
Asymmetric lenses, symmetric lenses and spans

Bob Rosebrugh
(with Mike Johnson)

FMCS 2014

Outline

I background: databases, updates and views:
the view update problem

I asymmetric lenses and view updates

I symmetric lenses and model synchronization

I spans of asymmetric lenses

2

Updates and views

I An update changes database state(s)

I Examples: deletion, insertion, attribute modification

Either: modification of single state by delete or insert

or an update process: an endo U of states, S

I A view may limit access e.g. for security

or present information to user class e.g. clerk

or specify boundary for database integration

I “Get” view states via G : S // V

3

View update problem

When can an update to view state(s) either

I for single (view) state (e.g. formal insertion a):

GS V
a //

S

GS

S

V

I for an update process (e.g. U):

V V
U //

S

V

G
��

S

V

4

View update problem

When can an update to view state(s) either

I for single (view) state (e.g. insert a):

GS V
a //

S

GS

S S ′_____ S ′

V

I for an update process (e.g. U):

V V
U //

S

V

G
��

S S//_____ S

V

G
��

propagate (or lift) correctly to full database update?

5

Abstract view updates

Bancilhon and Spyratos (1982, and others) studied the view
update problem. For them:

I database states are an abstract set S

I view states are an abstract set V – the codomain of a
surjective view definition mapping G : S // V

I a view update is an endo-function U : V // V

I a translation TU of view update U is a database update on S
lifting UG through G

V V
U //

S

V

G ��

S S
TU //_____ S

V

G��

A translation strategy limited to “complemented” (better,
“factored”) views follows...

6

Asymmetric Lenses

(B. Pierce et al, 2005)
Consider a full database state s and view state G (s)
When G (s) updated to v , say, want strategy to find
updated full database state s ′ = TUs (over v):

G (s) v� //

s

G (s)

_

��

s s ′� //_____ s ′

v

_

��

Idea: provide a process P : V × S // S called “Put” so that
P(v , s) is the translated state s ′ after G (s) updated to v
Some equations should follow...

This structure, called a lens, provides translations

Also arose in considering “abstract models of storage”
(where there is a similar update problem)

7

Asymmetric Lenses

Let C be a category with finite limits
An asymmetric lens in C is L = (S ,V ,G ,P) with

I S and V objects (... database states/view states)

I S
G // V aka ‘Get’ and V × S

P // S aka ‘Put’

called well-behaved (wb) if satisfying:

PutGet: Get of Put is projection: GP = π0 (or GP(v , s) = v)

GetPut: Put for non-update is trivial P〈G , 1S〉 = 1S

and very well-behaved (vwb) if also satisfying:

PutPut: repeated Puts depend only on the last:
P(1V × P) = Pπ0,2 (or P(v ′,P(v , s)) = P(v ′, s))

8

the equations diagrammatically

V × S

V

π ��:::::V × S S
P // S

V
G��������

S

S
1 ��::::::S V × S
〈G ,1〉 // V × S

S
P�������

PutGet GetPut

V × S V
P

//

V × V × S

V × S

π0,2
��

V × V × S V × S
1V×P // V × S

V

P
��

PutPut

So ∆ΣG
P // G is in C/V where

C C/V

∆

55C C/V
vv

Σ

⊥

9

And moreover . . .

Proposition (JRW)

A (vwb) lens has P an algebra structure on G in C/V for the
monad ∆Σ on C/V .

For vwb lenses:

I C = set, L = (S ,V ,G ,P) recovers B&S results:

S ∼= V × C , G the projection, C ‘complement’ of V ,

the translation: TU(s) := P(UGs, s)

I C = ord, recovers results of S. Hegner (2004)

I C = cat: G a projection and hence fibration and opfibration

10

Lenses compose

We can compose lenses:
if L = (S ,V ,G ,P) and M = (V ,W ,H,Q) are lenses in C
then ML = (S ,W ,HG ,R) is a lens, with the Put R defined:

W × S
1W×〈G ,1S 〉 // W × V × S

〈Q,1S 〉 // V × S
P // S

Composites of wb, resp vwb, lenses are wb, resp vwb

There are identity on objects (ioo), non-full
functors between asymmetric lens (in C) categories

ALensv (C) // ALensw(C) // ALens(C)

11

Lenses preserved

Suppose F : C // D is a finite product preserving functor
For L = (X ,Y ,G ,P) an asymmetric lens in C,
respectively: a well-behaved lens, very well-behaved lens

FL = (FX ,FY ,FG ,FP) is an asymmetric lens in D,
respectively: a well-behaved lens, very well-behaved lens

Moreover, F preserves lens composition and we denote:

F : ALens(C) // ALens(D)

respectively from ALensw(C) and ALensv(C).

