Asymmetric lenses, symmetric lenses and spans

Bob Rosebrugh
(with Mike Johnson)

FMCS 2014

Outline

- background: databases, updates and views: the view update problem
- asymmetric lenses and view updates
- symmetric lenses and model synchronization
- spans of asymmetric lenses

Updates and views

- An update changes database states)
- Examples: deletion, insertion, attribute modification Either: modification of single state by delete or insert or an update process: an edo U of states, \mathbf{S}
- A view may limit access e.g. for security or present information to user class e.g. clerk or specify boundary for database integration
- "Get" view states via $G: \mathbf{S} \longrightarrow \mathbf{V}$

View update problem

When can an update to view state(s) either

- for single (view) state (e.g. formal insertion a):

- for an update process (e.g. U):

View update problem

When can an update to view state(s) either

- for single (view) state (e.g. insert a):

- for an update process (e.g. U):

propagate (or lift) correctly to full database update?

Abstract view updates

Bancilhon and Spyratos (1982, and others) studied the view update problem. For them:

- database states are an abstract set S
- view states are an abstract set V - the codomain of a surjective view definition mapping $G: S \longrightarrow V$
- a view update is an endo-function $U: V \longrightarrow V$
- a translation T_{U} of view update U is a database update on S lifting $U G$ through G

A translation strategy limited to "complemented" (better, "factored") views follows...

Asymmetric Lenses

(B. Pierce et al, 2005)

Consider a full database state s and view state $G(s)$
When $G(s)$ updated to v, say, want strategy to find
updated full database state $s^{\prime}=T_{U S}$ (over v):

Idea: provide a process $P: V \times S \longrightarrow S$ called "Put" so that $P(v, s)$ is the translated state s^{\prime} after $G(s)$ updated to v Some equations should follow...

This structure, called a lens, provides translations
Also arose in considering "abstract models of storage" (where there is a similar update problem)

Asymmetric Lenses

Let \mathbf{C} be a category with finite limits
An asymmetric lens in \mathbf{C} is $L=(S, V, G, P)$ with

- S and V objects (... database states/view states)
- $S \xrightarrow{G} V$ aka 'Get' and $V \times S \xrightarrow{P} S$ aka 'Put' called well-behaved (wb) if satisfying:
PutGet: Get of Put is projection: $G P=\pi_{0}($ or $G P(v, s)=v)$
GetPut: Put for non-update is trivial $P\left\langle G, 1_{S}\right\rangle=1_{S}$
and very well-behaved (vwb) if also satisfying:
PutPut: repeated Puts depend only on the last:
$P\left(1_{V} \times P\right)=P \pi_{0,2}\left(\right.$ or $\left.P\left(v^{\prime}, P(v, s)\right)=P\left(v^{\prime}, s\right)\right)$

the equations diagrammatically

$$
\begin{aligned}
& V \times V \times S \xrightarrow{1_{V} \times P} V \times S \\
& V \times S \xrightarrow[P]{\pi_{0,2} \downarrow} \stackrel{{ }^{\text {outPut }}}{\stackrel{\downarrow}{ }} \stackrel{V}{V}
\end{aligned}
$$

So $\Delta \Sigma G \xrightarrow{P} G$ is in \mathbf{C} / V where

And moreover ...

Proposition (JRW)

A (vwb) lens has P an algebra structure on G in \mathbf{C} / V for the monad $\Delta \Sigma$ on \mathbf{C} / V.

For vwb lenses:

- $\mathbf{C}=$ set, $L=(S, V, G, P)$ recovers $B \& S$ results: $S \cong V \times C, G$ the projection, C 'complement' of V, the translation: $T_{U}(s):=P(U G s, s)$
- $\mathbf{C}=$ ord, recovers results of S. Hegner (2004)
- $\mathbf{C}=$ cat: G a projection and hence fibration and opfibration

Lenses compose

We can compose lenses:
if $L=(S, V, G, P)$ and $M=(V, W, H, Q)$ are lenses in \mathbf{C} then $M L=(S, W, H G, R)$ is a lens, with the Put R defined:
$W \times S \xrightarrow{1_{W} \times\left\langle G, 1_{S}\right\rangle} W \times V \times S \xrightarrow{\left\langle Q, 1_{S}\right\rangle} V \times S \xrightarrow{P} S$

