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The plan

• 0915–1000 Background and overview!

• 1115–1200 Outline of the proof



Main result

• The problem of deciding whether two MLL proofs 
are equivalent is PSPACE-complete. 

• This is true even in the unit-only fragment. 

• (In contrast equivalence can be easily decided 
without units, and also in the intuitionistic case with 
units.)



What is MLL?
• Multiplicative linear logic 
• Every premise must be used once and once only 
• No contraction or weakening 
• negation is written (–)⟂ 

• connectives ⊗, ⅋ 

• corresponding to ∧, ∨ in classical logic



MLL sequent calculus

Ax
⊢p, p⟂

⊗
⊢Γ, Δ, A⊗B

⊢Γ, A ⊢Δ, B

⊢Γ, A, B
⊢Γ, A⅋B

⅋



When are proofs equivalent?
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Figure 1. Inference rules for unit-only MLL
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Figure 2. Permutations

inferences. Only cut-free proofs are considered, and no cut-rule is
added. Permutations of inference rules are displayed in Figure 2;
the symmetric variants of the last two permutations, par-tensor and
tensor-tensor, have been omitted.

Definition 1. Equivalence (⇠) of proofs in (cut-free, unit-only)
multiplicative linear logic is the congruence generated by the
permutations given in Figure 2. MLL proof equivalence is the
problem of deciding whether two given proofs are equivalent.

The permutations of sequent proofs are exactly the identifications
imposed by the categorical semantics of MLL, star-autonomous cat-
egories [1] (and semi-star-autonomous categories [11, 12] for MLL
without units). Proof equivalence for MLL is therefore equivalent
to the word problem for star-autonomous categories: the problem
whether two term representations denote the same morphism in any
star-autonomous category.

Proof nets

Proof nets provide a solution to proof equivalence for MLL without
units. For full MLL, they reduce the proof equivalence problem to a
simple rewiring relation [15].

Definition 2. For a sequent �,

• a linking ` is a function from the names of ?-subformulae to the
names of 1-subformulae,

• a switching graph for ` is an undirected graph over the names
of �, with for every subformula A

a

⌦
c

B
b

the edges a c and
b c, for every subformula A

a

&

c

B
b

either the edge a c or
the edge b c, and for every subformula ?

a

the edge a `(a),
• a proof net ` or (�, `) is a linking ` such that every switching

graph is acyclic and connected.

An edge a `(a) in a proof net or switching graph is called a link or
a jump. The restriction that jumps must target 1-occurrences (rather

1⇠ 1⇠ 1⇠

Figure 3. A rewiring sequence on proof nets

than any connective) is a convenience—it can be circumvented by
replacing a subformula A by the equivalent A⌦ 1.

Definition 3. A rewiring (

1⇠) between proof nets is the redirection
of exactly one link. Equivalence (⇠) of proof nets over a sequent �
is the equivalence generated by rewiring.

An example rewiring sequence is given in Figure 3, using the
notation for proof nets introduced below.

To translate a sequent proof to a proof net requires to find a
target for each jump from a ?-formula. The inference rule for ?
introduces it into a sequent �; in the corresponding proof net, any
occurrence of 1 in � may serve as the target of the jump.

Definition 4. The relation ( Z)) interprets a proof ⇧ for a sequent
� by a linking ` as follows: ⇧ Z) ` if for each ?

a

in �, if � is the
context of the inference introducing ?

a

, as illustrated below, then
`(a) is the name of some 1 in �.

�

�,?
a

?

Proposition 5 ([5], [18]). If ⇧ Z) ` and ⇧ has conclusion �, then

` is a proof net for �. For a net ` for �, there is a proof ⇧ of � such

that ⇧ Z) ` (sequentialisation).

Proof nets are a canonical representation of proofs in the absence
of the units: they factor out the permutations among tensor- and
par-inferences, which are the last three permutations in Figure 2.
Equivalence of proof nets is generated by the four remaining
permutations, on ?-introduction.