12

Lenses and pulling back

For C with pullbacks and an asymmetric lens L = (X ,Y ,G ,P))
and H : V ′ // V in C pulling back G along H in C
gives the Get for asymmetric lens L′ = (T ,V ′,G ′,P ′))
with P ′ = 〈P(H × H ′), π0〉

S V ′

T

S

H′

wwooooooo T

V ′
G ′

''OOOOOOO

S

VG ''OOOOOOOS V ′V ′

V Hwwooooooo

Similarly for well-behaved and very well-behaved lenses

But: ALens(C),ALensw(C),ALensv(C) may not have pullbacks.

13

Less abstract lenses
For a view in cat, ie G : S // V

(Insert) updates needing lifts should better be GS
a // V

(Contrast simply pairs (S ,V) above)
The domain of Put for G is better (G , 1V) than V × S

Right comma projection R(−) is functor part of a monad

R : cat/V // cat/V

with unit component G
ηG // RG defined by

S

S

��

1V

S

(G , 1V)

ηG
��

S

V

G

��
S V

(G , 1V)

S

L1V

wwoooooooooo
(G , 1V)

V

RG

''OOOOOOOOOO

S

V
G ''OOOOOOOOOOOOS VV

V
1Vwwoooooooooooo−→

where ηG = (1V,G , 1G) : S // (G , 1V) defined universally 14

Less abstract lenses

and multiplication RRG
µG // RG defined by:

S

(RG , 1V)

		

LG1VLRG1V

(RG , 1V)

(G , 1V)

µG

��

(RG , 1V)

V

RRG

��
S V

(G , 1V)

S

L1V

wwoooooooooo
(G , 1V)

V

RG

''OOOOOOOOOO

S

V
G ''OOOOOOOOOOOOS VV

V
1Vwwoooooooooooo−→

with

µG = (LG1V · LRG1V,RRG , β(αLRG1V)) : (RG , 1V) // (G , 1V)

15

An iterate of a P

For G : S // V consider a
P : (G , 1V) // S satisfying GP = RG , so that

GPLRG1V = RG · LRG1V
β // RRG , define: (P, 1V) by

(G , 1V)

(RG , 1V)
tt

LRG1Vjjjjj

S

(G , 1V)

��

P

(RG , 1V)

(G , 1V)

(P,1V)

��

(RG , 1V)

V

RRG

��
S V

(G , 1V)

S

L1V

wwoooooooooo
(G , 1V)

V

RG

''OOOOOOOOOO

S

V
G ''OOOOOOOOOOOOS VV

V
1Vwwoooooooooooo−→

16

c-Lenses

Again, for a view in cat, G : S // V
the “Put” for view updates GS // V should be
a process P : (G , 1V) // S, and we define:

A c-lens in cat is L = (S,V,G ,P)
satisfying

c-PutGet: GP = RG

c-GetPut: PηG = 1S

c-PutPut: PµG = P(P, 1V)

(Could model delete updates V // GS , then “Put” s.b.
P : (1V,G) // S using LG in the PutGet equation...)

17

c-Lenses are opfibrations
or diagrammatically:

(G , 1V) S
P //(G , 1V)

V

RG
��??????????
S

V

G

��

S (G , 1V)
ηG //S

S

1S
��??????????? (G , 1V)

S

P

��
(G , 1V) S

P
//

(RG , 1V)

(G , 1V)

µG

��

(RG , 1V) (G , 1V)
(P,1V) // (G , 1V)

S

P

��

Recalling that an algebra structure for the monad

cat/V
R // cat/V

is a split opfibration:

Proposition (JRW)

For a c-lens L = (S,V,G ,P) in cat, P is an algebra structure for
R so G is a split opfibration.

18

c-Lenses compose

Opfibrations compose, so if G : S // V and G ′ : V // W
are c-lenses. so is G ′G : S // W

Subcategory of cat with arrows c-lenses is denoted ACLens.
Asymmetric lens in cat is a c-lens, so ALensv (cat) is a subcategory.

