The Polynomial Abacus

David I. Spivak
TOPOS
INSTITUTE

FMCS 2024
2024 July 09

Outline

Introduction
m The abacus
m Plan

0/49

Abacus for the Glass Bead Game

There is a story by Herman Hesse, called The Glass Bead Game.

m It depicts a monastic community of thinkers, led by a “game master”.
m The game is played on an instrument involving strings of glass beads.

Like a rap battle or poetry slam, the game is played to express deep ideas.

m Players represent connections between math, music, philosophy, etc.
m The moving glass beads weave these subjects together in harmony.
m To play well is to contemplate and communicate profound insights.

1/49

Abacus for the Glass Bead Game

There is a story by Herman Hesse, called The Glass Bead Game.

m It depicts a monastic community of thinkers, led by a “game master”.
m The game is played on an instrument involving strings of glass beads.

Like a rap battle or poetry slam, the game is played to express deep ideas.

m Players represent connections between math, music, philosophy, etc.
m The moving glass beads weave these subjects together in harmony.
m To play well is to contemplate and communicate profound insights.

| loved the idea of the book, but something was missing.

m Hesse only roughly describes the instrument—the abacus—itself.
m What sort of combinatorial object is capable of this grand scope?

To my lights, Poly can serve as an abacus; | hope to justify that to you.

1/49

Approximate plan for tutorial

First session:

m Introduce Poly and its combinatorics (how the abacus works);
m Discuss its pleasing properties and monoidal structures;
m Present the framed bicategory Cat?’.
Second session:
m Recall Cat® and discuss some properties of it;
m Consider applications: dynamical systems, data, and deep learning;
m Conclude with a summary.

2/49

Outline

Theory
m Poly as a category
m A quick tour of Poly
m Comonoids in Poly
m The framed bicategory Cat!
= Monads in Cat!

2/49

Poly as a category

Poly for experts

What I'll call the category Poly has many names.
m The free completely distributive category on one object;
m The free coproduct completion of Set®P;

m The full subcategory of [Set, Set] spanned by functors that preserve
connected limits;

The full subcategory of [Set, Set] spanned by coproducts of repr'bles;

3/49

Poly as a category

Poly for experts

What I'll call the category Poly has many names.
m The free completely distributive category on one object;
m The free coproduct completion of Set®P;

m The full subcategory of [Set, Set] spanned by functors that preserve
connected limits;

The full subcategory of [Set, Set] spanned by coproducts of repr'bles;

The category of typed sets and colax maps between them.
m Objects: pairs (/,7), where | € Set and 7: | — Set.

m Morphisms (/,7) & (I',7'): pairs (¢1, "), where

/ i I
ot
Set

But let's make this easier.
3/49

Poly as a category

What is a polynomial?

Algebraic Bundle Corolla forest

PUPRIPN NP B v A N

[....O.]

4/49

Poly as a category

What is a polynomial?

Algebraic Bundle Corolla forest

posmes Beee Loy

One could repurpose this machine to represent 15y°*2 < Poly.

4/49

Poly as a category

Terminology woes
Issue: prior terminology from computer science doesn’t fit my conception.
p=y’+y +y7+1

m Container terminology from Abbott: “shapes and positions”.
mdatapY=FooYYY | Bar YY | Baz Y Y | Qux
m Container p has four “shapes”, e.g. Foo has three “positions”.

5/49

Poly as a category

Terminology woes
Issue: prior terminology from computer science doesn’t fit my conception.
p=y’+y +y7+1

m Container terminology from Abbott: “shapes and positions”.
mdatapY=FooYYY | Bar YY | Baz Y Y | Qux
m Container p has four “shapes”, e.g. Foo has three “positions”.
m We prefer to think of these “positions” as projection arrows.

VVY.

5/49

Poly as a category

Terminology woes
Issue: prior terminology from computer science doesn’t fit my conception.
p=y’+y +y7+1

m Container terminology from Abbott: “shapes and positions”.
mdatapY=FooYYY | Bar YY | Baz Y Y | Qux
m Container p has four “shapes”, e.g. Foo has three “positions”.
m We prefer to think of these “positions” as projection arrows.

VVY.

m Hard decision but I'll say positions and directions. Reasons:
m Dynamical systems: position = point, direction = vector.
m Categories: position = object, direction = morphism.
m Terminal coalgebra trees: position = label, direction = arrow.

5/49

Combinatorics of polynomial morphisms

Let p:=23+2yand g:=y* + 42 +2

VY.,

A morphism p 2, q delegates each p-position to a g-position, passing
back directions:

I

Example: how to think of
m 2 yf 27
m p — y for arbitrary p ?

6/49

Poly as a category

The category of polynomials

Easiest description: Poly = “sums of representables functors Set — Set".
m For any set S, let y° := Set(S, —), the functor represented by S.
m Def: a polynomial is a sum p = Z,-E,yp[i] of representable functors.

m Def: a morphism of polynomials is a natural transformation.