Proposition 6 ([15]). For proofs ⇧, ⇧

0
and proof nets `, `0, if

⇧ Z) ` and ⇧

0 Z) `0, then ⇧ ⇠ ⇧

0
if and only if ` ⇠ `0.

The above proposition means that MLL proof equivalence is the
problem of deciding equivalence of proof nets.

Notation

We will use a concise diagrammatic notation for sequents and proof
nets. The units 1 and ? are represented by a circle (�) and a disc (•)
respectively; formulae related by a tensor will be connected by
edges; formulae related by a par will be juxtaposed, and collected
in a box when a par-formula is an immediate subformula of a
tensor-formula (and also for illustrative purposes). For example,
the following denote the same sequent:

?⌦?,?⌦?, 1, (1

&

1

&

1)⌦?

The links of a proof net are added to the sequent as coloured arrows.
The following example is a proof net for the above sequent.



MLL proof nets

Ax
⊢p, p⟂

⊗
⊢Γ, Δ, A⊗B

⊢Γ, A ⊢Δ, B

⊢Γ, A, B
⊢Γ, A⅋B

⅋



MLL proof nets

Ax
⊢p, p⟂

⊗
⊢Γ, Δ, A⊗B

⊢Γ, A ⊢Δ, B

⊢Γ, A, B
⊢Γ, A⅋B

⅋



MLL proof nets

Ax
⊢p, p⟂ Ax

⊢p, p⟂

⊢p, p⟂⊗p, p⟂
⊗

⊢p⟂⊗p, p⅋p⟂
⅋



MLL proof nets

Ax
⊢p, p⟂ Ax

⊢p, p⟂

⊢p, p⟂⊗p, p⟂
⊗

⊢p⟂⊗p, p⅋p⟂
⅋



MLL proof nets

⊢p⟂⊗p, p⅋p⟂



MLL proof nets

⊢p⟂⊗p, p⅋p⟂



MLL with units
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Figure 1. Inference rules for unit-only MLL
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Figure 2. Permutations

inferences. Only cut-free proofs are considered, and no cut-rule is
added. Permutations of inference rules are displayed in Figure 2;
the symmetric variants of the last two permutations, par-tensor and
tensor-tensor, have been omitted.

Definition 1. Equivalence (⇠) of proofs in (cut-free, unit-only)
multiplicative linear logic is the congruence generated by the
permutations given in Figure 2. MLL proof equivalence is the
problem of deciding whether two given proofs are equivalent.

The permutations of sequent proofs are exactly the identifications
imposed by the categorical semantics of MLL, star-autonomous cat-
egories [1] (and semi-star-autonomous categories [11, 12] for MLL
without units). Proof equivalence for MLL is therefore equivalent
to the word problem for star-autonomous categories: the problem
whether two term representations denote the same morphism in any
star-autonomous category.

Proof nets

Proof nets provide a solution to proof equivalence for MLL without
units. For full MLL, they reduce the proof equivalence problem to a
simple rewiring relation [15].

Definition 2. For a sequent �,

• a linking ` is a function from the names of ?-subformulae to the
names of 1-subformulae,

• a switching graph for ` is an undirected graph over the names
of �, with for every subformula A

a

⌦
c

B
b

the edges a c and
b c, for every subformula A

a

&

c

B
b

either the edge a c or
the edge b c, and for every subformula ?

a

the edge a `(a),
• a proof net ` or (�, `) is a linking ` such that every switching

graph is acyclic and connected.

An edge a `(a) in a proof net or switching graph is called a link or
a jump. The restriction that jumps must target 1-occurrences (rather

1⇠ 1⇠ 1⇠

Figure 3. A rewiring sequence on proof nets

than any connective) is a convenience—it can be circumvented by
replacing a subformula A by the equivalent A⌦ 1.

Definition 3. A rewiring (

1⇠) between proof nets is the redirection
of exactly one link. Equivalence (⇠) of proof nets over a sequent �
is the equivalence generated by rewiring.

