Orbifolds as Manifolds

Dorette Pronk (with Laura Scull and Matteo Tommasini)

Dalhousie University (with Fort Lewis College and the Max Planck Institute)

FMCS, June 6, 2014

Outline

Orbifolds

The Atlas Definition of Effective Orbispaces Groupoid Representations for Effective Orbispaces Ineffective Orbispaces

The Manifold Construction (Grandis)

Join Restriction Categories A Join Restriction category for Orbispace Charts Atlases

Atlases and Orbigroupoids

From Atlases to Orbigroupoids From Orbigroupoids to Atlases Maps Between Atlases

L The Atlas Definition of Effective Orbispaces

Atlas Charts

- An effective (or, reduced) orbispace consists of a paracompact space *M* with an equivalence class of orbispace atlases.
- An orbispace chart $\mathcal{U} = \{ \tilde{U}, G_U, \rho_U, \varphi_U \}$ consists of
 - $\tilde{U} \subseteq \mathbb{R}^n$, open (and contractible);
 - G_U a finite group;
 - a monomorphism $\rho_U \colon G_U \to \text{Homeo}(\tilde{U})$, defining a left action of G_U on \tilde{U} ;
 - $\varphi_U : \tilde{U} \to \tilde{U}/G_U \cong U \subseteq M$, the quotient map into the orbitspace.

L The Atlas Definition of Effective Orbispaces

Atlas Charts

- An effective (or, reduced) orbispace consists of a paracompact space *M* with an equivalence class of orbispace atlases.
- An orbispace chart $\mathcal{U} = \{ \tilde{U}, G_U, \rho_U, \varphi_U \}$ consists of
 - $\tilde{U} \subseteq \mathbb{R}^n$, open (and contractible);
 - *G_U* a finite group;
 - a monomorphism ρ_U: G_U → Homeo(Ũ), defining a left action of G_U on Ũ;
 - $\varphi_U : \tilde{U} \to \tilde{U}/G_U \cong U \subseteq M$, the quotient map into the orbitspace.

L The Atlas Definition of Effective Orbispaces

Atlas Chart Embeddings

Given charts $\mathcal{U} = {\tilde{U}, G_U, \rho_U, \varphi_U}$ and $\mathcal{V} = {\tilde{V}, G_V, \rho_V, \varphi_V}$, an (atlas) chart embedding $\mathcal{U} \hookrightarrow \mathcal{V}$ consists of a pair

$$(\lambda \colon \tilde{U} \hookrightarrow \tilde{V}, \ell \colon G_U \hookrightarrow G_V)$$

such that

•

• $\lambda(g \cdot u) = \ell(g) \cdot \lambda(u)$ for $g \in G_U$ and $u \in \tilde{U}$.

- The Atlas Definition of Effective Orbispaces

Local Compatibility

For any two charts $\mathcal{U} = \{\tilde{U}, G_U, \rho_U, \varphi_U\}$ and $\mathcal{V} = \{\tilde{V}, G_V, \rho_V, \varphi_V\}$ with a point $x \in U \cap V \subseteq M$, there is a chart $\mathcal{W} = \{\tilde{W}, G_W, \rho_W, \varphi_W\}$ with $x \in W \subseteq U \cap V$ and atlas chart embeddings

$$\mathcal{U} \hookrightarrow \mathcal{W} \hookrightarrow \mathcal{V}$$

L The Atlas Definition of Effective Orbispaces

Equivalence of Atlases

Two atlases \mathfrak{A} and \mathfrak{B} for the space *M* are equivalent if they satisfy the following equivalent conditions:

- There is a third atlas \mathfrak{C} with $\mathfrak{C} \supseteq \mathfrak{A} \cup \mathfrak{B}$.
- ► There is a common refinement D.
- For each pair of charts U ∈ 𝔄 and V ∈ 𝔅 with a point x ∈ U ∩ V ⊆ M there exists an orbifold chart for a neighbourhood of x with chart embeddings into both U and V.

Orbifolds as Manifolds

-Orbifolds

L The Atlas Definition of Effective Orbispaces

Example 1: The Teardrop

L The Atlas Definition of Effective Orbispaces

Example 2: The Triangular Billiard

The orbitspace:

L The Atlas Definition of Effective Orbispaces

Example 2: The Triangular Billiard

A chart for a corner:

with an action by the dihedral group D_6 .

L The Atlas Definition of Effective Orbispaces

Example 2: The Triangular Billiard

Three charts with embeddings:

L The Atlas Definition of Effective Orbispaces

Example 2: The Triangular Billiard

L The Atlas Definition of Effective Orbispaces

Embeddings and Homomorphisms

- Given a chart embedding λ: Ũ → V (such that φ_Vλ = φ_U) there is a unique (monic) group homomorphism
 ℓ: G_U → G_V such that λ(g ⋅ u) = ℓ(g) ⋅ λ(u).
- So the atlas chart embeddings are determined by the λs.

