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Background/Spoilers

e Categorical Message Passing Language (CaMPL) is a concurrent functional
programming language which has its semantics defined in category theory.

e Semantics of non-deterministic programsis given by a sup-lattice enriched
category which is created by a change of base from the original semantics.

e Geoff Crutwell’s PhD thesis showed that we can define a change of base
functor if there is a monoidal functor between the “base” categories.

e Healso describes how monoidal functors can be applied “monoidally” and
that applying functors monoidally is “functorial.”

e Power set functor gives a monoidal functor that takes sets to sup-lattices.
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Change of Base

e We want to define the semantics of non-deterministic programs as a
sup-lattice enriched version of the deterministic semantics.

e We also want to ensure the monoidal structures in the semantics, which
define some of the other programming features in the language, are
preserved.

e So we need a functor that takes the deterministic semantics which are
set-enriched to the non-deterministic semantics which are sup-lattice
enriched and preserves the monoidal structures in the semantics.



Change of Base

According to results from Geoff Cruttwell’s PhD thesis, a change of base
functor exists if there is a monoidal functor between the monoidal “base”
categories.

e Theorem 5.7.1. Suppose that N : (V,e,[,01) — (W, ®, J,09)
is a braided monoidal functor between braided monoidal categories.
Then the change of base 2-functor /V, takes monoidal V-categories
to monoidal W-categories.

This means that if we can define a monoidal “/NV functor” of our own
from Set to Suplat, we also get a change of base functor from the
deterministic semantics to the non-deterministic semantics.



Monoidal Functors

A monoidal functor between monoidal categories (V, e, 1) and (W, ®, J),

is a functor NV : V. — W, together with natural transformations, called
comparison maps:

e mgap: NA® NB — N(Ae B)
e my:J — NI

For which the following coherence diagrams commute VA, B,C € V.



Monoidal Functors

* Left and right unitors:
JRNA NA®J

ml@ll \ 1®mll \
NI®NA —> N(IoA) 73 NA  NA®NI —> N(Ael) =3 NA

* Associativity:
(NA® NB)@ NC —2» NA® (NB® NC)

m®®1l ll@m@)

N(AeB)@ NC NA® N(BeC)
N((Ae B)e() N(Ae(Be())

N(a.)



Whatis a Sup-Lattice?

e Asup-lattice £ = (L, L, V) has carrier L, bottom element | € L,
and join operation V.

e A partial ordering is given by VV which can be expressed as
r<y < xVy=yand L <.

e Additionally, sup is a unigue map from elements to their
least upper bound (supremum) element if it exists,
sox < sup(x,y), y < sup(x,y)andz < z, y < z = sup(z,y) < z.

e We can also express the notion of arbitrary sups as joins:
T < \/xianda:igz, Viel = \/a:igz
el el 7



Power Set Functor

e Let &2 : Set — Set denote the power set functor. We can write
Y = PU where P : Set — Suplat lifts a set to a sup-lattice where
the carrier is its power setand L := (), V := U and
U : SuplLat — Set is the underlying functor that maps a sup-lattice
back to the set that is its carrier.

e These functors form an adjunction (7,¢) : P 4 U : Set — Suplat
with 1 : 1set = PU which sends elements to singletons.
An abstract component mapisnx : X — PU(X); x — {z}.
The power set is formed by the sup-lattice with bottom element ()

and the singletons are joined with U.



SupLatis a Monoidal Category

e Suplat is the category of sup-lattices where the objects are sup-lattices
and the morphisms are sup-preserving maps.

e A sup-preserving map ensures the sup for a set of elements is mapped
to the sup for the mappings of those elements: f(v zi) = \/ f(z;)

e The unit sup-lattice I has carrier { T, L }. i€l i€l

e The tensor of sup-lattices, £1 ® Lo, creates a sup-lattice with carrier
{\/(.‘131 ®.CE‘2) ‘ x1 € Li,x9 € Lo },WhEI’EJ_@.’E:J_:LC@J_.
Maps out of the tensor are sup-preserving and bi-sup-preserving:

(Vz)ey=\@oy z0(\y)=\cEey)

el el jedJ jeJ 9



Power Set Functor is a Monoidal Functor

e We want to show that P : Set — Suplat is a monoidal functor;
that is, the monoidal structure in Set (X, *,ax,l«,ry«) is lifted to
the monoidal structure in Suplat (®, [, ag, (g, rg).

e To show that P is a monoidal functor, we must define comparison
maps and show that the necessary coherence diagrams commute.

e my: 1 — P(x)isgivenby T — x, L > 0.

