A Differential Model Theory for Resource Lambda Calculi - Part II

Giulio Manzonetto

(joint work with Bucciarelli, Ehrhard, Laird, McCusker)

g.manzonetto@cs.ru.nl

Intelligent Systems Radboud University – Nijmegen

FMCS 2011 - Calgary - 11th June 2011

Outline

Cartesian (Closed) Differential Categories [BEM'10, Man'11]

- Typed and untyped models of differential/resource $\lambda\text{-calculus}$
- Soundness & Completeness
- Examples
- Building Differential Categories [LMM'11]
 - A general recipe: From SMC(C) \mapsto Differential SMC(C) \mapsto Differential C(C)C
- Game Semantics [LMM'11]
 - Instances: Categories of Games, The relational semantics
 - Full abstraction for relational semantics w.r.t. Resource PCF
- Conclusions

Differential Categories

The differential λ -calculus inspired researchers working on category theory.

• Aim: Axiomatize a differential operator D(-) categorically.

Differential categories

Blute, Cockett and Seely proposed:

- BCS'06: (monoidal) differential categories
 - point of view too fine
- BCS'09: Cartesian differential categories
 - sound and complete for their term calculus,
 - Iack of higher order functions!

Not enough for modeling the differential λ -calculus!!!

Differential Categories

The differential λ -calculus inspired researchers working on category theory.

• Aim: Axiomatize a differential operator D(-) categorically.

Differential categories

Blute, Cockett and Seely proposed:

- BCS'06: (monoidal) differential categories
 - point of view too fine
- BCS'09: Cartesian differential categories
 - sound and complete for their term calculus,
 - Iack of higher order functions!

Not enough for modeling the differential λ -calculus!!!

Left Additive Categories

We have sums of λ -terms and the application is left-linear:

$$(\sum_i s_i)t = \sum_i s_i t$$
 $s(\sum_i t_i) \neq \sum_i s_i t_i$

We need a left-additive sum on morphisms!

A category **C** is **left-additive** if:

• each homset has a structure of commutative monoid ($C(A, B), +_{AB}, 0_{AB}$),

• f; (g + h) = (f; g) + (f; h) and f; 0 = 0.

When *f* satisfies also (g + h); f = (g; f) + (h; f) and 0; f = 0 it is called **additive**. (weak form of *linearity*)

Left Additive Categories

We have sums of λ -terms and the application is left-linear:

$$(\sum_i s_i)t = \sum_i s_i t$$
 $s(\sum_i t_i) \neq \sum_i st_i$

We need a left-additive sum on morphisms!

A category **C** is **left-additive** if:

• each homset has a structure of commutative monoid ($C(A, B), +_{AB}, 0_{AB}$),

• f; (g + h) = (f; g) + (f; h) and f; 0 = 0.

When *f* satisfies also (g + h); f = (g; f) + (h; f) and 0; f = 0 it is called **additive**. (weak form of *linearity*)

Cartesian (Closed) Left-additive Categories

A category C is Cartesian left-additive if:

- C is a left-additive category,
- it is Cartesian (= it has products),
- all projections and pairings of additive maps are additive.

A category C is Cartesian closed left-additive if:

• C is Cartesian left-additive,

• it is a ccc (
$$\Lambda(-) =$$
 curry, $ev =$ eval),

• it satisfies $\Lambda(f+g) = \Lambda(f) + \Lambda(g)$ and $\Lambda(0) = 0$. (implies $\langle f+g,h \rangle$; $ev = \langle f,h \rangle$; $ev + \langle g,h \rangle$; ev)

Cartesian (Closed) Left-additive Categories

A category C is Cartesian left-additive if:

- **C** is a left-additive category,
- it is Cartesian (= it has products),
- all projections and pairings of additive maps are additive.

The Cartesian (closed) structure does not behaves automatically well with the left-additive enrichment!

A category C is Cartesian closed left-additive if:

- C is Cartesian left-additive,
- it is a ccc ($\Lambda(-)$ = curry, ev =eval),
- it satisfies $\Lambda(f+g) = \Lambda(f) + \Lambda(g)$ and $\Lambda(0) = 0$. (implies $\langle f+g,h \rangle$; $ev = \langle f,h \rangle$; $ev + \langle g,h \rangle$; ev)

Cartesian Differential Categories

Cartesian differential operator:

$$D^{ imes} rac{f: A o B}{D^{ imes}(f): \underline{A} imes A o B}$$

Satisfying:

D1.
$$D^{\times}(f+g) = D^{\times}(f) + D^{\times}(g)$$
 and $D^{\times}(0) = 0$
D2. $\langle h+k, v \rangle; D^{\times}(f) = \langle h, v \rangle; D^{\times}(f) + \langle k, v \rangle; D^{\times}(f)$ and $\langle 0, v \rangle; D^{\times}(f) = 0$
D3. $D^{\times}(Id) = \pi_1, D^{\times}(\pi_1) = \pi_1; \pi_1$ and $D^{\times}(\pi_2) = \pi_1; \pi_2$
D4. $D^{\times}(\langle f, g \rangle) = \langle D^{\times}(f), D^{\times}(g) \rangle$
D5. $D^{\times}(g; f) = \langle D(g), \pi_2; g \rangle; D^{\times}(f)$
D6. $\langle \langle g, 0 \rangle, \langle h, k \rangle \rangle; D^{\times}(D^{\times}(f)) = \langle g, k \rangle; D^{\times}(f)$
D7. $\langle \langle 0, h \rangle, \langle g, k \rangle \rangle; D^{\times}(D^{\times}(f)) = \langle \langle 0, g \rangle, \langle h, k \rangle \rangle; D^{\times}(D^{\times}(f))$

Subcategory of Linear Morphisms

Linear morphisms

A morphism *f* is *linear* if its differential is constant: $D^{\times}(f) = \pi_1$; *f*.

f linear \Rightarrow f additive f linear \notin f additive

Partial differentiation

Imagine we just want to differentiate $f : C \times A \rightarrow B$ on C.

•
$$D^{\times}(f): (C \times A) \times (C \times A) \to B$$
,

 we can obtain the partial derivative D[×]_C(f) : C × (C × A) by "zeroing out" the A component,

$$\underline{C} \times (C \times A) \xrightarrow{\langle Id_{C}, 0_{A}^{C} \rangle \times Id_{C \times A}} \underbrace{(C \times A)}_{\substack{\downarrow \\ p^{\times}(f) \\ B}} \times (C \times A)$$

 $D^{ imes}_C(f) = \langle \mathit{Id}_C, 0^C_A
angle imes \mathit{Id}_{C imes A}; D^{ imes}(f)$

Cartesian closed differential category

Cartesian closed differential category [Bucciarelli-Ehrhard-Manzonetto'10]

C is a Cartesian closed differential category if:

- C is a Cartesian differential category,
- it is Cartesian closed left-additive,
- it satisfies the following rule:

For all $f : C \times A \rightarrow B$:

$$D^{\times}(\Lambda(f)) = \Lambda(\langle \pi_1 \times \mathbf{0}_A, \pi_2 \times \mathit{Id}_A \rangle; D^{\times}(f))$$

Intuitively, the following methods for partial derivatives are equivalent:

- Do $\Lambda(f) : C \to [A \to B]$ then apply $D^{\times}(\cdot)$,
- Use the trick by "zeroing out" the A component as before.

