Asymmetric lenses, symmetric lenses and spans

Bob Rosebrugh (with Mike Johnson)

FMCS 2014

Outline

- background: databases, updates and views: the view update problem
- asymmetric lenses and view updates
- symmetric lenses and model synchronization
- spans of asymmetric lenses

Updates and views

- An update changes database state(s)
- Examples: deletion, insertion, attribute modification
 Either: modification of single state by delete or insert
 or an update process: an endo U of states, S
- A view may limit access e.g. for security or present information to user class e.g. clerk or specify boundary for database integration
- "Get" view states via $G : \mathbf{S} \longrightarrow \mathbf{V}$

View update problem

When can an update to view state(s) either

▶ for single (view) state (e.g. formal insertion *a*):

► for an update process (e.g. *U*):

View update problem

When can an update to view state(s) either

▶ for single (view) state (e.g. insert *a*):

► for an update process (e.g. U):

propagate (or lift) correctly to full database update?

Abstract view updates

Bancilhon and Spyratos (1982, and others) studied the view update problem. For them:

- database states are an abstract set S
- ▶ view states are an abstract set V the codomain of a surjective view definition mapping G : S → V
- a view update is an endo-function $U: V \longrightarrow V$
- ▶ a translation T_U of view update U is a database update on S lifting UG through G

$$\begin{array}{c}
S - - \stackrel{T_U}{-} > S \\
G \downarrow & \downarrow G \\
V \longrightarrow V
\end{array}$$

A translation strategy limited to "complemented" (better, "factored") views follows...

Asymmetric Lenses

(B. Pierce et al, 2005)

Consider a full database state s and view state G(s)When G(s) updated to v, say, want strategy to find updated full database state $s' = T_U s$ (over v):

Idea: provide a process $P: V \times S \longrightarrow S$ called "Put" so that P(v, s) is the translated state s' after G(s) updated to v Some equations should follow...

This structure, called a lens, provides translations

Also arose in considering "abstract models of storage" (where there is a similar update problem)

Asymmetric Lenses

Let **C** be a category with finite limits An asymmetric lens in **C** is L = (S, V, G, P) with

► S and V objects (... database states/view states)

•
$$S \xrightarrow{G} V$$
 aka 'Get' and $V \times S \xrightarrow{P} S$ aka 'Put'

called well-behaved (wb) if satisfying:

PutGet: Get of Put is projection: $GP = \pi_0$ (or GP(v, s) = v) GetPut: Put for non-update is trivial $P\langle G, 1_S \rangle = 1_S$

and very well-behaved (vwb) if also satisfying:

PutPut: repeated Puts depend only on the last: $P(1_V \times P) = P\pi_{0,2}$ (or P(v', P(v, s)) = P(v', s))

the equations diagrammatically

So $\Delta \Sigma G \xrightarrow{P} G$ is in **C**/*V* where

And moreover . . .

Proposition (JRW)

A (vwb) lens has P an algebra structure on G in C/V for the monad $\Delta\Sigma$ on C/V.

For vwb lenses:

- C = set, L = (S, V, G, P) recovers B&S results:
 S ≅ V × C, G the projection, C 'complement' of V, the translation: T_U(s) := P(UGs, s)
- ► **C** = **ord**, recovers results of S. Hegner (2004)
- **C** = **cat**: *G* a projection and hence fibration and opfibration

Lenses compose

We can compose lenses: if L = (S, V, G, P) and M = (V, W, H, Q) are lenses in **C** then ML = (S, W, HG, R) is a lens, with the Put *R* defined: $W \times S \xrightarrow{1_W \times \langle G, 1_S \rangle} W \times V \times S \xrightarrow{\langle Q, 1_S \rangle} V \times S \xrightarrow{P} S$

Composites of wb, resp vwb, lenses are wb, resp vwb

There are identity on objects (ioo), *non-full* functors between asymmetric lens (in **C**) categories

$$ALens_{\nu}(\mathbf{C}) \longrightarrow ALens_{w}(\mathbf{C}) \longrightarrow ALens(\mathbf{C})$$

