Proof nets for sum-product logic

Willem Heijltjes

LFCS School of Informatics University of Edinburgh

Kananaskis, 11-12 June 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

In part 2

- Recap
- The soundness proof

The full net calculus

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々で

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�?

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The soundness proof

To show:

$$\sigma R = \sigma S \qquad \Rightarrow \qquad R \Leftrightarrow S$$

The soundness proof: first intuition

Saturation allows induction on paths in (\rightsquigarrow^*)

$$R \rightarrow R' \rightarrow R'' \rightarrow \ldots \rightarrow \sigma R = \sigma S \leftarrow \ldots \leftarrow S'' \leftarrow S' \leftarrow S$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● 三 ● ● ●

For each step in (\rightarrow) there is a corresponding one in (\Leftrightarrow)

The soundness proof: first intuition

Saturation allows induction on paths in ($ightarrow^*$)

$$R \rightarrow R' \rightarrow R'' \rightarrow \ldots \rightarrow \sigma R = \sigma S \leftarrow \ldots \leftarrow S'' \leftarrow S' \leftarrow S$$

For each step in (\rightarrow) there is a corresponding one in (\Leftrightarrow)

 $R \Leftrightarrow R_0 \Leftrightarrow R_1 \Leftrightarrow \ldots \Leftrightarrow R_m \quad \ref{eq:starter} S_n \Leftrightarrow \ldots \Leftrightarrow S_1 \Leftrightarrow S_0 \Leftrightarrow S$

But this only shifts the problem: how to show that $\sigma R = \sigma S$ gives $R_m \Leftrightarrow S_n$?

'Desaturation' is not trivial

◆□▶ ◆□▶ ★ □▶ ★ □▶ = 三 の へ ()

The soundness proof

To prove: $X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y$ given $\sigma R = \sigma S$

- One of X and Y is an atom or unit
- X is a coproduct or Y a product
- ► X is a product and Y a coproduct

- Some dynamics of rewriting and saturation
- Saturated nets need not factor through injections/projections
- R and S may factor through different injections/projections
- $\sigma R = \sigma S$ after, but not before, adding an injection/projection

The soundness proof

To prove: $X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y$ given $\sigma R = \sigma S$

- ▶ One of X and Y is an atom or unit
- X is a coproduct or Y a product
- ► X is a product and Y a coproduct

- Some dynamics of rewriting and saturation
- Saturated nets need not factor through injections/projections
- R and S may factor through different injections/projections
- $\sigma R = \sigma S$ after, but not before, adding an injection/projection

Atoms and units

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

In these cases no rewrite rules apply, and $R = \sigma R = \sigma S = S$

Atoms and units

Nets corresponding to initial and terminal maps.

If X = 0 then

$$X \xrightarrow{R} Y \quad \Rightarrow^* \quad \textcircled{0} \longrightarrow \bigcirc \quad ^* \Leftarrow \quad X \xrightarrow{S} Y$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Similar for Y = 1

The soundness proof

To prove: $X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y$ given $\sigma R = \sigma S$

- One of X and Y is an atom or unit
- X is a coproduct or Y a product
- ► X is a product and Y a coproduct

- Some dynamics of rewriting and saturation
- Saturated nets need not factor through injections/projections
- R and S may factor through different injections/projections
- $\sigma R = \sigma S$ after, but not before, adding an injection/projection

Coproduct source or product target

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Coproduct source or product target

 $\sigma R = \sigma S$ means that $\sigma R' = \sigma S'$ and $\sigma R'' = \sigma S''$

Coproduct source or product target

 $\sigma R = \sigma S$ means that $\sigma R' = \sigma S'$ and $\sigma R'' = \sigma S''$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

The soundness proof

To prove: $X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y$ given $\sigma R = \sigma S$

- One of X and Y is an atom or unit
- X is a coproduct or Y a product
- X is a product and Y a coproduct

- Some dynamics of rewriting and saturation
- Saturated nets need not factor through injections/projections
- R and S may factor through different injections/projections
- $\sigma R = \sigma S$ after, but not before, adding an injection/projection

Nets from a product into a coproduct

Nets from a product into a coproduct

Nets from a product into a coproduct

The soundness proof

To prove: $X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y$ given $\sigma R = \sigma S$

- One of X and Y is an atom or unit
- X is a coproduct or Y a product
- X is a product and Y a coproduct

- Some dynamics of rewriting and saturation
- Saturated nets need not factor through injections/projections
- R and S may factor through different injections/projections
- $\sigma R = \sigma S$ after, but not before, adding an injection/projection

Initial and terminal nets

Call nets $\mathbf{0} \xrightarrow{R} Y$ initial and $X \xrightarrow{S} \mathbf{1}$ terminal

(ロ) (部) (E) (E) =

 σR and σS are full: they have all possible unit links (but no atomic links)

