Turing Categories and Incompleteness

Chad Nester

June 7, 2014

(ロ)、(型)、(E)、(E)、 E) の(の)

First, the quick, abstract version of incompleteness

given a logical system \mathcal{L} , let

- g(E) be the Gödel number of the expression E
- E_n be such that $g(E_n) = n$
- $\blacktriangleright d(n) = g(E_n(n))$
- \mathcal{P} be the set of provable sentences
- P be the set of Gödel numbers of provable sentences

we say that ${\cal L}$ is ${\it correct}$ if every provable sentence is true, and no refutable sentence is true.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Now, define A^* by

 $n \in A^* \Leftrightarrow d(n) \in A$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

If \mathcal{L} is correct and $(\overline{P})^*$ is expressible in \mathcal{L} (where \overline{P} is the complement of P), then there is a true sentence of \mathcal{L} that is not provable in \mathcal{L}

Proof

let H express $(\overline{P})^*$, and let h = g(H). Since H expresses $(\overline{P})^*$, H(h) is true $\Leftrightarrow h \in \overline{P}^*$ $\Leftrightarrow d(h) \in \overline{P}$ $\Leftrightarrow d(h) \notin P$ $\Leftrightarrow g(H(h)) \notin P$ $\Leftrightarrow H(h) \notin \mathcal{P}$

so H(h) is true if and only if H(h) is not provable.

Now, if H(h) is false, then H(h) is provable, but this is impossible as \mathcal{L} is correct, which means all provable sentences are true! Since H(h) cannot be false, it it true, and is thus not provable.

Next, we need to know what Turing categories are.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

A category \mathbb{X} is a *restriction category* if for every map $f : A \to B$ in \mathbb{X} , there is a map $\overline{f} : A \to A$ in \mathbb{X} satisfying

R1
$$ff = f$$

R2 $\overline{fg} = \overline{g}\overline{f}$
R3 $\overline{\overline{fg}} = \overline{fg}$
R4 $f\overline{g} = \overline{fg}f$
we say $f: A \to B$ is total if $\overline{f} = 1$

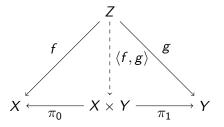
we say $f : A \to B$ is *total* if $f = 1_A$.

Restriction categories come with a free partial order on every homset:

$$f \leq g \Leftrightarrow \overline{f}g = f$$

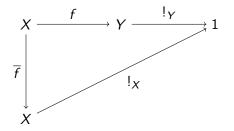
(ロ)、(型)、(E)、(E)、 E) の(の)

A restriction category X has *restriction products* if for every pair of objects X, Y in X, there is an object $X \times Y$, the restriction product of X and Y, with maps π_0, π_1 such that for every $f: Z \to X$ and $g: Z \to Y$, there is a unique map $\langle f, g \rangle$ making the following diagram commute



and satisfying $\langle f, g \rangle \pi_0 = \overline{g} f$, $\langle f, g \rangle \pi_1 = \overline{f} g$.

A restriction category X has a *restriction terminal object* if it contains an object 1 such that for every object A in X there is a unique total map $!_A : A \to 1$ such that for any $f : X \to Y$



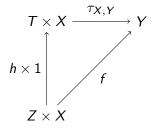
A restriction category with both restriction products and a restriction terminal object is called a *cartesian restriction category*.

For Example: Partial functions on sets

- The restriction terminal object is $1 = \{*\}$, a one element set.
- ► The restriction product of *A*, *B* is the direct product, *A* × *B*, with the usual projection.

let $\ensuremath{\mathbb{X}}$ be a cartesian restriction category.

Given a map $\tau_{X,Y} : T \times X \to Y$, a morphism $f : Z \times X \to Y$ is said to admit a $\tau_{X,Y}$ -index when there exists a total map $h : Z \to T$ making



commute. In this case, call h a $\tau_{X,Y}$ -index for f.

 $\tau_{X,Y}$ is called a *universal application* when every $f : Z \times X \rightarrow Y$ admits a $\tau_{X,Y}$ -index.

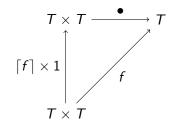
A *Turing object* in an object *T* such that for each $X, Y \in \mathbb{X}$, there is a universal application $\tau_{X,Y} : T \times X \to Y$.

X is a *Turing category* if it posesses a Turing object.

equivalently...

A *Turing category* is a cartesian restriction category with a distinguished object T, called the *Turing object*, such that

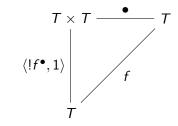
- every object is a retract of T
- ► there is an application map, •, such that for every f: T × T → T there is a total map [f]: T → T making the following diagram commute.