L The Atlas Definition of Effective Orbispaces

Embeddings and Homomorphisms

- Given a chart embedding λ: Ũ → V (such that φ_Vλ = φ_U) there is a unique (monic) group homomorphism
 ℓ: G_U → G_V such that λ(g ⋅ u) = ℓ(g) ⋅ λ(u).
- So the atlas chart embeddings are determined by the λ s.

The Atlas Definition of Effective Orbispaces

Embeddings as modules

natural right action by G_U and a natural left action by G_V .

The set of chart embeddings from a chart U to itself is in 1-1 correspondence with G_U.

-Groupoid Representations for Effective Orbispaces

Effective Orbigroupoids

Given an orbifold atlas \mathfrak{A} , we can represent its data in a topological groupoid $\mathcal{G}(\mathfrak{A})$,

$$\mathcal{G}(\mathfrak{A})_1 \times_{\mathcal{G}(\mathfrak{A})_0} \mathcal{G}(\mathfrak{A})_1 \xrightarrow{m} \mathcal{G}(\mathfrak{A})_1 \xrightarrow{i} \mathcal{G}(\mathfrak{A})_1 \xrightarrow{s} \mathcal{G}(\mathfrak{A})_0,$$

as follows:

- The space of objects is $\mathcal{G}(\mathfrak{A})_0 = \coprod_{\mathcal{U} \in \mathfrak{A}} \tilde{U};$
- The space of arrows has

$$s^{-1}(\tilde{U}) \cap t^{-1}(\tilde{U}) = G_U \times \tilde{U}$$

with

$$s(g, u) = u$$
 and $t(g, u) = g \cdot u$.

Orbifolds as Manifolds

- Orbifolds

- Groupoid Representations for Effective Orbispaces

 $\mathcal{G}(\mathfrak{A})_1$ $s^{-1}(\tilde{U}) \cap t^{-1}(\tilde{V}) = \lim_{\to} \tilde{W}$, the colimit of the diagram of spaces with

Objects: charts W with chart embeddings

Arrows: chart embeddings that commute with the embeddings of the objects:

The source map *s* is induced by the embeddings λ and the target map *t* is induced by the embeddings μ .

Groupoid Representations for Effective Orbispaces

Example 0: The Cone Groupoid

Groupoid Representations for Effective Orbispaces

Example 1: The Teardrop Groupoid

-Groupoid Representations for Effective Orbispaces

Example 2: The Triangular Billiard Groupoid

- Groupoid Representations for Effective Orbispaces

Notes

- ► The groupoid G(𝔄) is étale in the sense that all structure maps (s, t, u, i and m) are local homeomorphisms.
- The groupoid G(𝔅) is proper in the sense that (s, t): G(𝔅)₁ → G(𝔅)₀ × G(𝔅)₀ is proper (the preimage of any compact subset is compact).
- For any two charts \tilde{U} and \tilde{V} , the arrows s and t in

$$\tilde{U} \stackrel{s}{\longleftrightarrow} s^{-1}(\tilde{U}) \cap t^{-1}(\tilde{V}) \stackrel{t}{\longrightarrow} \tilde{V}$$

are covering projections onto their images (with the groups G_V and G_U respectively acting as deck transformations).

- Groupoid Representations for Effective Orbispaces

Notes

- The groupoid $\mathcal{G}(\mathfrak{A})$ is effective.
- For any point x ∈ Ũ ⊆ G(𝔄)₀, s⁻¹(x) ∩ t⁻¹(x) is the isotropy group of x, i.e., the group {g ∈ G_U; g ⋅ x = x}.
- Equivalent atlases give rise to Morita equivalent groupoids,

$$\mathcal{G}(\mathfrak{A}) \longleftrightarrow \mathcal{K} \longrightarrow \mathcal{G}(\mathfrak{B}).$$

Definition

An orbigroupoid is a proper étale groupoid.

- Groupoid Representations for Effective Orbispaces

From Groupoids to Atlases: Translation Neighbourhoods

Given an effective orbigroupoid \mathcal{G} , we construct an effective orbispace atlas for its space of orbits $\mathcal{G}_0/\mathcal{G}_1$.

Step 1: The Charts

G is étale and proper ⇒ for each point x ∈ G₀ there is a neighbourhood Ũ_x such that

$$s^{-1}(\tilde{U}_x) \cap t^{-1}(\tilde{U}_x) \cong \mathcal{G}_x \times \tilde{U}_x.$$

- We call \tilde{U}_x a translation neighbourhood.
- Translation neighbourhoods form a basis for the topology on G₀.

-Groupoid Representations for Effective Orbispaces

From Groupoids to Atlases: Translation Neighbourhood Embeddings

Step 2: Embeddings of Charts

► Given two translation neighbourhoods \tilde{U}_x and \tilde{U}_y with $U_x \subseteq U_y$, the maps in

$$\tilde{U}_x \stackrel{s}{\longleftarrow} s^{-1}(\tilde{U}_x) \cap t^{-1}(\tilde{U}_y) \stackrel{t}{\longrightarrow} \tilde{U}_y$$

are covering projections, so we can obtain the chart embeddings from the connected components of the preimages.