Define $f \star g = \langle \langle 0, \pi_1; g \rangle, Id \rangle; D^{\times}(f)$:

$$\star \frac{f: C \times A \to B \quad g: C \to A}{f \star g: C \times A \to B}$$

Define $\llbracket \Gamma \vdash_D \mathbf{s} : \sigma \rrbracket = \llbracket s^{\sigma} \rrbracket_{\Gamma} : \llbracket \Gamma \rrbracket \to \llbracket \sigma \rrbracket$ by:

- $\llbracket x^{\sigma} \rrbracket_{\Gamma;x:\sigma} = \pi_2,$
- $\llbracket y^{\tau} \rrbracket_{\Gamma;x:\sigma} = \pi_1; \llbracket y^{\tau} \rrbracket_{\Gamma},$
- $\llbracket (sT)^{\tau} \rrbracket_{\Gamma} = \langle \llbracket s^{\sigma \to \tau} \rrbracket_{\Gamma}, \llbracket T^{\sigma} \rrbracket_{\Gamma} \rangle; ev,$
- $\llbracket (\lambda x.s)^{\sigma \to \tau} \rrbracket_{\Gamma} = \Lambda(\llbracket s^{\tau} \rrbracket_{\Gamma;x:\sigma}),$
- $\llbracket (D(s) \cdot t)^{\sigma \to \tau} \rrbracket_{\Gamma} = \Lambda(\Lambda^{-}(\llbracket s^{\sigma \to \tau} \rrbracket_{\Gamma}) \star \llbracket t^{\sigma} \rrbracket_{\Gamma}),$
- $\llbracket 0^{\sigma} \rrbracket_{\Gamma} = 0$,
- $\llbracket (s+S)^{\sigma} \rrbracket_{\Gamma} = \llbracket s^{\sigma} \rrbracket_{\Gamma} + \llbracket S^{\sigma} \rrbracket_{\Gamma}.$

Define $f \star g = \langle \langle 0, \pi_1; g \rangle, Id \rangle; D^{\times}(f)$:

$$\star \frac{f: C \times A \to B \quad g: C \to A}{f \star g: C \times A \to B}$$

Define $\llbracket \Gamma \vdash_D \mathbf{s} : \sigma \rrbracket = \llbracket \mathbf{s}^{\sigma} \rrbracket_{\Gamma} : \llbracket \Gamma \rrbracket \rightarrow \llbracket \sigma \rrbracket$ by:

- $\llbracket X^{\sigma} \rrbracket_{\Gamma;X:\sigma} = \pi_2,$
- $\llbracket y^{\tau} \rrbracket_{\Gamma;x:\sigma} = \pi_1; \llbracket y^{\tau} \rrbracket_{\Gamma},$
- $\llbracket (sT)^{\tau} \rrbracket_{\Gamma} = \langle \llbracket s^{\sigma \to \tau} \rrbracket_{\Gamma}, \llbracket T^{\sigma} \rrbracket_{\Gamma} \rangle; ev,$
- $\llbracket (\lambda x.s)^{\sigma \to \tau} \rrbracket_{\Gamma} = \Lambda(\llbracket s^{\tau} \rrbracket_{\Gamma;x:\sigma}),$
- $\llbracket (D(s) \cdot t)^{\sigma \to \tau} \rrbracket_{\Gamma} = \Lambda(\Lambda^{-}(\llbracket s^{\sigma \to \tau} \rrbracket_{\Gamma}) \star \llbracket t^{\sigma} \rrbracket_{\Gamma}),$
- $\llbracket 0^{\sigma} \rrbracket_{\Gamma} = 0$,
- $\llbracket (s+S)^{\sigma} \rrbracket_{\Gamma} = \llbracket s^{\sigma} \rrbracket_{\Gamma} + \llbracket S^{\sigma} \rrbracket_{\Gamma}.$

Define $f \star g = \langle \langle 0, \pi_1; g \rangle, Id \rangle; D^{\times}(f)$:

$$\star \frac{f: C \times A \to B \quad g: C \to A}{f \star g: C \times A \to B}$$

Define $\llbracket \Gamma \vdash_D \mathbf{s} : \sigma \rrbracket = \llbracket \mathbf{s}^{\sigma} \rrbracket_{\Gamma} : \llbracket \Gamma \rrbracket \rightarrow \llbracket \sigma \rrbracket$ by:

•
$$\llbracket X^{\sigma} \rrbracket_{\Gamma;X:\sigma} = \pi_2,$$

•
$$\llbracket y^{\tau} \rrbracket_{\Gamma;x:\sigma} = \pi_1; \llbracket y^{\tau} \rrbracket_{\Gamma},$$

•
$$\llbracket (sT)^{\tau} \rrbracket_{\Gamma} = \langle \llbracket s^{\sigma \to \tau} \rrbracket_{\Gamma}, \llbracket T^{\sigma} \rrbracket_{\Gamma} \rangle; ev,$$

•
$$\llbracket (\lambda \mathbf{x}.\mathbf{s})^{\sigma \to \tau} \rrbracket_{\Gamma} = \Lambda(\llbracket \mathbf{s}^{\tau} \rrbracket_{\Gamma;\mathbf{x}:\sigma}),$$

•
$$\llbracket (D(s) \cdot t)^{\sigma \to \tau} \rrbracket_{\Gamma} = \Lambda(\Lambda^{-}(\llbracket s^{\sigma \to \tau} \rrbracket_{\Gamma}) \star \llbracket t^{\sigma} \rrbracket_{\Gamma}),$$

• $\llbracket 0^{\sigma} \rrbracket_{\Gamma} = 0,$

• $\llbracket (s+S)^{\sigma} \rrbracket_{\Gamma} = \llbracket s^{\sigma} \rrbracket_{\Gamma} + \llbracket S^{\sigma} \rrbracket_{\Gamma}.$

Define $f \star g = \langle \langle 0, \pi_1; g \rangle, Id \rangle; D^{\times}(f)$:

$$\star \frac{f: C \times A \to B \quad g: C \to A}{f \star g: C \times A \to B}$$

Define $\llbracket \Gamma \vdash_{\mathcal{D}} s : \sigma \rrbracket = \llbracket s^{\sigma} \rrbracket_{\Gamma} : \llbracket \Gamma \rrbracket \to \llbracket \sigma \rrbracket$ by:

•
$$[\![x^{\sigma}]\!]_{\Gamma;x:\sigma} = \pi_2,$$

• $[\![y^{\tau}]\!]_{\Gamma;x:\sigma} = \pi_1; [\![y^{\tau}]\!]_{\Gamma},$
• $[\![(sT)^{\tau}]\!]_{\Gamma} = \langle [\![s^{\sigma \to \tau}]\!]_{\Gamma}, [\![T^{\sigma}]\!]_{\Gamma} \rangle; ev,$
• $[\![(\lambda x.s)^{\sigma \to \tau}]\!]_{\Gamma} = \Lambda([\![s^{\tau}]\!]_{\Gamma;x:\sigma}),$
• $[\![(D(s) \cdot t)^{\sigma \to \tau}]\!]_{\Gamma} = \Lambda(\Lambda^{-}([\![s^{\sigma \to \tau}]\!]_{\Gamma}) \star [\![t^{\sigma}]\!]_{\Gamma})$
• $[\![0^{\sigma}]\!]_{\Gamma} = 0,$

•
$$\llbracket (s+S)^{\sigma} \rrbracket_{\Gamma} = \llbracket s^{\sigma} \rrbracket_{\Gamma} + \llbracket S^{\sigma} \rrbracket_{\Gamma}.$$

),

Soundness

If ${f C}$ is a Cartesian closed differential category, then

 $Th_{D}(\mathbf{C}) = \{ s = t \mid \Gamma \vdash_{D} s : \sigma \quad \Gamma \vdash_{D} t : \sigma \quad [\![s^{\sigma}]\!]_{\Gamma} = [\![t^{\sigma}]\!]_{\Gamma} \}$

is a *differential* λ -theory (i.e., it contains $=_D$ and it is contextual).