Further, opfibrations pull back (along any functor) and a cospan of
c-lenses gives span of c-lenses

Interest in spans motivated by cospan of views G ,H:

S S ′

T

S

H′

wwooooooo T

S ′
G ′

''OOOOOOO

S

VG ''OOOOOOOS S ′S ′

V Hwwooooooo

giving a span of views G ′,H ′ (of c-lenses if G ,H are)

19

Another categorical version of lenses

Motivated by similar considerations Z. Diskin and co-authors
called updates deltas, made the set of deltas the domain of
Put (now returning a delta), with axioms similar to c-lenses

An (asymmetric) delta lens (d-lens) in cat is L = (S,V,G ,P)
where G : S // V is a functor and P : |(G , 1V)| // |S2| is a
function and the data satisfy:

(i) d-PutInc: the domain of P(S , α : GS // V) is S

(ii) d-PutId: P(S , 1GS : GS // GS) = 1S

(iii) d-PutGet: GP(S , α : GS // V) = α

(iv) d-PutPut:

P(S , βα : GS //V //V ′) = P(S ′, β : GS ′ //V ′)P(S , α : GS //V)

where S ′ is the codomain of P(S , α : GS // V)

20

ADLens

Proposition

If L = (S,V,G ,P) and M = (V,W,H,Q) are d-lenses then
then ML = (S,W,HG ,R) is a d-lens, with R as

|(HG , 1W)| Q // |(G , 1V)| P // |S|2

Identity functor is Get for a d-lens and unitary for composition.
Denote the resulting category ADLens

Proposition

If L = (S,V,G ,P) is a d-lens and F : V′ // V is a functor then
G ′ in the pullback (in cat) is the Get of a d-lens

S V′

T

S

F ′

wwooooooo T

V′
G ′

''OOOOOOO

S

VG ''OOOOOOOS V′V′

V Fwwooooooo

21

c-Lenses and d-Lenses

For G : S // V, denote G0 = |S| // S
G // V and

R0G : (G0, 1V) // V

Semi-monad (R0, µ
0) on cat/V similar to R, and transformation

η0 to R0 (from functor sending G to G0)

Proposition

If L = (S,V,G ,P) is a d-lens then (G ,P0) is an (R0, µ
0) algebra

satisfying P0η
0G = P0ηG0 = IS, and conversely.

Corollary

A c-lens is a d-lens; composition is compatible.

Though not every d-lens is a c-lens

22

Categories of asymmetric lenses

In summary:

ALensv(set)

ALensv(ord)
��????????

ALensv(set) ALensv(cat)// ALensv(cat)

ALensv(ord)

??

��������
ALensv(cat) ACLens// ACLens ADLens//

All admit the Sp(U) construction which follows...

23

The Sp(U) Construction

C with finite limits; U : A // C ioo functor reflecting isos
(We are thinking ALens // C)
Assume an operation P on C cospans

B
g // C oo U(r)

D

giving arrows P(g , r) in A such that
1) there is in C a pullback:

B D

A

B

t′

zzttttt A

D

g ′

$$JJJJJ

B

C
g $$JJJJJB DD

C U(r)zzttttt

with t ′ = U(r ′) where r ′ = P(g , r)

And...

24

The Sp(U) Construction

2) If also g = U(v) then for v ′ = P(G (r), v) the square commutes
(in A):

B D

A

B

r ′

zzttttt A

D

v ′

$$JJJJJ

B

C
v $$JJJJJB DD

C
rzzttttt

Next, given U and operation P, define category Sp(U):
Objects of A (or C)
Arrows ≡U equiv classes of spans in A where

25

The Sp(U) Construction

≡U generated by span morphisms in A

A B

C

A

u

wwooooooo C

B

v

''OOOOOOO

A

D

gg

u′ OOOOOOOA BB

D

77

v ′ooooooo

C

D

t

��

with u = u′t and v = v ′t and G (t) split epi.
Sp(U) composition by span composition in C

Proposition

With the data just defined, Sp(U) is a category.

26

Symmetric lenses

(Hoffman, Pierce and Wagner, 2011)
Idea: Describe re-synchronization for model classes (of states)
X , Y having synchronization (“complement”) information from C .

Given states x , y synchronized by a complement c and an
(updated) state x ′ of X , determine re-synchronizing complement
c ′ from (x ′, c) and an updated y ′ of Y (and vice versa)

So an arrow r : X × C // Y × C and vice versa.