- Groupoid Representations for Effective Orbispaces

Morita Equivalence and Atlas Equivalence

- Recall: Equivalent orbispace atlases give rise to Morita equivalent groupoids.
- Any two atlases obtained from the same orbigroupoid are equivalent as orbispace atlases.
- Any two atlases obtained from Morita equivalent orbigroupoids are equivalent as orbispace atlases.

- Groupoid Representations for Effective Orbispaces

Morita Equivalence and Atlas Equivalence

- Recall: Equivalent orbispace atlases give rise to Morita equivalent groupoids.
- Any two atlases obtained from the same orbigroupoid are equivalent as orbispace atlases.
- Any two atlases obtained from Morita equivalent orbigroupoids are equivalent as orbispace atlases.

- Groupoid Representations for Effective Orbispaces

Morita Equivalence and Atlas Equivalence

- Recall: Equivalent orbispace atlases give rise to Morita equivalent groupoids.
- Any two atlases obtained from the same orbigroupoid are equivalent as orbispace atlases.
- Any two atlases obtained from Morita equivalent orbigroupoids are equivalent as orbispace atlases.

Ineffective Orbispaces

Atlases for Ineffective Orbispaces (Adem, Chen, Ruan, etc.)

An orbispace is *ineffective* (or, non-reduced) if the group actions are not effective.

- **Charts** for ineffective orbispaces are of the form $\mathcal{U} = \{\tilde{U}, G_U, \rho_U, \varphi_U\}$, where $\rho_U \colon G_U \to \text{Homeo}(\tilde{U})$ is any group homomorphism.
- Chart embeddings U → V are pairs (λ: Ũ → V, ℓ: G_U → G_V) as before with the additional property that

 $\ell|_{\operatorname{Ker}(\rho_U)} \colon \operatorname{Ker}(\rho_U) \xrightarrow{\sim} \operatorname{Ker}(\rho_V).$

Ineffective Orbispaces

Ineffective Orbigroupoids

Ineffective orbigroupoids are just proper étale groupoids that are not required to be effective.

Ineffective Orbispaces

Atlases and Groupoids

We hope that:

- Orbispace charts correspond to translation neighbourhoods in a proper étale groupoid.
- Embeddings of charts U → V correspond to connected components of s⁻¹(Ũ) ∩ t⁻¹(Ũ).

Ineffective Orbispaces

- Consider the orbispace described by one chart, D, the open unit disk in ℝ², with G_D = ℤ/2 × ℤ/2, acting trivially.
- How many chart embeddings are there from this chart to itself?
- So what should its orbigroupoid presentation be?

- Ineffective Orbispaces

- Consider the orbispace described by one chart, D, the open unit disk in ℝ², with G_D = ℤ/2 × ℤ/2, acting trivially.
- How many chart embeddings are there from this chart to itself?
- So what should its orbigroupoid presentation be?

- Ineffective Orbispaces

- Consider the orbispace described by one chart, D, the open unit disk in ℝ², with G_D = ℤ/2 × ℤ/2, acting trivially.
- How many chart embeddings are there from this chart to itself?
- So what should its orbigroupoid presentation be?

Ineffective Orbispaces

- ► Consider the orbispace described by one chart *D*, the open unit disk in ℝ², with G_D = ℤ/2, acting trivially.
- How many chart embeddings are there from this chart to itself?
- So what should its orbigroupoid presentation be?

- Ineffective Orbispaces

- ► Consider the orbispace described by one chart *D*, the open unit disk in ℝ², with G_D = ℤ/2, acting trivially.
- How many chart embeddings are there from this chart to itself?
- So what should its orbigroupoid presentation be?

- Ineffective Orbispaces

- ► Consider the orbispace described by one chart *D*, the open unit disk in ℝ², with G_D = ℤ/2, acting trivially.
- How many chart embeddings are there from this chart to itself?
- So what should its orbigroupoid presentation be?
-Orbifolds

- Ineffective Orbispaces

Our Goal

We want an atlas definition for orbispaces that agrees with the orbigroupoid description:

- an extension of the classical description for effective orbispaces;
- Morita equivalence classes of orbigroupoids should correspond to equivalence classes of atlases;
- with a notion of morphisms that will give rise to a (bi)equivalence of (bi)categories.

Classical Manifold Atlases

- With the classical notion of manifolds, you may have equivalent atlases, but there are no arrows from one to the other, there is just a refinement, or a common enlargement.
- Consequently, you cannot represent all smooth maps between two manifolds in terms of any given atlases.

The Manifold Construction

- The manifold construction defines a notion of atlas such that in the category of charts and atlases (the manifold completion of the category of charts) equivalent atlases are isomorphic.
- The trick behind this is that we allow ourselves to work with partial maps.
- In order to apply the manifold construction, we need a join restriction category.