Soundness Theorem [BEM'10]

Cartesian closed differential categories are sound models for:

Simply Typed Differential λ-calculus

Soundness

If ${\boldsymbol{\mathsf{C}}}$ is a Cartesian closed differential category, then

 $Th_{D}(\mathbf{C}) = \{ s = t \mid \Gamma \vdash_{D} s : \sigma \quad \Gamma \vdash_{D} t : \sigma \quad [\![s^{\sigma}]\!]_{\Gamma} = [\![t^{\sigma}]\!]_{\Gamma} \}$

is a *differential* λ -theory (i.e., it contains $=_D$ and it is contextual).

We can interpret the Resource Calculus by translation:

$$\llbracket \Gamma \vdash_{R} M : \sigma \rrbracket = \llbracket (M^{\circ})^{\sigma} \rrbracket_{\Gamma}$$

we get that $Th_R(\mathbf{C})$ is a resource λ -theory.

Soundness Theorem [BEM'10]

Cartesian closed differential categories are sound models for:

- Simply Typed Differential λ-calculus
- Simply Typed Resource Calculus (by translation (-)°)

Soundness

If C is a Cartesian closed differential category, then

 $Th_{D}(\mathbf{C}) = \{ \mathbf{s} = t \mid \Gamma \vdash_{D} \mathbf{s} : \sigma \quad \Gamma \vdash_{D} t : \sigma \quad [\![\mathbf{s}^{\sigma}]\!]_{\Gamma} = [\![t^{\sigma}]\!]_{\Gamma} \}$

is a *differential* λ -theory (i.e., it contains $=_D$ and it is contextual).

Every model of the differential λ -calculus is also a model of the resource calculus

We can interpret the Resource Calculus by translation:

$$\llbracket \Gamma \vdash_{R} M : \sigma \rrbracket = \llbracket (M^{\circ})^{\sigma} \rrbracket_{\Gamma}$$

we get that $Th_R(\mathbf{C})$ is a resource λ -theory.

Soundness Theorem [BEM'10]

Cartesian closed differential categories are sound models for:

- Simply Typed Differential λ-calculus
- Simply Typed Resource Calculus (by translation (-)°)

Modelling the Untyped Differential λ -Calculus

As in the λ -calculus we need a *reflexive object U* (i.e., $[U \Rightarrow U] \triangleleft U$) in a Cartesian closed differential category, **but it is not enough!**

Linear reflexive object

A reflexive object $[U \Rightarrow U] \triangleleft U$ is *linear* if

$$\mathcal{A}: \boldsymbol{U} \to [\boldsymbol{U} \Rightarrow \boldsymbol{U}], \qquad \lambda: [\boldsymbol{U} \Rightarrow \boldsymbol{U}] \to \boldsymbol{U}$$

are both *linear* maps.

We modify the interpretation in the obvious way:

•
$$\llbracket \mathbf{x}_i \rrbracket_{\vec{X}} = \pi_i,$$

•
$$\llbracket sT \rrbracket_{\vec{x}} = \langle \mathcal{A} \circ \llbracket s \rrbracket_{\vec{x}}, \llbracket T \rrbracket_{\vec{x}} \rangle; \text{ev},$$

•
$$[\lambda y.s]_{\vec{x}} = \Lambda([s]_{\vec{x},y}); \lambda$$
, with $y \notin \vec{x}$

•
$$\llbracket D(s) \cdot t \rrbracket_{\vec{x}} = \Lambda(\Lambda^{-}(\llbracket s \rrbracket_{\vec{x}}; \mathcal{A}) \star \llbracket t \rrbracket_{\vec{x}}); \lambda.$$

Theorem [Manzonetto'11]

Cartesian closed differential categories are *sound* and *complete* models of the differential λ -calculus.

Theorem [Manzonetto'11]

Cartesian closed differential categories are *sound* and *complete* models of the differential λ -calculus.

Completeness Theorem for λ -calculus [Scott || Koymans]

Every λ -theories T is the theory of a reflexive object in a suitable CCC \mathbf{C}_T .

Theorem [Manzonetto'11]

Cartesian closed differential categories are *sound* and *complete* models of the differential λ -calculus.

Scott-Koymans completeness proof for regular λ -calculus (take *T*):

$$\Lambda/T \xrightarrow{\text{Karoubi envelope}} \mathbf{C}_T = \mathcal{K}(\Lambda/T) \qquad \exists \mathbf{I} \text{ reflexive obj.}$$

Completeness Theorem for λ -calculus [Scott || Koymans]

Every λ -theories T is the theory of a reflexive object in a suitable CCC \mathbf{C}_T .

Theorem [Manzonetto'11]

Cartesian closed differential categories are *sound* and *complete* models of the differential λ -calculus.

Scott-Koymans completeness proof for regular λ -calculus (take *T*):

$$\Lambda/T \xrightarrow{\text{Karoubi envelope}} \mathbf{C}_T = \mathcal{K}(\Lambda/T) \qquad \exists \mathbf{I} \text{ reflexive obj.}$$
$$M \in \Lambda^o \longmapsto [\lambda x.M]_T$$

Completeness Theorem for λ -calculus [Scott || Koymans]

Every λ -theories T is the theory of a reflexive object in a suitable CCC C_T .

Theorem [Manzonetto'11]

Cartesian closed differential categories are *sound* and *complete* models of the differential λ -calculus.

Scott-Koymans completeness proof for regular λ -calculus (take *T*):

$$\Lambda/T \xrightarrow{\text{Karoubi envelope}} \mathbf{C}_T = \mathcal{K}(\Lambda/T) \qquad \text{Th}(\mathbf{I}) = T$$
$$M \in \Lambda^o \xleftarrow{[\![\cdot]\!]} [\lambda x.M]_T$$

Completeness Theorem for λ -calculus [Scott || Koymans]

Every λ -theories T is the theory of a reflexive object in a suitable CCC \mathbf{C}_T .

Theorem [Manzonetto'11]

Cartesian closed differential categories are *sound* and *complete* models of the differential λ -calculus.

The category \mathbf{C}_T is described as follows (where M; $N = \lambda z.N(Mz)$):

Objects:	$\{A \in \Lambda / T \mid A; A = A\}$
Hom(A,B):	$\{f \in \Lambda/T \mid A; f; B = f\}$
Identity:	$\mathrm{Id}_{\mathcal{A}}=\mathcal{A}$
Composition:	f; g

Completeness Theorem for λ -calculus [Scott || Koymans]

Every λ -theories T is the theory of a reflexive object in a suitable CCC \mathbf{C}_T .

Theorem [Manzonetto'11]

Cartesian closed differential categories are *sound* and *complete* models of the differential λ -calculus.

