plays first (then they alternate),
satisfying P-visibility and P-bracketing.
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Building Differential Categories

A category G of games

Category G of games [Harmer-McCusker]

The category G:
Objects: arenas whose roots are all O-moves,
Hom(A,B): strategies on A⊥ ] B,
Composition: usual “parallel composition plus hiding” construction,
Identities: copycat strategies.
⊗ = disjoint union,
A ( B = Arena B with a copy of A⊥ attached below each initial move
(to maintain the forest structure)
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Building Differential Categories

The subcategory G⊗

Remark
Every object of G can be endowed with a comonoid structure

Comonoid homomorphisms = maps whose choice of move at any stage
depends only on the current thread.

Subcategory of comonoid homomorphisms

Cartesian closed category G⊗.

Theorem [Harmer-McCusker’99]

G⊗ is fully abstract for Erratic Idealized Algol.
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Building Differential Categories

G⊗ is a Cartesian Closed Differential Category

Given a complete play (playing in A⊥ at least once):

s : A⊥ ] B

Its derivative
s′ : A⊥ ] A⊥ ] B

plays in the left A⊥ exactly once.

Derivative combinator

D×(σ) = {s′ ∈ comp(A⊥ ] A⊥ ] B) | s′ is a derivative of some s ∈ σ}

The derivative is programmable in Erratic Idealized Algol.

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 28 / 35



Building Differential Categories

G⊗ is a Cartesian Closed Differential Category

Given a complete play (playing in A⊥ at least once):

s : A⊥ ] B

Its derivative
s′ : A⊥ ] A⊥ ] B

plays in the left A⊥ exactly once.

Derivative combinator

D×(σ) = {s′ ∈ comp(A⊥ ] A⊥ ] B) | s′ is a derivative of some s ∈ σ}

The derivative is programmable in Erratic Idealized Algol.

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 28 / 35



Building Differential Categories

Analysis of G⊗

Path:
non-repeating enumeration of all moves,
respects the order given by the edge relation in the arena,
the first move is by O,
moves alternate polarity thereafter.

Exhausting strategy: set of even paths satisfying P-visibility.

Category of Exhausting games

The category EG:
Objects: finite O-rooted arenas,
Hom(A,B): exhausting strategy on A⊥ ] B,
monoidal structure = disjoint union,
has all R-exponentials A ( R, where R = arena with a single O-move.

Let’s apply (the second part of) our construction. . .
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Building Differential Categories

Recovering G⊗

SMC EG
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Building Differential Categories

Recovering G⊗

SMC EG

SMC BP(EG)

biproduct completion

Differential category
K(BP(EG))

Karoubi envelope

Cart. differential
K!(BP(EG))

CCC R-exponentials

co-Kleisli
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Building Differential Categories

Recovering G⊗
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SMC BP(EG)

biproduct completion

Differential category
K(BP(EG))

Karoubi envelope

Cart. differential
K!(BP(EG))

CCC R-exponentials

co-Kleisli

Category G⊗
No full abstraction :(

full faithful functor
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Building Differential Categories

Refining

We consider a switch equivalence relation:

∼ = least equivalence relation s · o · p · o′ · p′ · t ∼ s · o′ · p′ · o · p · t

∼-closed strategies = causal independent strategies

The category EG∼
Objects: O-rooted arenas,
Hom(A,B): deterministic ∼-closed strategies.

Remark
Nondeterminism arise with the sup-lattice completion.
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Building Differential Categories

Let’s try again. . .

SMC EG∼

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 32 / 35



Building Differential Categories

Let’s try again. . .

SMC EG∼

SMC BP(EG∼)

biproduct completion

Differential category
K(BP(EG∼))

Karoubi envelope

Cart. differential
K!(BP(EG∼))

CCC R-exponentials

co-Kleisli

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 32 / 35



Building Differential Categories

Let’s try again. . .

SMC EG∼

SMC BP(EG∼)

biproduct completion

Differential category
K(BP(EG∼))

Karoubi envelope

Cart. differential
K!(BP(EG∼))

CCC R-exponentials

co-Kleisli

Category G⊗∼
full faithful functor

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 32 / 35



Building Differential Categories

Let’s try again. . .

SMC EG∼

SMC BP(EG∼)

biproduct completion

Differential category
K(BP(EG∼))

Karoubi envelope

Cart. differential
K!(BP(EG∼))

CCC R-exponentials

co-Kleisli

Category G⊗∼
Model of Resource PCF

full faithful functor

Giulio Manzonetto (RU) Differential Model Theory 11/06/11 32 / 35



Building Differential Categories

Let’s try again. . .

SMC EG∼

SMC BP(EG∼)

biproduct completion

Differential category
K(BP(EG∼))

Karoubi envelope

Cart. differential
K!(BP(EG∼))

CCC R-exponentials

co-Kleisli

Category G⊗∼
No full abstraction but. . .

full faithful functor

You’re kidding, right? Why are you bothering us?
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Building Differential Categories

Let’s try again. . .

SMC EG∼

SMC BP(EG∼)

biproduct completion

Differential category
K(BP(EG∼))

Karoubi envelope

Cart. differential
K!(BP(EG∼))

CCC R-exponentials

co-Kleisli

Category G⊗∼
full faithful functor

G⊗∼ has the finite definability property, moreover. . .
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Building Differential Categories

Full Abstraction for Resource PCF

(Unique) Full Functor > : EGQA
∼ → 1

Full Functor F : K!(BP((EGQA
∼ )+))→ K!(Rel) (lifted)

Full Functor F ′ : G⊗∼ → MRel

EGQA
∼ : Arenas where each question enables a unique answer

Finite Definability Property

Both G⊗∼ and MRel have the finite definability property. (def. G⊗∼ ⇒ def. MRel )

Corollary: MRel is Fully Abstract for Resource PCF

Let M,N of type A.

JMK ⊆ JNK ⇐⇒ [∀C(·) C(M) ⇓ ⇒ C(N) ⇓]
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Full Functor F : K!(BP((EGQA
∼ )+))→ K!(Rel) (lifted)

Full Functor F ′ : G⊗∼ → MRel

G⊗∼ embeds in K!(BP((EGQA
∼ )+)) by construction!
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Building Differential Categories

Full Abstraction for Resource PCF

Finite Definability Property

Both G⊗∼ and MRel have the finite definability property. (def. G⊗∼ ⇒ def. MRel )

Corollary: MRel is Fully Abstract for Resource PCF

Let M,N of type A.

JMK ⊆ JNK ⇐⇒ [∀C(·) C(M) ⇓ ⇒ C(N) ⇓]

Proof (sketch)
Suppose ∃a ∈ JMK− JNK,
By finite definability {(a,0)} : A→ Nat denotes some term x : A ` C(x),
Hence JC(M)K = JzeroK and JC(N)K = ∅,
Thus C(M) ⇓ but C(N) 6⇓
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Conclusion

Conclusions

We have:
Defined Cartesian closed differential categories,
Shown they are sound and complete models of untyped differential
λ-calculus,
Provided a construction for building differential categories,
Applied it to categories of games and categories of sets and relations,
shown that MRel is fully abstract for Resource PCF.
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Conclusion

Thanks for your attention!

Questions?
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