Join Restriction Categories

Restriction categories

Definition

A restriction category \mathbb{C} (of "charts") is a category with a **restriction structure** which assigns to each arrow $f: A \rightarrow B$, an arrow, $\overline{f}: A \rightarrow A$, such that:

R.1
$$f\bar{f} = f$$

- **R.2** If dom(f) = dom(g) then $\overline{f}\overline{g} = \overline{g}\overline{f}$;
- **R.3** If dom(f) = dom(g) then $\overline{fg} = \overline{fg}$;
- **R.4** If dom(*h*) = cod(*f*) then $\overline{h}f = f\overline{h}\overline{f}$.

└─Join Restriction Categories

The Restriction Category for Ordinary Manifolds

- ► To obtain the classical notion of manifold, the restriction category C has open subsets of Rⁿ as objects and partially defined smooth maps as morphisms.
- We can represent the morphisms in this category by spans

$$U \stackrel{\lambda}{\longleftarrow} U' \stackrel{\varphi}{\longrightarrow} V$$

where λ is a smooth embedding and φ is a smooth map.

-Join Restriction Categories

Structure on the arrows

When two arrows agree wherever they are both defined, we say that they are compatible:

Definition

Two parallel maps $f, g: A \Rightarrow B$ in a restriction category are **compatible**, written $f \smile g$, if $g\overline{f} = f\overline{g}$.

Restriction categories carry a natural enrichment over posets:

Definition

For two parallel maps $f, g: A \Rightarrow B$ in a restriction category, we say that $f \le g$ if $g\overline{f} = f$.

Join Restriction Categories

Restriction Idempotents and Partial Inverses

- An arrow $e: A \rightarrow A$ is a **restriction idempotent** if $\overline{e} = e$.
- ► The restriction idempotents on A form a semilattice.
- ► An arrow $f: A \to B$ is a **partial isomorphism** if there is an arrow $f^*: B \to A$ such that $ff^* = \overline{f^*}$ and $f^*f = \overline{f}$.
- An inverse category is a restriction category in which every arrow is a partial isomorphism.

└─ Join Restriction Categories

Joins

- ► A set $S \subseteq \mathbb{C}(A, B)$ is called **compatible** if for any arrows $f, g \in S, f \smile g$.
- The restriction category C is a join restriction category if for each compatible family S ⊆ C(A, B), there is an arrow ∨_{f∈S} f ∈ C(A, B) such that:
 - $\bigvee_{f \in S} f$ is the join of S with respect to \leq in $\mathbb{C}(A, B)$;
 - The join is stable with respect to composition:

 $(\bigvee_{f\in S} f) h = \bigvee_{f\in S} (fh).$

It follows that:

- $k(\bigvee_{f\in S} f) = \bigvee_{f\in S} (kf);$
- The restriction idempotents on *A* form a locale.

Join Restriction Categories

Joins and ordinary manifolds

The restriction category of charts for ordinary manifolds has joins of families of compatible maps:

$$\bigvee_{s\in S} \left(U \overset{\lambda_s}{\longleftrightarrow} U'_s \overset{\varphi_s}{\longrightarrow} V \right) = U \overset{\lambda}{\longleftrightarrow} \bigcup_{s\in S} U'_s \overset{\varphi}{\longrightarrow} V,$$

where λ is the obvious embedding and φ is the unique smooth map such that $\varphi|_{U'_s} = \varphi_s$.

A Join Restriction category for Orbispace Charts

Orbichart embeddings as modules

- Since the idea of using the group homomorphisms between the charts did not work, we want to use the idea that the embeddings between two charts should form a module with actions by the structure groups.
- This can be done in more than one way here we will choose to stay fairly close to the structure we obtain directly from the orbigroupoids, and use topological modules/profunctors.

A Join Restriction category for Orbispace Charts

Action Groupoids

- Let a group G_X act on an open subset X ⊆ ℝⁿ, then its action groupoid G ⊨ X has space of objects X and space of arrows G × X.
- The source map is given by projection and the target map by the action.
- Composition and inverses are induced by multiplication and inverses in the group G_X.

A Join Restriction category for Orbispace Charts

Topological Profunctors Between Action Groupoids A topological profunctor $G_X \ltimes X \xrightarrow{U} G_Y \ltimes Y$ is given by a diagram of spaces $X \xleftarrow{p} U \xrightarrow{q} Y$ with

A left action of G_Y, which makes q equivariant and preserves the fibers of p:

$$q(g \cdot u) = g \cdot q(u)$$
 and $p(g \cdot u) = p(u)$

► A right action of G_X, which makes p equivariant and preserves the fibers of q:

$$p(u \cdot g') = g'^{-1} \cdot p(u)$$
 and $q(u \cdot g') = q(u)$

The two actions commute:

$$(g \cdot u) \cdot g' = g \cdot (u \cdot g')$$

A Join Restriction category for Orbispace Charts

Three Additional Conditions

For a topological profunctor $G_X \ltimes X \xrightarrow{U} G_Y \ltimes Y$ to be an **orbispace profunctor**, we will further require that

- U is Hausdorff;
- the map $p: U \rightarrow X$ is open;
- ► the action of G_Y is free and transitive on the fibers of p: U → UX in the sense that it induces a homeomorphism of spaces,

$$G_Y \times U \longrightarrow U \times_X U$$

$$(g, u) \longmapsto (g \cdot u, u)$$

So, whenever p(u) = p(u') there is a unique $g \in G_Y$ such that $g \cdot u = u'$.