Idea: encode the categorical constructions via λ -terms: **Products:**

$$\langle f, g \rangle = \lambda z.[fz, gz] \qquad \qquad \pi_i^{A_1, A_2} = p_i; A$$

where $[M, N] = \lambda y.yMN$, $p_1 = \lambda x.xK$ and $p_2 = \lambda x.xK^*$ (Church encoding).

Exponents:

Completeness Theorem for λ -calculus [Scott || Koymans]

Every λ -theories T is the theory of a reflexive object in a suitable CCC \mathbf{C}_T .

Giulio Manzonetto (RU)

Theorem [Manzonetto'11]

Cartesian closed differential categories are *sound* and *complete* models of the differential λ -calculus.

The category \mathbf{C}_T is described as follows (where M; $N = \lambda z.N(Mz)$):

Objects:	$\{A \in \Lambda/T \mid A; A = A, A(x + y) = Ax + Ay\}$
Hom(A,B):	$\{f \in \Lambda/T \mid A; f; B = f\}$
Identity:	$\mathrm{Id}_{\mathcal{A}}=\mathcal{A}$
Composition:	f; g

Additive structure: the sum in the category is the sum of terms.

Completeness Theorem for differential λ -calculus [Manzonetto'11]

Every **differential** λ -theory T is the theory of a **linear** reflexive object in a suitable Cartesian closed **differential** category C_T .

Theorem [Manzonetto'11]

Cartesian closed differential categories are *sound* and *complete* models of the differential λ -calculus.

Problem: Church's pairing is not additive!

$$\begin{split} [M+M', N+N'] &= \lambda y. y(M+M')(N+N') \neq \lambda y. yMN + \lambda y. yM'N' = [M, N] + [M', N'] \\ &\Rightarrow \langle f + f', g + g' \rangle \neq \langle f, g \rangle + \langle f', g' \rangle \end{split}$$

Completeness Theorem for differential λ -calculus [Manzonetto'11]

Every **differential** λ -theory T is the theory of a **linear** reflexive object in a suitable Cartesian closed **differential** category C_T .

Theorem [Manzonetto'11]

Cartesian closed differential categories are *sound* and *complete* models of the differential λ -calculus.

Solution: set-like encoding exploiting resource consciousness

 $[M, N] = \lambda y \cdot M + \lambda y \cdot D(y) \cdot N \qquad p_1 = \lambda x \cdot x_0 \qquad p_2 = \lambda x \cdot (D(x) \cdot I)_{00}$

We need to restrict to theories with idempotent sum!

Completeness Theorem for differential λ -calculus [Manzonetto'11] Every **differential** λ -theory *T* with idempotent sum is the theory of a **linear** reflexive object in a suitable Cartesian closed **differential** category **C**_T.

Theorem [Manzonetto'11]

Cartesian closed differential categories are *sound* and *complete* models of the differential λ -calculus.

The encoding of the differential operator is straightforward:

$$D^{\times}(f) = \lambda z.B((D(f) \cdot (A(p_1z)))(A(p_2z))) : A \times A \to B$$

Completeness Theorem for differential λ -calculus [Manzonetto'11]

Every **differential** λ -theory T with idempotent sum is the theory of a **linear** reflexive object in a suitable Cartesian closed **differential** category C_T .

Theorem [Manzonetto'11]

Cartesian closed differential categories are *sound* and *complete* models of the differential λ -calculus.

Completeness proof for differential λ -calculus (take *T*):

$$\Lambda_d/T \xrightarrow{\text{Karoubi envelope}} \mathbf{C}_T = \mathcal{K}(\Lambda_d/T) \qquad \exists I \text{ linear refl. obj.}$$

$$M \in \Lambda^o_d \longmapsto [\lambda x.\widetilde{M}]_T$$

 $\widetilde{(\cdot)}$: $D(M) \cdot N \mapsto \lambda y . (D(\widetilde{M}) \cdot \widetilde{N})y$, the identity otherwise.

Completeness Theorem for differential λ -calculus [Manzonetto'11]

Every differential λ -theory T with idempotent sum is the theory of a linear reflexive object in a suitable Cartesian closed differential category C_T .

Theorem [Manzonetto'11]

Cartesian closed differential categories are *sound* and *complete* models of the differential λ -calculus.

Completeness proof for differential λ -calculus (take *T*):

$$\Lambda_d/T \xrightarrow{\text{Karoubi envelope}} \boldsymbol{\mathsf{C}}_T = \mathcal{K}(\Lambda_d/T) \qquad \text{Th}(\mathbf{I}) \subseteq T$$

$$M \in \Lambda^o_d \longmapsto [\lambda x. \widetilde{M}]_T$$

We add equations $Th(I) \vdash D(M) \cdot N = \lambda y . (D(M) \cdot N)y$ (differentially extensional axiom)

Completeness Theorem for differential λ -calculus [Manzonetto'11]

Every differential λ -theory T with idempotent sum is the theory of a linear reflexive object in a suitable Cartesian closed differential category C_T .

Theorem [Manzonetto'11]

Cartesian closed differential categories are *sound* and *complete* models of the differential λ -calculus.

Completeness proof for differential λ -calculus (take *T*):

$$\Lambda_d/T \xrightarrow{\text{Karoubi envelope}} \boldsymbol{\mathsf{C}}_T = \mathcal{K}(\Lambda_d/T) \qquad \text{Th}(\mathbf{I}) = T$$

$$M \in \Lambda^o_d \xrightarrow{[] \cdot]]} [\lambda x.M]_T$$

We restrict to differentially extensional T

Completeness Theorem for differential λ -calculus [Manzonetto'11]

Every differentionally extensional differential λ -theory T with idempotent sum is the theory of a **linear** reflexive object in a suitable Cartesian closed differential category C_T .

Theorem [Manzonetto'11]

Cartesian closed differential categories are *sound* and *complete* models of the differential λ -calculus.

Completeness proof for differential λ -calculus (take *T*):

$$\Lambda_d/T \xrightarrow{\text{Karoubi envelope}} \mathbf{C}_T = \mathcal{K}(\Lambda_d/T) \qquad \text{Th}(\mathbf{I}) = T$$

$$M \in \Lambda_d^o \longrightarrow [\lambda x.M]_{\mathcal{T}}$$

All models arising naturally are differentionally extensional, also the non-extensional ones!

Completeness Theorem for differential λ -calculus [Manzonetto'11]

Every differentionally extensional differential λ -theory T with idempotent sum is the theory of a **linear** reflexive object in a suitable Cartesian closed differential category C_T .

Examples

- MFin: Finiteness Spaces. [Ehrhard] [No reflexive objects in it!]
- **3 MReI**: The Relational Semantics. The coKleisli of $\mathbf{ReI} + M_f(-)$.
- Its variations with "Infinite Multiplicities" [Carraro-Ehrhard-Salibra]
- Convenient differential category [Blute-Ehrhard-Tasson]
- Scategories of games... [Laird-Manzonetto-MCusker] (see later)

MRel

- Objects: sets,
- Morphisms: **MRel**(A, B) = $\mathcal{P}(M_f(A) \times B)$ (relations between $M_f(A)$ and B).