Lenses preserved

Suppose $F : \mathbf{C} \longrightarrow \mathbf{D}$ is a finite product preserving functor For L = (X, Y, G, P) an asymmetric lens in \mathbf{C} , respectively: a well-behaved lens, very well-behaved lens FL = (FX, FY, FG, FP) is an asymmetric lens in \mathbf{D} , respectively: a well-behaved lens, very well-behaved lens

Moreover, F preserves lens composition and we denote:

$$F : ALens(\mathbf{C}) \longrightarrow ALens(\mathbf{D})$$

respectively from $ALens_w(\mathbf{C})$ and $ALens_v(\mathbf{C})$.

Lenses and pulling back

For **C** with pullbacks and an asymmetric lens L = (X, Y, G, P)) and $H: V' \longrightarrow V$ in **C** pulling back *G* along *H* in **C** gives the Get for asymmetric lens L' = (T, V', G', P')) with $P' = \langle P(H \times H'), \pi_0 \rangle$

Similarly for well-behaved and very well-behaved lenses

But: ALens(C), $ALens_w(C)$, $ALens_v(C)$ may not have pullbacks.

Less abstract lenses

For a view in cat, ie $G : \mathbf{S} \longrightarrow \mathbf{V}$ (Insert) updates needing lifts should better be $GS \stackrel{a}{\longrightarrow} V$ (Contrast simply pairs (S, V) above) The domain of Put for G is better $(G, 1_{\mathbf{V}})$ than $\mathbf{V} \times \mathbf{S}$ Right comma projection R(-) is functor part of a monad $R : \operatorname{cat}/\mathbf{V} \longrightarrow \operatorname{cat}/\mathbf{V}$

with unit component $G \xrightarrow{\eta_G} RG$ defined by

where $\eta_{\mathcal{G}} = (1_{\mathbf{V}}, \mathcal{G}, 1_{\mathcal{G}}) : \mathbf{S} \longrightarrow (\mathcal{G}, 1_{\mathbf{V}})$ defined universally

Less abstract lenses

and multiplication $RRG \xrightarrow{\mu_G} RG$ defined by:

with

$$\mu_{G} = (L_{G}1_{\mathbf{V}} \cdot L_{RG}1_{\mathbf{V}}, RRG, \beta(\alpha L_{RG}1_{\mathbf{V}})) : (RG, 1_{\mathbf{V}}) \longrightarrow (G, 1_{\mathbf{V}})$$

An iterate of a P

For $G : \mathbf{S} \longrightarrow \mathbf{V}$ consider a $P : (G, 1_{\mathbf{V}}) \longrightarrow \mathbf{S}$ satisfying GP = RG, so that $GPL_{RG}1_{\mathbf{V}} = RG \cdot L_{RG}1_{\mathbf{V}} \xrightarrow{\beta} RRG$, define: $(P, 1_{\mathbf{V}})$ by

c-Lenses

Again, for a view in **cat**, $G : \mathbf{S} \longrightarrow \mathbf{V}$ the "Put" for view updates $GS \longrightarrow V$ should be a process $P : (G, 1_{\mathbf{V}}) \longrightarrow \mathbf{S}$, and we define:

A c-lens in cat is L = (S, V, G, P) satisfying

c-PutGet:
$$GP = RG$$

c-GetPut: $P\eta_G = 1_S$
c-PutPut: $P\mu_G = P(P, 1_V)$

(Could model delete updates $V \longrightarrow GS$, then "Put" s.b. $P: (1_V, G) \longrightarrow S$ using LG in the PutGet equation...)

c-Lenses are opfibrations

or diagrammatically:

Recalling that an algebra structure for the monad

$$\operatorname{cat}/\operatorname{V} \xrightarrow{R} \operatorname{cat}/\operatorname{V}$$

is a split opfibration:

Proposition (JRW)

For a c-lens $L = (\mathbf{S}, \mathbf{V}, G, P)$ in cat, P is an algebra structure for R so G is a split opfibration.

c-Lenses compose

Opfibrations compose, so if $G : \mathbf{S} \longrightarrow \mathbf{V}$ and $G' : \mathbf{V} \longrightarrow \mathbf{W}$ are c-lenses. so is $G'G : \mathbf{S} \longrightarrow \mathbf{W}$

Subcategory of **cat** with arrows c-lenses is denoted ACLens. Asymmetric lens in **cat** is a c-lens, so $ALens_{\nu}(cat)$ is a subcategory.