A Join Restriction category for Orbispace Charts

Maps between profunctors

Given two topological profunctors $U, V: G_X \ltimes X \longrightarrow G_Y \ltimes Y$, a map of profunctors $\alpha: U \rightarrow V$ is given by a continuous function α which is equivariant with respect to the actions of G_X and G_Y and commutes with the anchor maps,

A Join Restriction category for Orbispace Charts

Composition of Profunctors

Composition of topological profunctors

$$G_X \ltimes X \xrightarrow{U} G_Y \ltimes Y \xrightarrow{V} G_Z \ltimes Z$$

is given by a continuous version of the usual tensor construction:

First take the pullback,

• The group G_Y acts on this space by

$$g'\cdot(v,u)=(v\cdot g'^{-1},g'\cdot u).$$

The composition profunctor V ⊗_{GY} U is the orbitspace of V ×_Y U under this action.

A Join Restriction category for Orbispace Charts

Units and Associativity

• The unit profunctor $G \ltimes U \longrightarrow G \ltimes U$ is given by

$$U \stackrel{\pi_2}{\longleftrightarrow} G \times U \stackrel{a}{\longrightarrow} U$$

where $a: G \times U \rightarrow U$ is given by $a(g, u) = g \cdot u$.

• The left and right actions of G on $G \times U$ are given by

$$g_1 \cdot (g, u) = (g_1 g, u)$$
 and $(g, u) \cdot g_2 = (gg_2, g_2^{-1} \cdot u)$

 Note that the composition of profunctors is only unitary and associative up to isomorphism.

A Join Restriction category for Orbispace Charts

Orbispace Charts

The category **OrbiCharts** is defined as follows:

- Objects are actions groupoids G_X ⊨ X, where X ⊆ ℝⁿ is open (and contractible) and G is a finite group which acts on X.
- An **arrow** $G_X \ltimes X \xrightarrow{U} G_Y \ltimes Y$ is a homeomorphism class of orbispace profunctors.

A Join Restriction category for Orbispace Charts

Restrictions for Orbispace Profunctors

The restriction \overline{U} for an orbispace profunctor

is given by

Note that pU is G_U -invariant, so this is well-defined.

Orbifolds as Manifolds

The Manifold Construction (Grandis)

A Join Restriction category for Orbispace Charts

Compatibility for Orbispace Profunctors

Let

be orbispace profunctors such that $V \otimes_{G_X} \overline{U} \cong U \otimes_{G_X} \overline{V}$.

This means that there is a commutative diagram

where α is equivariant with respect to both G_X and G_Y .

A Join Restriction category for Orbispace Charts

Binary Joins for Orbispace Profunctors

• When $\alpha \colon V \otimes_{G_X} \overline{U} \xrightarrow{\sim} U \otimes_{G_X} \overline{V}$, then

$$U \smile V = (U \amalg V)/(x \sim \alpha(x)),$$

i.e, the following pushout,

- The relation {(x, α(x))|x ∈ U} is closed in (U □ V) × (U □ V), so (U □ V)/x ~ α(x) is Hausdorff.
- ▶ $p \amalg q$: $U \smile V \rightarrow X$ is well-defined and open.
- ► The actions of G_X and G_Y on U and V induce well-defined actions on U ⊂ V and make it an orbispace profunctor.

A Join Restriction category for Orbispace Charts

Arbitrary Joins for Orbispace Profunctors

To obtain the join $\bigvee_{i \in I} \left(G_X \ltimes X \xrightarrow{U_i} G_Y \ltimes Y \right)$ of profunctors represented by $X \xleftarrow{p_i} U_i \xrightarrow{q_i} Y$,

- take the colimit of the diagram with the spaces U_i for i ∈ I and p_i⁻¹(p_jU_j) for i, j ∈ I and the arrows
 U_i ⇔ p_i⁻¹(p_jU_j) ⇔ U_j.
- The arrow into X is induced by the p_i.
- The arrow into *Y* is induced by the q_i .
- The actions of G_X and G_Y are induced by those on the U_i .

A Join Restriction category for Orbispace Charts

Partial Isomorphisms

Lemma

• An orbispace profunctor $G_X \ltimes X \xrightarrow{U} G_Y \ltimes Y$, with

 $X \leftarrow {}^{p} U \longrightarrow Y$ is a partial isomorphism if and only if G_X

acts freely and transitively on the fibers of $U \xrightarrow{q} Y$, i.e., it induces a homeomorphism $G_X \times U \cong U \times_Y U$.