7/49

Poly as a category

Notation

We said that a polynomial is a sum of representable functors
p ~ Z yP["].
iel
But note that / = p(1). So we can write

pg Z yP["].

iep(1)

8/49

Notation

We said that a polynomial is a sum of representable functors
p= Z yP["].
icl
But note that / = p(1). So we can write
p= Z yP["].
iep(1)

Here's a derivation of the combinatorial formula for morphisms:

Poly(p, q) = Poly Z Pl Z gl | =~ H Poly | P!, Z y U]

iep(1) Jj€q(1) iep(1 Jj€q(1)
o H S set(qlj], plil)
iep(1) jeq(1)

“For each i € p(1), a choice of j € q(1) and a function q[j] — p[i]."

8/49

Poly as a category

Notation for the abacus

For any polynomial p € Poly, I'll use the following sort of notation

pl-]
p(1)

9/49

Poly as a category

Notation for the abacus

For any polynomial p € Poly, I'll use the following sort of notation

pl-1] |
p(1)

m The bottom part is filled by indicating a position, say i/ € p(1).

9/49

Poly as a category

Notation for the abacus

For any polynomial p € Poly, I'll use the following sort of notation

pl-] ﬂ
p(1)

m The bottom part is filled by indicating a position, say i € p(1).
m Only then can the top part be filled by a direction, say d € p[i].

9/49

Poly as a category

Notation for the abacus

For any polynomial p € Poly, I'll use the following sort of notation

pl-] ﬂ
p(1)

m The bottom part is filled by indicating a position, say i € p(1).
m Only then can the top part be filled by a direction, say d € p][i].
This gets more interesting for maps. A map ¢: p — g is shown:

o
%
_

©1

The map ¢ is a formula saying “however you fill blue's, I'll fill whites.”

9/49

Poly as a category

Notation for the abacus

For any polynomial p € Poly, I'll use the following sort of notation

pl-]
p(1)

m The bottom part is filled by indicating a position, say i € p(1).
m Only then can the top part be filled by a direction, say d € p][i].
This gets more interesting for maps. A map ¢: p — g is shown:

[~
<—
P q
i
$1

The map ¢ is a formula saying “however you fill blue's, I'll fill whites.”
m For any i € p(1) you choose,

9/49

Poly as a category

Notation for the abacus

For any polynomial p € Poly, I'll use the following sort of notation

pl-]
p(1)

m The bottom part is filled by indicating a position, say i € p(1).
m Only then can the top part be filled by a direction, say d € p][i].
This gets more interesting for maps. A map ¢: p — g is shown:

—> e1(i)

The map ¢ is a formula saying “however you fill blue's, I'll fill whites.”
m For any i € p(1) you choose, I'll return ¢1(i) € g(1), and

9/49

Poly as a category

Notation for the abacus

For any polynomial p € Poly, I'll use the following sort of notation

pl-]
p(1)

m The bottom part is filled by indicating a position, say i € p(1).
m Only then can the top part be filled by a direction, say d € p][i].
This gets more interesting for maps. A map ¢: p — g is shown:

<—e
P q

—> e1(i)

The map ¢ is a formula saying “however you fill blue's, I'll fill whites.”
m For any i € p(1) you choose, I'll return ¢1(i) € g(1), and
m for any e € g[¢1(/)] you choose,

9/49

Notation for the abacus

For any polynomial p € Poly, I'll use the following sort of notation

pl-]
p(1)

m The bottom part is filled by indicating a position, say i € p(1).
m Only then can the top part be filled by a direction, say d € p][i].
This gets more interesting for maps. A map ¢: p — g is shown:

pile) [«—| e
p q

The map ¢ is a formula saying “however you fill blue's, I'll fill whites.”
m For any i € p(1) you choose, I'll return ¢1(i) € g(1), and
m for any e € g[p1(/)] you choose, I'll return (p?(e) € pli].

9/49

Notation for the abacus

For any polynomial p € Poly, I'll use the following sort of notation

pl-]
p(1)

m The bottom part is filled by indicating a position, say i € p(1).
m Only then can the top part be filled by a direction, say d € p][i].
This gets more interesting for maps. A map ¢: p — g is shown:

i ®
v;i(e) €
p q
i B — e1(i)

The map ¢ is a formula saying “however you fill blue's, I'll fill whites.”
m For any i € p(1) you choose, I'll return ¢1(i) € g(1), and
m for any e € g[p1(/)] you choose, I'll return (p?(e) € pli].
But this notation will really come in handy later in handling compositiong./49

Pleasing aspects of Poly

Here are some properties enjoyed by Poly:
m Poly contains two copies of Set and one copy of Set®P.
m Sets A can be represented as a constant or linear: A, Ay € Poly.
m Sets A can be op-represented as representables y* € Poly.
m Each of these inclusions is full and has at least one adjoint.

10/49

Pleasing aspects of Poly

Here are some properties enjoyed by Poly:

m Poly contains two copies of Set and one copy of Set®P.
m Sets A can be represented as a constant or linear: A, Ay € Poly.
m Sets A can be op-represented as representables y* € Poly.
m Each of these inclusions is full and has at least one adjoint.

m Poly has all coproducts and limits (extensive), and is Cartesian closed;
m These agree with coproducts, limits, closure in “ SetSet .
m 0 is initial, 1 is terminal, + is coproduct, X is product.
m y” is internal hom between A,y € Poly. For fun: y¥ =y + 1.

m Poly has coequalizers, though these differ from coeq’s in “ SetSet .

