Proof nets for sum-product logic

Willem Heijltjes

LFCS
School of Informatics
University of Edinburgh

Kananaskis, 11-12 June 2011

In part 2

- Recap
- The soundness proof

The full net calculus

$$
\begin{equation*}
\text { (A) } \xrightarrow{a} \text { (B) } \tag{0}
\end{equation*}
$$

Equivalence and saturation

Equivalence and saturation

Equivalence and saturation

Equivalence and saturation

The soundness proof

To show:

$$
\sigma R=\sigma S \quad \Rightarrow \quad R \Leftrightarrow S
$$

The soundness proof: first intuition

Saturation allows induction on paths in $\left(\neg^{*}\right)$

$$
R \leadsto R^{\prime} \leadsto R^{\prime \prime} \leadsto \ldots \neg \sigma R=\sigma S \leftarrow \ldots \leftarrow S^{\prime \prime} \leftarrow S^{\prime} \leftarrow S
$$

For each step in (\neg) there is a corresponding one in (\Leftrightarrow)

The soundness proof: first intuition

Saturation allows induction on paths in $\left(\neg^{*}\right)$

$$
R \leadsto R^{\prime} \rightarrow R^{\prime \prime} \rightarrow \ldots \rightarrow \sigma R=\sigma S \leftarrow \ldots \leftarrow S^{\prime \prime} \leftarrow S^{\prime} \leftarrow S
$$

For each step in (\neg) there is a corresponding one in (\Leftrightarrow)
$R \Leftrightarrow R_{0} \Leftrightarrow R_{1} \Leftrightarrow \ldots \Leftrightarrow R_{m}$?? $S_{n} \Leftrightarrow \ldots \Leftrightarrow S_{1} \Leftrightarrow S_{0} \Leftrightarrow S$

But this only shifts the problem:
how to show that $\sigma R=\sigma S$ gives $R_{m} \Leftrightarrow S_{n}$?

'Desaturation' is not trivial

$S \subseteq \sigma R$ does not necessarily mean $\quad \sigma S=\sigma R$

The soundness proof

To prove: $X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y$ given $\sigma R=\sigma S$

- One of X and Y is an atom or unit
- X is a coproduct or Y a product
- X is a product and Y a coproduct

- Some dynamics of rewriting and saturation
- Saturated nets need not factor through injections/projections
- R and S may factor through different injections/projections
- $\sigma R=\sigma S$ after, but not before, adding an injection/projection

The soundness proof

To prove: $X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y$ given $\sigma R=\sigma S$

- One of X and Y is an atom or unit
- X is a coproduct or Y a product
- X is a product and Y a coproduct

- Some dynamics of rewriting and saturation
- Saturated nets need not factor through injections/projections
- R and S may factor through different injections/projections
- $\sigma R=\sigma S$ after, but not before, adding an injection/projection

Atoms and units

$$
\begin{array}{ll}
A \xrightarrow{R, S} Y & X \xrightarrow{R, S} A \\
\mathbf{1} \xrightarrow{R, S} Y & X \xrightarrow{R, S} \mathbf{0}
\end{array}
$$

In these cases no rewrite rules apply, and $R=\sigma R=\sigma S=S$

Atoms and units

Nets corresponding to initial and terminal maps.

If $X=\mathbf{0}$ then

$$
X \xrightarrow{R} Y \quad \Rightarrow^{*} \quad(0)-{ }^{*} \Leftarrow X \xrightarrow{S} Y
$$

Similar for $Y=1$

The soundness proof

To prove: $X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y$ given $\sigma R=\sigma S$

- One of X and Y is an atom or unit
- X is a coproduct or Y a product
- X is a product and Y a coproduct

- Some dynamics of rewriting and saturation
- Saturated nets need not factor through injections/projections
- R and S may factor through different injections/projections
- $\sigma R=\sigma S$ after, but not before, adding an injection/projection

Coproduct source or product target

Coproduct source or product target

$\sigma R=\sigma S$ means that $\sigma R^{\prime}=\sigma S^{\prime}$ and $\sigma R^{\prime \prime}=\sigma S^{\prime \prime}$

Coproduct source or product target

$$
\sigma R=\sigma S \text { means that } \sigma R^{\prime}=\sigma S^{\prime} \text { and } \sigma R^{\prime \prime}=\sigma S^{\prime \prime}
$$

The soundness proof

To prove: $X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y$ given $\sigma R=\sigma S$

- One of X and Y is an atom or unit
- X is a coproduct or Y a product
- X is a product and Y a coproduct

- Some dynamics of rewriting and saturation
- Saturated nets need not factor through injections/projections
- R and S may factor through different injections/projections
- $\sigma R=\sigma S$ after, but not before, adding an injection/projection

Nets from a product into a coproduct

Nets from a product into a coproduct

Nets from a product into a coproduct

The soundness proof

To prove: $X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y$ given $\sigma R=\sigma S$

- One of X and Y is an atom or unit
- X is a coproduct or Y a product
- X is a product and Y a coproduct

- Some dynamics of rewriting and saturation
- Saturated nets need not factor through injections/projections
- R and S may factor through different injections/projections
- $\sigma R=\sigma S$ after, but not before, adding an injection/projection