In this case, the partial inverse U^{*}: G_Y ⊨ Y → G_X ⊨ X is given by Y ← U → Z, with the group actions defined by inverses: u · g = g⁻¹ · u.

Atlases

Atlases in Join Restriction Categories

Definition (Grandis)

Let \mathbb{C} be a join restriction category. An **atlas** (C_i, φ_{ij}, I) in \mathbb{C} consists of

- a family of objects C_i , $i \in I$ in \mathbb{C} ;
- for each pair $i, j \in I$, a map $\varphi_{ji} \colon C_i \to C_j$;

such that for each triple $i, j, k \in I$,

Atl. 1 $\varphi_{ji}\varphi_{ii} = \varphi_{ji}$ (partial charts);

- Atl. 2 $\varphi_{kj}\varphi_{ji} \leq \varphi_{ki}$ (cocycle condition);
- Atl. 3 φ_{ij} is the partial inverse of φ_{ji} .

- Atlases

Atlases in OrbiCharts

Definition An atlas in **OrbiCharts** consists of

- a family of objects, $G_i \ltimes X_i$, for $i \in I$;
- ► for each pair $i, j \in I$, an orbispace profunctor $U_{ji}: G_i \ltimes X_i \rightarrow G_j \ltimes X_j;$

such that for each triple $i, j, k \in I$,

- ▶ **OrbiAtl. 0** α_{ii} : $U_{ii} \xrightarrow{\sim} \mathsf{Id}_{G_i \ltimes X_i}$, i.e., α_{ii} : $U_{ii} \xrightarrow{\sim} G_i \times X_i$;
- ► (**OrbiAtl. 1** there are isomorphisms α_{jii} : $U_{ji} \otimes_{G_i} U_{ii} \xrightarrow{\sim} U_{ji}$;)
- **OrbiAtl. 2** there are embeddings $\alpha_{kji} : U_{kj} \otimes_{G_i} U_{ji} \hookrightarrow U_{ki}$;
- OrbiAtl. 3 U_{ij} is the partial inverse of U_{ji}, i.e., there are isomorphisms of topological profunctors, β_{iji}: U_{ij} ⊗_{G_j} U_{ji} → U_{ji} and β_{jij}: U_{ji} ⊗_{G_i} U_{ij} → U_{ij}.

Orbifolds as Manifolds

The Manifold Construction (Grandis)

- Atlases

Inverses Revisited

For each triple $i, j \in I$, **OrbiAtl. 3** (improved version) There is an equivariant isomorphism

From Atlases to Orbigroupoids

The atlas groupoid

- Space of objects $\mathcal{G}(\mathfrak{X})_0 = \coprod_{i \in I} X_i$
- Space of arrows $\mathcal{G}(\mathfrak{X})_1 = \coprod_{i,j \in I} U_{ij}$
- Source and target maps $s|_{U_{ii}} = p_{ij}$ and $t|_{U_{ii}} = q_{ij}$
- The unit map u: G(𝔅)₀ → G(𝔅)₁ is defined on the component X_i by u(x) = α⁻¹_{ii}(x, e_{Gi}).
- ► **Composition** for $(f', f) \in U_{kj} \times_{X_j} U_{ji}$, define $m(f', f) = \alpha_{kji}(f' \otimes f) \in U_{ik}$.
- ▶ **Inverses** for $f \in U_{ij}$, $i(f) \in U_{ji}$ is defined by $i(f) = \alpha_{ij}(f)$.

From Atlases to Orbigroupoids

The atlas groupoid

- Space of objects $\mathcal{G}(\mathfrak{X})_0 = \coprod_{i \in I} X_i$
- Space of arrows $\mathcal{G}(\mathfrak{X})_1 = \coprod_{i,j \in I} U_{ij}$
- Source and target maps s|U_{ii} = p_{ij} and t|U_{ii} = q_{ij}
- The unit map u: G(𝔅)₀ → G(𝔅)₁ is defined on the component X_i by u(x) = α⁻¹_{ii}(x, e_{G_i}).
- ► **Composition** for $(f', f) \in U_{kj} \times_{X_j} U_{ji}$, define $m(f', f) = \alpha_{kji}(f' \otimes f) \in U_{ik}$.
- ▶ **Inverses** for $f \in U_{ij}$, $i(f) \in U_{ji}$ is defined by $i(f) = \alpha_{ij}(f)$.

From Atlases to Orbigroupoids

The atlas groupoid

- Space of objects $\mathcal{G}(\mathfrak{X})_0 = \coprod_{i \in I} X_i$
- Space of arrows $\mathcal{G}(\mathfrak{X})_1 = \coprod_{i,j \in I} U_{ij}$
- Source and target maps $s|_{U_{ij}} = p_{ij}$ and $t|_{U_{ij}} = q_{ij}$
- The unit map u: G(𝔅)₀ → G(𝔅)₁ is defined on the component X_i by u(x) = α⁻¹_{ii}(x, e_{Gi}).
- ► **Composition** for $(f', f) \in U_{kj} \times_{X_j} U_{ji}$, define $m(f', f) = \alpha_{kji}(f' \otimes f) \in U_{ik}$.
- ▶ **Inverses** for $f \in U_{ij}$, $i(f) \in U_{ji}$ is defined by $i(f) = \alpha_{ij}(f)$.