An example rewiring sequence is given in Figure 3, using the
notation for proof nets introduced below.

To translate a sequent proof to a proof net requires to find a
target for each jump from a ?-formula. The inference rule for ?
introduces it into a sequent �; in the corresponding proof net, any
occurrence of 1 in � may serve as the target of the jump.

Definition 4. The relation ( Z)) interprets a proof ⇧ for a sequent
� by a linking ` as follows: ⇧ Z) ` if for each ?

a

in �, if � is the
context of the inference introducing ?

a

, as illustrated below, then
`(a) is the name of some 1 in �.

�

�,?
a

?

Proposition 5 ([5], [18]). If ⇧ Z) ` and ⇧ has conclusion �, then

` is a proof net for �. For a net ` for �, there is a proof ⇧ of � such

that ⇧ Z) ` (sequentialisation).

Proof nets are a canonical representation of proofs in the absence
of the units: they factor out the permutations among tensor- and
par-inferences, which are the last three permutations in Figure 2.
Equivalence of proof nets is generated by the four remaining
permutations, on ?-introduction.

Proposition 6 ([15]). For proofs ⇧, ⇧

0
and proof nets `, `0, if

⇧ Z) ` and ⇧

0 Z) `0, then ⇧ ⇠ ⇧

0
if and only if ` ⇠ `0.

The above proposition means that MLL proof equivalence is the
problem of deciding equivalence of proof nets.

Notation

We will use a concise diagrammatic notation for sequents and proof
nets. The units 1 and ? are represented by a circle (�) and a disc (•)
respectively; formulae related by a tensor will be connected by
edges; formulae related by a par will be juxtaposed, and collected
in a box when a par-formula is an immediate subformula of a
tensor-formula (and also for illustrative purposes). For example,
the following denote the same sequent:

?⌦?,?⌦?, 1, (1

&

1

&

1)⌦?

The links of a proof net are added to the sequent as coloured arrows.
The following example is a proof net for the above sequent.

The units are 1, ⟂



Equivalence with units
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Figure 1. Inference rules for unit-only MLL
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Figure 2. Permutations

inferences. Only cut-free proofs are considered, and no cut-rule is
added. Permutations of inference rules are displayed in Figure 2;
the symmetric variants of the last two permutations, par-tensor and
tensor-tensor, have been omitted.

Definition 1. Equivalence (⇠) of proofs in (cut-free, unit-only)
multiplicative linear logic is the congruence generated by the
permutations given in Figure 2. MLL proof equivalence is the
problem of deciding whether two given proofs are equivalent.

The permutations of sequent proofs are exactly the identifications
imposed by the categorical semantics of MLL, star-autonomous cat-
egories [1] (and semi-star-autonomous categories [11, 12] for MLL
without units). Proof equivalence for MLL is therefore equivalent
to the word problem for star-autonomous categories: the problem
whether two term representations denote the same morphism in any
star-autonomous category.

Proof nets

Proof nets provide a solution to proof equivalence for MLL without
units. For full MLL, they reduce the proof equivalence problem to a
simple rewiring relation [15].

Definition 2. For a sequent �,

• a linking ` is a function from the names of ?-subformulae to the
names of 1-subformulae,

• a switching graph for ` is an undirected graph over the names
of �, with for every subformula A

a

⌦
c

B
b

the edges a c and
b c, for every subformula A

a

&

c

B
b

either the edge a c or
the edge b c, and for every subformula ?

a

the edge a `(a),
• a proof net ` or (�, `) is a linking ` such that every switching

graph is acyclic and connected.

An edge a `(a) in a proof net or switching graph is called a link or
a jump. The restriction that jumps must target 1-occurrences (rather

1⇠ 1⇠ 1⇠

Figure 3. A rewiring sequence on proof nets

than any connective) is a convenience—it can be circumvented by
replacing a subformula A by the equivalent A⌦ 1.