Composites of wb, resp vwb, lenses are wb, resp vwb
There are identity on objects (ioo), non-full functors between asymmetric lens (in \mathbf{C}) categories

$$
\text { ALens }_{v}(\mathbf{C}) \longrightarrow \text { ALens }_{w}(\mathbf{C}) \longrightarrow \text { ALens }(\mathbf{C})
$$

Lenses preserved

Suppose $F: \mathbf{C} \longrightarrow \mathbf{D}$ is a finite product preserving functor For $L=(X, Y, G, P)$ an asymmetric lens in \mathbf{C}, respectively: a well-behaved lens, very well-behaved lens $F L=(F X, F Y, F G, F P)$ is an asymmetric lens in \mathbf{D}, respectively: a well-behaved lens, very well-behaved lens

Moreover, F preserves lens composition and we denote:

$$
F: \text { ALens }(\mathbf{C}) \longrightarrow \text { ALens }(\mathbf{D})
$$

respectively from $A L e n s w(C)$ and $A L e n s{ }_{v}(\mathbf{C})$.

Lenses and pulling back

For \mathbf{C} with pullbacks and an asymmetric lens $L=(X, Y, G, P))$ and $H: V^{\prime} \longrightarrow V$ in \mathbf{C} pulling back G along H in C gives the Get for asymmetric lens $\left.L^{\prime}=\left(T, V^{\prime}, G^{\prime}, P^{\prime}\right)\right)$
with $P^{\prime}=\left\langle P\left(H \times H^{\prime}\right), \pi_{0}\right\rangle$

Similarly for well-behaved and very well-behaved lenses
But: $\mathrm{ALens}(\mathbf{C})$, ALens $_{\mathrm{w}}(\mathbf{C})$, ALens $_{\mathrm{v}}(\mathbf{C})$ may not have pullbacks.

Less abstract lenses

For a view in cat, ie $G: \mathbf{S} \longrightarrow \mathbf{V}$
(Insert) updates needing lifts should better be $G S \xrightarrow{a} V$
(Contrast simply pairs (S, V) above)
The domain of Put for G is better $\left(G, 1_{\mathbf{V}}\right)$ than $\mathbf{V} \times \mathbf{S}$
Right comma projection $R(-)$ is functor part of a monad

$$
R: \mathbf{c a t} / \mathbf{V} \longrightarrow \mathbf{c a t} / \mathbf{V}
$$

with unit component $G \xrightarrow{\eta_{G}} R G$ defined by

where $\eta_{G}=\left(1_{\mathbf{V}}, G, 1_{G}\right): \mathbf{S} \longrightarrow\left(G, 1_{\mathbf{V}}\right)$ defined universally

Less abstract lenses

and multiplication $R R G \xrightarrow{\mu_{G}} R G$ defined by:

with

$$
\mu_{G}=\left(L_{G} 1_{\mathbf{v}} \cdot L_{R G} 1_{\mathbf{v}}, R R G, \beta\left(\alpha L_{R G} 1_{\mathbf{v}}\right)\right):\left(R G, \mathbf{1}_{\mathbf{v}}\right) \longrightarrow\left(G, 1_{\mathbf{v}}\right)
$$

An iterate of a P

For $\mathbf{G}: \mathbf{S} \longrightarrow \mathbf{V}$ consider a
$P:(G, 1 \mathbf{v}) \longrightarrow \mathbf{S}$ satisfying $G P=R G$, so that
$G P L_{R G} 1_{\mathbf{V}}=R G \cdot L_{R G} 1 \mathbf{v} \xrightarrow{\beta} R R G$, define: $\left(P, 1_{\mathbf{v}}\right)$ by

c-Lenses

Again, for a view in cat, $G: \mathbf{S} \longrightarrow \mathbf{V}$ the "Put" for view updates $G S \longrightarrow V$ should be a process $P:\left(G, \mathbf{1}_{\mathbf{V}}\right) \longrightarrow \mathbf{S}$, and we define:

A c-lens in cat is $L=(\mathbf{S}, \mathbf{V}, G, P)$ satisfying

$$
\begin{aligned}
& \text { c-PutGet: } G P=R G \\
& \text { c-GetPut: } P \eta_{G}=1_{\mathbf{S}} \\
& \text { c-PutPut: } P \mu_{G}=P\left(P, 1_{\mathbf{v}}\right)
\end{aligned}
$$

(Could model delete updates $V \longrightarrow G S$, then "Put" s.b. $P:\left(1_{\mathbf{V}}, G\right) \longrightarrow \mathbf{S}$ using $L G$ in the PutGet equation...)

c-Lenses are opfibrations

or diagrammatically:

Recalling that an algebra structure for the monad

$$
\text { cat } / \mathbf{V} \xrightarrow{R} \mathbf{c a t} / \mathbf{V}
$$

is a split opfibration:
Proposition (JRW)
For a c-lens $L=(\mathbf{S}, \mathbf{V}, G, P)$ in cat, P is an algebra structure for R so G is a split opfibration.

c-Lenses compose

Opfibrations compose, so if $G: \mathbf{S} \longrightarrow \mathbf{V}$ and $G^{\prime}: \mathbf{V} \longrightarrow \mathbf{W}$ are c-lenses. so is $G^{\prime} G: \mathbf{S} \longrightarrow \mathbf{W}$

Subcategory of cat with arrows c-lenses is denoted ACLens.
Asymmetric lens in cat is a c-lens, so ALens $(\mathbf{c a t})$ is a subcategory.
Further, opfibrations pull back (along any functor) and a cospan of c-lenses gives span of c-lenses
Interest in spans motivated by cospan of views G, H :

giving a span of views G^{\prime}, H^{\prime} (of c-lenses if G, H are)

Another categorical version of lenses

Motivated by similar considerations Z. Diskin and co-authors called updates deltas, made the set of deltas the domain of Put (now returning a delta), with axioms similar to c-lenses

An (asymmetric) delta lens (d-lens) in cat is $L=(\mathbf{S}, \mathbf{V}, G, P)$ where $G: \mathbf{S} \longrightarrow \mathbf{V}$ is a functor and $P:\left|\left(G, 1_{\mathbf{V}}\right)\right| \longrightarrow\left|\mathbf{S}^{\mathbf{2}}\right|$ is a function and the data satisfy:
(i) d-PutInc: the domain of $P(S, \alpha: G S \longrightarrow V)$ is S
(ii) d-Putld: $P\left(S, 1_{G S}: G S \longrightarrow G S\right)=1_{S}$
(iii) d-PutGet: $G P(S, \alpha: G S \longrightarrow V)=\alpha$
(iv) d-PutPut:
$P\left(S, \beta \alpha: G S \longrightarrow V \longrightarrow V^{\prime}\right)=P\left(S^{\prime}, \beta: G S^{\prime} \longrightarrow V^{\prime}\right) P(S, \alpha: G S \longrightarrow V)$
where S^{\prime} is the codomain of $P(S, \alpha: G S \longrightarrow V)$

ADLens

Proposition

If $L=(\mathbf{S}, \mathbf{V}, G, P)$ and $M=(\mathbf{V}, \mathbf{W}, H, Q)$ are d-lenses then then $M L=(\mathbf{S}, \mathbf{W}, H G, R)$ is a d-lens, with R as
$\left|\left(H G, 1_{\mathbf{W}}\right)\right| \xrightarrow{Q}\left|\left(G, 1_{\mathbf{V}}\right)\right| \xrightarrow{P}|\mathbf{S}|^{2}$
Identity functor is Get for a d-lens and unitary for composition.
Denote the resulting category ADLens

Proposition

If $L=(\mathbf{S}, \mathbf{V}, G, P)$ is a d-lens and $F: \mathbf{V}^{\prime} \longrightarrow \mathbf{V}$ is a functor then G^{\prime} in the pullback (in cat) is the Get of a d-lens

c-Lenses and d-Lenses

For $G: \mathbf{S} \longrightarrow \mathbf{V}$, denote $G_{0}=|\mathbf{S}| \longrightarrow \mathbf{S} \xrightarrow{G} \mathbf{V}$ and $R_{0} G:\left(G_{0}, 1_{\mathbf{v}}\right) \longrightarrow \mathbf{V}$