Proposition

A cartesian restriction category $\mathbb X$ is a Turing category if it posesses an object T such that

- every object is a retract of T
- there is a map : T × T → T such that for all f : T → T there is a total point f[•] : 1 → T such that



commutes.

Turing Categories capture computability. For example

 λ-calculus gives a Turing category. (Take the reflexive object of the cartesian closed category as the Turing object)

 In fact, Turing catgories are in one-to-one correspondence with partial combinatory algebras

There is also a rather nice way to do Gödel incompleteness in a Turing category

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

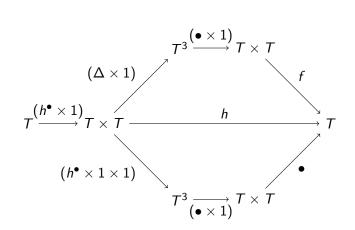
Theorem

(second recursion theorem) In any Turing category, for any $f: T \times T \to T$ where T is the Turing object, there is a total point $p: 1 \to T$ such that $(p \times 1) \bullet = (p \times 1) f$.

Proof

let $h = (\Delta \times 1)(\bullet \times 1)f$. Then there is a code h^{\bullet} for h with $(h^{\bullet} \times 1) \bullet$ total and $(h^{\bullet} \times 1 \times 1)(\bullet \times 1) \bullet = h$.

Setting $p = (h^{\bullet} \times h^{\bullet}) \bullet$ makes



commute, which gives $(p \times 1) \bullet = (p \times 1) f$, as required.

In a Turing category with Turing structure (T, \bullet) , a *provability predicate* is a restriction idempotent $e_{pf} \in \mathcal{O}(T \times T)$ such that k_1, k_2 are in e_{pf} $(k_1 \vdash k_2)$ if and only if

$$\langle !k_1,1\rangle \bullet \leq \langle !k_2,1\rangle \bullet$$

Theorem

Every nontrivial Turing category with a restriction zero and a provability predicate has a predicate (subobject) of the terminal object which is neither $0 \in O(1)$ nor $1 \in O(1)$.

Proof

let $e_{pf} \in \mathcal{O}(T \times T)$ be the provability predicate, and let 0^{\bullet} , $0^{\bullet \bullet}$ be codes for the maps 0 and $!0^{\bullet}$ respectively.

let $f = (\langle 1, !0^{\bullet \bullet} \rangle comp \times 1) e_{pf}! k$ for some $k : 1 \to T$.

by the second recursion theorem, there is a point $p^{\bullet}: 1 \to T$ such that $(p^{\bullet} \times 1) \bullet = (p^{\bullet} \times 1) f$. Note that p^{\bullet} is a code for some map p.

Now,

$$0^{\bullet}p! = 0^{\bullet} \langle !p^{\bullet}, 1 \rangle \bullet !$$

= $0^{\bullet} \langle !p^{\bullet}, 1 \rangle f !$
= $\langle p^{\bullet}, 0^{\bullet} \rangle f !$
= $\langle p^{\bullet}, 0^{\bullet} \rangle (\langle 1, !0^{\bullet \bullet} \rangle comp \times 1) e_{pf} ! k !$
= $\langle \langle p^{\bullet}, 0^{\bullet \bullet} \rangle comp, 0^{\bullet} \rangle e_{pf} !$
= $\langle (!0^{\bullet}p)^{\bullet}, 0^{\bullet} \rangle e_{pf} !$

(ロ)、(型)、(E)、(E)、 E) の(の)

If
$$0^{\bullet}p! = 0$$
, then $\langle (0^{\bullet}p)^{\bullet}, 0^{\bullet} \rangle e_{pf} = \langle (0^{\bullet}p)^{\bullet}, 0^{\bullet} \rangle$, and so $\langle (!0^{\bullet}p)^{\bullet}, 0^{\bullet} \rangle ! = 1_1$, which means that $1_1 = 0$.

If $0^{\bullet}p! = 1_1$, then $p \not\leq 0$ and so $\langle (0^{\bullet}p)^{\bullet}, 0^{\bullet} \rangle e_{pf}!$ cannot be total, which means it must be 0. So again, $0 = 1_1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 \dots and so there must be predicates of the terminal object that are neither 1_1 nor 0. That is, The setting is non-classical!

To connect these two incompleteness results, it would make sense if we could start with a term logic, construct a Turing category using it, and define a provability predicate in that category.

To that end, we introduce the logical system \mathcal{L} .