Given $f : A \rightarrow B$ we can define:

$$D(f) = \{(([a], m), b) \mid (m \uplus [a], b) \in f\} : A \times A \rightarrow B.$$

Theorem [BEM'10]

The category **MReI** is a Cartesian closed differential category.

Corollary

MReI is a model of the simply typed differential λ -calculus.

Giulio Manzonetto (RU)

MRel

- Objects: sets,
- Morphisms: **MRel**(A, B) = $\mathcal{P}(M_f(A) \times B)$ (relations between $M_f(A)$ and B).

Given $f : A \rightarrow B$ we can define:

$$D(f) = \{(([a], m), b) \mid (m \uplus [a], b) \in f\} : A \times A \rightarrow B.$$

Theorem [BEM'10]

The category **MReI** is a Cartesian closed differential category.

Corollary

MRel is a model of the simply typed differential λ -calculus.

Giulio Manzonetto (RU)

Untyped Models in MRel

- \mathcal{D} : relational analogous of Scott's \mathcal{D}_{∞} (extensional),
- *E*: relational analogous of Engelers' graph model (non extensional, but differentially extensional),

Untyped Models in MRel

• \mathcal{D} : relational analogous of Scott's \mathcal{D}_{∞} (extensional), Construction:

$$D_0 = \emptyset$$
 $D_{n+1} = M_f(D_n)^{(\omega)}$ $D = \cup_{n \in \omega} D_n$

 $(m_1, m_2, m_3, \ldots) \in \mathcal{D} \iff (m_1, (m_2, m_3, \ldots)) \in M_f(\mathcal{D}) \times \mathcal{D} = [\mathcal{D} \Rightarrow \mathcal{D}]$

C: relational analogous of Engelers' graph model (non extensional, but differentially extensional),

Untyped Models in MRel

- \mathcal{D} : relational analogous of Scott's \mathcal{D}_{∞} (extensional),
- *C*: relational analogous of Engelers' graph model (non extensional, but differentially extensional),

MReI models the Taylor Expansion

In every linear reflexive object U of MReI we have

$$\llbracket \boldsymbol{S} \rrbracket_{\vec{x}}^{\boldsymbol{U}} = \llbracket \boldsymbol{S}^* \rrbracket_{\vec{x}}^{\boldsymbol{U}}$$

Untyped Models in MRel

- \mathcal{D} : relational analogous of Scott's \mathcal{D}_{∞} (extensional),
- *E*: relational analogous of Engelers' graph model (non extensional, but differentially extensional),

MReI models the Taylor Expansion

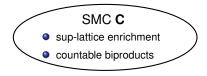
In every linear reflexive object U of MReI we have

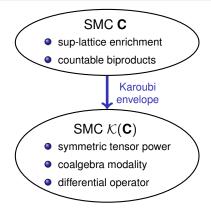
$$\llbracket S \rrbracket^U_{\vec{x}} = \llbracket S^* \rrbracket^U_{\vec{x}}$$

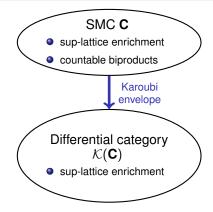
Full Abstraction [Bucciarelli-Carraro-Ehrhard-Manzonetto'11]

 $\ensuremath{\mathcal{D}}$ is a fully abstract model of the resource calculus with tests.

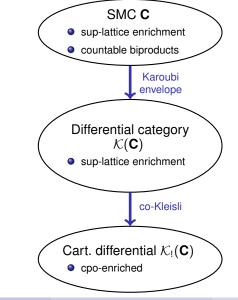
$$\llbracket M \rrbracket \subseteq \llbracket N \rrbracket \iff [\forall C(\cdot) \ C(M) \Downarrow \Rightarrow C(N) \Downarrow]$$



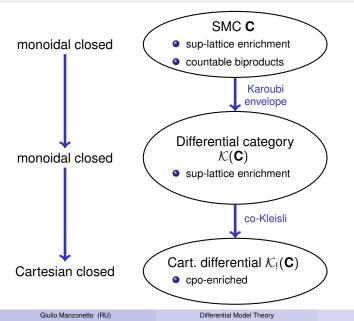


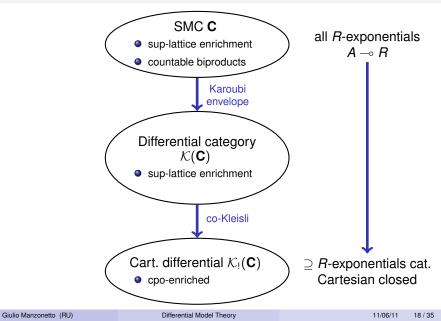


Building Differential Categories



Giulio Manzonetto (RU)





General recipe for coalgebra modalities

Take an SMC. In presence of the equalizer A^n (as in many models of LL):

$$A^{\otimes n} \xrightarrow{\text{equalizer}} A^{\otimes n} \xrightarrow{i n! \text{ permutations}} A^{\otimes n}$$

 A^n gives the *n*-th layer of the free commutative monoid !A.

Coalgebra modality

$$!A = \prod_{n \in \omega} A^n$$

This works for symmetric monoidal categories where the tensor distributes over the infinite product:

$$X \otimes (\prod_{n \in \omega} A^n) \cong \prod_{n \in \omega} (X \otimes A^n)$$

General recipe for coalgebra modalities

Take an SMC. In presence of the equalizer A^n (as in many models of LL):

$$A^{\otimes n} \xrightarrow{\text{equalizer}} A^{\otimes n} \xrightarrow{i n! \text{ permutations}} A^{\otimes n}$$

 A^n gives the *n*-th layer of the free commutative monoid !A.

Coalgebra modality

$$A = \prod_{n \in \omega} A^n$$

This works for symmetric monoidal categories where the tensor distributes over the infinite product:

$$X \otimes (\prod_{n \in \omega} A^n) \cong \prod_{n \in \omega} (X \otimes A^n)$$

 $\mathcal{K}(\mathbf{C})$ (for sup-semilattice enriched \mathbf{C} with infinite biproducts):

Obj: $(A, f), A \in \mathbf{C}, f : A \to A$ idempotent Hom((A,f),(B,g)): $h \in \mathbf{C}(A, B)$, such that $f; h = h \land g; h = h$

We can construct the symmetric tensor product A^n using $\Theta_{A,n} = \sum_{\sigma \in \mathfrak{S}_n} \sigma$

$$(A^{\otimes n}, f^{\otimes n}; \Theta_{A,n}) \xrightarrow{f^{\otimes n}; \Theta_{A,n}} (A^{\otimes n}, f^{\otimes n}) \xrightarrow{\vdots n! \text{ permutations}} (A^{\otimes n}, f^{\otimes n})$$

Storage modality

 $!(A, f) = \bigoplus_{n \in \omega} (A, f)^n$ (free commutative comonoid)

 $\mathcal{K}(\mathbf{C})$ (for sup-semilattice enriched **C** with infinite biproducts):

Obj:
$$(A, f), A \in \mathbf{C}, f : A \to A \text{ idempotent}$$

Hom((A,f),(B,g)): $h \in \mathbf{C}(A, B)$, such that $f; h = h \land g; h = h$

We can construct the *symmetric tensor product* A^n using $\Theta_{A,n} = \sum_{\sigma \in \mathfrak{S}_n} \sigma$

$$(A^{\otimes n}, f^{\otimes n}; \Theta_{A,n}) \xrightarrow{f^{\otimes n}; \Theta_{A,n}} (A^{\otimes n}, f^{\otimes n}) \xrightarrow{\vdots n! \text{ permutations}} (A^{\otimes n}, f^{\otimes n})$$