From Atlases to Orbigroupoids

The atlas groupoid

- Space of objects $\mathcal{G}(\mathfrak{X})_0 = \coprod_{i \in I} X_i$
- Space of arrows $\mathcal{G}(\mathfrak{X})_1 = \coprod_{i,j \in I} U_{ij}$
- Source and target maps $s|_{U_{ij}} = p_{ij}$ and $t|_{U_{ij}} = q_{ij}$
- The unit map u: G(𝔅)₀ → G(𝔅)₁ is defined on the component X_i by u(x) = α⁻¹_{ii}(x, e_{G_i}).
- ► **Composition** for $(f', f) \in U_{kj} \times_{X_j} U_{ji}$, define $m(f', f) = \alpha_{kji}(f' \otimes f) \in U_{ik}$.
- ▶ **Inverses** for $f \in U_{ij}$, $i(f) \in U_{ji}$ is defined by $i(f) = \alpha_{ij}(f)$.

From Atlases to Orbigroupoids

The atlas groupoid

Given an atlas $\mathfrak{X} = (G_i \ltimes X_i, [U_{ij}], I)$, with a choice of representatives $X_i \lt \overset{p_{ij}}{\longleftarrow} U_{ij} \overset{q_{ij}}{\longrightarrow} X_j$, define the orbigroupoid $\mathcal{G}(\mathfrak{X})$ as follows:

- Space of objects $\mathcal{G}(\mathfrak{X})_0 = \coprod_{i \in I} X_i$
- Space of arrows $\mathcal{G}(\mathfrak{X})_1 = \coprod_{i,j \in I} U_{ij}$
- Source and target maps $s|_{U_{ij}} = p_{ij}$ and $t|_{U_{ij}} = q_{ij}$
- The unit map u: G(𝔅)₀ → G(𝔅)₁ is defined on the component X_i by u(x) = α⁻¹_{ii}(x, e_{G_i}).
- ► **Composition** for $(f', f) \in U_{kj} \times_{X_j} U_{ji}$, define $m(f', f) = \alpha_{kji}(f' \otimes f) \in U_{ik}$.

▶ **Inverses** for $f \in U_{ij}$, $i(f) \in U_{ji}$ is defined by $i(f) = \alpha_{ij}(f)$.

From Atlases to Orbigroupoids

The atlas groupoid

- Space of objects $\mathcal{G}(\mathfrak{X})_0 = \coprod_{i \in I} X_i$
- Space of arrows $\mathcal{G}(\mathfrak{X})_1 = \coprod_{i,j \in I} U_{ij}$
- Source and target maps $s|_{U_{ij}} = p_{ij}$ and $t|_{U_{ij}} = q_{ij}$
- The unit map u: G(𝔅)₀ → G(𝔅)₁ is defined on the component X_i by u(x) = α⁻¹_{ii}(x, e_{Gi}).
- ► **Composition** for $(f', f) \in U_{kj} \times_{X_j} U_{ji}$, define $m(f', f) = \alpha_{kji}(f' \otimes f) \in U_{ik}$.
- ► Inverses for $f \in U_{ij}$, $i(f) \in U_{ji}$ is defined by $i(f) = \alpha_{ij}(f)$.

From Atlases to Orbigroupoids

Is this a groupoid?

Additional conditions to obtain strict units, associativity:

- Units: $\alpha_{ji} \circ (\alpha_{ji}^{-1}(\boldsymbol{e}_{G_i}, \boldsymbol{q}_{ij}(-), -) = \mathrm{id}_{U_{ij}}$
- Associativity:

From Orbigroupoids to Atlases

From Orbigroupoids to Atlases

- take a collection of translation neighbourhoods X_i ⊆ G₀, with structure groups G_i, which essentially covers G₀ (it meets every orbit);
- then s⁻¹(X_i) ∩ t⁻¹(X_j) has a left action of G_j and a right action of G_i;
- ▶ furthermore, $X_i \leftarrow s^{-1}(X_i) \cap t^{-1}(X_j) \xrightarrow{t} X_j$ carries the structure of an orbispace profunctor which is a partial isomorphism.
- Composition in G gives rise to the required isomorphisms to make this an orbichart atlas.

From Orbigroupoids to Atlases

From Orbigroupoids to Atlases

- take a collection of translation neighbourhoods X_i ⊆ G₀, with structure groups G_i, which essentially covers G₀ (it meets every orbit);
- then s⁻¹(X_i) ∩ t⁻¹(X_j) has a left action of G_j and a right action of G_i;
- ▶ furthermore, $X_i \leftarrow s^{-1}(X_i) \cap t^{-1}(X_j) \xrightarrow{t} X_j$ carries the structure of an orbispace profunctor which is a partial isomorphism.
- Composition in G gives rise to the required isomorphisms to make this an orbichart atlas.