Structural inference rules and induction:

$$\frac{\Gamma \vdash \Theta}{\mathcal{D}, \Gamma \vdash \Theta} \qquad \frac{\Gamma \vdash \Theta}{\Gamma \vdash \Theta, \mathcal{D}} \qquad \frac{\mathcal{D}, \mathcal{D}, \Gamma \vdash \Theta}{\mathcal{D}, \Gamma \vdash \Theta} \qquad \frac{\Gamma \vdash \Theta, \mathcal{D}, \mathcal{D}}{\Gamma \vdash \Theta, \mathcal{D}}$$

$$\frac{\Delta, \mathcal{D}, \mathcal{C}, \Gamma \vdash \Theta}{\Delta, \mathcal{C}, \mathcal{D}, \Gamma \vdash \Theta} \qquad \frac{\Gamma \vdash \Theta, \mathcal{C}, \mathcal{D}, \Lambda}{\Gamma \vdash \Theta, \mathcal{D}, \mathcal{C}, \Lambda} \qquad \frac{\Gamma \vdash \Theta, \mathcal{D} \qquad \mathcal{D}, \Delta \vdash \Lambda}{\Gamma, \Delta \vdash \Theta, \Lambda}$$

$$\frac{F(a), \Gamma \vdash \Theta, F(a')}{F(0), \Gamma \vdash \Theta, F(t)}$$

Logical inference rules:

$\Gamma\vdash\Theta,\mathcal{A}$	$\Gamma\vdash\Theta,\mathcal{B}$	$\mathcal{A}, \Gamma \vdash \Theta$	$\mathcal{B}, \Gamma \vdash \Theta$
${\sf \Gamma}\vdash \Theta, {\cal A}\wedge {\cal B}$		$\overline{\mathcal{A} \wedge \mathcal{B}, \Gamma \vdash \Theta}$	$\overline{\mathcal{A}\wedge\mathcal{B},\Gammadash\Theta}$
$\frac{\mathcal{A}, \Gamma \vdash \Theta}{\mathcal{A} \lor \mathcal{B}},$,	$\frac{\Gamma\vdash\Theta,\mathcal{A}}{\Gamma\vdash\Theta,\mathcal{A}\vee\mathcal{B}}$	$\frac{\Gamma\vdash\Theta,\mathcal{B}}{\Gamma\vdash\Theta,\mathcal{A}\vee\mathcal{B}}$
	$\frac{\Gamma \vdash \Theta, F(t)}{\vdash \Theta, \exists x.F(x)}$	$\frac{F(t), \Gamma \vdash \Theta}{\exists x. F(x), \Gamma \vdash \Theta}$	

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Axioms:

$$\overline{x' = 0 \vdash} \qquad \overline{\vdash} (\exists x.y = x') \lor y = 0 \qquad \overline{x' = y' \vdash x = y}$$
$$\overline{x = y \vdash P(x) = P(y)} \qquad \overline{\vdash} x = x \qquad \overline{x = y \vdash y = x}$$
$$\overline{x = y, y = z \vdash x = z} \qquad \overline{a = b \land P(b) \vdash P(a)}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Define the equivalence relation \sim by $P_1 \sim P_2$ if and only if $P_1 \vdash P_2$ and $P_2 \vdash P_1$. Write the equivalence class of P as [P]

We can use this to construct a category $\mathbb{T}_{\mathcal{L}}$:

Objects: $1 = \mathbb{N}^0, \mathbb{N}, \mathbb{N} \times \mathbb{N}, \mathbb{N}^3, \dots$

Maps: $f : \mathbb{N}^n \to \mathbb{N}^m$ is given by an equivalence class of n + m place predicates, $[P_f]$, such that if $P_f \in [P_f]$ then

$$P_f(x_1,\ldots,x_n,y_1,\ldots,y_m) \wedge P_f(x_1,\ldots,x_n,z_1,\ldots,z_m)$$

 $\vdash y_1 = z_1 \wedge \cdots \wedge y_m = z_m$

Composition:

Given $f : \mathbb{N}^n \to \mathbb{N}^m$, $g : \mathbb{N}^m \to \mathbb{N}^l$,

$$fg := [\exists w_1 \cdots \exists w_m . P_f(x_1, \ldots, x_n, w_1, \ldots, w_m) \land P_g(w_1, \ldots, w_m, y_1, \ldots, y_l)]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Identities:

$$\begin{split} 1_1 &:= [true] \\ 1_{\mathbb{N}^n} &:= [x_1 = y_1 \wedge \cdots \wedge x_n = y_n] \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

This forms a category. In fact,

$$\overline{f} := [(\exists \widetilde{w} . P_f(\widetilde{x}, \widetilde{w})) \land \widetilde{x} = \widetilde{y}]$$

gives that we have a restriction category, and

$$\widehat{f} := [(\exists \widetilde{w} . P_f(\widetilde{w}, \widetilde{x})) \land \widetilde{x} = \widetilde{y}]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

gives that we have a range category!

Proposition

 $\mathbb{T}_{\mathcal{L}}$ is a cartesian restriction category with joins and ranges.

... How exactly we finish the construction and obtain a Turing category is unclear. In particular, how does one define \bullet ?