10/49

Pleasing aspects of Poly

Here are some properties enjoyed by Poly:

m Poly contains two copies of Set and one copy of Set®P.
m Sets A can be represented as a constant or linear: A, Ay € Poly.
m Sets A can be op-represented as representables y* € Poly.
m Each of these inclusions is full and has at least one adjoint.

m Poly has all coproducts and limits (extensive), and is Cartesian closed;
m These agree with coproducts, limits, closure in “ SetSet .
m 0 is initial, 1 is terminal, + is coproduct, X is product.
m y” is internal hom between A,y € Poly. For fun: y¥ =y + 1.

m Poly has coequalizers, though these differ from coeq’s in “ SetSet .

m Poly has two factorization systems: epi-mono, vertical-cartesian.

10/49

A quick tour of Poly

Monoidal structures on Poly

There are many monoidal structures on Poly.
m It has a coproduct (0, +) structure.
m Day convolution can be applied to any SMC structure (/,-) on Set.
m The result is a distributive monoidal structure (', ®) on Poly.
m In the case of (0,+), the result is the product (1, x).
m In the case of (1, x), the result is (y, ®).

pxq= Z Z yPlil+all and PR g Z Z yPlilxalil,

iep(1) jeq(1) iep(1) jeq(1)

11/49

A quick tour of Poly

Monoidal structures on Poly

There are many monoidal structures on Poly.
m It has a coproduct (0, +) structure.
m Day convolution can be applied to any SMC structure (/,-) on Set.
m The result is a distributive monoidal structure (', ®) on Poly.
m In the case of (0,+), the result is the product (1, x).
m In the case of (1, x), the result is (y, ®).

pxq= Z Z yPlil+all and PR g Z Z yPlilxalil,

iep(1) jeq(1) iep(1) jeq(1)
m The ® product has a closure (internal hom) [—, —] given by
pra= 3 yTendao)
©: p—q

11/49

A quick tour of Poly

Monoidal structures on Poly

There are many monoidal structures on Poly.
m It has a coproduct (0, +) structure.
m Day convolution can be applied to any SMC structure (/,-) on Set.
m The result is a distributive monoidal structure (', ®) on Poly.
m In the case of (0,+), the result is the product (1, x).
m In the case of (1, x), the result is (y, ®).

pxq= Z Z yPlil+all and PR g Z Z yPlilxalil,

iep(1) jeq(1) iep(1) jeq(1)
m The ® product has a closure (internal hom) [—, —] given by
pra= 3 yTendao)
©: p—q

There's one more monoidal product, which will be of great interest.

11/49

A quick tour of Poly

Composition monoidal structure (Poly, y, <)

The composite of two polynomial functors is again polynomial.
m Let’s denote the composite of p and g by p<q.
m Example: if p:=y?, g:=y+1, then pag=y?>+2y+1.
m This is a monoidal structure, but not symmetric. (g<p = y? +1)
m The identity functor y is the unit: p<ay Z p = y<p.

12/49

A quick tour of Poly

Composition monoidal structure (Poly, y, <)

The composite of two polynomial functors is again polynomial.

m Let’s denote the composite of p and g by p<q.

m Example: if p:=y?, g:=y+1, then pag=y?>+2y+1.

m This is a monoidal structure, but not symmetric. (g<p = y? +1)
m The identity functor y is the unit: p<ay Z p = y<p.

Why the we weird symbol < rather than o?

m We want to reserve o for morphism composition.
m The notation p < g represents trees with p under gq.

12/49

A quick tour of Poly

Composition given by stacking trees

Suppose p = y?> +y and g = y3 + 1.

Draw the composite p < g by stacking g-trees on top of p-trees:

p<q

VooV NV NV T

You can also read it as g feeding into p, which is how composition works.

13/49

A quick tour of Poly

Maps to composites

The abacus pictures are most useful for maps p — g1 <+ - - < gk.
B A map p: p— qdris an element of

pepPoypa<n=] S I X 11 3 1

iep(1) jeq(1) ecqlj] ker(1) ferlk] depli]

We could write it with our abacus pictures:

el
pgw\ggq

14/49

A quick tour of Poly

Maps to composites

The abacus pictures are most useful for maps p — g1 <+ - - < gk.
B A map p: p— qdris an element of

pepPoypa<n=] S I X 11 3 1

iep(1) jeq(1) ecqlj] ker(1) ferlk] depli]

We could write it with our abacus pictures:

g
pgw\ggq

14/49

A quick tour of Poly

Maps to composites

The abacus pictures are most useful for maps p — g1 <+ -+ < qk.
B A map p: p— qdris an element of

¢ € Poly(p,g<r) = H Z H Z H Zl.

iep(1) jeq(1) ecqlj] ker(1) ferlk] depli]

We could write it with our abacus pictures:

e
,Hw\g

=T 1 1]

14/49

A quick tour of Poly

Maps to composites

The abacus pictures are most useful for maps p — g1 <+ - < g.

® A map ¢: p— gdris an element of

v € Poly(p,g<r) = H Z H Z H Zl

iep(1) jeq(1) eeqlj] ker(1) ferlk] depli]

We could write it with our abacus pictures:

14/49

A quick tour of Poly

Maps to composites

The abacus pictures are most useful for maps p — g1 <+ -+ <4 gx.

