Cartesian closed 2-categories and rewriting

Aurore Alcolei

A brief presentation of Tom Hirschowitz's paper,
Cartesian closed 2-categories and permutation equivalence in higher-order rewriting

$$
\text { June 7, } 2014
$$

Context

Construction

Context

A lot of calculi :

- λ-calcul in cbv, cbn, lazy, optimal,
- λ-calcul with let rec / refs / call/cc,
- π-calcul, etc.
\longrightarrow same kind of proofs again and again
\longrightarrow a common point: the abstractions (binding)

Aim:

Having a framework to specify the semantic of (any) programming language with binding.
\Longrightarrow providing tools to specify/automate proofs and construction for these languages

Previous Works

What's already there:

- Higher-Order Rewrite Systems (HRSs) from T.Nipkow \rightarrow no notion of model, does not express reduction steps (binary relation)
- Categorical approach using Cartesian Closed Categories (CCC) by J.Lambek
\rightarrow no notion of reductions, model for equational theories.

Ideas:

- Making signatures for HRSs into a category (Sig)
- Adding a dimension to Lambek's approach \leadsto using 2-Cartesian Closed Categories.

In a nutshell

Programming language/rewriting systems with binding as a 2-category where

- objects are types
- morphisms (1-cells) are terms
- morphisms between parallel morphisms (2-cells) are reductions

What would that mean?

Construction

An example

Pure λ-calculus:

- grammar: $M, N \in \Lambda(\Gamma):=x \in \Gamma|\lambda x . M| M N$ (Γ set of variables)
- reduction rules:
$(\beta):(\lambda x . M) N \rightarrow M[N / x]$
$(\xi): M \rightarrow M^{\prime} \Longrightarrow \lambda x \cdot M \rightarrow \lambda x \cdot M^{\prime}$
$(R): N \rightarrow N^{\prime} \Longrightarrow M N^{\prime} \rightarrow M N^{\prime}$
$(L): M \rightarrow M^{\prime} \Longrightarrow M N \rightarrow M^{\prime} N$

Signature

Example: 2-signature for pure λ-calculus

$$
\Sigma_{\Lambda}=\left(\{t\},\left\{\begin{array}{cccc}
I: & {\left[t^{t}\right]} & \longrightarrow & t \\
a: & {[t, t]} & \longrightarrow & t
\end{array}\right\}, \quad\{\beta: a(/ \mid(x), y) \rightarrow x(y)\} \quad\right)
$$

Three sets :

1. Basic types (sorts): $X_{0}=\{t\}$.
2. Operations, I and a, with their type.
3. Rules β. redex and reduction are of the same type.

Cartesian Closed 2-Category

- 2-category := category enriched over Cat $\leadsto 2$-cells, identities, vertical and horizontal compositions...

- Cartesian closed 2-category $:=2$-category with finite product and exponential, both preserving the 2-categorical structure.

Step 1: 1-Signature

Types of a signature: obtained by applying (the monad)

$$
\begin{aligned}
\mathcal{L}_{0}: \text { Sets } & \longrightarrow \text { Sets } \\
X & \longmapsto\left\{A, B:=x \in X_{0}|A \times B| \mathbf{1} \mid B^{A}\right\}
\end{aligned}
$$

on X_{0}
\rightarrow 1-signature:

- sequent $:=$ element of $\mathcal{S}_{0}(X)=\mathcal{L}_{0}(X)^{*} \times \mathcal{L}_{0}(X)$
- 1-signature $:=\left(X_{0}, X_{1}\right)$ with $\varphi_{1}: X_{1} \longrightarrow \mathcal{S}_{0}(X)$
$c \quad \longmapsto(\operatorname{dom}(c), \operatorname{cod}(c))$

Step 2: 2-Signature (1)

Terms of a signature:
generated by

+ simply typed λ-calculus
+ pairing and projections

$$
+\frac{\cdots \quad \Gamma \vdash M_{i}: \Delta_{i} \quad \cdots}{\Gamma \vdash c\left(M_{1}, \ldots, M_{n}\right): A} c \in X_{1}(\Delta, A) \quad \text { modulo } \beta \eta \text { reduction (*) }
$$

