Proof nets for sum—product logic

Willem Heijltjes

LFCS
School of Informatics
University of Edinburgh

Kananaskis, 11-12 June 2011

This talk. ..

Part 1
» Background

» Sum-—product nets without units
» Sum—product nets with units

» Results and future work

Part 2

» Proofs

Proof nets

For a given logic,
» Syntax: proofs, terms
» Semantics: games, sets and relations (complete partial orders,
coherence spaces, Kripke frames), categories

But: many proofs may correspond to the same semantic entity
The aim of proof nets is to obtain a 1-1 correspondence between
syntax and semantics

Sum—product logic

Categorical (free) finite products and coproducts (over C)
X = A€ob(C) |0 |1 | X+X | XxX

Morphisms f : X — Y

Sum—product logic

Categorical (free) finite products and coproducts (over C)
X = A€ob(C) |0 |1 | X+X | XxX

Morphisms f : X — Y
Additive linear logic

X =A|0]|T|XaeX| X&X
Proofs of X F Y (or X — Y, or X1 B Y)
Free lattice completions of a poset (P, <)

x =a€eP | L | T]| xVx | xAx

Justifications that x <y

|diosyncrasies of free (co)products

Zero and one are units
0+ X=X I1x X=X

and products and coproducts are perfectly dual

But there is no distributivity
o 0xX=0 o 1+X=1

o Xx(Y+2Z) 2 (XxY)+(Xx2)

(there may not even be a single arrow from left to right!)

Sum—product logic

A2 B 0> x X -1
X -y, Xo Y X &y
X vy 1w Xo+x P8y
Xy, x& v Xy
x O v« v, Xo x X, My

Cut elimination / subformula property

Whitman's Theorem for free lattices (1940s)
eg:ulAv < xVyonlyif u < xVy o vAu
v < xVy or VAu

X or

IAIA

Joyal: Free Bicompletions of Categories (1995)
a morphism f : Vg x Vi — Xy + X1 has one of these forms

V()XV]_L\/,-L)XQ-FX]_

V0>< VlLXjLXo-l-Xl
and if it has both, then

/—\k

Vo x V1 % Xj T Xo + Xy

g

Softness

Joyal: Free Bicompletions of Categories (1995)
For any (small) diagrams D : | — C and E : J — C:

lim(h DeP E lim(h limD, E
C/OXIT(om() coJ|m(om(|;n ,E))

coIIim(hom(D"f’7 coIJim E)) hom(li;n D, coIJim E)

Proof identity

Proofs equal up to permutations denote the same morphism

f f

X1 — Yo X1 — Y
XO X Xl % YO = X]_ Li—or; Y() + Y]_
Xo X X1 LOO@I) Yo+ Y1 Xo X X1 (LOL)OWI Yo+ Y1
? ?
0 — Yy 0 — Y; _ >
(7.7) 0 — YoxV

0 = Y0><Yl

Proof identity
Cockett and Seely: Finite Sum—Product Logic (2001)
vio(fom)=(tiof)om
[tiof,iiog]=1tio[f,g] (formi,gomi)=(f,g)om;

[(fo, &), (1, 81)] = ([fo, 1], [g0,81])

(72,2)=7 [=1

7T,'O.7:.7 .’OL;:.’

Cut-free proofs up to these permutations denote the same
categorical morphism—and proof identity is decidable.

Proof identity

Cockett and Santocanale (2009):

Proof identity for sum—product logic is tractable

Equality of f, g : X — Y can be decided in time
O((hgt(X) + hgt(Y)) x |X| x [Y])

(where hgt(X) is the height and | X| the total size of the syntax
tree of X)

Proof nets (without units)

Hughes (2002), Hughes and Van Glabbeek (2005)

a

A2 B @®@——®
m e f
fOﬂ','
XO X Xl — Y T
O...
Xo v X -5y Rt
[f.g] & O
Xo+ Xy —=Y ARGy

Proof nets (without units)

Hughes (2002), Hughes and Van Glabbeek (2005)