B A map p: p— qg<dris an element of

¢ € Poly(p,g<r) = H Z H Z H Zl.

iep(1) jeq(1l) eeqlj] ker(1) ferlk] depli]

We could write it with our abacus pictures:

s,
3<Ca

14/49

A quick tour of Poly

Maps to composites

The abacus pictures are most useful for maps p — g1 <+ - < g.

® A map ¢: p— gdris an element of

¢ € Poly(p,g<r) = H Z H Z H Zl

iep(1) jeq(1) ecqlj] ker(1) ferlk] depli]

We could write it with our abacus pictures:

i

¥

)

he]
=1 |

14/49

Maps to composites

The abacus pictures are most useful for maps p — g1 <+ - - < gk.

B A map ¢: p— gdris an element of

v € Poly(p,g<r) = H Z H Z H Zl

iep(1) jea(1) eeqljl ker(1) ferlk] depli]

We could write it with our abacus pictures:

r

q

f
k
[e]
J

These will come in handy when asking if two such ¢, v are equal.

14/49

Comonoids in Poly

Comonoids in (Poly, y, <)

In any monoidal category (171, /,®), one can consider comonoids.
m A comonoid is a triple (m, ¢, §) satisfying certain rules, where
m m € 11l is an object, the carrier,
m ¢: m— | is a map, the counit, and
mJ: m— m® mis a map, the comultiplication.

In (Poly, y,<), comonoids are exactly categories!?

! Ahman-Uustalu. “Directed Containers as Categories”. MSFP 2016.
15/49

Comonoids in Poly

Comonoids in (Poly, y, <)

In any monoidal category (171, /,®), one can consider comonoids.
m A comonoid is a triple (m, ¢, §) satisfying certain rules, where
m m € 11l is an object, the carrier,
m ¢: m— | is a map, the counit, and
mJ: m— m® mis a map, the comultiplication.

In (Poly, y,<), comonoids are exactly categories!?

m If C is a category, the corresponding comonoid has carrier
¢ = Z ye[i]
icOb(C)

where C[i] is the set of morphisms in C that emanate from i.
m The counit €: ¢ — y assigns to each object an identity.
m The comult §: ¢ — c¢< ¢ assigns codomains and composites.

! Ahman-Uustalu. “Directed Containers as Categories”. MSFP 2016.
15/49

Comonoids in Poly

The abacus in action

We can understand the Ahman-Uustalu result combinatorially.
m Let (c,¢,0) be a comonoid, where €: ¢ — y and §: ¢ — c<c.

g gl
= G

Here's the first unitality law, (idc <€) o d = id,:

gZd -l - =t

%
s

16 /49

The abacus in action

We can understand the Ahman-Uustalu result combinatorially.
m Let (c,¢,0) be a comonoid, where €: ¢ — y and §: ¢ — c<c.

e G

N

Here's the first unitality law, (idc <€) 0o d = idc:

56 H:' L

Equation: Vi € ¢(

16 /49

The abacus in action

We can understand the Ahman-Uustalu result combinatorially.
m Let (c,¢,0) be a comonoid, where €: ¢ — y and §: ¢ — c<c.

= I

Here's the first unitality law, (idc <€) 0o d = idc:

5 ¢
i B
CH é = %

\ id c
51 51(1) % 51(1)

Equation: Vi € ¢(1),01(i) =i A ...

16 /49

The abacus in action

We can understand the Ahman-Uustalu result combinatorially.
m Let (c,¢,0) be a comonoid, where €: ¢ — y and §: ¢ — c<c.

= I

Here's the first unitality law, (idc <€) 0o d = idc:

o

st —

/H—%I id,
III _‘\\\\\\\\> ——| f . c c

o a0 | —2 s [5,0)

Equation: Vi € ¢(1),01(i) = i AVF € ¢][i],

16 /49

The abacus in action

We can understand the Ahman-Uustalu result combinatorially.
m Let (c,¢,0) be a comonoid, where €: ¢ — y and §: ¢ — c<c.

A= e
S HH

/ﬁ (5:() <—I . .
€ 52(f) f id. :
| @) Q = %
i \ f : . c c

s [6 (i) % 51(7)

Equation: Vi € c(1),01(i) = i AVF € c[i], 68 (f, € (52(F))) = .

Here's the first unitality law, (idc <€) od =

16 /49

Comonoids in Poly

Making sense of the results

We want to make sense of the set-theoretic equations from the abacus.

m For example, we found out that §;1(i) =i for all i € ¢(

-y ﬁ
S CH

m To make sense of the other equations, let's rename ¢!, &, and §%.

17/49

Comonoids in Poly

Making sense of the results

We want to make sense of the set-theoretic equations from the abacus.

m For example, we found out that §;1(i) =i for all i € ¢(

oen fﬁ

m To make sense of the other equations, let's rename €, &, and §%.
m Namely, let's write idy = ¢!, cod = &, and § = &%
m Then the previous equation says: f §idy(cod(f)) = f.

