Proof equivalence in MLL is hard to decide

Willem Heijltjes and Robin Houston

Proof equivalence in MLL* is hard to decide

* classical multiplicative linear logic with units

Willem Heijltjes and Robin Houston

The plan

- 0915-1000 Background and overview
- 1115-1200 Outline of the proof

Main result

- The problem of deciding whether two MLL proofs are equivalent is PSPACE-complete.
- This is true even in the unit-only fragment.
- (In contrast equivalence can be easily decided without units, and also in the intuitionistic case with units.)

What is MLL?

- Multiplicative linear logic
- Every premise must be used once and once only
- No contraction or weakening
- negation is written $(-)^{\perp}$
- connectives \otimes, \mathcal{P}
- corresponding to \wedge, \vee in classical logic

MLL sequent calculus

$$
\overline{\vdash \mathrm{p}, \mathrm{p}^{\perp}} \mathrm{Ax}
$$

$$
\frac{\vdash \Gamma, A, B}{\vdash \Gamma, A 8 B}
$$

$$
\frac{\vdash \Gamma, \mathrm{A} \vdash \Delta, \mathrm{~B}}{\vdash \Gamma, \Delta, \mathrm{~A} \otimes \mathrm{~B}} \otimes
$$

When are proofs equivalent?

$$
\begin{aligned}
& \underline{\Gamma, A \quad \Delta, B, C, D} \\
& \frac{\overline{\Gamma, \Delta, A \otimes B, C, D}_{\Gamma, \Delta, A \otimes B, C^{\varnothing} D}}{}{ }^{\otimes} \\
& \frac{\Gamma, A \frac{\Delta, B, C \quad \Lambda, D}{\Delta, \Lambda, B, C \otimes D} \otimes}{\Gamma, \Delta, \Lambda, A \otimes B, C \otimes D} \otimes \frac{\frac{\Gamma, A \quad \Delta, B, C}{\Gamma, \Delta, A \otimes B, C} \otimes}{\Gamma, \Delta, \Lambda, A \otimes B, C \otimes D} \otimes
\end{aligned}
$$

MLL proof nets

$$
\overline{\vdash \mathrm{p}, \mathrm{p}^{\perp}} A x
$$

$$
\frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \& B} 8
$$

$$
\frac{\vdash \Gamma, \mathrm{A} \vdash \Delta, \mathrm{~B}}{\vdash \Gamma, \Delta, \mathrm{~A} \otimes \mathrm{~B}} \otimes
$$

MLL proof nets

$\underset{\vdash \mathrm{p}, \mathrm{p}^{\perp}}{ } A x$

$$
\frac{\vdash \Gamma, A, B}{\vdash \Gamma^{-}, A 8 B}
$$

MLL proof nets

$$
\frac{\vdash \mathrm{p}, \mathrm{p}^{\perp} \otimes \mathrm{p}, \mathrm{p}^{\perp}}{\vdash \mathrm{p}^{\perp} \otimes \mathrm{p}, \mathrm{p} 8 \mathrm{p}^{\perp}}
$$

MLL proof nets

MLL proof nets

MLL proof nets

MLL with units

The units are $1, \perp$

$$
\frac{\Gamma}{\Gamma, \perp} \perp \quad \quad-1
$$

Equivalence with units

$$
\begin{aligned}
& \frac{\frac{\Gamma}{\Gamma, \perp_{a}} \perp}{\Gamma, \perp_{a}, \perp_{b}} \perp \frac{\frac{\Gamma}{\Gamma, \perp_{b}} \perp}{\Gamma, \perp_{a}, \perp_{b}} \perp \quad \frac{\frac{\Gamma, A, B}{\Gamma, A \not 又 B}>}{\Gamma, A \ngtr B, \perp} \perp \sim \frac{\frac{\Gamma, A, B}{\Gamma, A, B, \perp} \perp}{\frac{\Gamma, A \not 又 B, \perp}{}} \\
& \frac{\frac{\Gamma, A}{\Gamma, A, \perp} \perp \Delta, B}{\Gamma, \Delta, A \otimes B, \perp} \otimes \sim \frac{\frac{\Gamma, A \Delta, B}{\Gamma, \Delta, A \otimes B} \otimes}{\Gamma, \Delta, A \otimes B, \perp} \perp \frac{\Gamma, A \quad \frac{\Delta, B}{\Delta, B, \perp} \perp}{\Gamma, \Delta, A \otimes B, \perp} \otimes
\end{aligned}
$$

Proof nets for units

- Proof net = function from occurrences of \perp to occurrences of 1 that satisfies the switching condition;
- Proof net equivalence relation generated by rewiring: moving a single link from a \perp to a different 1.

Proof nets for units

Proof nets for units

Implications for proof theory

- It's no use looking for a canonical notion of MLL proof net (unless you believe that PSPACE = P).
- The proof nets we have for MLL may well be as nice as we're ever going to get.