Storage modality

 $!(A, f) = \bigoplus_{n \in \omega} (A, f)^n$ (free commutative comonoid)

Always works in the Karoubi Envelope

Differential transformation

 $d:(A,f)\otimes !(A,f)\to !(A,f)$

Differential transformation

$$d: (A, f) \otimes \bigoplus_{n \in \omega} (A, f)^n \to \bigoplus_{n \in \omega} (A, f)^n$$

$$(A, f) \otimes (A, f)^n \xrightarrow{f^{\oplus n+1}; \Theta_{A,n+1}} (A, f)^{n+1}$$

Iupling all these gives a map

$$(A, f) \otimes ! (A, f) \rightarrow \bigoplus_{n \in \omega} (A, f)^{n+1}$$

③ Finally pairing with $0: (A, f) \otimes !(A, f) \rightarrow \top$ gives

 $(A, f) \otimes ! (A, f) \rightarrow ! (A, f)$

Differential transformation

$$d: (A, f) \otimes \bigoplus_{n \in \omega} (A, f)^n \to \bigoplus_{n \in \omega} (A, f)^n$$

For each n we have:

$$(A, f) \otimes (A, f)^n \xrightarrow{f^{\oplus n+1}; \Theta_{A, n+1}} (A, f)^{n+1}$$

$$(A, f) \otimes ! (A, f) \to \bigoplus_{n \in \omega} (A, f)^{n+1}$$

Differential transformation

$$d: (A, f) \otimes \bigoplus_{n \in \omega} (A, f)^n \to \bigoplus_{n \in \omega} (A, f)^n$$

For each n we have:

$$(A, f) \otimes ! (A, f) \xrightarrow{\cong; \pi_n} (A, f) \otimes (A, f)^n \xrightarrow{f^{\oplus n+1}; \Theta_{A, n+1}} (A, f)^{n+1}$$

$$(A, f) \otimes ! (A, f) \to \bigoplus_{n \in \omega} (A, f)^{n+1}$$

Differential transformation

$$d: (A, f) \otimes \bigoplus_{n \in \omega} (A, f)^n \to \bigoplus_{n \in \omega} (A, f)^n$$

For each n we have:

$$(A, f) \otimes !(A, f) \xrightarrow{\cong; \pi_n} (A, f) \otimes (A, f)^n \xrightarrow{f^{\oplus n+1}; \Theta_{A, n+1}} (A, f)^{n+1}$$

Tupling all these gives a map

$$(A, f) \otimes ! (A, f) \rightarrow \bigoplus_{n \in \omega} (A, f)^{n+1}$$

Differential transformation

$$d: (A, f) \otimes \bigoplus_{n \in \omega} (A, f)^n \to \bigoplus_{n \in \omega} (A, f)^n$$

For each n we have:

$$(A, f) \otimes !(A, f) \xrightarrow{\cong; \pi_n} (A, f) \otimes (A, f)^n \xrightarrow{f^{\oplus n+1}; \Theta_{A, n+1}} (A, f)^{n+1}$$

Tupling all these gives a map

$$(A, f) \otimes ! (A, f) \rightarrow \bigoplus_{n \in \omega} (A, f)^{n+1}$$

③ Finally pairing with $0: (A, f) \otimes !(A, f) \rightarrow \top$ gives

 $(A, f) \otimes !(A, f) \rightarrow !(A, f)$

Always works in the Karoubi Envelope

What if I don't have sup-lattice enrichment or infinite biproducts?

$$d:(A,f)\otimes igoplus_{n\in\omega}(A,f)^n o igoplus_{n\in\omega}(A,f)^n$$

For each n we have:

$$(A, f) \otimes ! (A, f) \xrightarrow{\cong; \pi_n} (A, f) \otimes (A, f)^n \xrightarrow{f^{\oplus n+1}; \Theta_{A, n+1}} (A, f)^{n+1}$$

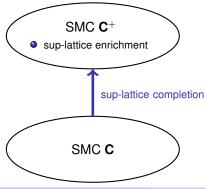
Iupling all these gives a map

$$(A, f) \otimes ! (A, f) \rightarrow \bigoplus_{n \in \omega} (A, f)^{n+1}$$

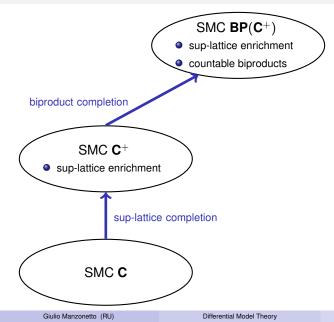
Sinally pairing with $0: (A, f) \otimes !(A, f) \rightarrow \top$ gives

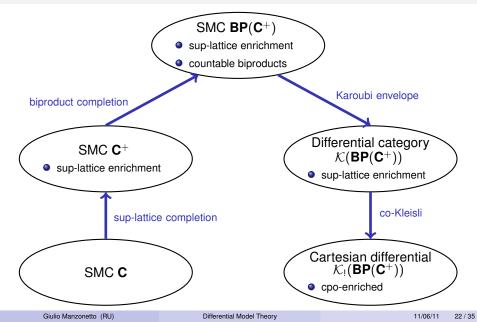
 $(A,f)\otimes !(A,f) \to !(A,f)$

Giulio Manzonetto (RU)



Giulio Manzonetto (RU)





Easy way to Build Models of Resource PCF

Resource PCF

- Simply Typed Resource Calculus
- + Constants for natural numbers (of ground type Nat)
- + Fixed Point Combinator Y,
- + "If-zero?" instruction.

Operational semantics: Linear Head Reduction.

Denotational Models

- Cartesian Closed Differential Categories,
- + Fixpoints,
- + (weak) Natural number object.

Remark on the construction

We recover **MReI** and build categories of games.

Easy way to Build Models of Resource PCF

Resource PCF

- Simply Typed Resource Calculus
- + Constants for natural numbers (of ground type Nat)
- + Fixed Point Combinator Y,
- + "If-zero?" instruction.

Operational semantics: Linear Head Reduction.

Denotational Models

- Cartesian Closed Differential Categories,
- + Fixpoints,
- + (weak) Natural number object.

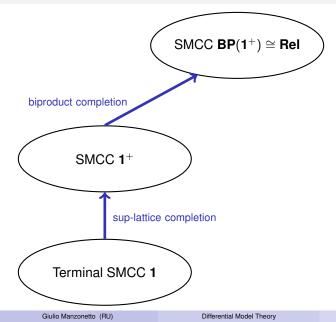
Remark on the construction

We recover **MReI** and build categories of games.

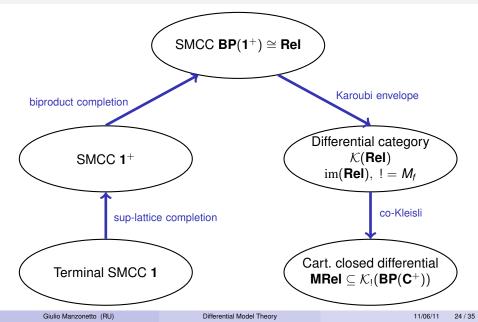
Example from SMCC 1 (1 object, 1 morphism)

Giulio Manzonetto (RU)

Example from SMCC 1 (1 object, 1 morphism)



Example from SMCC 1 (1 object, 1 morphism)



Playing with games...