17/49

Comonoids in Poly

Making sense of the results

We want to make sense of the set-theoretic equations from the abacus.

m For example, we found out that §;1(i) =i for all i € ¢(

oen Zﬁ

m To make sense of the other equations, let's rename €, &, and §%.
m Namely, let's write idy = ¢!, cod = &, and § = &%
m Then the previous equation says: f §idy(cod(f)) = f.
m The other unitality eq'n gives: cod(idy(i/)) =i and idy(i) ¢ f = f.
m The associativity eq'n gives: cod(f § g) = cod(g) and
(fsg)sh="3(g3h)

17/49

A brief glance at associativity

Let's fill it in and read off the abacus:

Comonoids in Poly

A brief glance at associativity

o h h
codg cod(fsg)
H gsh $ h
cod

cod(f3g)
g (fsg)3h

codf /
f3(gsh) . g
c c c cod Y c
i codf i codf
cod
\ \

cod

i
c c
Let’s fill it in and read off the abacus:

Viec(l),i=iA

Vf € cl[i],codf = codf A

Vg € c[codf],codg = cod(f 5g) A

Vh e clcodg], f5(g5h) = (f58)35h.

c

18/49

Comonoids in Poly

Comonoid maps are “retrofunctors”

In Poly, comonoids are categories, but their morphisms aren't functors.
m A comonoid morphism ¢: C - @ is called a retrofunctor.
m It includes a Poly map on carriers. For each object i € ¢(1), we get:
m an object j == (i) € 9(1) and
m for each emanating f € ?[j], an emanating @?(f) € c[i].
m Rules: o preserves ids and comps, and ¢ preserves cods.
m Denote this by Cat? .= Comon(Poly) = (cat'ys and retrofunctors).

19/49

Comonoids in Poly

Comonoid maps are “retrofunctors”

In Poly, comonoids are categories, but their morphisms aren’t functors.
m A comonoid morphism ¢: C - @ is called a retrofunctor.
m It includes a Poly map on carriers. For each object i € ¢(1), we get:
m an object j == (i) € 9(1) and
m for each emanating f € ?[j], an emanating @?(f) € c[i].
m Rules: o preserves ids and comps, and ¢ preserves cods.
m Denote this by Cat? .= Comon(Poly) = (cat'ys and retrofunctors).

Example: what is a retrofunctor € % y@ ?
m It is trivial on objects i € Ob(C). Passing back morphisms gives:

® ... amap go?(q): i — iyq emanating from i for each g € Q, s.t....

: ‘PB(O) =idj, so i;o =i, and gp?(q) $ ¢§+q(q’) = 90?(67 +q).

19/49

Comonoids in Poly

Comonoid maps are “retrofunctors”

In Poly, comonoids are categories, but their morphisms aren’t functors.
m A comonoid morphism ¢: C - @ is called a retrofunctor.
m It includes a Poly map on carriers. For each object i € ¢(1), we get:
m an object j == (i) € 9(1) and
m for each emanating f € ?[j], an emanating cp?(f) € c[i].
m Rules: o preserves ids and comps, and ¢ preserves cods.
m Denote this by Cat? .= Comon(Poly) = (cat'ys and retrofunctors).

Example: what is a retrofunctor C % 3@ ?
m It is trivial on objects i € Ob(C). Passing back morphisms gives:

® ... amap go?(q): i — iyq emanating from i for each g € Q, s.t....

: 90?(0) =idj, so i;o =i, and gp?(q) $ ¢§+q(q’) = 90?(67 +q).
“That's a strange sort of structure to put on a category!”

m Cofunctors offer a whole new world to explore. Think “vector fields”.

m The natural co-transformations between them are even wilder.
19/49

Comonoids in Poly

Cat’: examples and facts

Here are some examples of the polynomial ¢ carrying a category C.
® ¢ never has constant part: every object needs an outgoing arrow.
m The following are equivalent:
m the comonoid structure maps €, are cartesian;
m ¢ = Oy is a linear polynomial;
m C is a discrete category, with Ob(C) = O.

m ¢ = yM is representable iff M € Set carries a monoid.

N
mIfC= £—>%—>—>o thenc:yN+yN—1+..._|_y_

20/ 49

Comonoids in Poly

Cat’: examples and facts

Here are some examples of the polynomial ¢ carrying a category C.

¢ never has constant part: every object needs an outgoing arrow.

The following are equivalent:

m the comonoid structure maps €, are cartesian;

m ¢ = Oy is a linear polynomial;
m C is a discrete category, with Ob(C) = O.

c=yM

is representable iff M € Set carries a monoid.

If ¢ =

1 2 N
¢ e 0

Other facts about Cat:
m Coproducts in Cat® and in Cat agree; carrier is ¢ + 0.

then c = yN +yN"1+... 4.

m Cat’ has finite products (Niu), and they're very interesting.

m Cat? inherits ® from Poly, and ¢ ® D is the usual categorical product.

20/ 49

Comonoids in Poly

Cofree comonoids

To any polynomial p, we can associate the cofree comonoid on p.

m That is, the forgetful functor Cat® — Poly has a right adjoint.
m I'll give an explicit description on the next slide.
m There's a standard construction for this type of thing.

We need a polynomial ¢, and maps ¢, — y and ¢, — ¢, <cp.

