Proof nets for sum-product logic

Willem Heijltjes

LFCS
School of Informatics
University of Edinburgh

Kananaskis, 11-12 June 2011

This talk...

Part 1

- Background
- Sum-product nets without units
- Sum-product nets with units
- Results and future work

Part 2

- Proofs

Proof nets

For a given logic,

- Syntax: proofs, terms
- Semantics: games, sets and relations (complete partial orders, coherence spaces, Kripke frames), categories
But: many proofs may correspond to the same semantic entity The aim of proof nets is to obtain a 1-1 correspondence between syntax and semantics

Sum-product logic

Categorical (free) finite products and coproducts (over \mathcal{C})

$$
X:=A \in \operatorname{ob}(\mathcal{C})|\mathbf{0}| \mathbf{1}|X+X| X \times X
$$

Morphisms $f: X \rightarrow Y$

Sum-product logic

Categorical (free) finite products and coproducts (over \mathcal{C})

$$
X:=A \in \operatorname{ob}(\mathcal{C})|\mathbf{0}| \mathbf{1}|X+X| X \times X
$$

Morphisms $f: X \rightarrow Y$
Additive linear logic

$$
X:=A|\mathbf{0}| \top|X \oplus X| X \& X
$$

Proofs of $X \vdash Y\left(\right.$ or $X \multimap Y$, or $X^{\perp}>Y$)
Free lattice completions of a poset (P, \leq)

$$
x:=a \in P|\perp| \top|x \vee x| x \wedge x
$$

Justifications that $x \leq y$

Idiosyncrasies of free (co)products

Zero and one are units

$$
\mathbf{0}+X \cong X \quad \mathbf{1} \times X \cong X
$$

and products and coproducts are perfectly dual

But there is no distributivity

$$
\begin{aligned}
& \neq \quad \mathbf{0} \times X \cong \mathbf{0} \quad \neq \quad \mathbf{1}+X \cong \mathbf{1} \\
& \not \models \quad X \times(Y+Z) \cong(X \times Y)+(X \times Z)
\end{aligned}
$$

(there may not even be a single arrow from left to right!)

Sum-product logic

$$
\begin{aligned}
& \overline{A \xrightarrow{a} B} \\
& \overline{\mathbf{0} \xrightarrow{?} X} \quad \overline{x \xrightarrow{!} \mathbf{1}} \\
& \frac{X \xrightarrow{f} Y_{i}}{X \xrightarrow{\iota_{i} \circ f} Y_{0}+Y_{1}} \\
& \frac{X_{0} \xrightarrow{f} Y \quad X_{1} \xrightarrow{g} Y}{X_{0}+X_{1} \xrightarrow{[f, g]} Y} \\
& \frac{X \xrightarrow{f} Y_{0} \quad X \xrightarrow{g} Y_{1}}{X \xrightarrow{\langle f, g\rangle} Y_{0} \times Y_{1}} \\
& \frac{X_{i} \xrightarrow{f} Y}{X_{0} \times X_{1} \xrightarrow{f \circ \pi_{i}} Y} \\
& \overline{X \xrightarrow{i d} X} \\
& \xrightarrow[{X \xrightarrow{f} Y \quad Y \xrightarrow{g}} Z]{X}
\end{aligned}
$$

Cut elimination / subformula property

Whitman's Theorem for free lattices (1940s)

$$
\text { e.g.: } u \wedge v \leq x \vee y \text { only if } \begin{aligned}
& u \leq x \vee y \text { or } v \wedge u \leq x \text { or } \\
& v \leq x \vee y \text { or } v \wedge u \leq y
\end{aligned}
$$

Joyal: Free Bicompletions of Categories (1995)
a morphism $f: V_{0} \times V_{1} \rightarrow X_{0}+X_{1}$ has one of these forms

$$
\begin{aligned}
& V_{0} \times V_{1} \xrightarrow{\pi_{i}} V_{i} \xrightarrow{g} X_{0}+X_{1} \\
& V_{0} \times V_{1} \xrightarrow{h} X_{j} \xrightarrow{\iota_{j}} X_{0}+X_{1}
\end{aligned}
$$

and if it has both, then

Softness

Joyal: Free Bicompletions of Categories (1995)
For any (small) diagrams $D: I \rightarrow \mathcal{C}$ and $E: J \rightarrow \mathcal{C}$:
$\underset{I \times J}{\operatorname{colim}}\left(\operatorname{hom}\left(D^{\circ p}, E\right)\right) \longrightarrow \operatorname{colim}\left(\operatorname{hom}\left(\lim _{J} D, E\right)\right)$

