Investigating Structure in Turing Categories: How can certain structure, such as range maps, be manifested in a Turing category?

Polina Vinogradova

Ottawa University

June 2011

(Based on research conducted under supervision of Dr. Pieter Hofstra)

A 34 b

Table of contents

- 2 Turing Category Overview
- 3 Partial Combinatory Algebras
- 4 Turing Categories with Ranges

5 Further Exploration

▶ < ∃ >

-

э

Motivation

Turing Category Overview Partial Combinatory Algebras Turing Categories with Ranges Further Exploration

Motivation

Traditional Computation

- (i) Based on $\mathbb{N}:$ Is done on its recursively enumerable subsets
- (ii) Modeled by Turing machines which correspond to computable functions
- (i) Key feature to abstract: any computable function has a code $c_f \in \mathbb{N}$ and there exists a universal application \cdot such that $c_f \cdot x = f(x)$
- (ii) Has a lot of additional structure eg. equality, ranges, coproducts etc.

-

Cartesian Restriction Categories

A restriction combinator (-)

Sends a map
$$f : A \to B$$
 in C to a map $\overline{f} : A \to A$ so that:
[**R.1**] $f\overline{f} = f$
[**R.2**] $\overline{fg} = \overline{g}\overline{f}$ whenever $dom(f) = dom(g)$
[**R.3**] $\overline{gf} = \overline{g}\overline{f}$ whenever $dom(f) = dom(g)$
[**R.4**] $\overline{g}f = f\overline{gf}$ whenever $cod(f) = dom(g)$

A cartesian restriction category

Is a category C endowed with a restriction combinator and containing the following:

- (i) A restriction-terminal object 1
- (ii) All partial products

Turing Category C

A Turing category is a cartesian restriction category

that has a Turing object A and map $\bullet: A \times A \to A$ such that

(i) for every f : A → A there exists a total map, called a code, c_f : 1 → A A × A → A c_r×1 / f 1 × A
(ii) for all X ∈ C there exists an embedding-retraction pair (m_X, r_X) of X into A

The Main Example

Standard Computation Model

Objects: 1, \mathbb{N} , \mathbb{N}^2 , ... **Maps:** m-tuples of computable maps $f : \mathbb{N}^n \to \mathbb{N}$ **Application:** $\bullet : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ With some enumeration system of all computable maps $\{\phi_0, \phi_1, ...\}$, $n \cdot m = \phi_n(m)$

Restriction: as in Par

 $\overline{f}(x) = \begin{cases} x & \text{if } f(x) \downarrow \\ \uparrow & \text{otherwise.} \end{cases}$ **Embedding-retraction pairs**: isomorphisms, for all $n, m > 0, \mathbb{N}^n \cong \mathbb{N}^m$

An Arbitrary Map in a Turing Category

Suppose C is a Turing category

For any map $f: X \to Y$

There exists a factorization:

$$f=r_Y(c_f\cdot -)m_X$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Partial Combinatory Algebras (PCA's)

Suppose A is an object in a cartesian restriction category

A PCA $\mathbb{A} = (A, \bullet)$ has

- (i) An object A
- (ii) A map $\bullet : A \times A \to A$
- (iii) Combinatory completeness:

for every polynomial map $f : A^n \to A^m$, for each of the *m* components, there exists a total map $c_{f_i} : 1 \to A$ such that the following diagram commutes (that is, each component is \mathbb{A} - **computable**)

The \bullet map is never associative - assume expression is bracketed to the left s_{220}

Alternative PCA Definition

Combinatory completeness in terms of combinators

A has elements (combinators) k and s such that for all $a, b \in A$:

(i) $k \cdot a \cdot b \cong a$ (ii) $s \cdot a \downarrow, s \cdot a \cdot b \downarrow$, and $s \cdot a \cdot b \cdot c \cong a \cdot c \cdot (b \cdot c)$

- Like the algebra version of the lambda calculus abstraction, for eg. $kab = \lambda ab.a$

PCA Examples

- (i) Standard computation model
- (ii) (N(A), •), computation with an oracle A ⊂ N
 A answers the question "is x in A?"
 Computation denoted n A m.

(iii) Reflexive Structures

Suppose A is an object in a Cartesian Closed Category such that A^A is a retract of A, $r : A \to A^A$ Application:

$$A \times A \stackrel{r \times 1}{\to} A^A \times A \stackrel{ev}{\to} A$$

where ev is the evaluation map.

Non-example

Any application that is associative or commutative

프 > > ㅋ ㅋ >

Turing Categories based around a PCA

Let C be a category with ullet : $A \times A \rightarrow A$, and suppose $\mathbb{A} = (A, ullet)$ is a PCA

Turing categories based around A

(i) Comp(\mathbb{A}) : {1, A, A², ...} with \mathbb{A} - computable maps

(ii) Split(Comp(\mathbb{A})) : formally split all idempotents in Comp(\mathbb{A})

PCA is at the Heart of a Turing Category C

Embedding

Suppose C is a Turing category with Turing object A, then $\mathbb A$ is a PCA, and

 $\mathsf{Comp}(\mathbb{A}) \hookrightarrow \mathsf{C} \hookrightarrow \mathsf{Split}(\mathsf{Comp}(\mathbb{A}))$

In the standard model, $Split(Comp(\mathbb{N}))$

Objects: all recursively enumerable sets **Maps**: all functions computable by Turing machines

Range Category

Suppose C is a restriction category

A range combinator $\widehat{(-)}$

Sends a map $f: X \to Y$ in C to a map $\hat{f}: Y \to Y$ so that [**RR.1**] $\overline{\hat{f}} = \hat{f}$ [**RR.2**] $\hat{f}f = f$ [**RR.3**] $\overline{\hat{gf}} = \overline{gf}$ with codom(f) = dom(g) [**RR.4**] $\overline{\hat{gf}} = \widehat{gf}$ with codom (f) = dom(g)

Often, a fifth axiom is added: **[RR.5]** $f\hat{g} = h\hat{g}$ whenever fg = hg

C is called a **range category** when it has a range combinator. Given a restriction structure $\overline{(-)}$ on C, the range structure $\widehat{(-)}$, if it exists, is unique.