21/49

Cofree comonoids

To any polynomial p, we can associate the cofree comonoid on p.

m That is, the forgetful functor Cat® — Poly has a right adjoint.
m I'll give an explicit description on the next slide.
m There's a standard construction for this type of thing.

We need a polynomial ¢, and maps ¢, — y and ¢, — ¢p < ¢p.

m Starting with p € Poly, we first copoint it by multiplying by y.
m That is, py is the universal thing mapping to p and y.
m We get ¢, by taking the limit of the following diagram in Poly:

y ——— py £ py<py = py<py<py ’E

21/49

Cofree comonoids

To any polynomial p, we can associate the cofree comonoid on p.

m That is, the forgetful functor Cat® — Poly has a right adjoint.
m I'll give an explicit description on the next slide.
m There's a standard construction for this type of thing.

We need a polynomial ¢, and maps ¢, — y and ¢, — ¢p < ¢p.
m Starting with p € Poly, we first copoint it by multiplying by y.
m That is, py is the universal thing mapping to p and y.
m We get ¢, by taking the limit of the following diagram in Poly:

Yy —— py & py<py £ py<py<py ’E

For us, a main use of ¢, is an equivalence ¢,-Set = p-Coalg.

m A coalgebra S — p(S) corresponds to ¢, — Set with elements S.
m For example, the object set ¢,(1) is the terminal p-coalgebra.

21/49

Comonoids in Poly

The cofree comonoid ¢, via p-trees

Comonoids in Poly are categories, so ¢, is a category; which one?
m It's actually free on a graph, but the graph is very interesting.
m The vertex-set ¢,(1) of the graph is the set of p-trees.
m A p-tree is a possibly infinite tree t, where each node...
m ...is labeled by a position i € p(1) and has p[i]-many branches.
m Example object t € c,(1), where p = {¢, 0}y% + {o} = 2y% + 1:
LI 1,
VYV, vV

\/\/\/ \/\/.
'\/

22/49

Comonoids in Poly

The cofree comonoid ¢, via p-trees

Comonoids in Poly are categories, so ¢, is a category; which one?
m It's actually free on a graph, but the graph is very interesting.
m The vertex-set ¢,(1) of the graph is the set of p-trees.
m A p-tree is a possibly infinite tree t, where each node...
m ...is labeled by a position i € p(1) and has p[i]-many branches.
m Example object t € c,(1), where p = {¢, 0}y% + {o} = 2y% + 1:
LI 1,
VYV, vV

\/\/\/ \/\/.
\/

m For any vertex t € ¢,(1), an arrow a € cp[t] emanating from t is...
m ...a finite path from the root of t to another node in t.

m Its codomain is the p-tree sitting at the target node (its root).

Identity arrow = length-0 path; composition = path concatenation.
Imagine the whole graph ¢,: every possible “destiny” is included. 2249

The framed bicategory Catf

Bicomodules in (Poly, y, <)

categories
Given eemeneids C, D, a (C,D)-bicomodule is another kind of map.
m It's a polynomial m, equipped with two morphisms in Poly

A p
cdm<+—m— m<0

each cohering naturally with the comonoid structure ¢, 4§ for ¢, .

23 /49

The framed bicategory Catf

Bicomodules in (Poly, y, <)

categories

Given eemeneids C, D, a (C,D)-bicomodule is another kind of map.

m It's a polynomial m, equipped with two morphisms in Poly

A P
cAm<+—m—m<0

each cohering naturally with the comonoid structure ¢, § for ¢, .
m | denote this (C,D)-bicomodule m like so:

ca™ 9D or C<"aq D

m The <'s at the ends help me remember the how the maps go.
m Maybe it looks like it's going the wrong way, but hold on.

23 /49

The framed bicategory Catf

Bicomodules are parametric right adjoints

Garner explained? that bicomodules m € cMaody,, which we've denoted
Cam<9 D o <<

can be identified with parametric right adjoint functors (prafunctors)

D-Set % C-Set.

2Garner’s HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6éel
24 /49

https://www.youtube.com/watch?v=tW6HYnqn6eI

The framed bicategory Catf

Bicomodules are parametric right adjoints

Garner explained2 that bicomodules m € oModg, which we've denoted
C+a D or a0

can be identified with parametric right adjoint functors (prafunctors)
D-Set % C-Set.

m From this perspective the arrow points in the expected direction.
m Assuming Garner's result, check: +Mody = C-Set.

2Garner’s HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6éel
24 /49

https://www.youtube.com/watch?v=tW6HYnqn6eI

Bicomodules are parametric right adjoints

Garner explained2 that bicomodules m € oModg, which we've denoted
C<+2a D or <29 D

can be identified with parametric right adjoint functors (prafunctors)
D-Set % C-Set.

m From this perspective the arrow points in the expected direction.
m Assuming Garner's result, check: +Mody = C-Set.

Prafunctors ¢ <—— @ generalize profunctors C — @:
m A profunctor C — @ is a functor C — (-Set)°P
m A prafunctor C <— D is a functor C — Coco((D-Set)°P)...
m ...where Coco is the free coproduct completion.

