Categorical Aspects of Galois Theory

Adam Gerlings

Department of Mathematics and Statistics University of Calgary

Foundational Methods in Computer Science, 2014

Adam Gerlings Categorical Aspects of Galois Theory

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへで

Outline

- Classical Galois Theory for Fields
- 2 Galois Categories: A First Approach [Grothendieck]
 - Definition
 - Examples
- 3 Galois Categories, Redux [Cockett]
 - Motivation: The Coproduct Completion
 - The Fundamental Functor

Classical Galois Theory for Fields

Some Field Theory

First, let us recall a few notions from field theory...

Let L/K be a field extension and G ⊂ Aut_K(L). The fixed field of G is the field:

$$\boldsymbol{L}^{\boldsymbol{G}} = \{ \alpha \in \boldsymbol{L} \mid \forall \boldsymbol{g} \in \boldsymbol{G}, \boldsymbol{g} \alpha = \alpha \}.$$

A field extension *L/K* is called a Galois extension if *L/K* is algebraic and there exsts a subgroup *G* ⊂ Aut_K(*L*) such that *K* = *L^G*.

Classical Galois Theory for Fields

The Galois Correspondence

For a Galois extension L/K define the **Galois group** to be $Gal(L/K) := Aut_K(L)$.

Theorem: Galois Correspondence

Let L/K be a Galois extension. Then we can define the following bijective correspondence:

{Intermediate fields E of L/K} \longleftrightarrow {Subgroups H of Gal(L/K)}

$$E \longmapsto Aut_E(L)$$

 $L^H \longleftarrow H$

There are more Galois correspondences out there!

Definition Examples

What is a Galois Category?

A category **C** together with a **fundamental functor** $F : \mathbf{C} \longrightarrow \mathbf{fset}$ satisfying some conditions...

- (G1) C has a final object and pullbacks.
- (G2) **C** has an initial object, finite coproducts, and quotients by finite groups of automorphisms exist.
- (G3) Any $f: X \to Y$ in **C** can be written $f = e \circ m$, for e epic and m monic.
- (G4) *F* preserves final objects and pullbacks.
- (G5) *F* preserves initial objects, finite coproducts, epics, and quotients.
- (G6) For *g* a map in **C**, if *F*(*g*) is an isomorphism, then *g* is an isomorphism.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへで

Definition Examples

Examples of Galois Categories

Galois Category C	Fundamental Functor F
fset - the category of finite	${\it F}={\it id}_{{\it fset}}$
sets.	
π - fset - the category of finite	$F = $ Forget : π -fset \longrightarrow fset
sets with a continuous action	
by a profinite group π .	
$SAlg_{K}^{op}$ - the category of	$F(A) = \operatorname{Hom}_{\operatorname{Alg}_{K}}(A, K_{s})$
free separable K-algebras,	
for K a field.	

Note: $K_s = \{x \in \overline{K} \mid x \text{ is separable over } K\}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへで

Definition Examples

Main Theorem of Galois Categories

Note: A **profinite group** is a topological group which is totally disconnected, compact, and Hausdorff.

Eg. Every finite group is profinite, given the discrete topology.

Theorem

Let **C** be a small Galois category. Then there exists a profinite group π such that **C** is equivalent to π -**fset**.

Definition Examples

An Example of the Theorem in Practice

Consider **SAIg**_{*K*}^{*op*}, the opposite of the category of free separable *K*-algebras, for *K* any field. Recall: $K_s = \{x \in \overline{K} \mid x \text{ is separable over } K\}$. K_s is a Galois extension over *K*.

Proposition

There is an equivalence of categories:

$$SAlg_K^{op} \simeq G - fset$$

where G is the Galois group of K_s over K, i.e. $Gal(K_s/K)$.

Motivation: The Coproduct Completion The Fundamental Functor

The Family Category

Definition

Let **C** be any category. Define the *family category*, denoted $Fam(\mathbf{C})$, to be the category where:

objects: $(C_i)_{i \in I}$, indexed objects $C_i \in \mathbf{C}$.

maps: $(C_i)_{i \in I} \xrightarrow{(f,F)} (D_j)_{j \in J}$, where $f : I \longrightarrow J$ is a map in **set** and for each $i \in I$, $F(i) : C_i \longrightarrow D_{F(i)}$ is a map in **C**.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Motivation: The Coproduct Completion The Fundamental Functor

The Coproduct Completion

 We say that Fam(C) is the coproduct completion of C, which is described by the following universal property:

$$\begin{array}{ccc} \mathbf{C} & \xrightarrow{\eta} & \textit{Fam}(\mathbf{C}) \\ & & & & \downarrow \\ & & & & \downarrow \\ & & & & \mathbf{D} \end{array}$$

Where **D** is a category with coproducts, *F* is a functor, $\eta(C) = (C)_{\{*\}}$, i.e. η sends *C* to the singleton family, and F^{\sharp} preserves coproducts.

Motivation: The Coproduct Completion The Fundamental Functor

Connected Objects

Definition

An object $X \in \mathbf{C}$ is called *connected* if:

 $Hom(X, -) : \mathbf{C} \longrightarrow \mathbf{set}$

preserves coproducts.