Arena

An arena A is given by:

- a finite bipartite forest over two sets of moves M_A^P and M_A^O ,
- an edge relation ⊢ (enabling),
- a labelling function (Questions and Answers).

Strategies

Given an arena A, a **strategy** over A is:

- a set of complete sequences (= every question is answered exactly once),
- the Opponent plays first (then they alternate),
- satisfying *P*-visibility and *P*-bracketing.

Playing with games...

Arena

An arena A is given by:

- a finite bipartite forest over two sets of moves M_A^P and M_A^O ,
- an edge relation ⊢ (enabling),
- a labelling function (Questions and Answers).

Strategies

Given an arena A, a strategy over A is:

- a set of complete sequences (= every question is answered exactly once),
- the Opponent plays first (then they alternate),
- satisfying *P*-visibility and *P*-bracketing.

A category G of games

Category G of games [Harmer-McCusker]

The category G:

- Objects: arenas whose roots are all O-moves,
- Hom(A,B): strategies on $A^{\perp} \uplus B$,
- Composition: usual "parallel composition plus hiding" construction,
- Identities: copycat strategies.
- \otimes = disjoint union,
- $A \multimap B$ = Arena *B* with a copy of A^{\perp} attached below each initial move (to maintain the forest structure)

A category G of games

Category G of games [Harmer-McCusker]

The monoidal closed category G:

- Objects: arenas whose roots are all O-moves,
- Hom(A,B): strategies on $A^{\perp} \uplus B$,
- Composition: usual "parallel composition plus hiding" construction,
- Identities: copycat strategies.
- Solution = disjoint union,
- $A \multimap B$ = Arena *B* with a copy of A^{\perp} attached below each initial move (to maintain the forest structure)

The subcategory G[⊗]

Remark

Every object of **G** can be endowed with a comonoid structure

Comonoid homomorphisms = maps whose choice of move at any stage depends only on the current thread.

Subcategory of comonoid homomorphisms

Cartesian closed category \mathbf{G}^{\otimes} .

Theorem [Harmer-McCusker'99]

 \mathbf{G}^{\otimes} is fully abstract for Erratic Idealized Algol.

The subcategory G[®]

Remark

Every object of **G** can be endowed with a comonoid structure

Comonoid homomorphisms = maps whose choice of move at any stage depends only on the current thread.

Subcategory of comonoid homomorphisms

Cartesian closed category \mathbf{G}^{\otimes} .

Theorem [Harmer-McCusker'99]

 \mathbf{G}^{\otimes} is fully abstract for Erratic Idealized Algol.

\mathbf{G}^{\otimes} is a Cartesian Closed Differential Category

Given a complete play (playing in A^{\perp} at least once):

 $s: A^{\perp} \uplus B$

Its derivative

 $s': A^{\perp} \uplus A^{\perp} \uplus B$

plays in the left A^{\perp} exactly once.

Derivative combinator

 $D^{\times}(\sigma) = \{ s' \in \operatorname{comp}(A^{\perp} \uplus A^{\perp} \uplus B) \mid s' \text{ is a derivative of some } s \in \sigma \}$

The derivative is programmable in Erratic Idealized Algol.

\mathbf{G}^{\otimes} is a Cartesian Closed Differential Category

Given a complete play (playing in A^{\perp} at least once):

 $s: A^{\perp} \uplus B$

Its derivative

 $s': A^{\perp} \uplus A^{\perp} \uplus B$

plays in the left A^{\perp} exactly once.

Derivative combinator

 $D^{\times}(\sigma) = \{ s' \in \operatorname{comp}(A^{\perp} \uplus A^{\perp} \uplus B) \mid s' \text{ is a derivative of some } s \in \sigma \}$

The derivative is programmable in Erratic Idealized Algol.

Analysis of G[⊗]

Path:

- non-repeating enumeration of all moves,
- respects the order given by the edge relation in the arena,
- the first move is by O,
- moves alternate polarity thereafter.

Exhausting strategy: set of even paths satisfying P-visibility.

Category of Exhausting games

The category EG:

- Objects: finite O-rooted arenas,
- Hom(A,B): exhausting strategy on $A^{\perp} \uplus B$,
- monoidal structure = disjoint union,
- has all *R*-exponentials $A \rightarrow R$, where R = arena with a single *O*-move.

Let's apply (the second part of) our construction...

Analysis of \mathbf{G}^{\otimes}

Path:

- non-repeating enumeration of all moves,
- respects the order given by the edge relation in the arena,
- the first move is by O,
- moves alternate polarity thereafter.

Exhausting strategy: set of even paths satisfying *P*-visibility.

Category of Exhausting games

The category EG:

- Objects: finite O-rooted arenas,
- Hom(A,B): exhausting strategy on $A^{\perp} \uplus B$,
- monoidal structure = disjoint union,
- has all *R*-exponentials $A \multimap R$, where R = arena with a single *O*-move.

Let's apply (the second part of) our construction...

Analysis of ${\bf G}^\otimes$

Path:

- non-repeating enumeration of all moves,
- respects the order given by the edge relation in the arena,
- the first move is by O,
- moves alternate polarity thereafter.

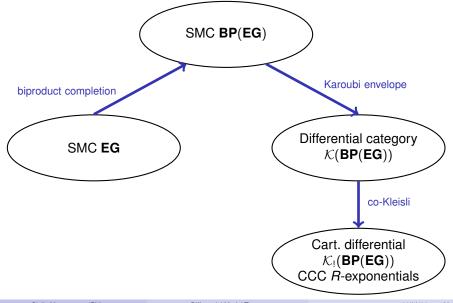
Exhausting strategy: set of even paths satisfying P-visibility.

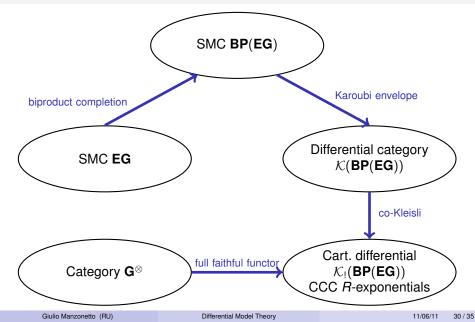
Category of Exhausting games

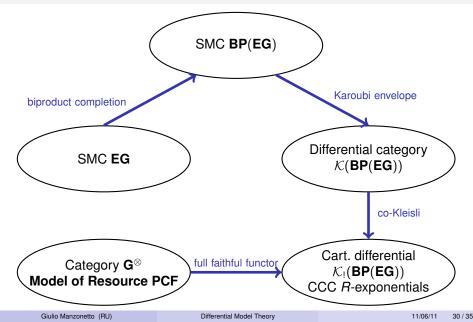
The sup-lattice enriched category EG:

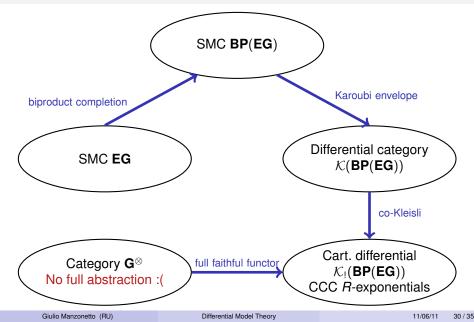
- Objects: finite O-rooted arenas,
- Hom(A,B): exhausting strategy on $A^{\perp} \uplus B$,
- monoidal structure = disjoint union,
- has all *R*-exponentials $A \multimap R$, where R = arena with a single *O*-move.