X × C Y × C

r
))
Y × CX × C

l

hh

Now (x ′, c ′, y ′) is (re)synchronized. Some equations are expected
because...

if l applied to (y ′, c ′) then the result should be (x ′, c ′)

27

Example (from H,P,W)
The data in states x , y might initially be the following

x : y :
Schubert 1797-1828 Schubert Austria
Schumann 1810-1856 Schumann Germany

with initial complement, “hidden data” (a C state):

c :
1797-1828 Austria
1810-1856 Germany

An edit to x gives new X state x ′:
Schubert 1797-1828
Schumann 1810-1856
Monteverdi 1567-1643

then applying r(x ′, c) results in new C and Y states:
c ′ : y ′ :

1797-1828 Austria Schubert Austria
1810-1856 Germany Schumann Germany
1567-1643 ?country Monteverdi ?country

28

Symmetric lenses

Let C be a category with finite limits.

For objects X ,Y in C, an rl lens from X to Y , denoted
L = (X ,Y ,C , r , l) with C an object of “complements” and
morphisms

r : X × C // Y × C and l : Y × C // X × C

satisfying the equations:
πX lr = πX : X ×C // X πC lr = πC r : X ×C // C (PutRL)
πY rl = πY : Y ×C // Y πC rl = πC l : Y ×C // C (PutLR)

HPW require an element m : 1 // C where m is for “missing”
(called pc-symmetric below)

29

Symmetric lenses decompose

Remark
For an RL lens L = (X ,Y ,C , r , l) in C, the equations rlr = r and
lrl = l hold.

Suppose that L = (X ,Y ,C , r , l) is an rl lens in C.

Let e : SL
// X × Y × C be an equalizer of rπ0,2 and π1,2.

If C = set,

SL = {(x , y , c) | r(x , c) = (y , c)} = {(x , y , c) | l(y , c) = (x , c)}

Elements of SL are the “synchronized triples”

30

Symmetric lenses decompose

For L,SL as above:

Proposition

There is a span
Ll : X oo SL

// Y : Lr

in ALensw from X to Y with Gets defined by gl = πX e, gr = πY e.
The Put. pl for Ll (pr similar) is defined by

X × SL
1X×e // X × X × Y × C

π0,3 // X × C

∆X×1C // X × X × C
1X×r // SL

(The set formula for pl is pl(x ′, (x , y , c)) = (x ′, r(x ′, c)).)

Denote the span (Ll , Lr) by A(L)

Recalling Uw : ALensw
// C, define SLensw = Sp(Uw)

31

Symmetric lenses compose

For rl lenses L1 = (X ,Y ,C1, r1, l1) and L2 = (X ,Y ,C2, r2, l2):

L1 ∼ L2 if exists well-behaved asymmetric lens L = (C1,C2, t, p)
with t split epi and respecting L1, L2 operations, which means:

r2(X × t) = (Y × t)r1 and l2(Y × t) = (X × t)l1

and

r1(X × p) = (Y × p)(r2 × C1) and l1(Y × p) = (X × p)(l2 × C1).

∼ generates equivalence relation on rl lenses X to Y denoted ≡rl

≡rl class of L denoted [L]rl .

32

Symmetric lenses compose
L = (X ,Y ,C , r , l), M = (Y ,Z ,C ′, r ′, l ′) rl lenses

Their rl-composite lens is ML = (X ,Z ,C ′′, r ′′, l ′′,m′′)
where C ′′ = C × C ′ and

r ′′ = 〈π0,2, π1〉(r ′ × 1C)〈π0,2, π1〉(r × 1C ′) (l ′′ similar)

Proposition

For rl lenses L1, L2 from X to Y and M1,M2 from Y to Z in C, if
L1 ≡rl L2 and M1 ≡rl M2 then M1L1 ≡rl M2L2.

RLLens has objects of C; arrows X to Y are ≡rl classes

Proposition

There is an identity on objects functor

A : RLLens // SLensw

defined by A([L]rl) = [A(L)]Uw .