Further, opfibrations pull back (along any functor) and a cospan of c-lenses gives span of c-lenses

Interest in spans motivated by cospan of views G, H:

giving a span of views G', H' (of c-lenses if G, H are)

Another categorical version of lenses

Motivated by similar considerations Z. Diskin and co-authors called updates deltas, made the *set* of deltas the domain of Put (now returning a delta), with axioms similar to c-lenses

An (asymmetric) delta lens (d-lens) in cat is $L = (\mathbf{S}, \mathbf{V}, G, P)$ where $G : \mathbf{S} \longrightarrow \mathbf{V}$ is a functor and $P : |(G, 1_{\mathbf{V}})| \longrightarrow |\mathbf{S}^2|$ is a function and the data satisfy:

(i) d-Putlnc: the domain of $P(S, \alpha : GS \longrightarrow V)$ is S (ii) d-Putld: $P(S, 1_{GS} : GS \longrightarrow GS) = 1_S$ (iii) d-PutGet: $GP(S, \alpha : GS \longrightarrow V) = \alpha$ (iv) d-PutPut:

$$P(S,\beta\alpha:GS \longrightarrow V \longrightarrow V') = P(S',\beta:GS' \longrightarrow V')P(S,\alpha:GS \longrightarrow V)$$

where S' is the codomain of $P(S, \alpha : GS \longrightarrow V)$

ADLens

Proposition

If $L = (\mathbf{S}, \mathbf{V}, G, P)$ and $M = (\mathbf{V}, \mathbf{W}, H, Q)$ are d-lenses then then $ML = (\mathbf{S}, \mathbf{W}, HG, R)$ is a d-lens, with R as

$$|(HG, 1_{\mathbf{W}})| \xrightarrow{Q} |(G, 1_{\mathbf{V}})| \xrightarrow{P} |\mathbf{S}|^2$$

Identity functor is Get for a d-lens and unitary for composition. Denote the resulting category ADLens

Proposition

If $L = (\mathbf{S}, \mathbf{V}, G, P)$ is a d-lens and $F : \mathbf{V}' \longrightarrow \mathbf{V}$ is a functor then G' in the pullback (in **cat**) is the Get of a d-lens

c-Lenses and d-Lenses

For
$$G : \mathbf{S} \longrightarrow \mathbf{V}$$
, denote $G_0 = |\mathbf{S}| \longrightarrow \mathbf{S} \xrightarrow{G} \mathbf{V}$ and $R_0 G : (G_0, 1_{\mathbf{V}}) \longrightarrow \mathbf{V}$

Semi-monad (R_0, μ^0) on **cat**/**V** similar to R, and transformation η^0 to R_0 (from functor sending G to G_0)

Proposition

If $L = (\mathbf{S}, \mathbf{V}, G, P)$ is a d-lens then (G, P_0) is an (R_0, μ^0) algebra satisfying $P_0\eta^0G = P_0\eta_{G_0} = I_{\mathbf{S}}$, and conversely.

Corollary

A c-lens is a d-lens; composition is compatible.

Though not every d-lens is a c-lens

Categories of asymmetric lenses

In summary:

All admit the Sp(U) construction which follows...

The Sp(U) Construction

C with finite limits; $U : \mathbf{A} \longrightarrow \mathbf{C}$ ioo functor reflecting isos (We are thinking ALens $\longrightarrow \mathbf{C}$) Assume an operation P on **C** cospans

$$B \xrightarrow{g} C \xleftarrow{U(r)} D$$

giving arrows P(g, r) in **A** such that 1) there is in **C** a pullback:

with t' = U(r') where r' = P(g, r)And...