Theorem

Every family category is equivalent to the coproduct completion of its subcategory of connected objects.

We would like to study categories **C** which make *Fam*(**C**) (finitely) complete and cocomplete.

Motivation: The Coproduct Completion The Fundamental Functor

Method for Producing the Fundamental Functor

We would like to construct the following functor (to match the original "fundamental functor"):

 $\textit{Fam}(\textbf{C}) \longrightarrow \textbf{fset}$

To do so, it is enough to consider:

 $\textbf{C} \longrightarrow \textbf{fset}$

To construct the above, however, we need only consider:

 $\textit{Norm}(\mathbf{C}) \longrightarrow \textit{fset}$

Where Norm(C) is the subcategory of normal objects.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへで

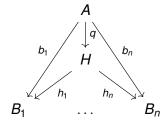
Motivation: The Coproduct Completion The Fundamental Functor

Normal Objects 1: Tables

Definition

A *table* is a wide pushout (which we will also call a *pre-table*) such that any map of wide pushouts leaving a table must be an isomorphism.

That is, given:



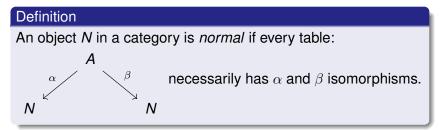
q must be an isomorphism.

< < >> < </>

★ E ► ★ E ► E E < 2000</p>

Motivation: The Coproduct Completion The Fundamental Functor

Normal Objects 2



Call a category **C** normal if every object is normal.

Motivation: The Coproduct Completion The Fundamental Functor

What is a Fundamental Functor?

Definition

For **C** normal, a functor $U : \mathbf{C} \longrightarrow \mathbf{fset}$ is *fundamental* if it is equipped with for each $N \in \mathbf{C}$, isomorphisms:

$$[_]_N : U(N) \longrightarrow Hom_{\mathbf{C}}(N, N)$$
$$\{_\}_N : Hom_{\mathbf{C}}(N, N) \longrightarrow U(N)$$

such that:

1
$$\{[x]\} = x$$

$$2 \ [\{\alpha\}] = \alpha$$

3
$$U([x])(\{1_N\}) = x$$

3
$$[x]f = f[U(f)(\{1_N\})]^{-1}[U(f)(x)]$$

Motivation: The Coproduct Completion The Fundamental Functor

Example of a Fundamental Functor

• Consider the preorder collapse of C:

 $\mathbf{C} \\ \downarrow \delta$

$Preorder(\mathbf{C})$

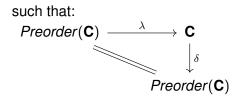
Where $Preorder(\mathbf{C})$ is the category whose objects are objects of **C** and given any two objects in **C**, if there is a map between them in **C**, then there is a map in $Preorder(\mathbf{C})$.

Motivation: The Coproduct Completion The Fundamental Functor

Example of a Fundamental Functor Continued

• We say δ above is *split* if there is a functor

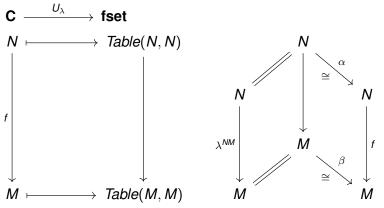
 $\lambda : Preorder(\mathbf{C}) \longrightarrow \mathbf{C}$



Motivation: The Coproduct Completion The Fundamental Functor

Example of a Fundamental Functor Continued

Given such a splitting, we can form the following functor:



★ E > < E >

Motivation: The Coproduct Completion The Fundamental Functor

Significance of U_{λ}

U_{λ} is a fundamental functor!

Proposition

Given a fundamental functor $U : \mathbf{C} \longrightarrow \mathbf{fset}$, there exists a unique splitting λ such that $U \cong U_{\lambda}$.

Adam Gerlings Categorical Aspects of Galois Theory

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Questions/Outlook

- What properties does C need so that the constructed fundamental functor above, U_λ, can be generalized to one on Fam(C) which agrees with Grothendieck's definition?
- What further results can we find about Galois categories using this method?
- How can this method be used in already existing examples? (eg. schemes)

THANK YOU!

Adam Gerlings Categorical Aspects of Galois Theory

(日) (日) (日) (日) (日) (日) (日)

Bibliography I

🛸 H.W. Lenstra

Galois Theory for Schemes.

Dept. of Mathematics, University of California at Berkely, 2008.

Grothendieck, Alexandre.

Séminaire de Géométrie Algébrique du Bois Marie -1960-61 - Revêtements étales et groupe fondamental -(SGA 1) (Lecture notes in mathematics 224). Berlin: New York: Springer-Verlag. (1971).

Bibliography II

F.G. Lastaria On Separable Algebras In Grothendieck Galois Theory. *Le Matematiche*, Vol. LI (1996) - Supplemento, pp. 127-136.

Adam Gerlings Categorical Aspects of Galois Theory

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●|= ◇◇◇