Points and copoints are maps out of 1 and into 0 respectively

$$X \xrightarrow{!} \mathbf{1} \xrightarrow{p} P \qquad \qquad Q \xrightarrow{q} \mathbf{0} \xrightarrow{?} Y$$

(co)pointed maps are those that factor through a (co)point(co)pointed objects are those that admit (co)points

$$P := \mathbf{1} | P \times P | P + Y | Y + P \qquad Q := \mathbf{0} | Q + Q | Q \times X | X \times Q$$

Points and copoints are maps out of 1 and into 0 respectively

$$X \xrightarrow{!} \mathbf{1} \xrightarrow{p} P \qquad \qquad Q \xrightarrow{q} \mathbf{0} \xrightarrow{?} Y$$

(co)pointed maps are those that factor through a (co)point(co)pointed objects are those that admit (co)points

 $P := \mathbf{1} \mid P \times P \mid P + Y \mid Y + P \qquad Q := \mathbf{0} \mid Q + Q \mid Q \times X \mid X \times Q$

(co)pointed nets will be those consisting of rooted unit links

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

э.

Pointed nets may rewrite by moving their links in parallel

< 日 > < 同 > < 回 > < 回 > < 回 > <

ъ

(all links in p and p' connect to the left root)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ − つへで

◆□▶ ◆□▶ ◆国▶ ◆国▶

æ

▲ロ▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

æ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ − つへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ − つへで

▲ロ▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

Points and copoints

Bipointed maps (or disconnects) are both pointed and copointed. There is exactly one $b: Q \rightarrow P$ for copointed Q and pointed P, and none for other X, Y.

A bipointed net is one $Q \xrightarrow{q} P$ (copointed) or $Q \xrightarrow{p} P$ (pointed)

・ロッ ・雪 ・ ・ ヨ ・ ・ 日 ・

Two parallel bipointed nets are always equivalent

<ロ> <同> <同> <同> < 同> < 同> < □> <

æ

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

The saturation of a bipointed net is full

▲ロト ▲圖ト ▲屋ト ▲屋ト

æ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The soundness proof

To prove: $X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y$ given $\sigma R = \sigma S$

- One of X and Y is an atom or unit
- X is a coproduct or Y a product
- X is a product and Y a coproduct

- Some dynamics of rewriting and saturation
- Saturated nets need not factor through injections/projections
- R and S may factor through different injections/projections
- $\sigma R = \sigma S$ after, but not before, adding an injection/projection

Saturated nets need not factor through injections/projections

Saturation of $X \xrightarrow{R'} Y \xrightarrow{\iota_0} Y + Z = X \xrightarrow{R} Y + Z$

▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ■ のの⊙

Saturation of
$$X \xrightarrow{R'} Y \xrightarrow{\iota_0} Y + Z = X \xrightarrow{R} Y + Z$$

< □ > < □ > < □ > < □ > < □ > = =

Saturation of
$$X \xrightarrow{R'} Y \xrightarrow{\iota_0} Y + Z = X \xrightarrow{R} Y + Z$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The soundness proof

To prove: $X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y$ given $\sigma R = \sigma S$

- One of X and Y is an atom or unit
- X is a coproduct or Y a product
- X is a product and Y a coproduct

- Some dynamics of rewriting and saturation
- Saturated nets need not factor through injections/projections
- ▶ *R* and *S* may factor through different injections/projections
- $\sigma R = \sigma S$ after, but not before, adding an injection/projection

Matching injections and projections

Equivalent nets may factor through different injections or projections, but to allow induction nets must at least have the same domain and codomain.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Idea: 'highest' links, and in particular rooted links, are most significant (downward movement in saturation is unrestricted)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 - のへの

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 - のへぐ

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 - のへぐ

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 - のへぐ

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

The soundness proof

To prove: $X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y$ given $\sigma R = \sigma S$

- One of X and Y is an atom or unit
- ► X is a coproduct or Y a product
- X is a product and Y a coproduct

- Some dynamics of rewriting and saturation
- Saturated nets need not factor through injections/projections
- R and S may factor through different injections/projections
- $\sigma R = \sigma S$ after, but not before, adding an injection/projection

▲□▶▲□▶▲≡▶▲≡▶ ≡ の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ●のへで

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

◆ロ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

◆ロ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

◆ロ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Now the induction hypothesis can be applied

The soundness proof

To prove: $X \xrightarrow{R} Y \Leftrightarrow X \xrightarrow{S} Y$ given $\sigma R = \sigma S$

- One of X and Y is an atom or unit
- X is a coproduct or Y a product
- ► X is a product and Y a coproduct

- Some dynamics of rewriting and saturation
- Saturated nets need not factor through injections/projections
- R and S may factor through different injections/projections
- $\sigma R = \sigma S$ after, but not before, adding an injection/projection

Questions?