Proof identity

Proofs equal up to permutations denote the same orphism

$$
\begin{aligned}
& \frac{X_{1} \xrightarrow{f} Y_{0}}{X_{0} \times X_{1} \xrightarrow{f \circ \pi_{1}} Y_{0}}=\frac{X_{1} \xrightarrow{f} Y_{i}}{X_{0} \times X_{1} \xrightarrow{\iota_{0} \circ\left(f \circ \pi_{1}\right)} Y_{0}+Y_{1}} \xrightarrow[{X_{0} \times X_{1} \xrightarrow{\iota_{0} \circ f} Y_{0}+Y_{1}}]{\left.\iota_{0} \circ f\right) \circ \pi_{1}} Y_{0}+Y_{1} \\
& \begin{aligned}
\overline{\mathbf{0}} \xrightarrow{?} Y_{0} & \xrightarrow{\mathbf{?}} Y_{1} \\
\mathbf{0} \xrightarrow{(?, ?)} & Y_{0} \times Y_{1}
\end{aligned}= \\
& \overline{\mathbf{0} \xrightarrow{?} Y_{0} \times Y_{1}}
\end{aligned}
$$

Proof identity

Cockett and Seely: Finite Sum-Product Logic (2001)

$$
\begin{gathered}
\iota_{i} \circ\left(f \circ \pi_{j}\right)=\left(\iota_{i} \circ f\right) \circ \pi_{j} \\
{\left[\iota_{i} \circ f, \iota_{i} \circ g\right]=\iota_{i} \circ[f, g] \quad\left\langle f \circ \pi_{i}, g \circ \pi_{i}\right\rangle=\langle f, g\rangle \circ \pi_{i}} \\
{\left[\left\langle f_{0}, g_{0}\right\rangle,\left\langle f_{1}, g_{1}\right\rangle\right]=\left\langle\left[f_{0}, f_{1}\right],\left[g_{0}, g_{1}\right]\right\rangle}
\end{gathered}
$$

$$
?_{1}=!_{0}
$$

$$
\begin{array}{rr}
\langle ?, ?\rangle=? & {[!,!]=!} \\
\pi_{i} \circ ?=? & !\circ \iota_{i}=!
\end{array}
$$

Cut-free proofs up to these permutations denote the same categorical morphism—and proof identity is decidable.

Proof identity

Cockett and Santocanale (2009):

Proof identity for sum-product logic is tractable
Equality of $f, g: X \rightarrow Y$ can be decided in time

$$
\mathcal{O}((\operatorname{hgt}(X)+\operatorname{hgt}(Y)) \times|X| \times|Y|)
$$

(where $\operatorname{hgt}(X)$ is the height and $|X|$ the total size of the syntax tree of X)

Proof nets (without units)

Hughes (2002), Hughes and Van Glabbeek (2005)

$$
\begin{gathered}
\stackrel{A \xrightarrow{a} B}{(A) \xrightarrow{a}(B)} \\
\frac{X_{i} \xrightarrow{f} Y}{X_{0} \times X_{1} \xrightarrow{f \circ \pi_{i}} Y} \\
X_{0} \xrightarrow{f} Y X_{1} \xrightarrow{g} Y \\
X_{0}+X_{1} \xrightarrow{[f, g]} Y
\end{gathered}
$$

Proof nets (without units)

Hughes (2002), Hughes and Van Glabbeek (2005)

$$
\begin{aligned}
& \frac{X \xrightarrow{f} Y_{i}}{X \xrightarrow{\iota_{i} \circ f} Y_{0}+Y_{1}} \\
& \xrightarrow[{X \xrightarrow{f} Y_{0} \quad X \xrightarrow{g} Y_{1}}]{X \xrightarrow{(f, g\rangle} Y_{0} \times Y_{1}}
\end{aligned}
$$