Initial and terminal nets

Call nets $\mathbf{0} \xrightarrow{R} Y$ initial and $X \xrightarrow{S} \mathbf{1}$ terminal

σR and σS are full: they have all possible unit links (but no atomic links)

Points and copoints

Points and copoints are maps out of $\mathbf{1}$ and into $\mathbf{0}$ respectively

$$
X \xrightarrow{!} \mathbf{1} \xrightarrow{p} P \quad Q \xrightarrow{q} \mathbf{0} \xrightarrow{?} Y
$$

(co)pointed maps are those that factor through a (co)point (co)pointed objects are those that admit (co)points

$$
P:=\mathbf{1}|P \times P| P+Y|Y+P \quad Q:=\mathbf{0}| Q+Q|Q \times X| X \times Q
$$

Points and copoints

Points and copoints are maps out of $\mathbf{1}$ and into $\mathbf{0}$ respectively

$$
X \xrightarrow{!} \mathbf{1} \xrightarrow{p} P \quad Q \xrightarrow{q} \mathbf{0} \xrightarrow{?} Y
$$

(co)pointed maps are those that factor through a (co)point (co)pointed objects are those that admit (co)points

$$
P:=\mathbf{1}|P \times P| P+Y|Y+P \quad Q:=\mathbf{0}| Q+Q|Q \times X| X \times Q
$$

(co)pointed nets will be those consisting of rooted unit links

Points and copoints

Pointed nets may rewrite by moving their links in parallel

(all links in p and p^{\prime} connect to the left root)

Points and copoints

Bipointed nets

Bipointed maps (or disconnects) are both pointed and copointed. There is exactly one $b: Q \rightarrow P$ for copointed Q and pointed P, and none for other X, Y.

A bipointed net is one $Q \xrightarrow{q} P$ (copointed) or $Q \xrightarrow{p} P$ (pointed)

Bipointed nets

Two parallel bipointed nets are always equivalent

Bipointed nets

Bipointed nets

The saturation of a bipointed net is full

Bipointed nets

The soundness proof

To prove: $X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y$ given $\sigma R=\sigma S$

- One of X and Y is an atom or unit
- X is a coproduct or Y a product
- X is a product and Y a coproduct

- Some dynamics of rewriting and saturation
- Saturated nets need not factor through injections/projections
- R and S may factor through different injections/projections
- $\sigma R=\sigma S$ after, but not before, adding an injection/projection

Inductive saturation

Saturated nets need not factor through injections/projections

Inductive saturation

Saturation of $\quad X \xrightarrow{R^{\prime}} Y \xrightarrow{\iota_{0}} Y+Z=X \xrightarrow{R} Y+Z$

Inductive saturation

Saturation of $\quad X \xrightarrow{R^{\prime}} Y \xrightarrow{\iota_{0}} Y+Z=X \xrightarrow{R} Y+Z$

Inductive saturation

Saturation of $\quad X \xrightarrow{R^{\prime}} Y \xrightarrow{\iota_{0}} Y+Z=X \xrightarrow{R} Y+Z$

O
4^{*}
 full

Inductive saturation

The soundness proof

To prove: $X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y$ given $\sigma R=\sigma S$

- One of X and Y is an atom or unit
- X is a coproduct or Y a product
- X is a product and Y a coproduct

- Some dynamics of rewriting and saturation
- Saturated nets need not factor through injections/projections
- R and S may factor through different injections/projections
- $\sigma R=\sigma S$ after, but not before, adding an injection/projection

Matching injections and projections

Equivalent nets may factor through different injections or projections, but to allow induction nets must at least have the same domain and codomain.

Idea: 'highest' links, and in particular rooted links, are most significant (downward movement in saturation is unrestricted)

If σR contains a rooted link, so does some $S \Leftrightarrow R$

If σR contains a rooted link, so does some $S \Leftrightarrow R$

If σR contains a rooted link, so does some $S \Leftrightarrow R$

If σR contains a rooted link, so does some $S \Leftrightarrow R$

If σR contains a rooted link, so does some $S \Leftrightarrow R$

The soundness proof

To prove: $X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y$ given $\sigma R=\sigma S$

- One of X and Y is an atom or unit
- X is a coproduct or Y a product
- X is a product and Y a coproduct

- Some dynamics of rewriting and saturation
- Saturated nets need not factor through injections/projections
- R and S may factor through different injections/projections
- $\sigma R=\sigma S$ after, but not before, adding an injection/projection

Injections into pointed objects

Injections into pointed objects

Injections into pointed objects

Injections into pointed objects

Injections into pointed objects

Injections into pointed objects

Injections into pointed objects

Injections into pointed objects

Injections into pointed objects

Injections into pointed objects

Injections into pointed objects

Injections into pointed objects

Injections into pointed objects

Injections into pointed objects

Now the induction hypothesis can be applied

The soundness proof

To prove: $X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y$ given $\sigma R=\sigma S$

- One of X and Y is an atom or unit
- X is a coproduct or Y a product
- X is a product and Y a coproduct

- Some dynamics of rewriting and saturation
- Saturated nets need not factor through injections/projections
- R and S may factor through different injections/projections
- $\sigma R=\sigma S$ after, but not before, adding an injection/projection

Questions?

