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In part 2

◮ Recap

◮ The soundness proof



The full net calculus
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The soundness proof

To show:

σR = σS ⇒ R ⇔ S



The soundness proof: first intuition

Saturation allows induction on paths in ( ∗)

R R ′ R ′′
. . . σR = σS . . . S ′′ S ′ S

For each step in ( ) there is a corresponding one in (⇔)



The soundness proof: first intuition

Saturation allows induction on paths in ( ∗)

R R ′ R ′′
. . . σR = σS . . . S ′′ S ′ S

For each step in ( ) there is a corresponding one in (⇔)

R ⇔ R0 ⇔ R1 ⇔ . . . ⇔ Rm ?? Sn ⇔ . . . ⇔ S1 ⇔ S0 ⇔ S

But this only shifts the problem:
how to show that σR = σS gives Rm ⇔ Sn ?



’Desaturation’ is not trivial
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S ⊆ σR does not necessarily mean σS = σR



The soundness proof

To prove: X
R

−→ Y ⇔ X
S

−→ Y given σR = σS

◮ One of X and Y is an atom or unit

◮ X is a coproduct or Y a product

◮ X is a product and Y a coproduct

× +

◮ Some dynamics of rewriting and saturation

◮ Saturated nets need not factor through injections/projections

◮ R and S may factor through different injections/projections

◮ σR = σS after, but not before, adding an injection/projection
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Atoms and units

A
R,S
−→ Y X

R,S
−→ A

1
R,S
−→ Y X

R,S
−→ 0

A + 1 ×

In these cases no rewrite rules apply, and R = σR = σS = S



Atoms and units

Nets corresponding to initial and terminal maps.

0 + ⇒ 0 +

0 × ⇒ 0 ×

If X = 0 then

X
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∗⇐ X
S

−→ Y

Similar for Y = 1
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Initial and terminal nets

Call nets 0
R

−→ Y initial and X
S

−→ 1 terminal
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σR and σS are full: they have all possible unit links
(but no atomic links)



Points and copoints

Points and copoints are maps out of 1 and into 0 respectively

X
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(co)pointed maps are those that factor through a (co)point

(co)pointed objects are those that admit (co)points

P := 1 | P×P | P+Y | Y +P Q := 0 | Q+Q | Q×X | X×Q
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(co)pointed maps are those that factor through a (co)point

(co)pointed objects are those that admit (co)points

P := 1 | P×P | P+Y | Y +P Q := 0 | Q+Q | Q×X | X×Q
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Points and copoints

Pointed nets may rewrite by moving their links in parallel

× 1 ⇔ × 1 + 1 ⇔ + 1
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(all links in p and p′ connect to the left root)
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Bipointed nets

Bipointed maps (or disconnects) are both pointed and copointed.

There is exactly one b : Q → P for copointed Q and pointed P,

and none for other X ,Y .
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p

−→ P (pointed)
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Bipointed nets

Two parallel bipointed nets are always equivalent
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Bipointed nets

The saturation of a bipointed net is full
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Inductive saturation
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Matching injections and projections

Equivalent nets may factor through different injections or
projections, but to allow induction nets must at least have the
same domain and codomain.

×
R + × +

S

T
× +

Idea: ‘highest’ links, and in particular rooted links, are most
significant (downward movement in saturation is unrestricted)
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Now the induction hypothesis can be applied
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Questions?