Let's apply (the second part of) our construction...









Refining

We consider a switch equivalence relation:

 $\sim =$ least equivalence relation $\mathbf{s} \cdot \mathbf{o} \cdot \mathbf{p} \cdot \mathbf{o}' \cdot \mathbf{p}' \cdot t \sim \mathbf{s} \cdot \mathbf{o}' \cdot \mathbf{p}' \cdot \mathbf{o} \cdot \mathbf{p} \cdot t$

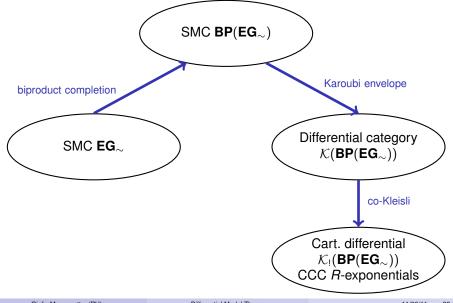
~-closed strategies = causal independent strategies

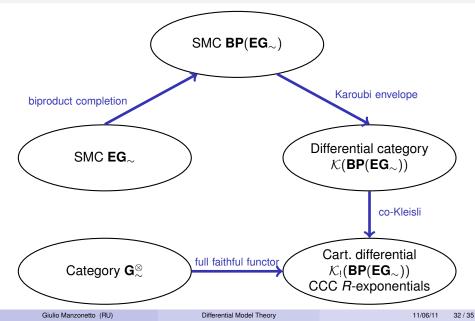
The category \textbf{EG}_{\sim}

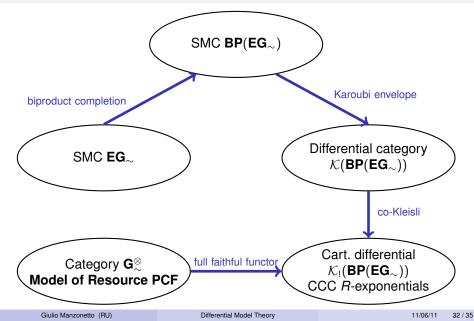
- Objects: O-rooted arenas,
- Hom(A,B): deterministic ~-closed strategies.

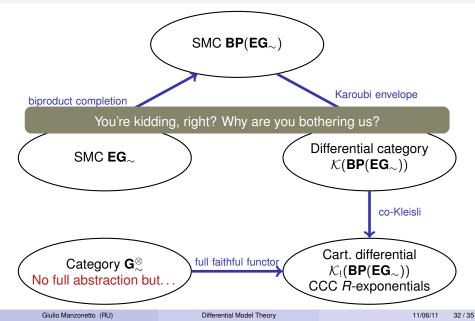
Remark

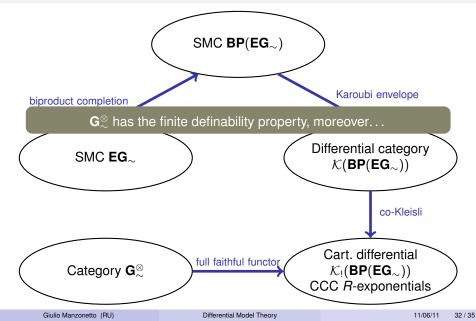
Nondeterminism arise with the sup-lattice completion.











Building Differential Categories

Full Abstraction for Resource PCF

 \mathbf{EG}^{QA}_{\sim} : Arenas where each question enables a **unique** answer

(Unique) Full Functor $\top : \mathbf{EG}^{QA}_{\sim} \to \mathbf{1}$

Building Differential Categories

Full Abstraction for Resource PCF

 $\mathbf{G}^{\otimes}_{\sim}$ embeds in $\mathcal{K}_{!}(\mathbf{BP}((\mathbf{EG}^{QA}_{\sim})^{+}))$ by construction!

(Unique) Full Functor Full Functor

$$\begin{array}{l} \top : \mathsf{EG}^{QA}_{\sim} \to \mathbf{1} \\ F : \mathcal{K}_!(\mathsf{BP}((\mathsf{EG}^{QA}_{\sim})^+)) \to \mathcal{K}_!(\mathsf{Rel}) \quad (\mathsf{lifted}) \end{array}$$

Building Differential Categories

Full Abstraction for Resource PCF

(Unique) Full Functor $\top : \mathbf{EG}^{QA}_{\sim} \to \mathbf{1}$ Full Functor **Full Functor**

 $F: \mathcal{K}_{!}(\mathsf{BP}((\mathsf{EG}^{QA}_{\sim})^{+})) \to \mathcal{K}_{!}(\mathsf{Rel}) \quad (lifted)$ $F': \mathbf{G}^{\otimes} \to \mathbf{MRel}$

Full Abstraction for Resource PCF

- **Full Functor**
- (Unique) Full Functor $\top : \mathbf{EG}_{\sim}^{QA} \to \mathbf{1}$ Full Functor $F : \mathcal{K}_{!}(\mathbf{BP}((\mathbf{EG}_{\sim}^{QA})^{+})) \to \mathcal{K}_{!}(\mathbf{Rel})$ (lifted) $F': \mathbf{G}^{\otimes} \to \mathbf{MRel}$

Finite Definability Property

Both $\mathbf{G}_{\infty}^{\otimes}$ and **MReI** have the finite definability property. (def. $\mathbf{G}_{\infty}^{\otimes} \Rightarrow$ def. **MReI**)

Corollary: MReI is Fully Abstract for Resource PCF Let M, N of type A.

$$\llbracket M \rrbracket \subseteq \llbracket N \rrbracket \iff [\forall C(\cdot) \ C(M) \Downarrow \Rightarrow C(N) \Downarrow]$$

Full Abstraction for Resource PCF

Finite Definability Property

Both ${\bf G}^\otimes_\sim$ and ${\bf MRel}$ have the finite definability property. (def. ${\bf G}^\otimes_\sim\Rightarrow$ def. ${\bf MRel}$)

Corollary: **MReI** is Fully Abstract for Resource PCF Let *M*, *N* of type *A*.

$$\llbracket M \rrbracket \subseteq \llbracket N \rrbracket \iff [\forall C(\cdot) \ C(M) \Downarrow \Rightarrow C(N) \Downarrow]$$

Proof (sketch)

- Suppose ∃*a* ∈ [[*M*]] − [[*N*]],
- By finite definability $\{(a,0)\}: A \rightarrow Nat$ denotes some term $x: A \vdash C(x)$,
- Hence $\llbracket C(M) \rrbracket = \llbracket \text{zero} \rrbracket$ and $\llbracket C(N) \rrbracket = \emptyset$,
- Thus $C(M) \Downarrow$ but $C(N) \Downarrow$

Conclusions

We have:

- Defined Cartesian closed differential categories,
- Shown they are sound and complete models of untyped differential λ -calculus,
- Provided a construction for building differential categories,
- Applied it to categories of games and categories of sets and relations,
- shown that MReI is fully abstract for Resource PCF.

Thanks for your attention!

Questions?