Cartesian closed 2-categories and rewriting

Aurore Alcolei

A brief presentation of Tom Hirschowitz's paper, Cartesian closed 2-categories and permutation equivalence in higher-order rewriting

June 7, 2014

2-CCCAT and HORS

• • = • •

Context

Construction

2-CCCAT and HORS

▶ < ≣ > ছ ৩৭.ে June 7, 2014 2 / 15

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Context

A lot of calculi :

- λ -calcul in cbv, cbn, lazy, optimal,
- λ -calcul with let rec / refs / call/cc,
- π-calcul, etc.
- \rightarrow same kind of proofs again and again
- \rightarrow a common point: the abstractions (binding)

Aim:

Having a framework to specify the semantic of (any) programming language with binding.

 \implies providing tools to specify/automate proofs and construction for these languages

Previous Works

What's already there:

- ▶ Higher-Order Rewrite Systems (HRSs) from T.Nipkow
 → no notion of model, does not express reduction steps (binary relation)
- Categorical approach using Cartesian Closed Categories (CCC) by J.Lambek
 - \rightarrow no notion of reductions, model for *equational* theories.

Ideas:

- Making signatures for HRSs into a category (Sig)
- Adding a dimension to Lambek's approach → using 2-Cartesian Closed Categories.

• • • • • • • • • • • •

In a nutshell

 $\label{eq:programming language/rewriting systems with binding as a 2-category where$

- objects are types
- morphisms (1-cells) are terms
- morphisms between parallel morphisms (2-cells) are reductions

What would that mean?

Context

Construction

2-CCCAT and HORS

▶ ৰ ≣ ▶ ≣ ৩৭৫ June 7, 2014 6 / 15

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

An example

Pure λ -calculus:

- grammar: $M, N \in \Lambda(\Gamma) := x \in \Gamma \mid \lambda x.M \mid MN$ (Γ set of variables)
- \cdot reduction rules:

$$(\beta) : (\lambda x.M)N \to M[N/x]$$
$$(\xi) : M \to M' \implies \lambda x.M \to \lambda x.M'$$
$$(R) : N \to N' \Longrightarrow MN' \to MN'$$
$$(L) : M \to M' \implies MN \to M'N$$

(日) (同) (三) (三)

Signature

Example: 2-signature for pure λ -calculus

$$\Sigma_{\Lambda} = \left(\{t\}, \begin{cases} l: [t^{t}] \longrightarrow t \\ a: [t,t] \longrightarrow t \end{cases} \right\}, \{ \beta: a(l(x), y) \to x(y) \} \right)$$

Three sets :

- 1. Basic types (sorts): $X_0 = \{t\}$.
- 2. Operations, *I* and *a*, with their type.
- 3. Rules β . redex and reduction are of the same type.

Cartesian Closed 2-Category

 \circ 2-category := category enriched over **Cat** \rightsquigarrow 2-cells, identities, vertical and horizontal compositions...

• Cartesian closed 2-category := 2-category with finite product and exponential, both **preserving** the 2-categorical structure.

Step 1: 1-Signature

Types of a signature:

obtained by applying (the monad)

$$\begin{array}{cccc} \mathcal{L}_0: & \textbf{Sets} & \longrightarrow & \textbf{Sets} \\ & X & \longmapsto & \{A, B := x \in X_0 \mid A \times B \mid \textbf{1} \mid B^A \} \end{array}$$

on X_0

 \rightarrow 1-signature:

• sequent := element of $\mathcal{S}_0(X) = \mathcal{L}_0(X)^* \times \mathcal{L}_0(X)$

▶ 1-signature :=
$$(X_0, X_1)$$
 with φ_1 : $X_1 \longrightarrow \mathcal{S}_0(X)$
c $\mapsto (dom(c), cod(c))$

Image: Image:

- ∢ ∃ ▶

Step 2: 2-Signature (1)