The Sp(U) Construction

2) If also g = U(v) then for v' = P(G(r), v) the square commutes (in **A**):

Next, given U and operation P, define category Sp(U): Objects of **A** (or **C**) Arrows \equiv_U equiv classes of spans in **A** where

The Sp(U) Construction

 \equiv_U generated by span morphisms in **A**

with u = u't and v = v't and G(t) split epi. Sp(U) composition by span composition in **C**

Proposition

With the data just defined, Sp(U) is a category.

Symmetric lenses

(Hoffman, Pierce and Wagner, 2011)
Idea: Describe re-synchronization for model classes (of states)
X, Y having synchronization ("complement") information from C.

Given states x, y synchronized by a complement c and an (updated) state x' of X, determine re-synchronizing complement c' from (x', c) and an updated y' of Y (and vice versa)

So an arrow $r: X \times C \longrightarrow Y \times C$ and vice versa.

Now (x', c', y') is (re)synchronized. Some equations are expected because...

if I applied to (y', c') then the result should be (x', c')

Example (from H,P,W)

The data in states x, y might initially be the following

x : Schubert Schumann			y : Schubert Schumann	
with initial complement, "hidden data" (a C state):				
		1797-1828 1810-1856	c : Austria Germany	
An edit to x g Schubert Schumann Monteverdi	1797-182 1810-185	8 6		
then applying $r(x', c)$ results in new C and Y states: c': v' :				
1797-1828 1810-1856 1567-1643	Germany		Schubert Schumann Monteverdi	Germany

Symmetric lenses

Let **C** be a category with finite limits.

For objects X, Y in **C**, an rl lens from X to Y, denoted L = (X, Y, C, r, l) with C an object of "complements" and morphisms

 $r: X \times C \longrightarrow Y \times C$ and $I: Y \times C \longrightarrow X \times C$

satisfying the equations:

 $\pi_{X} lr = \pi_{X} : X \times C \longrightarrow X \qquad \pi_{C} lr = \pi_{C} r : X \times C \longrightarrow C \qquad (PutRL)$ $\pi_{Y} rl = \pi_{Y} : Y \times C \longrightarrow Y \qquad \pi_{C} rl = \pi_{C} l : Y \times C \longrightarrow C \qquad (PutLR)$

HPW require an element $m: 1 \longrightarrow C$ where m is for "missing" (called pc-symmetric below)

Symmetric lenses decompose

Remark

For an RL lens L = (X, Y, C, r, l) in **C**, the equations rlr = r and lrl = l hold.

Suppose that L = (X, Y, C, r, I) is an rI lens in **C**. Let $e: S_L \longrightarrow X \times Y \times C$ be an equalizer of $r\pi_{0,2}$ and $\pi_{1,2}$. If **C** = set,

 $S_L = \{(x, y, c) \mid r(x, c) = (y, c)\} = \{(x, y, c) \mid l(y, c) = (x, c)\}$

Elements of S_L are the "synchronized triples"

Symmetric lenses decompose

For L, S_L as above: Proposition

There is a span

$$L_I: X \longleftrightarrow S_L \longrightarrow Y: L_r$$

in ALens_w from X to Y with Gets defined by $g_I = \pi_X e$, $g_r = \pi_Y e$. The Put. p_I for L_I (p_r similar) is defined by

$$X \times S_L \xrightarrow{1_X \times e} X \times X \times Y \times C \xrightarrow{\pi_{0,3}} X \times C$$

$$\xrightarrow{\Delta_X \times 1_C} X \times X \times C \xrightarrow{1_X \times r} S_L$$

(The set formula for p_l is $p_l(x', (x, y, c)) = (x', r(x', c))$.)