Semi-monad $\left(R_{0}, \mu^{0}\right)$ on cat $/ \mathbf{V}$ similar to R, and transformation η^{0} to R_{0} (from functor sending G to G_{0})

Proposition

If $L=(\mathbf{S}, \mathbf{V}, G, P)$ is a d-lens then $\left(G, P_{0}\right)$ is an $\left(R_{0}, \mu^{0}\right)$ algebra satisfying $P_{0} \eta^{0} G=P_{0} \eta_{G_{0}}=I_{\mathbf{s}}$, and conversely.

Corollary

A c-lens is a d-lens; composition is compatible.

Though not every d-lens is a c-lens

Categories of asymmetric lenses

In summary:

All admit the $\operatorname{Sp}(U)$ construction which follows...

The $\operatorname{Sp}(U)$ Construction

\mathbf{C} with finite limits; $U: \mathbf{A} \longrightarrow \mathbf{C}$ ioo functor reflecting isos (We are thinking ALens $\longrightarrow \mathbf{C}$)
Assume an operation P on \mathbf{C} cospans

$$
B \xrightarrow{g} C \stackrel{U(r)}{\leftrightarrows} D
$$

giving arrows $P(g, r)$ in \mathbf{A} such that

1) there is in C a pullback:

with $t^{\prime}=U\left(r^{\prime}\right)$ where $r^{\prime}=P(g, r)$
And...

The $\operatorname{Sp}(U)$ Construction

2) If also $g=U(v)$ then for $v^{\prime}=P(G(r), v)$ the square commutes (in A):

Next, given U and operation P, define category $\operatorname{Sp}(U)$:
Objects of A (or C)
Arrows $\equiv \boldsymbol{U}$ equiv classes of spans in \mathbf{A} where

The $\operatorname{Sp}(U)$ Construction

$\equiv U$ generated by span morphisms in \mathbf{A}

with $u=u^{\prime} t$ and $v=v^{\prime} t$ and $G(t)$ split epi. $S p(U)$ composition by span composition in C

Proposition
With the data just defined, $\operatorname{Sp}(U)$ is a category.

Symmetric lenses

(Hoffman, Pierce and Wagner, 2011)
Idea: Describe re-synchronization for model classes (of states) X, Y having synchronization ("complement") information from C.

Given states x, y synchronized by a complement c and an (updated) state x^{\prime} of X, determine re-synchronizing complement c^{\prime} from (x^{\prime}, c) and an updated y^{\prime} of Y (and vice versa)
So an arrow $r: X \times C \longrightarrow Y \times C$ and vice versa.

Now $\left(x^{\prime}, c^{\prime}, y^{\prime}\right)$ is (re)synchronized. Some equations are expected because...
if I applied to $\left(y^{\prime}, c^{\prime}\right)$ then the result should be $\left(x^{\prime}, c^{\prime}\right)$

Example (from H,P,W)

The data in states x, y might initially be the following x :
Schubert 1797-1828
Schumann 1810-1856
y :
Schubert Austria
Schumann Germany
with initial complement, "hidden data" (a C state):

$$
\begin{array}{ll}
1797-1828 & \text { Austria } \\
1810-1856 & \text { Germany }
\end{array}
$$

An edit to x gives new X state x^{\prime} :
Schubert 1797-1828
Schumann 1810-1856
Monteverdi 1567-1643
then applying $r\left(x^{\prime}, c\right)$ results in new C and Y states:
c^{\prime} :
1797-1828 Austria
1810-1856 Germany
1567-1643 ?country
y^{\prime} :
Schubert Austria
Schumann Germany
Monteverdi ?country