Example: construction

$$
(A \times B)+(A \times C) \longrightarrow A \times(B+C)
$$

Example: construction

$(A \times B)+(A \times C) \longrightarrow A \times(B+C)$

Example: construction

$(A \times B)+(A \times C) \longrightarrow A \times(B+C)$

Example: construction

$(A \times B)+(A \times C) \longrightarrow A \times(B+C)$

Example: construction

$(A \times B)+(A \times C) \longrightarrow A \times(B+C)$

Example: construction

$(A \times B)+(A \times C) \longrightarrow A \times(B+C)$

Example: construction

$(A \times B)+(A \times C) \longrightarrow A \times(B+C)$

Example: construction

$(A \times B)+(A \times C) \longrightarrow A \times(B+C)$

Example: construction

$$
(A \times B)+(A \times C) \longrightarrow A \times(B+C)
$$

Example: construction

$$
(A \times B)+(A \times C) \longrightarrow A \times(B+C)
$$

Switching

A net $X \xrightarrow{R} Y$ has

- a source object X
- a target object Y
- a labelled relation R from the leaves in X to the leaves in Y

Any such triple is a net if it satisfies the switching condition:

After choosing one branch for each coproduct in X and each product in Y there must be exactly one path from left to right.

Example: switching

$(A \times B)+(A \times C) \longrightarrow A \times(B+C)$

Example: switching

$(A \times B)+(A \times C) \longrightarrow A \times(B+C)$

Example: switching

$$
(A \times B)+(A \times C) \longrightarrow A \times(B+C)
$$

Example: switching

$(A \times B)+(A \times C) \longrightarrow A \times(B+C)$

Example: switching

$(A \times B)+(A \times C) \longrightarrow A \times(B+C)$

Non-example: switching

$$
A \times(B+C) \longrightarrow(A \times B)+(A \times C)
$$

Non-example: switching

$$
A \times(B+C) \longrightarrow(A \times B)+(A \times C)
$$

Non-example: switching

$$
A \times(B+C) \longrightarrow(A \times B)+(A \times C)
$$

Non-example: switching

$$
A \times(B+C) \longrightarrow(A \times B)+(A \times C)
$$

Non-example: switching

$$
A \times(B+C) \longrightarrow(A \times B)+(A \times C)
$$

Non-example: switching

$$
A \times(B+C) \longrightarrow(A \times B)+(A \times C)
$$

Non-example: switching

$$
A \times(B+C) \longrightarrow(A \times B)+(A \times C)
$$

Non-example: switching

$$
A \times(B+C) \longrightarrow(A \times B)+(A \times C)
$$

Non-example: switching

$$
A \times(B+C) \longrightarrow(A \times B)+(A \times C)
$$

Non-example: switching

$$
A \times(B+C) \longrightarrow(A \times B)+(A \times C)
$$

Equalities factored out

$\iota_{0} \circ\left(f \circ \pi_{0}\right)=\left(\iota_{0} \circ f\right) \circ \pi_{0}$

$\left[\iota_{0} \circ f, \iota_{0} \circ g\right]=\iota_{0} \circ[f, g]$
$\langle[f, g],[k, m]\rangle=[\langle f, k\rangle,\langle g, m\rangle]$

The units

For initial and terminal maps ?: $\mathbf{0} \rightarrow Y$ or ! : $X \rightarrow \mathbf{1}$ the objects X and Y may be a product or coproduct.
These (unlabelled) links are added:

Links are no longer restricted to the leaves. For example:

The switching condition is unaffected.
Omitting the label factors out an additional equality:

$$
\begin{equation*}
0 \stackrel{?}{!} 1 \tag{0}
\end{equation*}
$$

The full net calculus

$$
\begin{equation*}
\text { (A) } \xrightarrow{a} \text { (B) } \tag{0}
\end{equation*}
$$

The unit equations

$$
\iota_{i} \circ ?=?
$$

\uparrow

... define an equational theory (\Leftrightarrow) over nets, via graph rewriting

The unit equations

$$
\iota_{i} \circ ?=? \quad\langle ?, ?\rangle=?
$$

§

... define an equational theory (\Leftrightarrow) over nets, via graph rewriting

The unit equations

$$
\iota_{i} \circ ?=? \quad\langle ?, ?\rangle=? \quad[!!!]=!\quad!\circ \pi_{i}=!
$$

$\sqrt{ }$

...define an equational theory (\Leftrightarrow) over nets, via graph rewriting

Example

The problem

We would like canonical representations for the equivalence classes of proof nets generated by (\Leftrightarrow).

A standard approach is to rewrite towards a normal form, using a confluent and terminating rewrite relation.