Denote the span (L_I, L_r) by A(L)

Recalling U_w : ALens_w \longrightarrow **C**, define $\frac{\mathsf{SLens}_w}{\mathsf{SLens}_w} = Sp(U_w)$

Symmetric lenses compose

For rl lenses $L_1 = (X, Y, C_1, r_1, l_1)$ and $L_2 = (X, Y, C_2, r_2, l_2)$:

 $L_1 \sim L_2$ if exists well-behaved asymmetric lens $L = (C_1, C_2, t, p)$ with t split epi and respecting L_1, L_2 operations, which means:

$$\mathit{r}_2(X imes t) = (Y imes t) \mathit{r}_1$$
 and $\mathit{l}_2(Y imes t) = (X imes t) \mathit{l}_1$

and

$$r_1(X \times p) = (Y \times p)(r_2 \times C_1)$$
 and $l_1(Y \times p) = (X \times p)(l_2 \times C_1)$.

~ generates equivalence relation on rl lenses X to Y denoted \equiv_{rl} \equiv_{rl} class of L denoted $[L]_{rl}$.

Symmetric lenses compose

$$L = (X, Y, C, r, l), M = (Y, Z, C', r', l')$$
 rl lenses

Their *rl-composite lens* is ML = (X, Z, C'', r'', l'', m'')where $C'' = C \times C'$ and

$$r'' = \langle \pi_{0,2}, \pi_1
angle (r' imes 1_C) \langle \pi_{0,2}, \pi_1
angle (r imes 1_{C'}) \quad (I'' ext{ similar})$$

Proposition

For rl lenses L_1 , L_2 from X to Y and M_1 , M_2 from Y to Z in **C**, if $L_1 \equiv_{rl} L_2$ and $M_1 \equiv_{rl} M_2$ then $M_1L_1 \equiv_{rl} M_2L_2$.

RLLens has objects of **C**; arrows X to Y are \equiv_{rl} classes Proposition

There is an identity on objects functor

 $A : RLLens \longrightarrow SLens_w$

defined by $\mathbf{A}([L]_{rl}) = [A(L)]_{U_w}$.

Symmetric lenses from asymmetric

Going the other way... From span of wb asymmetric lenses $L = (S, X, G_X, P_X)$, $M = (S, Y, G_Y, P_Y)$, construct rl lens S(L, M) = (X, Y, S, r, l) where (in **set**)

$$r(x', (x, y, c)) = (G_Y P_X(x', (x, y, c)), P_X(x', (x, y, c))) \quad (I \text{ similar})$$

Proposition

Denote AS(L, M) by $L_I : X \leftarrow S_L \rightarrow Y : L_r$. There is iso span morphism $g : S \rightarrow S_L$, so $AS(L, M) \equiv_{U_w} (L, M)$,

Categories of symmetric lenses

Proposition

If $L: X \leftarrow S \longrightarrow Y : M, L': X \leftarrow S' \longrightarrow Y : M'$ are \equiv_{U_w} equivalent spans of well behaved asymmetric lenses then $S(L, M) \equiv_{rl} S(L', M')$ and $\mathbf{S}([(L, M)]_{\equiv_{U_w}}) = [S(L, M)]_{rl}$ defines functor \mathbf{S} : SLens_w \longrightarrow RLLens.

Theorem

 $SLens_w$ is a retraction of RLLens via **A** and **S**.

Hofmann, Pierce and Wagner introduced an equivalence relation we denote \equiv_{pc} on their pc-symmetric lenses from X to Y

 $\equiv_{\it pc}$ allows well-defined composition of pc-symmetric lenses giving <code>pcLens</code>

Starting from rl lenses, suitably adding points so that \equiv_{U_w} can be compared, we can show that \equiv_{pc} is in fact coarser than \equiv_{U_w}

Symmetric delta lenses (Diskin et al. 2011/12)

For symmetric version of d-lens, again use morphisms for updates:

Let **A** and **B** be small categories.