Symmetric lenses

Let \mathbf{C} be a category with finite limits.
For objects X, Y in \mathbf{C}, an rl lens from X to Y, denoted $L=(X, Y, C, r, I)$ with C an object of "complements" and morphisms

$$
r: X \times C \longrightarrow Y \times C \quad \text { and } \quad I: Y \times C \longrightarrow X \times C
$$

satisfying the equations:
$\pi_{X} I r=\pi_{X}: X \times C \longrightarrow X \quad \pi_{C} I r=\pi_{C} r: X \times C \longrightarrow C \quad(\mathrm{PutRL})$
$\pi_{Y} r l=\pi_{Y}: Y \times C \longrightarrow Y \quad \pi_{C} r l=\pi_{C} l: Y \times C \longrightarrow C \quad$ (PutLR)
HPW require an element $m: 1 \longrightarrow C$ where m is for "missing"
(called pc-symmetric below)

Symmetric lenses decompose

Remark

For an $R L$ lens $L=(X, Y, C, r, I)$ in \mathbf{C}, the equations $r / r=r$ and |rl $=1$ hold.

Suppose that $L=(X, Y, C, r, I)$ is an $r l$ lens in \mathbf{C}.
Let $e: S_{L} \longrightarrow X \times Y \times C$ be an equalizer of $r \pi_{0,2}$ and $\pi_{1,2}$.
If $\mathbf{C}=$ set,

$$
S_{L}=\{(x, y, c) \mid r(x, c)=(y, c)\}=\{(x, y, c) \mid I(y, c)=(x, c)\}
$$

Elements of S_{L} are the "synchronized triples"

Symmetric lenses decompose

For L, S_{L} as above:
Proposition
There is a span

$$
L_{I}: X \longleftarrow S_{L} \longrightarrow Y: L_{r}
$$

in ALens ${ }_{w}$ from X to Y with Gets defined by $g_{l}=\pi_{X} e, g_{r}=\pi_{Y} e$.
The Put. p_{l} for L_{l} (p_{r} similar) is defined by

$$
\begin{gathered}
X \times S_{L} \xrightarrow{1_{X} \times e} X \times X \times Y \times C \xrightarrow{\pi_{0,3}} X \times C \\
\xrightarrow{\Delta_{X} \times 1_{C}} X \times X \times C \xrightarrow{1_{X \times r}} S_{L}
\end{gathered}
$$

(The set formula for p_{l} is $p_{l}\left(x^{\prime},(x, y, c)\right)=\left(x^{\prime}, r\left(x^{\prime}, c\right)\right)$.)
Denote the span $\left(L_{I}, L_{r}\right)$ by $A(L)$
Recalling $U_{w}:$ ALens $_{w} \longrightarrow \mathbf{C}$, define SLens ${ }_{w}=\operatorname{Sp}\left(U_{w}\right)$

Symmetric lenses compose

For rl lenses $L_{1}=\left(X, Y, C_{1}, r_{1}, l_{1}\right)$ and $L_{2}=\left(X, Y, C_{2}, r_{2}, l_{2}\right)$:
$L_{1} \sim L_{2}$ if exists well-behaved asymmetric lens $L=\left(C_{1}, C_{2}, t, p\right)$ with t split epi and respecting L_{1}, L_{2} operations, which means:

$$
r_{2}(X \times t)=(Y \times t) r_{1} \text { and } I_{2}(Y \times t)=(X \times t) l_{1}
$$

and

$$
r_{1}(X \times p)=(Y \times p)\left(r_{2} \times C_{1}\right) \text { and } I_{1}(Y \times p)=(X \times p)\left(I_{2} \times C_{1}\right)
$$

\sim generates equivalence relation on rl lenses X to Y denoted $\equiv_{r l}$
$\equiv_{r l}$ class of L denoted $[L]_{r l}$.

Symmetric lenses compose

$L=(X, Y, C, r, I), M=\left(Y, Z, C^{\prime}, r^{\prime}, I^{\prime}\right) \mathrm{rl}$ lenses
Their rl-composite lens is $M L=\left(X, Z, C^{\prime \prime}, r^{\prime \prime}, l^{\prime \prime}, m^{\prime \prime}\right)$ where $C^{\prime \prime}=C \times C^{\prime}$ and

$$
r^{\prime \prime}=\left\langle\pi_{0,2}, \pi_{1}\right\rangle\left(r^{\prime} \times 1_{C}\right)\left\langle\pi_{0,2}, \pi_{1}\right\rangle\left(r \times 1_{C^{\prime}}\right) \quad\left(I^{\prime \prime} \text { similar }\right)
$$

Proposition

For rl lenses L_{1}, L_{2} from X to Y and M_{1}, M_{2} from Y to Z in \mathbf{C}, if $L_{1} \equiv_{r l} L_{2}$ and $M_{1} \equiv_{r l} M_{2}$ then $M_{1} L_{1} \equiv_{r l} M_{2} L_{2}$.