* mg : P(X)RP(Y) — P(X xY)isgiven by the universal property
of the tensor of sup-lattices.
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Power Set Functor is a Monoidal Functor

e The diagram on the left is the universal property of the tensor which
says, if we have a bi-sup-preserving map m, there exists the map m’/:

ﬁl X £2 SERLLEEN £3 P(X) X P(Y) L> P(X X Y)
T P (
"Ol e c,ol e
L1® Lo P(X)®P(Y)

o Ifweset L3:=P(X xY)andshow the map m exists, the m’ map
is the mg map we want, as shown in the diagram on the right. .



Power Set Functor is a Monoidal Functor

e Suppose (U, V') is an element of the carrier of P(X) x P(Y).
e Definem : (U,V) — {(u,v) |ueU,veV}

e Since m is a map out of the product of sup-lattices, it must be
bi-sup-preserving, so we want to show thatm(\/. U;, V') = \/, m(U;, V)
as well as the symmetric case.

e By definition, m(\/, U;, V) — {(u,v) |u € V,U;,v € V},
and \/,L m(UZ, V) — \/,L{(’LL,”U) | ue U;,ve V}

e These are equivalent as arbitrary elements from each are included
in the other, so we have defined our m map and therefore mg.
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Power Set Functor is a Monoidal Functor

* Left and right unitors:

I®PA PA®I
m1®1l l® 1®m1J( "®
P(x) @ PA —— P(x x A) T PA PA®P(x) - P(A X %) T PA

* Associativity:
(PA® PB) @ PC —25 PA® (PB® PC)

m®®1l J/l@m@;

P(A x B) @ PC PARP(B xC)

mo | |me

P((Ax B) x () e P(A x (B x (C))
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Change of Base

Again, we use results from Geoff’s PhD thesis to define the category
produced by a change of base.

 Proposition 4.2.1. Let N be as defined, and X a V' -category.
Then the following defines a I/ -category NV, X:

e /N..X has the same objects as those of X,

* hom-objects are defined by (N, X )(z,y) := N(X(z,y)),

e compositionis /V applied monoidally to the compositionin X,
e identities are /NV applied monoidally to the identities in X.
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Applying Monoidal Functors Monoidally

There are two ways to apply a monoidal functor /N “monoidally”:

® Given an arrow in V, ¢ Given an arrow in V,
f:AeB —C(C g:1 — A
we apply N monoidally to we apply N monoidally to
get an arrow in W, get an arrow in W,
N'(f): NAQ NB — NC N'(g): J— NA
defined as the composite: defined as the composite:
NA® NB

J
m N,(f) my N,(Q)
N(Ae B) . NC NI . NA

N(f) N(g)
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Sup-Lattice Enrichment

Let C be the set-enriched deterministic semantics category, then define
P.C as the sup-lattice enriched non-deterministic semantics category
produced by the change of base:
* Objects : Obj (C)
e Hom-objects: (P.C)(A, B) :=P(C(A, B))
e |dentity : P applied monoidally to the identities in C to produce:
la:1—P(C(A,A))

e Composition: P applied monoidally to the compositionin C to produce:
mapc : P(C(A,B)) @ P(C(B,C)) — P(C(A,C))
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Sup-Lattice Enrichment

* Composite diagrams for composition and identity maps:

P(C(A,B)) ® P(C(B,C))

I
1a
m@l m mlJ/ \

P(C(A,B) x C(B,(0))

P(m;ch)
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