Examples:

- $\llbracket \lambda x \cdot M \rrbracket=I(\lambda x . \llbracket M \rrbracket)$
- $\llbracket M N \rrbracket=a(\llbracket M \rrbracket, \llbracket N \rrbracket)$
- $\llbracket x \rrbracket=x$
(*) to get a structure close to the CCC

Step 2: 2-Signature (2)

\rightarrow monad $\mathcal{L}_{1}: \mathbf{S i g}_{1} \longrightarrow \mathbf{S i g}_{1}$ such that
$\left\{\begin{array}{l}\mathcal{L}_{1}(X)_{0}=X_{0} \text { and } \\ \mathcal{L}_{1}(X)_{1}=\text { terms of the signature }\end{array}\right.$
$\rightarrow \mathcal{L}_{1}(X)_{\|}:=$set of pairs of terms with same type
\rightarrow 2-signature :
$\left(X, X_{2}\right)$ where X is a 1 -signature and X_{2} is equipped with

$$
\begin{aligned}
& \varphi_{2}: \begin{array}{l}
X_{2}
\end{array} \longrightarrow \mathcal{L}_{1}(X)_{\|} \\
& r \longmapsto \\
&\text { (a term, its reduction by } \mathrm{r})
\end{aligned}
$$

$E x: \beta \mapsto(a(/|x|), y), x[y]) \in \mathcal{L}_{1}(\operatorname{Sigma})_{\|}$

Step 3: The adjunction

A similar approach:

- Defining a monad \mathcal{L} over Sig
- Reductions are generated by a 2λ-calculus:
- Context rules :

$$
\begin{array}{lc}
\frac{\Gamma, x: A \vdash P: M \rightarrow N: B}{\Gamma, x: A, \Delta \vdash x: x \rightarrow x: A} & \Gamma \vdash(\lambda x: A \cdot P): \lambda x: A . M \rightarrow \lambda x: A . N: B^{A} \\
\Gamma \vdash P_{1}: M_{1} \rightarrow N_{1}: G_{1} \quad \ldots \quad \Gamma \vdash P_{n}: M_{n} \rightarrow N_{n}: G_{n} \\
\hline \Gamma \vdash c\left(P_{1}, \ldots, P_{n}\right): c\left(M_{1}, \ldots, M_{n}\right) \rightarrow c\left(N_{1}, \ldots, N_{n}\right): A
\end{array}
$$

- Special rule :

$$
\frac{\ldots \quad \Gamma \vdash P_{i}: M_{i} \rightarrow N_{i}: G_{i} \quad \ldots}{\Gamma \vdash r\left\langle\left\langle P_{1}, \ldots, P_{n}\right\rangle: M\left[M_{1}, \ldots, M_{n}\right] \rightarrow N\left[N_{1}, \ldots, N_{n}\right]: A\right.}(r \in X(G \vdash M, N: A))
$$

- Modulo some equations ... to get a structure close to the 2-CCC

Example of equation

- Equivalence rules $:=\beta$ and η equivalences, equivalence by permutation,
- Example:

Left reduction: $\quad a\left(I\left(\lambda x^{t} . P\right), Q\right) ; \beta\left\langle\left\langle\lambda x^{t} \cdot M^{\prime}, N^{\prime}\right\rangle\right.$

$$
\begin{aligned}
& \equiv \beta\left\langle\left\langle\lambda x^{t} . P, Q\right\rangle\right. \\
& \equiv \beta\left\langle\left\langle\lambda x^{t} \cdot M, N\right\rangle\right\rangle ;\left(\lambda x^{t} \cdot P\right) Q
\end{aligned}
$$

$$
\equiv \beta\left\langle\left\langle\lambda x^{t} . M, N\right\rangle ; P[x \mapsto Q] \quad:\right. \text { Right reduction. }
$$

What we get

An adjunction:

\Longrightarrow models for Σ : morphisms $\mathcal{H}(\Sigma) \rightarrow \mathbf{C}$ in 2-CCCat
What does that mean?