2Garner’s HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6éel
24 /49

https://www.youtube.com/watch?v=tW6HYnqn6eI

The framed bicategory Catf

Let’s ask the abacus

To prove that bicomodules ¢ << ? are prafunctors ;Modg — Mody:
m Write out the bicomodule equations and run the abacus.

m</C:§ = mZm and "’é

~ ~

o G EENG
S

mscs = m:m and S

25 /49

The framed bicategory Catf

Interpreting the abacus

By running the abacus and interpreting the results, we find the following.

A . g :
m A left comodule ¢am <= m can be identified with a functor ¢ — Poly.

B I

icc(1) xEm;

m The right comodule conditions on m 2> m < d say that each m[x] ...
B ... is not just a set, it's the set of elements for a copresheaf on 0!

26 /49

The framed bicategory Cat?

Interpreting the abacus

By running the abacus and interpreting the results, we find the following.

A . g :
m A left comodule ¢am <= m can be identified with a functor ¢ — Poly.

B I

icc(1) xEm;

m The right comodule conditions on m 2> m < d say that each m[x] ...
B ... is not just a set, it's the set of elements for a copresheaf on 0!

When we add the coherence condition, it all falls into place.

m The idea is that each i € ¢(1) functorially gets a set m; and...
B ... each x € m; gets a d-set with elements m[x].
m The prafunctor 0-Set — ¢-Set associated to m takes any 0-set N, ...
® ... hom’s in the m[x]'s, and adds them up to get a c-set.
We'll understand this better semantically when we get to applications.

26 /49

The framed bicategory Catf

Getting acquainted with bicomodules

Here are some facts, just to get you acquainted with ¢ << 9.
m If 9 = 0 then carrier m € Poly is constant, i.e. m = M for M € Set.

. . |
m If carrier m = M is constant, then m factors as ¢ Mg 0t g 0.

27 /49

The framed bicategory Catf

Getting acquainted with bicomodules

Here are some facts, just to get you acquainted with ¢ << 9.
m If 9 = 0 then carrier m € Poly is constant, i.e. m = M for M € Set.
m If carrier m = M is constant, then m factors as ¢ <4< 0 < .
m The following cat'ies are isomorphic and all are equivalent to ¢-Set:
Cartesian retrofunctors over ¢ = Discrete opfibrations over c.

The constant left c-comodules, i.e. with constant carrier m = M.
The linear left c-comodules, i.e. with linear carrier m = My.

The representable right c-comodules, i.e. with carrier y™.

27 /49

The framed bicategory Catf

Bicomodule composition

If you've ever tried to compose prafunctors; this might look familiar.

o« ——————7 e —7 o

J, comma J,
o« ————— o dist. l

e

.—>. Pb.4>.

. Wl

(4 c

But in Poly, it's just given by the usual bicomodule composition.
m The composite of ¢ << 0 << ¢, is carried by the equalizer:
mdanﬂ) m<dn=2m<0dn

m This has a natural (c, ¢)-structure, because < preserves conn. limits.
m It's amazing to see the combinatorics handle all this complexity.

28 /49

The framed bicategory Cat"

Poly como'ds, retrofuns, and bicomodules form a framed bicategory Cat?.

c <2 ad
f da ¥

¢ +—<?
m

m It's got a ton of structure, e.g. two monoidal structures, +, ®.
m It's actually not too hard to describe.
Here are some facts about ¢Mod, for categories C,D.
m ~Mody = C-Set, copresheaves on C.
» 1Mod; = Coco((D-Set)P).
m ~-Mody = Cat(G,lMod@).

29 /49

The framed bicategory Cat"

Poly como'ds, retrofuns, and bicomodules form a framed bicategory Cat?.

c <2 ad
f da ¥

¢ +—<?
m

m It's got a ton of structure, e.g. two monoidal structures, +, ®.
m It's actually not too hard to describe.
Here are some facts about ¢Mod, for categories C,D.
m ~Mody = C-Set, copresheaves on C.
» 1Mod; = Coco((D-Set)P).
m ~-Mody = Cat(G,lMod@).
There's a factorization system on Cat!:

m Every m € :Mod, can be factored as m = f o p,

£ p
c<—< ¢ <—< 0

where f "is” a discrete opfibration and p "“is” a profunctor.
29 /49

The framed bicategory Catf

Gambino-Kock’s framed bicategory Poly

In Gambino-Kock, the authors construct a framed bicategory Polygs,.

m lts vertical category is Set.
m A horizontal map / — J is J-many polynomials in /-many variables.
m 2-cells are natural transformations between polynomial functors.

30/49

Gambino-Kock’s framed bicategory Poly

In Gambino-Kock, the authors construct a framed bicategory Polygs,.

m Its vertical category is Set.
m A horizontal map / — J is J-many polynomials in /-many variables.
m 2-cells are natural transformations between polynomial functors.
This is a full subcategory Poly C Cat?.
m Objects in Cat? are caty’s; those in Poly are the discrete categories.
m Verticals in Cat? are retrofunctors; Set(/, ") = Cat*(ly, I'y).
m Horizontals in Cat! are prafunctors; between discretes, these are poly’s
® In both, 2-cells are the natural transformations.

The comonoid theory Cat? of (one-variable) Poly includes all of Poly.