33

Symmetric lenses from asymmetric

Going the other way... From span of wb asymmetric lenses
L = (S ,X ,GX ,PX), M = (S ,Y ,GY ,PY), construct rl lens
S(L,M) = (X ,Y ,S , r , l) where (in set)

r(x ′, (x , y , c)) = (GY PX (x ′, (x , y , c)),PX (x ′, (x , y , c))) (l similar)

Proposition

Denote AS(L,M) by Ll : X oo SL
// Y : Lr . There is iso span

morphism
g : S // SL, so AS(L,M) ≡Uw (L,M),

34

Categories of symmetric lenses

Proposition

If L : X oo S // Y : M, L′ : X oo S ′ // Y : M ′ are
≡Uw equivalent spans of well behaved asymmetric lenses then
S(L,M) ≡rl S(L′,M ′) and S([(L,M)]≡Uw

) = [S(L,M)]rl defines
functor S : SLensw // RLLens.

Theorem
SLensw is a retraction of RLLens via A and S.

35

pc-symmetric lenses

Hofmann, Pierce and Wagner introduced an equivalence relation
we denote ≡pc on their pc-symmetric lenses from X to Y

≡pc allows well-defined composition of pc-symmetric lenses
giving pcLens

Starting from rl lenses, suitably adding points so that ≡Uw can be
compared, we can show that ≡pc is in fact coarser than ≡Uw

36

Symmetric delta lenses (Diskin et al. 2011/12)

For symmetric version of d-lens, again use morphisms for updates:

Let A and B be small categories.

Given an update a : A // A′ in A from state A
where A synchronized with B by “correspondence” r : A↔ B,
symmetric d-lens should deliver an update b : B // B ′ in B and
re-synchronization r ′ : A′ ↔ B ′:

A′ B ′oo
r ′

//____

A

A′

a
��

A Boo r // B

B ′

b
���
�

37

Symmetric delta lenses

A symmetric delta lens (sd-lens) from A to B is
L = (δA, δB, fP, bP) with a span of sets

δA : |A| oo RAB
// |B| : δB

(elements of RAB called corrs are denoted r : A↔ B) and
forward and backward propagation operations

fP : Arr(A)×|A| RAB
// Arr(B)×|B| RAB

bP : Arr(A)×|A| RAB
oo Arr(B)×|B| RAB

38

Symmetric delta lenses

Display instances of propagation operations as:

A′ B ′oo
r ′

//____

A

A′

a
��

A Boo r // B

B ′

b
���
�

fP
//

A′ B ′oo
r ′

//____

A

A′

a
���
�A Boo r // B

B ′

b
��

bP
oo

where fP(a, r) = (b, r ′) and bP(b, r) = (a, r ′).:
Propagation respects identities: r : A↔ B implies
fP(idA, r) = (idB , r) and bP(idB , r) = (idA, r) and composition in
A and B: fP(a′a, r) = fP(a′, π1(fP(a, r))), similarly for B.

39

Composing symmetric delta lenses

Let L = (δRA , δ
R
B , fP

R , bPR) and L′ = (δSB, δ
S
C, fP

S , bPS) The
composite sd-lens L′L = (δA, δC, fP, bP) where δA = δRAδ1,
δC = δSCδ2 and RAC is the pullback in

RAB RBC

RAC

RAB

δ1

yysssss
RAC

RBC

δ2

%%KKKKK

RAB

RB
δRB

%%KKKKKKRAB RBCRBC

RB
δSB

yyssssss

Define: fP(a, (r , s)) = (c, (rf , sf)) and bP(c , (r , s)) = (a, (rb, sb))
where fPR(a, r) = (b, rf), fPS(b, s) = (c , sf) and
bPS(c, s) = (b, sb), bPR(b, r) = (a, rb).

The construction is used to define a category SDLens

40

SDLens and spans

Let L = (S,V,GL,PL), R = (S,W,GR ,PR) be a span of d-lenses

Construct sd-lens SL,R = (δV, δW, fP, bP) with forward propagation
from PL,GR .
Conversely, from an sd-lens M = (δA, δB, fP, bP) we can construct
a span LM = (S,A,GL,PL), RM = (S,B,GK ,PK) of d-lenses using
the corrs and propagations to define S,

Comparison of SDLens and spans of asymmetric d-lenses remains
to be made precise....

41

Conclusion

I Asymmetric lenses provide solutions to
the view update problem in several contexts

I Symmetric lenses describe model synchronization
processes also in various contexts

I Symmetric lenses should be understood via spans of
asymmetric lenses and often arise from cospans

42

Thanks!

43

	Data models and databases
	Updates, views, view updates
	Translations and lenses
	Lenses and updatability
	Symmetric Lenses
	Symmetric delta lenses