Terms of a signature: generated by

+ simply typed λ -calculus + pairing and projections

+
$$\frac{\Gamma \vdash M_i: \Delta_i \quad \dots}{\Gamma \vdash c(M_1, \dots, M_n): A} \quad c \in X_1(\Delta, A) \quad \text{modulo } \beta \ \eta \text{ reduction } (^*)$$

Examples:

- $\cdot \ \llbracket \lambda x.M \rrbracket = I (\! \llbracket \lambda x.\llbracket M \rrbracket)$
- $\cdot \ \llbracket MN \rrbracket = a(\llbracket M \rrbracket, \llbracket N \rrbracket)$
- $\cdot [x] = x$

(*) to get a structure close to the CCC

Step 2: 2-Signature (2)

→ monad
$$\mathcal{L}_1$$
: $\mathbf{Sig}_1 \longrightarrow \mathbf{Sig}_1$ such that

$$\begin{cases}
\mathcal{L}_1(X)_0 = X_0 \text{ and} \\
\mathcal{L}_1(X)_1 = \text{ terms of the signature} \\
\rightarrow \mathcal{L}_1(X)_{\parallel} := \text{ set of pairs of terms with same type} \\
\rightarrow 2\text{-signature :} \\
(X, X_2) \text{ where } X \text{ is a 1-signature and } X_2 \text{ is equipped with}
\end{cases}$$

$$\begin{array}{rcl} \varphi_2 & X_2 & \longrightarrow & \mathcal{L}_1(X)_{\parallel} \\ & r & \longmapsto & (\text{a term, its reduction by r}) \end{array}$$

 $\mathsf{Ex}: \beta \mapsto (a(I(x), y), x[y]) \in \mathcal{L}_1(Sigma)_{||}$

(日) (周) (三) (三)

Step 3: The adjunction

A similar approach:

- Defining a monad *L* over Sig
- Reductions are generated by a 2λ -calculus:
 - Context rules :

 $\frac{\Gamma, x: A \vdash P: M \to N: B}{\Gamma, x: A, \Delta \vdash x: x \to x: A} \qquad \frac{\Gamma, x: A \vdash P: M \to N: B}{\Gamma \vdash (\lambda x: A, P): \lambda x: A, M \to \lambda x: A, N: B^{A}}$ $\frac{\Gamma \vdash P_{1}: M_{1} \to N_{1}: G_{1} \qquad \dots \qquad \Gamma \vdash P_{n}: M_{n} \to N_{n}: G_{n}}{\Gamma \vdash c(P_{1}, \dots, P_{n}): c(M_{1}, \dots, M_{n}) \to c(N_{1}, \dots, N_{n}): A} (c \in X_{1}(G \vdash A))$ \dots $\cdot \text{Special rule :}$

$$\frac{\Gamma \vdash P_i: M_i \to N_i: G_i \quad \dots}{\Gamma \vdash r \langle\!\langle P_1, \dots, P_n \rangle\!\rangle: M[M_1, \dots, M_n] \to N[N_1, \dots, N_n]: A} \quad (r \in X(G \vdash M, N:A))$$

Modulo some equations ... to get a structure close to the 2-CCC

Example of equation

 \circ Equivalence rules := β and η equivalences, equivalence by permutation,

Left reduction: $a(I(\lambda x^{t}.P), Q); \beta(\langle \lambda x^{t}.M', N' \rangle)$ $\equiv \beta(\langle \lambda x^{t}.P, Q)\rangle$ $\equiv \beta(\langle \lambda x^{t}.M, N \rangle); (\lambda x^{t}.P)Q$

 $\equiv \beta \langle\!\langle \lambda x^t.M,N \rangle\!\rangle; P[x \mapsto Q] \qquad : \text{ Right reduction.}$

What we get

An adjunction:

 \implies models for Σ : morphisms $\mathcal{H}(\Sigma) \rightarrow C$ in 2-CCCat What does that mean?