Definition 3. A rewiring (

1⇠) between proof nets is the redirection
of exactly one link. Equivalence (⇠) of proof nets over a sequent �
is the equivalence generated by rewiring.

An example rewiring sequence is given in Figure 3, using the
notation for proof nets introduced below.

To translate a sequent proof to a proof net requires to find a
target for each jump from a ?-formula. The inference rule for ?
introduces it into a sequent �; in the corresponding proof net, any
occurrence of 1 in � may serve as the target of the jump.

Definition 4. The relation ( Z)) interprets a proof ⇧ for a sequent
� by a linking ` as follows: ⇧ Z) ` if for each ?

a

in �, if � is the
context of the inference introducing ?

a

, as illustrated below, then
`(a) is the name of some 1 in �.

�

�,?
a

?

Proposition 5 ([5], [18]). If ⇧ Z) ` and ⇧ has conclusion �, then

` is a proof net for �. For a net ` for �, there is a proof ⇧ of � such

that ⇧ Z) ` (sequentialisation).

Proof nets are a canonical representation of proofs in the absence
of the units: they factor out the permutations among tensor- and
par-inferences, which are the last three permutations in Figure 2.
Equivalence of proof nets is generated by the four remaining
permutations, on ?-introduction.

Proposition 6 ([15]). For proofs ⇧, ⇧

0
and proof nets `, `0, if

⇧ Z) ` and ⇧

0 Z) `0, then ⇧ ⇠ ⇧

0
if and only if ` ⇠ `0.

The above proposition means that MLL proof equivalence is the
problem of deciding equivalence of proof nets.

Notation

We will use a concise diagrammatic notation for sequents and proof
nets. The units 1 and ? are represented by a circle (�) and a disc (•)
respectively; formulae related by a tensor will be connected by
edges; formulae related by a par will be juxtaposed, and collected
in a box when a par-formula is an immediate subformula of a
tensor-formula (and also for illustrative purposes). For example,
the following denote the same sequent:

?⌦?,?⌦?, 1, (1

&

1

&

1)⌦?

The links of a proof net are added to the sequent as coloured arrows.
The following example is a proof net for the above sequent.



Proof nets for units

• Proof net = function from occurrences of ⟂ to 
occurrences of 1 that satisfies the switching 
condition; 

• Proof net equivalence relation generated by 
rewiring: moving a single link from a ⟂ to a 
different 1.



⊗

⅋

⊗

⟂

⟂ ⟂

1

1

1 1

⟂

⊗

⅋

⅋

Proof nets for units



⊗

⅋

⊗

⟂

⟂ ⟂

1

1

1 1

⟂

⊗

⅋

⅋

Proof nets for units



Implications for proof theory

• It’s no use looking for a canonical notion of MLL 
proof net (unless you believe that PSPACE = P). 

• The proof nets we have for MLL may well be as 
nice as we’re ever going to get.



The initial star-autonomous 
category

• “The initial X-category” is pretty boring for most 
values of X – typically either 0 or 1. 

• Not so when X = “star-autonomous”. 

• Infinite hierarchy of non-isomorphic objects:  
1, ⟂, ⟂⊗⟂, ⟂⊗⟂⊗⟂, etc.  
1⅋1, 1⅋(⟂⊗⟂),  1⅋(⟂⊗⟂)⅋(⟂⊗⟂⊗⟂) 
(1⅋(⟂⊗⟂))⅋(1⅋(⟂⊗⟂)⅋(⟂⊗⟂⊗⟂))  
ad infinitum



What is “PSPACE-complete”

• Really hard. 

• As hard as possible, in a sense. 

• Hard even with an omniscient (but untrusted) 
guide. 

• There are proofs that are equivalent but where the 
shortest rewiring from one to the other is 
exponentially long.



How do we prove this is 
PSPACE-complete?