RLLens has objects of \mathbf{C}; arrows X to Y are $\equiv_{r l}$ classes
Proposition
There is an identity on objects functor
A: RLLens \longrightarrow SLens $_{w}$
defined by $\mathbf{A}\left([L]_{r I}\right)=[A(L)]_{U_{w}}$.

Symmetric lenses from asymmetric

Going the other way... From span of wb asymmetric lenses $L=\left(S, X, G_{X}, P_{X}\right), M=\left(S, Y, G_{Y}, P_{Y}\right)$, construct rl lens $S(L, M)=(X, Y, S, r, I)$ where (in set)
$r\left(x^{\prime},(x, y, c)\right)=\left(G_{Y} P_{X}\left(x^{\prime},(x, y, c)\right), P_{X}\left(x^{\prime},(x, y, c)\right)\right) \quad(/$ similar $)$

Proposition

Denote $A S(L, M)$ by $L_{I}: X \longleftarrow S_{L} \longrightarrow Y: L_{r}$. There is iso span morphism
$g: S \longrightarrow S_{L}$, so $A S(L, M) \equiv U_{w}(L, M)$,

Categories of symmetric lenses

Proposition

If $L: X \longleftarrow S \longrightarrow Y: M, L^{\prime}: X \longleftarrow S^{\prime} \longrightarrow Y: M^{\prime}$ are
$\equiv U_{w}$ equivalent spans of well behaved asymmetric lenses then
$S(L, M) \equiv_{r l} S\left(L^{\prime}, M^{\prime}\right)$ and $\mathbf{S}\left([(L, M)]_{\equiv_{u_{w}}}\right)=[S(L, M)]_{r l}$ defines functor $\mathbf{S}:$ SLens $_{w} \longrightarrow$ RLLens.

Theorem
SLens ${ }_{w}$ is a retraction of RLLens via \mathbf{A} and \mathbf{S}.

pc-symmetric lenses

Hofmann, Pierce and Wagner introduced an equivalence relation we denote $\equiv_{p c}$ on their pc-symmetric lenses from X to Y
$\equiv_{p c}$ allows well-defined composition of pc-symmetric lenses giving pcLens

Starting from rl lenses, suitably adding points so that $\equiv U_{w}$ can be compared, we can show that $\equiv_{p c}$ is in fact coarser than $\equiv U_{w}$

Symmetric delta lenses (Diskin et al. 2011/12)

For symmetric version of d-lens, again use morphisms for updates:
Let \mathbf{A} and \mathbf{B} be small categories.
Given an update a : $A \longrightarrow A^{\prime}$ in \mathbf{A} from state A where A synchronized with B by "correspondence" $r: A \leftrightarrow B$, symmetric d-lens should deliver an update $b: B \longrightarrow B^{\prime}$ in \mathbf{B} and re-synchronization $r^{\prime}: A^{\prime} \leftrightarrow B^{\prime}$:

Symmetric delta lenses

A symmetric delta lens (sd-lens) from \mathbf{A} to \mathbf{B} is
$L=\left(\delta_{\mathbf{A}}, \delta_{\mathbf{B}}, \mathrm{fP}, \mathrm{bP}\right)$ with a span of sets

$$
\delta_{\mathbf{A}}:|\mathbf{A}| \longleftarrow R_{\mathbf{A B}} \longrightarrow|\mathbf{B}|: \delta_{\mathbf{B}}
$$