・ 同 ト ・ ヨ ト ・ ヨ ト

Open Maps

Notation

C - a restriction category $\mathcal{O}(A)$ - the poset of restriction idempotents of an object AGiven $f : A \to B$, write $f^* : \mathcal{O}(B) \to \mathcal{O}(A)$ - the "inverse image": for any $e \in \mathcal{O}(B), f^*(e) = \overline{ef} \leq \overline{f}$. $ee' = e \land e'$.

Given $f : A \rightarrow B$, it is **open** when:

There is a poset morphism
$$\exists_f : \mathcal{O}(A) \to \mathcal{O}(B)$$
 such that
[01] $\exists_f(f^*(e')) \leq e'$ for all $e' \in \mathcal{O}(B)$
[02] $e \land f^*(e') \leq f^*(\exists_f(e) \land e')$ for all $e \in \mathcal{O}(A), e' \in \mathcal{O}(B)$
[03] $e' \land \exists_f(e) \leq \exists_f(f^*(e') \land e)$ for all $e \in \mathcal{O}(A), e' \in \mathcal{O}(B)$

프 > > ㅋ ㅋ >

A >

э

Ranges and Open Maps

In a range category

Every $f : X \to Y$ is open $\exists_f(e) = \widehat{fe}$, where $e \in \mathcal{O}(X)$ $\exists_f(1) = \widehat{f}$

In an arbitrary category

Let C be a restriction category. The subcategory of C on the open maps is a range category

A cartesian range category is a cartesian restriction category with ranges such that $\widehat{f\times g}=\hat{f}\times\hat{g}$

< - 10 b

(*) = (*) = (*)

Ranges and Idempotents

Let C be a cartesian restriction category

Lemma

Suppose (m, r) is an embedding-retraction pair of X into A, and $m: X \to A$ is open. Then

(i)
$$r' := r\hat{m}$$
 is also a retraction of X, and $\overline{mr'} = mr'$.

(ii)
$$r'$$
 is open, and for any $e \in \mathcal{O}(A), \exists_{r'}(e) = r'em = \widehat{r'e}$

Lemma

If **[RR.5]** holds, any split idempotent has the same splitting as a restriction idempotent.

Thus, when m is open, we may assume it is the splitting of a restriction idempotent

・ 同 ト ・ ヨ ト ・ ヨ ト

A criterion

Let C be a Turing category with Turing object A

Suppose each map $A \to A$ in C is open, and for each X there exists an embedding $m_X : X \to A$ that is open. Then,

```
(i) C,
```

```
(ii) Comp(A), and
```

```
(iii) Split(Comp(A))
```

are all range categories.

Alternatively,

Suppose each map $A \rightarrow A$ in C is open, and assume **[RR.5]** for the open map (range) subcategory of C. Again, (i), (ii), and (iii) are then range categories.

- ∢ ≣ →

Range of a Map in a Turing Category

In both cases, the range of any map $f : X \to Y$ in C is defined by:

$$\hat{f} = r_Y(\widehat{c_f \cdot -})m_X$$

= $r_Y(\widehat{c_f \cdot -})m_X$
= $r_Y(\widehat{c_f \cdot -})m_X r_X m_Y$
= $r_Y(\widehat{c_f \cdot -})m_X m_Y$

伺 と く ヨ と く ヨ と

Range combinators in a PCA

Suppose $\mathbb{A} = (A, \bullet)$ is a PCA in a cartesian range category C, then

- (i) A has (weak) range combinators whenever for every a : A → A there exists a combinator r_a such that (r_a · a) · - = a · -.
- (ii) A has a strong range combinator if there exists a combinator r such that $(r \cdot a) \cdot = \widehat{a \cdot -}$ for every map $a \cdot : A \to A$

Ranges in a Turing category and the underlying PCA

Proposition

Let \mathbb{A} be a PCA in a cartesian restriction category. Then \mathbb{A} has weak ranges $\Leftrightarrow \text{Comp}(\mathbb{A})$ is a range category. In this case, $\text{Comp}(\mathbb{A}) \hookrightarrow C$ is a range preserving inclusion.

Corollary

When C is a Turing category with Turing object A, then C is a range category implies that $Comp(\mathbb{A})$ has ranges. The converse holds whenever **[RR.5]** holds.

Ranges in the standard model

The Standard Model has a strong range combinator

```
IsInRange (n, x) {

For(int i = 0 to \infty) {

For(int j = 0 to i) {

Do 1 step of each of each computation \phi_n(j)

If \phi_n(j) halts at this step {

Test \phi_n(j) = x

If TRUE, return x

}

}

}
```

э

Further Exploration

- Just described range maps in Turing categories

Other Structure to Look for in a Turing Category

(i) Equality map: = (a, b) is computable, so it is in (\mathbb{N}, \bullet)

(ii) Coproducts: $\mathbb{N} + \mathbb{N}$ is in Split(Comp(\mathbb{N}))

(iii) What else?

э