% f v f Lo
vjof O
X—=Yy+VT L1
O
XLy xEw TN
O
(f7g) 7

X = YO X Yl gO/

Example: construction

(AxB)+(AxC) — Ax(B+C)

Example: construction

(AxB)+(AxC) — Ax(B+C)

Example: construction

-

(AxB)+(AxC) — Ax(B+C)

Example: construction

(AxB)+(AxC) — Ax(B+C)

Example: construction

D

(AxB)+(AxC) — Ax(B+C)

Example: construction

<
P

(AxB)+(AxC) — Ax(B+C)

Example: construction

-

(AxB)+(AxC) — Ax(B+C)

Example: construction

(AxB)+(AxC) — Ax(B+C)

Example: construction

(AxB)+(AxC) — Ax(B+C)

Example: construction

(AxB)+(AxC) — Ax(B+C)

Switching

Anet X 55 Y has
» a source object X

> a target object Y
> a labelled relation R from the leaves in X to the leaves in Y

Any such triple is a net if it satisfies the switching condition:

Ve O O\
@ ®
N O O/

After choosing one branch for each coproduct in X and each
product in Y there must be exactly one path from left to right.

Example: switching

<
// b ~®
<

(AxB)+(AxC) — Ax(B+C)

Example: switching

/ S
/ “®

/

©)

(AxB)+(AxC) — Ax(B+C)

Example: switching

(AxB)+(AxC) — Ax(B+C)

Example: switching

(AxB)+(AxC) — Ax(B+C)

Example: switching

(AxB)+(AxC) — Ax(B+C)

Non-example: switching

@\
o
®
4 2}
. :
o

Ax (B+C) — (AxB)+(Ax ()

Non-example: switching

Ax (B+C) — (AxB)+(Ax ()

Non-example: switching

Ax (B+C) — (AxB)+(Ax ()

Non-example: switching

Ax (B+C) — (AxB)+(Ax ()

Non-example: switching

Ax (B+C) — (AxB)+(Ax ()

Non-example: switching

Ax (B+C) — (AxB)+(Ax ()

Non-example: switching

Ax (B+C) — (AxB)+(Ax ()

Non-example: switching

Ax (B+C) — (AxB)+(Ax ()

Non-example: switching

Ax (B+C) — (AxB)+(Ax ()

Non-example: switching

Ax (B+C) — (AxB)+(Ax ()

Equalities factored out

@t
s
®\ g
@

[toof,wwog] =100 [f,g]

.............. @

N
N
s, 9

([f.g],[k,m])=[(f k) (g,m)]

The units

For initial and terminal maps 7: 0 — Y or | : X — 1 the objects
X and Y may be a product or coproduct.
These (unlabelled) links are added:

©—0O0 O—0

Links are no longer restricted to the leaves. For example:

The switching condition is unaffected.
Omitting the label factors out an additional equality:

The full net calculus

The unit equations

L,‘O?:?

.. .define an equational theory (<) over nets, via graph rewriting

The unit equations

Ljo?=7 (2,2)=7
O

@/>@ @< ®
O/

))

O\

© © ®
O/

.. .define an equational theory (<) over nets, via graph rewriting

The unit equations

tjo?=7 (7,7)=7 [L1]=1 lom =1
O O

@/>® @< ® @ >® o
o O

i i 3 3

o} jo

©® ©® ® @ @ @
o O

.. .define an equational theory (<) over nets, via graph rewriting

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

/7 (—B\
@/ ®

Example

Example

Example

Example

Example

Example

Example

The problem

We would like canonical representations for the equivalence classes
of proof nets generated by (&).

A standard approach is to rewrite towards a normal form, using a
confluent and terminating rewrite relation.

The first question is then whether restricting the equivalences of
(&) to a single direction can provide a suitable rewrite relation.

Rewriting towards the leaves

Rewriting towards the roots

0 ——

b

Rewriting towards the roots

0 ——

?

Rewriting towards the roots

/@L@\
@ >< ®
AW
174 A\
Jo Ry Jo)
@ ® @ ®
@ @ o @

Rewriting towards the roots

/®L®\
@ >< ®
AN @_ ®/
174 A\

/@ id @\ /@ id @\
@ ® @ ®
N @ ®/ N @ CD/

Y 74
?