(elements of $R_{\mathbf{A B}}$ called corrs are denoted $r: A \leftrightarrow B$) and forward and backward propagation operations

$$
\begin{aligned}
& \mathrm{fP}: \operatorname{Arr}(\mathbf{A}) \times_{|\mathbf{A}|} R_{\mathbf{A B}} \longrightarrow \operatorname{Arr}(\mathbf{B}) \times_{|\mathbf{B}|} R_{\mathbf{A B}} \\
& \mathrm{bP}: \operatorname{Arr}(\mathbf{A}) \times_{|\mathbf{A}|} R_{\mathbf{A B}} \longleftarrow \operatorname{Arr}(\mathbf{B}) \times_{|\mathbf{B}|} R_{\mathbf{A B}}
\end{aligned}
$$

Symmetric delta lenses

Display instances of propagation operations as:

where $\mathrm{fP}(a, r)=\left(b, r^{\prime}\right)$ and $\mathrm{bP}(b, r)=\left(a, r^{\prime}\right)$:
Propagation respects identities: $r: A \leftrightarrow B$ implies
$\mathrm{fP}\left(\mathrm{id}_{A}, r\right)=\left(\mathrm{id}_{B}, r\right)$ and $\mathrm{bP}\left(\mathrm{id}_{B}, r\right)=\left(\mathrm{id}_{A}, r\right)$ and composition in
A and B: $\mathrm{fP}\left(a^{\prime} a, r\right)=\mathrm{fP}\left(a^{\prime}, \pi_{1}(\mathrm{fP}(a, r))\right)$, similarly for \mathbf{B}.

Composing symmetric delta lenses

Let $L=\left(\delta_{\mathbf{A}}^{R}, \delta_{\mathbf{B}}^{R}, \mathrm{fP}^{R}, \mathrm{bP}^{R}\right)$ and $L^{\prime}=\left(\delta_{\mathbf{B}}^{S}, \delta_{\mathbf{C}}^{S}, \mathrm{fP}^{S}, \mathrm{bP}^{S}\right)$ The composite sd-lens $L^{\prime} L=\left(\delta_{\mathbf{A}}, \delta_{\mathbf{C}}, \mathrm{fP}, \mathrm{bP}\right)$ where $\delta_{\mathbf{A}}=\delta_{\mathbf{A}}^{R} \delta_{1}$, $\delta_{\mathbf{C}}=\delta_{\mathbf{C}}^{S} \delta_{2}$ and $\boldsymbol{R}_{\mathbf{A C}}$ is the pullback in

Define: $\mathrm{fP}(a,(r, s))=\left(c,\left(r_{f}, s_{f}\right)\right)$ and $\mathrm{bP}(c,(r, s))=\left(a,\left(r_{b}, s_{b}\right)\right)$ where $\mathrm{fP}^{R}(a, r)=\left(b, r_{f}\right), \mathrm{fP}^{S}(b, s)=\left(c, s_{f}\right)$ and $\mathrm{bP}^{S}(c, s)=\left(b, s_{b}\right), \mathrm{bP}^{R}(b, r)=\left(a, r_{b}\right)$.

The construction is used to define a category SDLens

SDLens and spans

Let $L=\left(\mathbf{S}, \mathbf{V}, G_{L}, P_{L}\right), R=\left(\mathbf{S}, \mathbf{W}, G_{R}, P_{R}\right)$ be a span of d-lenses
Construct sd-lens $S_{L, R}=\left(\delta_{\mathbf{V}}, \delta_{\mathbf{W}}, \mathrm{fP}, \mathrm{bP}\right)$ with forward propagation from P_{L}, G_{R}.
Conversely, from an sd-lens $M=\left(\delta_{\mathbf{A}}, \delta_{\mathbf{B}}, \mathrm{fP}, \mathrm{bP}\right)$ we can construct a span $L_{M}=\left(\mathbf{S}, \mathbf{A}, G_{L}, P_{L}\right), R_{M}=\left(\mathbf{S}, \mathbf{B}, G_{K}, P_{K}\right)$ of d-lenses using the corrs and propagations to define \mathbf{S},

Comparison of SDLens and spans of asymmetric d-lenses remains to be made precise....

Conclusion

- Asymmetric lenses provide solutions to the view update problem in several contexts
- Symmetric lenses describe model synchronization processes also in various contexts
- Symmetric lenses should be understood via spans of asymmetric lenses and often arise from cospans

Thanks!