• Reduction from a known-hard problem 

• (The configuration-to-configuration problem for 
nondeterministic constraint logic) 

• So we can solve MLL proof equivalence easily only 
if everything is easy (i.e. if PSPACE = P) 



Constraint Logic





Nondeterministic 
constraint logic

• Weighted graph 

• Each node has a minimum inflow constraint ∈ ℕ 

• A configuration is an assignment of a direction to each 
edge such that the inflow constraints are satisfied 

• A move is the reversal of a single edge (s.t. constraints 
remain satisfied) 

• Deciding whether one configuration can be changed 
into another is PSPACE-complete



Nondeterministic 
constraint logic

• This remains true under many restrictions on the 
constraint graphs. We may assume: 

• Every edge has weight 1 or 2; 

• Every node has minimum inflow constraint 2; 

• The graph is cubic planar.



Example



























End of Part 1?



Notation

1 ⟂



Notation

A B C

(A⊗B⊗C) ⅋ (D⊗E) ⅋ F

D E

F



Notation

A B C

[(A⊗B⊗C) ⅋ (D⊗E)] ⊗ F

D E

F



Notation example
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1 1
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⅋



Notation example

⊗

⅋

⊗

⟂

⟂ ⟂

1

1

1 1

⟂

⊗

⅋

⅋



More notation

n := n

n
n :=



a

b

a+b

Why this notation?



The reduction



Overall construction

node 0

node 1

node 2

…

edge

edge

edge

…

absorbers



3i+1 3(n-i) 
+2

3i+1 3(n-i) 
+2

…

Gadget for node i

k



3i+1 3(n-j)!
+2

Gadget for edge i–j

3(j-i)

3i+1 3(n-j)!
+23(j-i)

k or 2k



3i+1 3(n-j)!
+23(j-i)

3i+1 3(n-i) 
+2

The edge i–j attaching to node i



3i+1 3(n-j)!
+23(j-i)

3j+1 3(n-j) 
+2

The edge i–j attaching to node j



“Parity”



⊢⟂⊗⟂, 1, 1, 1, ⟂⊗⟂



⊢⟂⊗⟂, 1, 1, 1, ⟂⊗⟂



⊢⟂⊗⟂, 1, 1, 1, ⟂⊗⟂



⊢⟂⊗⟂, 1, 1, 1, ⟂⊗⟂



⊢⟂⊗⟂, 1, 1, 1, ⟂⊗⟂



⊢⟂⊗⟂, 1, 1, 1, ⟂⊗⟂



⊢⟂⊗⟂, 1, 1, 1, ⟂⊗⟂



Not equivalent:

⊢⟂⊗⟂, 1, 1, 1, ⟂⊗⟂



⊢⟂⊗⟂, 1, 1, 1, ⟂⊗⟂



⊢⟂⊗⟂, 1, 1, 1, ⟂⊗⟂



⊢⟂⊗⟂, 1, 1, 1, ⟂⊗⟂



⊢⟂⊗⟂, 1, 1, 1, ⟂⊗⟂



⊢⟂⊗⟂, 1, 1, 1, ⟂⊗⟂



⊢⟂⊗⟂, 1, 1, 1, ⟂⊗⟂



⊢⟂⊗⟂, 1, 1, 1, ⟂⊗⟂

=

=



Parity

• A relationship between two proofs of the same 
sequent. 

• Two proof nets for the same sequent stand in even 
or odd relationship to each other. 

• Equivalent proof nets are always evenly related.



Parity defined

Sequent 
+ Linking 
+ Switching

A bijection between 
two sets associated 

with the sequent.



Parity defined
Sequent + Switching

Linking 1 Linking 2

Bijection Bijection
compose

Permutation

Parity



Sequent + Switching

Linking 1 Linking 2

Bijection Bijection
compose

Permutation

Parity

Parity defined



Parity

• Equivalent proofs have even parity



Worked example 
!

(if there’s time)





“Matching”



a b cn

Provable iff n = a+b+c



a

b

c

n

Provable iff n = a+b+c



Using matching to encode 
arithmetic questions

m n



m n



m n

Equivalent iff m ≥ n
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