/® L ®\
@ ®

The solution

Confluent rewriting seems impossible without breaking the
switching condition. So: break it. Then there is a simple confluent
and normalising rewrite relation: saturation (~).

The solution

Confluent rewriting seems impossible without breaking the
switching condition. So: break it. Then there is a simple confluent
and normalising rewrite relation: saturation (~).

@) @)
/ \\ \\
@\ ® & ® ®
o o

Y 14
o)

The solution

Confluent rewriting seems impossible without breaking the
switching condition. So: break it. Then there is a simple confluent
and normalising rewrite relation: saturation (~).

The solution

Confluent rewriting seems impossible without breaking the
switching condition. So: break it. Then there is a simple confluent
and normalising rewrite relation: saturation (~).

Example

Example

Example

Example

Example

@ ——

A

Example

Example

Example

Example

Example

@ -
/
o

Example

Example

Results

The saturation relation (~) is

confluent rewrite steps add links, depending on
the presence of other links

strongly normalising bounded by the number of possible links
(IX| % |Y] for X 55 v)

linear-time (in |X| x |Y]); saturation steps are
constant-time

Results

The saturation relation (~) is

confluent rewrite steps add links, depending on
the presence of other links

strongly normalising bounded by the number of possible links
(IX| % |Y] for X 55 v)

linear-time (in |X| x |Y]); saturation steps are
constant-time

. R :
Write X 25 Y for the normal form (the saturation) of a net

R .
X — Y and call it a saturated net

Results

Saturation gives a decision procedure for sum—product logic:

XEByex>y = xZBy=xZy
Completeness (=)
R PN R/ & = ooooo < 5
Ne o Ny Yy
[) [] [)
Ve
[

Soundness (<) s the hard part

Saturated nets

R . . .
A saturated net X 2= Y combines the links of all equivalent nets

R=J{sSI x>y exty

Saturated nets

R . . .
A saturated net X 2= Y combines the links of all equivalent nets

R=J{sSI x>y exty

call links occurring in the same saturation step neighbours, and an
equivalence class of neighbouring links a neighbourhood

Correctness: (tentative) relation of links R C X x Y is a saturated
net if and only if it is saturated, and for every switching the links
switched on form a non-empty neighbourhood.

Saturated nets

R . . .
A saturated net X 2= Y combines the links of all equivalent nets

R=J{sSI x>y exty

call links occurring in the same saturation step neighbours, and an
equivalence class of neighbouring links a neighbourhood

Correctness: (tentative) relation of links R C X x Y is a saturated
net if and only if it is saturated, and for every switching the links
switched on form a non-empty neighbourhood.

Morally, this is a requirement for evidence that all maps expressed
in a net commute.

The category of saturated nets

The category of saturated nets is the free completion with finite
(nullary and binary) products and coproducts of a base category C.

0n0 D o o 0 0
Identities are nets X 2=% X where IDx is the identity relation on
the leaves of X.

00— ® o @ D@
idg = 7 idi =1
@ ®
\O oy oy O/

idx+y:[L00idx,L10idy/ I'dXXy:(I'dXoﬂ’o,l'dyoﬂ’l)

The category of saturated nets

The category of saturated nets is the free completion with finite
(nullary and binary) products and coproducts of a base category C.

0n0 D o o 0 0
Identities are nets X 2=% X where IDx is the identity relation on
the leaves of X.

Saturation is necessary: nets IDx are equivalent to other nets.

/@_ /© 0
D -
\®_ \® 0
11* *E

©0—@
@:/\\\
\®_

The category of saturated nets

The category of saturated nets is the free completion with finite
(nullary and binary) products and coproducts of a base category C.

Composition is relational composition followed by (re-)saturation.

Future work: bicompletions

For products, these are the diagrams

B

@<\o

Future work: bicompletions

For products, these are the diagrams

A O
e ®
Re o

Possibly, equalisers can be added in the following way

|

Questions?