The first question is then whether restricting the equivalences of (\Leftrightarrow) to a single direction can provide a suitable rewrite relation.

Rewriting towards the leaves

Rewriting towards the roots

k
?

Rewriting towards the roots

?
A first attempt at a solution: a new type of link

Rewriting towards the roots

K

?

Rewriting towards the roots

K

?
The following breaks the switching condition (and makes no sense)

The solution

Confluent rewriting seems impossible without breaking the switching condition. So: break it. Then there is a simple confluent and normalising rewrite relation: saturation (\neg).

The solution

Confluent rewriting seems impossible without breaking the switching condition. So: break it. Then there is a simple confluent and normalising rewrite relation: saturation (\neg).

The solution

Confluent rewriting seems impossible without breaking the switching condition. So: break it. Then there is a simple confluent and normalising rewrite relation: saturation (\neg).

The solution

Confluent rewriting seems impossible without breaking the switching condition. So: break it. Then there is a simple confluent and normalising rewrite relation: saturation (\neg).

Example

Results

The saturation relation (\neg) is
confluent rewrite steps add links, depending on the presence of other links
strongly normalising bounded by the number of possible links $(|X| \times|Y|$ for $X \xrightarrow{R} Y)$
linear-time
(in $|X| \times|Y|$); saturation steps are constant-time

Results

The saturation relation (\neg) is
confluent rewrite steps add links, depending on the presence of other links
strongly normalising bounded by the number of possible links $(|X| \times|Y|$ for $X \xrightarrow{R} Y)$
linear-time
(in $|X| \times|Y|$); saturation steps are constant-time

Write $X \xrightarrow{\sigma R} Y$ for the normal form (the saturation) of a net $X \xrightarrow{R} Y$ and call it a saturated net

Results

Saturation gives a decision procedure for sum-product logic:

$$
X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y \quad \Longleftrightarrow \quad \xrightarrow{\sigma R} Y=X \xrightarrow{\sigma S} Y
$$

Completeness (\Rightarrow)

Soundness (\Leftarrow) is the hard part

Saturated nets

A saturated net $X \xrightarrow{\sigma R} Y$ combines the links of all equivalent nets

$$
\sigma R=\bigcup\{S \mid X \xrightarrow{S} Y \Leftrightarrow X \xrightarrow{R} Y\}
$$

Saturated nets

A saturated net $X \xrightarrow{\sigma R} Y$ combines the links of all equivalent nets

$$
\sigma R=\bigcup\{S \mid X \xrightarrow{S} Y \Leftrightarrow X \xrightarrow{R} Y\}
$$

call links occurring in the same saturation step neighbours, and an equivalence class of neighbouring links a neighbourhood

Correctness: (tentative) relation of links $R \subseteq X \times Y$ is a saturated net if and only if it is saturated, and for every switching the links switched on form a non-empty neighbourhood.

Saturated nets

A saturated net $X \xrightarrow{\sigma R} Y$ combines the links of all equivalent nets

$$
\sigma R=\bigcup\{S \mid X \xrightarrow{S} Y \Leftrightarrow X \xrightarrow{R} Y\}
$$

call links occurring in the same saturation step neighbours, and an equivalence class of neighbouring links a neighbourhood

Correctness: (tentative) relation of links $R \subseteq X \times Y$ is a saturated net if and only if it is saturated, and for every switching the links switched on form a non-empty neighbourhood.

Morally, this is a requirement for evidence that all maps expressed in a net commute.

The category of saturated nets

The category of saturated nets is the free completion with finite (nullary and binary) products and coproducts of a base category \mathcal{C}.

Identities are nets $X \xrightarrow{\sigma \mathrm{ID} X} X$ where ID X is the identity relation on the leaves of X.

The category of saturated nets

The category of saturated nets is the free completion with finite (nullary and binary) products and coproducts of a base category \mathcal{C}.

Identities are nets $X \xrightarrow{\sigma \mathrm{ID} X} X$ where ID X is the identity relation on the leaves of X.

Saturation is necessary: nets ID X are equivalent to other nets.

The category of saturated nets

The category of saturated nets is the free completion with finite (nullary and binary) products and coproducts of a base category \mathcal{C}.

Composition is relational composition followed by (re-)saturation.

Future work: bicompletions

For products, these are the diagrams

Future work: bicompletions

For products, these are the diagrams

Possibly, equalisers can be added in the following way

Questions?

