Proof equivalence in MLL is hard to decide

Willem Heijltjes and Robin Houston

Proof equivalence in MLL* is hard to decide

* classical multiplicative linear logic with units

Willem Heijltjes and Robin Houston

The plan

- 0915–1000 Background and overview
- 1115–1200 Outline of the proof

Main result

- The problem of deciding whether two MLL proofs are equivalent is PSPACE-complete.
- This is true even in the unit-*only* fragment.
- (In contrast equivalence can be easily decided without units, and also in the intuitionistic case with units.)

What is MLL?

- Multiplicative linear logic
- Every premise must be used once and once only
- No contraction or weakening
- negation is written $(-)^{\perp}$
- connectives \otimes , **\mathcal{P}**
- corresponding to \land , \lor in classical logic

MLL sequent calculus

−−−− Ax

⊢Γ, Α, Β ____γ ⊢Г, АѷВ

 $\frac{\vdash \Gamma, A \vdash \Delta, B}{\vdash \Gamma, \Delta, A \otimes B} \otimes$

When are proofs equivalent?

$$\frac{\Gamma, A, B, C, D}{\Gamma, A \,^{\mathfrak{P}} B, C, D} \approx \qquad \frac{\Gamma, A, B, C, D}{\Gamma, A, B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C, D}{\Gamma, A, B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D} \approx \frac{\Gamma, A, B, C \,^{\mathfrak{P}} D}{\Gamma, A \,^{\mathfrak{P}} B, C \,^{\mathfrak{P}} D}$$

$$\frac{\Gamma, A \qquad \Delta, B, C, D}{\Gamma, \Delta, A \otimes B, C, D} \underset{\Re}{\otimes} \sim \frac{\Gamma, A \qquad \frac{\Delta, B, C, D}{\Delta, B, C \, \Re D}}{\Gamma, \Delta, A \otimes B, C \, \Re D} \underset{R}{\otimes} \sim \frac{\Gamma, A \qquad \frac{\Delta, B, C, D}{\Delta, B, C \, \Re D}}{\Gamma, \Delta, A \otimes B, C \, \Re D} \underset{R}{\otimes}$$

$$\frac{\Delta, B, C \qquad \Lambda, D}{\Gamma, A} \otimes \frac{\Delta, A, B, C \otimes D}{\Gamma, \Delta, A, A \otimes B, C \otimes D} \otimes \sim \frac{\Gamma, A \qquad \Delta, B, C}{\Gamma, \Delta, A \otimes B, C} \otimes \frac{\Lambda, D}{\Gamma, \Delta, \Lambda, A \otimes B, C \otimes D} \otimes$$

−−−− Ax

⊢Γ, Α, Β ⊢Γ, Αγβ

 $\frac{\vdash \Gamma, A \vdash \Delta, B}{\vdash \Gamma, \Delta, A \otimes B} \otimes$

MLL with units

The units are 1, \perp

 $\frac{\Gamma}{\Gamma, \perp} \stackrel{\perp}{} \frac{-1}{1}$

Equivalence with units

Proof nets for units

- Proof net = function from occurrences of ⊥ to occurrences of 1 that satisfies the switching condition;
- Proof net equivalence relation generated by rewiring: moving a single link from a ⊥ to a different 1.

Proof nets for units

Proof nets for units

Implications for proof theory

- It's no use looking for a canonical notion of MLL proof net (unless you believe that PSPACE = P).
- The proof nets we have for MLL may well be as nice as we're ever going to get.

The initial star-autonomous category

- "The initial X-category" is pretty boring for most values of X – typically either 0 or 1.
- Not so when X = "star-autonomous".
- Infinite hierarchy of non-isomorphic objects:
 1, ⊥, ⊥⊗⊥, ⊥⊗⊥⊗⊥, etc.
 1⊗1, 1⊗(⊥⊗⊥), 1⊗(⊥⊗⊥)⊗(⊥⊗⊥⊗⊥)
 (1⊗(⊥⊗⊥))⊗(1⊗(⊥⊗⊥)⊗(⊥⊗⊥⊗⊥))
 ad infinitum

What is "PSPACE-complete"

- **Really** hard.
- As hard as possible, in a sense.
- Hard even with an omniscient (but untrusted) guide.
- There are proofs that are equivalent but where the shortest rewiring from one to the other is exponentially long.

How do we prove this is PSPACE-complete?

- Reduction from a known-hard problem
- (The configuration-to-configuration problem for nondeterministic constraint logic)
- So we can solve MLL proof equivalence easily only if everything is easy (i.e. if PSPACE = P)

Constraint Logic

Nondeterministic constraint logic

- Weighted graph
- Each node has a minimum inflow constraint $\in \mathbb{N}$
- A configuration is an assignment of a direction to each edge such that the inflow constraints are satisfied
- A move is the reversal of a single edge (s.t. constraints remain satisfied)
- Deciding whether one configuration can be changed into another is PSPACE-complete

Nondeterministic constraint logic

- This remains true under many restrictions on the constraint graphs. We may assume:
- Every edge has weight 1 or 2;
- Every node has minimum inflow constraint 2;
- The graph is cubic planar.

End of Part 1?

Notation

• • 1 ⊥

Notation

 $(A \otimes B \otimes C)$ $(D \otimes E)$ $(P \otimes E)$

Notation

$[(A \otimes B \otimes C) \ \mathcal{F} (D \otimes E)] \otimes F$

Notation example

Notation example

More notation

Why this notation?

The reduction

Overall construction

Gadget for node *i*

Gadget for edge *i*–*j*

The edge *i*–*j* attaching to node *i*

The edge *i*–*j* attaching to node *j*

"Parity"

Not equivalent:

 $\vdash \perp \otimes \perp$, 1, 1, 1, $\perp \otimes \perp$

Parity

- A relationship between two proofs of the same sequent.
- Two proof nets for the same sequent stand in even or odd relationship to each other.
- Equivalent proof nets are always evenly related.

Parity defined

A bijection between two sets associated with the sequent.

Parity defined Sequent + Switching Linking 1 Linking 2 **Bijection** Bijection compose Permutation

Parity

Parity defined

Sequent + Switching

Parity

• Equivalent proofs have even parity

Worked example

(if there's time)

"Matching"

Provable iff n = a+b+c

Using matching to encode arithmetic questions

Equivalent iff $m \ge n$

References

- Todd Trimble. Linear logic, bimodules, and full coherence for autonomous categories. PhD thesis, Rutgers University, 1994.
- Richard Blute, Robin Cockett, Robert Seely, and Todd Trimble. Natural deduction and coherence for weakly distributive categories. Journal of Pure and Applied Algebra, 113: 220–296, 1996.
- Dominic J.D. Hughes. Simple free star-autonomous categories and full coherence. 2012.

References

- Gary William Flake and Eric B. Baum. Rush hour is PSPACE-complete, or "Why you should generously tip parking lot attendants". Theoretical Computer Science, 270 (1–2):895–911, 2002.
- Robert A. Hearn and Erik D. Demaine. PSPACEcompleteness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theoretical Computer Science, 343(1–2):72– 96, 2005.
- Robert A Hearn and Erik D Demaine. Games, puzzles, and computation. AK Peters, Ltd., 2009.