Given an *update* $a : A \longrightarrow A'$ in **A** from state Awhere A synchronized with B by "correspondence" $r : A \leftrightarrow B$, symmetric d-lens should deliver an update $b : B \longrightarrow B'$ in **B** and re-synchronization $r' : A' \leftrightarrow B'$:

Symmetric delta lenses

A symmetric delta lens (sd-lens) from **A** to **B** is $L = (\delta_A, \delta_B, fP, bP)$ with a span of sets

$$\delta_{\mathbf{A}} : |\mathbf{A}| \longleftrightarrow R_{\mathbf{AB}} \longrightarrow |\mathbf{B}| : \delta_{\mathbf{B}}$$

(elements of R_{AB} called corrs are denoted $r : A \leftrightarrow B$) and forward and backward propagation operations

$$fP : Arr(\mathbf{A}) \times_{|\mathbf{A}|} R_{\mathbf{A}\mathbf{B}} \longrightarrow Arr(\mathbf{B}) \times_{|\mathbf{B}|} R_{\mathbf{A}\mathbf{B}}$$
$$bP : Arr(\mathbf{A}) \times_{|\mathbf{A}|} R_{\mathbf{A}\mathbf{B}} \longleftarrow Arr(\mathbf{B}) \times_{|\mathbf{B}|} R_{\mathbf{A}\mathbf{B}}$$

Symmetric delta lenses

Display instances of propagation operations as:

where fP(a, r) = (b, r') and bP(b, r) = (a, r').: Propagation respects identities: $r : A \leftrightarrow B$ implies $fP(id_A, r) = (id_B, r)$ and $bP(id_B, r) = (id_A, r)$ and composition in **A** and **B**: $fP(a'a, r) = fP(a', \pi_1(fP(a, r)))$, similarly for **B**.

Composing symmetric delta lenses

Let $L = (\delta_{\mathbf{A}}^{R}, \delta_{\mathbf{B}}^{R}, \mathsf{fP}^{R}, \mathsf{bP}^{R})$ and $L' = (\delta_{\mathbf{B}}^{S}, \delta_{\mathbf{C}}^{S}, \mathsf{fP}^{S}, \mathsf{bP}^{S})$ The composite sd-lens $L'L = (\delta_{\mathbf{A}}, \delta_{\mathbf{C}}, \mathsf{fP}, \mathsf{bP})$ where $\delta_{\mathbf{A}} = \delta_{\mathbf{A}}^{R} \delta_{1}$, $\delta_{\mathbf{C}} = \delta_{\mathbf{C}}^{S} \delta_{2}$ and $R_{\mathbf{AC}}$ is the pullback in

Define: $fP(a, (r, s)) = (c, (r_f, s_f))$ and $bP(c, (r, s)) = (a, (r_b, s_b))$ where $fP^R(a, r) = (b, r_f)$, $fP^S(b, s) = (c, s_f)$ and $bP^S(c, s) = (b, s_b)$, $bP^R(b, r) = (a, r_b)$.

The construction is used to define a category SDLens

SDLens and spans

Let $L = (\mathbf{S}, \mathbf{V}, G_L, P_L)$, $R = (\mathbf{S}, \mathbf{W}, G_R, P_R)$ be a span of d-lenses

Construct sd-lens $S_{L,R} = (\delta_{\mathbf{V}}, \delta_{\mathbf{W}}, \mathsf{fP}, \mathsf{bP})$ with forward propagation from P_L, G_R .

Conversely, from an sd-lens $M = (\delta_{\mathbf{A}}, \delta_{\mathbf{B}}, \mathsf{fP}, \mathsf{bP})$ we can construct a span $L_M = (\mathbf{S}, \mathbf{A}, G_L, P_L)$, $R_M = (\mathbf{S}, \mathbf{B}, G_K, P_K)$ of d-lenses using the corrs and propagations to define \mathbf{S} ,

Comparison of SDLens and spans of asymmetric d-lenses remains to be made precise....

Conclusion

- Asymmetric lenses provide solutions to the view update problem in several contexts
- Symmetric lenses describe model synchronization processes also in various contexts
- Symmetric lenses should be understood via spans of asymmetric lenses and often arise from cospans

Thanks!