From Orbigroupoids to Atlases

From Orbigroupoids to Atlases

- take a collection of translation neighbourhoods X_i ⊆ G₀, with structure groups G_i, which essentially covers G₀ (it meets every orbit);
- then s⁻¹(X_i) ∩ t⁻¹(X_j) has a left action of G_j and a right action of G_i;
- Furthermore, X_i ≤ s⁻¹(X_i) ∩ t⁻¹(X_j) → X_j carries the structure of an orbispace profunctor which is a partial isomorphism.
- Composition in G gives rise to the required isomorphisms to make this an orbichart atlas.

From Orbigroupoids to Atlases

From Orbigroupoids to Atlases

- take a collection of translation neighbourhoods X_i ⊆ G₀, with structure groups G_i, which essentially covers G₀ (it meets every orbit);
- then s⁻¹(X_i) ∩ t⁻¹(X_j) has a left action of G_j and a right action of G_i;
- Furthermore, X_i ≤ s⁻¹(X_i) ∩ t⁻¹(X_j) → X_j carries the structure of an orbispace profunctor which is a partial isomorphism.
- Composition in G gives rise to the required isomorphisms to make this an orbichart atlas.
-Maps Between Atlases

Atlas Maps in Join Restriction Categories

Definition Let (C_i, φ_{ij}, I) and (D_k, ψ_{kl}, K) be atlases in a join restriction category \mathbb{C} . An **atlas map**

$$A\colon (C_i,\varphi_{ij},I)\to (D_k,\psi_{kl},K)$$

consists of a family of maps A_{ki} : $C_i \rightarrow D_k$ ($i \in I, k \in K$), such that

- AtlM. 1 $A_{ki}\varphi_{ii} = A_{ki}$;
- AtIM. 2 $A_{kj}\varphi_{ji} \leq A_{ki}$;
- AtlM. 3 $\psi_{hk}A_{ki} = A_{hi}\overline{A}_{ki}$.

The atlas map is a total map when $\bigvee_{k \in K} \overline{A}_{ki} = \overline{\varphi}_{ii}$.

Maps Between Atlases

Maps Between OrbiChart Atlases

Definition Let $(G_i \ltimes X_i, U_{ij}, I)$ and $(H_k \ltimes Y_k, V_{kl}, K)$ be atlases in the join restriction category **OrbiCharts**. An **atlas map**

$$A\colon (G_i \ltimes X_i, U_{ij}, I) \to (H_k \ltimes Y_k, V_{kl}, K)$$

consists of a family of orbispace profunctors A_{ki} : $G_i \ltimes X_i \to H_k \ltimes Y_k$ ($i \in I, k \in K$), such that

- OrbiAtIM. 1 $A_{ki} \otimes_{G_i} U_{ii} \cong A_{ki};$
- OrbiAtIM. 2 $A_{kj} \otimes_{G_j} U_{ji} \leq A_{ki};$
- OrbiAtIM. 3 $V_{hk} \otimes_{H_k} A_{ki} \cong A_{hi} \otimes_{G_i} \overline{A}_{ki}$.

The atlas map is a total map when $\bigvee_{k \in K} \overline{A}_{ki} = \overline{U}_{ii}$.

Orbifolds as Manifolds

Atlases and Orbigroupoids

Maps Between Atlases

Example: Paths in the Teardrop

-Maps Between Atlases

Hilsum Skandalis Maps

Definition

Let ${\mathcal G}$ and ${\mathcal H}$ be two orbigroupoids. A Hilsum-Skandalis map

 $M: \mathcal{G} \twoheadrightarrow \mathcal{H}$

is a topological profunctor

$$\mathcal{G}_0 \stackrel{p}{\longleftarrow} M \stackrel{q}{\longrightarrow} \mathcal{H}_0$$

(i.e., *M* has a left action of \mathcal{H} which keeps the fibers of *p* invariant and it has a right action of \mathcal{G} which keeps the fibers of *q* invariant), such that *p* is an open surjection and the action of \mathcal{H} is free and transitive on the fibers.

-Maps Between Atlases

Atlas Maps and Hilsum Skandalis Maps

- Hilsum Skandalis maps correspond to atlas maps which are total.
- M is a Morita equivalence when q is an open surjection and the action of G is free and transitive on the fibers of p.
- Isomorphic atlases give rise to Morita equivalent atlas groupoids.
- Atlases obtained from Morita equivalent groupoids are isomorphic.

-Maps Between Atlases

Further Research

- We really want to view orbispaces as a 'manifolds' in a restriction bicategory.
- The manifolds obtained from the manifold construction are not necessarily Hausdorff or of a well-defined dimension. One can obtain the traditional manifolds by idempotent splitting. Can this be generalized to the category
 OrbiCharts to obtain the usual orbispaces?