The initial star-autonomous
 category

- "The initial X-category" is pretty boring for most values of X - typically either 0 or 1 .
- Not so when $\mathrm{X}=$ "star-autonomous".
- Infinite hierarchy of non-isomorphic objects: $1, \perp, \perp \otimes \perp, \perp \otimes \perp \otimes \perp$, etc. 181, $18(\perp \otimes \perp), 18(\perp \otimes \perp) 8(\perp \otimes \perp \otimes \perp)$ $(18(\perp \otimes \perp)) 8(18(\perp \otimes \perp) \mathcal{8}(\perp \otimes \perp \otimes \perp))$ ad infinitum

What is "PSPACE-complete"

- Really hard.
- As hard as possible, in a sense.
- Hard even with an omniscient (but untrusted) guide.
- There are proofs that are equivalent but where the shortest rewiring from one to the other is exponentially long.

How do we prove this is PSPACE-complete?

- Reduction from a known-hard problem
- (The configuration-to-configuration problem for nondeterministic constraint logic)
- So we can solve MLL proof equivalence easily only if everything is easy (i.e. if PSPACE $=P$)

Constraint Logic

Games, Puzzles, EComputation

Robert A. Hearn
Erik D. Demaine

Nondeterministic constraint logic

- Weighted graph
- Each node has a minimum inflow constraint $\in \mathbb{N}$
- A configuration is an assignment of a direction to each edge such that the inflow constraints are satisfied
- A move is the reversal of a single edge (s.t. constraints remain satisfied)
- Deciding whether one configuration can be changed into another is PSPACE-complete

Nondeterministic constraint logic

- This remains true under many restrictions on the constraint graphs. We may assume:
- Every edge has weight 1 or 2;
- Every node has minimum inflow constraint 2;
- The graph is cubic planar.

Example

End of Part 1?

Notation

\perp

Notation

$(\mathrm{A} \otimes \mathrm{B} \otimes \mathrm{C}) 8(\mathrm{D} \otimes \mathrm{E}) 8 \mathrm{~F}$

$$
\begin{gathered}
A-B-C \\
D-E
\end{gathered}
$$

Notation

$[(A \otimes B \otimes C) \otimes(D \otimes E)] \otimes F$

Notation example

Notation example

$$
x_{0} \rightarrow \rightarrow+\infty
$$

More notation

Why this notation?

The reduction

Overall construction

Gadget for node i

Gadget for edge i-j

The edge $i-j$ attaching to node i

The edge $i-j$ attaching to node j

"Parity"

$$
\vdash \perp \otimes \perp, 1,1,1, \perp \otimes \perp
$$

$$
\vdash \perp \otimes \perp, 1,1,1, \perp \otimes \perp
$$

$$
\vdash \perp \otimes \perp, 1,1,1, \perp \otimes \perp
$$

$$
\vdash \perp \otimes \perp, 1,1,1, \perp \otimes \perp
$$

$$
\vdash \perp \otimes \perp, 1,1,1, \perp \otimes \perp
$$

$$
\vdash \perp \otimes \perp, 1,1,1, \perp \otimes \perp
$$

$$
\vdash \perp \otimes \perp, 1,1,1, \perp \otimes \perp
$$

Not equivalent:

$\vdash \perp \otimes \perp, 1,1,1, \perp \otimes \perp$

$$
\vdash \perp \otimes \perp, 1,1,1, \perp \otimes \perp
$$

$$
0
$$

$\vdash \perp \otimes \perp, 1,1,1, \perp \otimes \perp$

$$
\vdash \perp \otimes \perp, 1,1,1, \perp \otimes \perp
$$

$$
0
$$

$\vdash \perp \otimes \perp, 1,1,1, \perp \otimes \perp$

$$
\vdash \perp \otimes \perp, 1,1,1, \perp \otimes \perp
$$

$$
\vdash \perp \otimes \perp, 1,1,1, \perp \otimes \perp
$$

$\vdash \perp \otimes \perp, 1,1,1, \perp \otimes \perp$

Parity

- A relationship between two proofs of the same sequent.
- Two proof nets for the same sequent stand in even or odd relationship to each other.
- Equivalent proof nets are always evenly related.

Parity defined

Sequent
+ Linking
+ Switching

A bijection between two sets associated with the sequent.

Parity defined

Sequent + Switching

Linking 1

Bijection

Linking 2

Bijection

Permutation

Parity

Parity defined

Sequent + Switching

Linking 1

Bijection

Linking 2

Bijection

Permutation

Parity

Parity

- Equivalent proofs have even parity

Worked example

(if there's time)

"Matching"

Provable iff $n=a+b+c$

Provable iff $n=a+b+c$

Using matching to encode arithmetic questions

Equivalent iff $m \geq n$

References

- Todd Trimble. Linear logic, bimodules, and full coherence for autonomous categories. PhD thesis, Rutgers University, 1994.
- Richard Blute, Robin Cockett, Robert Seely, and Todd Trimble. Natural deduction and coherence for weakly distributive categories. Journal of Pure and Applied Algebra, 113: 220-296, 1996.
- Dominic J.D. Hughes. Simple free star-autonomous categories and full coherence. 2012.

References

- Gary William Flake and Eric B. Baum. Rush hour is PSPACE-complete, or "Why you should generously tip parking lot attendants". Theoretical Computer Science, 270 (1-2):895-911, 2002.
- Robert A. Hearn and Erik D. Demaine. PSPACEcompleteness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theoretical Computer Science, 343(1-2):7296, 2005.
- Robert A Hearn and Erik D Demaine. Games, puzzles, and computation. AK Peters, Ltd., 2009.