30/49

Adjunctions in Cat’

The map _Modg: (Cat?)°P — Cat is locally fully faithful; i.e....
m ...for categories C, D, only some functors m: ?-Set — C-Set count...
® ... as bimodules C <™« @, but for those m, n that do...
m ... the bimodule maps m = n are exactly the natural transformations.
Thus it is easy to say when C <2< @ has an adjoint in Cat?, namely if...
m ...the induced D-Set 5 C-Set has an adjoint C-Set LN M-Set and...
m ... m isin Catf! (i.e. the adjoint m’ needs to preserve conn'd limits).

31/49

Adjunctions in Cat’

The map _Modg: (Cat?)°P — Cat is locally fully faithful; i.e....
m ...for categories C, D, only some functors m: ?-Set — C-Set count...
® ... as bimodules C <™« @, but for those m, n that do...
m ... the bimodule maps m = n are exactly the natural transformations.
Thus it is easy to say when C <2< @ has an adjoint in Cat?, namely if...

m ...the induced D-Set 5 C-Set has an adjoint C-Set LN M-Set and...
m ... m isin Catf! (i.e. the adjoint m’ needs to preserve conn'd limits).

Both functors € 5 @ and retrofun’s A @ induce adjunctions in Cat’.
m The pullback and right Kan extension along F are adjoint Ag - k.
m The companion and conjoint of ¢ are adjoint X, 4 A,.
m A dopf F is both a functor and a retrofunctor, and the A’s coincide.
Note that retrofunctors C -+ @ induce interesting maps between toposes:
m Whereas geometric morphisms C-Set = -Set preserve finite limits...
m ... retrofunctors induce adjunctions that preserve connected limits.

31/49

Monads in Cat!

Operads as monads in Cat?

In any framed bicat'y, notation from Cat?, a monad (C, m, 7, i) consists of

An object C, the type

m a bicomodule C <<« C, the carrier

m a 2-cell n: ide = m, the unit

m a 2-cell u: mo m= m, the multiplication
[

satisfying the usual laws.

32/49

Monads in Cat!

Operads as monads in Cat’

In any framed bicat'y, notation from Cat*, a monad (C, m, 7, i) consists of
m An object C, the type
m a bicomodule C <2<« C, the carrier
m a 2-cell n: idc = m, the unit
m a 2-cell u: mo m= m, the multiplication
m satisfying the usual laws.
In Cat?, these generalize operads in a number of ways:
m When C =2 | is discrete, 1, i1 are cartesian, you get colored operads.3
m Relaxing discreteness of C, the domain of a morphism can be...
® ... a diagram, rather than a mere set, of objects.

m Relaxing "iso” condition, composites and ids can have “weird” arities.

3Not quite the standard definition of operad, but no less elegant: the input to a
morphism is a set, rather than a list of objects. You can also talk about standard
(list-based) operads and their generalizations within the Cat* setting; see
Gambino-Kock.

32/49

Monads in Cat!

“Categories = monads in Span” in Cat’

It is well-known that “categories are monads in Span.” Let O be a set.

m A prafunctor Oy " Oy acts as a span iff it's a left adjoint.
If a monad m has a right adjoint Oy <<~ Oy, then c is a comonad.
Now, since the vertical part of Cat! is already Comon(Poly),

. ¢ has a canonical comonoid structure ¢, equipped with ¢ - Oy.
This map ¢ -» Oy is identity on objects because ¢ was right adjoint.

Thus we see internally how m induces a category ¢ with object-set O.

33/49

Monads in Cat!

“Categories = monads in Span” in Cat’

It is well-known that “categories are monads in Span.” Let O be a set.

m A prafunctor Oy " Oy acts as a span iff it's a left adjoint.
If a monad m has a right adjoint Oy <<~ Oy, then c is a comonad.
Now, since the vertical part of Cat! is already Comon(Poly),

. ¢ has a canonical comonoid structure ¢, equipped with ¢ - Oy.
This map ¢ -» Oy is identity on objects because ¢ was right adjoint.

Thus we see internally how m induces a category ¢ with object-set O.

Here's how functors and retrofunctors look in this perspective:

Oy >—"+ Oy Oy <5< Oy
A |
Oy >—= Oy Oy <= Oy

33/49

Monads in Cat!

Grothendieck sites give Cat’-monads

Every Grothendieck site (C°P, J) has an associated monad m, in Cat®.
m A J-sheaf is an mj-algebra, but not all mj-algebras are J-sheaves.
m An my-algebra gives formula for gluing, but no uniqueness guarantee.

34/49

Monads in Cat!

Grothendieck sites give Cat’-monads

Every Grothendieck site (C°P, J) has an associated monad my in Cat?.
m A J-sheaf is an mj-algebra, but not all mj-algebras are J-sheaves.
m An my-algebra gives formula for gluing, but no uniqueness guarantee.

To each Grothendieck top'y J, we need (m,n, 1) where C << C.
m The topology J assigns to each V € C a set Jy, “covering families” ...
® ... and each F € Jy is assigned a subfunctor Sg C C[V].
m From this data we define m € Poly:
m= 3 Y %
VeOb(C) Feldy
The Grothendieck top'y axioms endow the bimodule and monad structure.

34/49

Grothendieck sites give Cat’-monads

Every Grothendieck site (C°P, J) has an associated monad my in Cat?.
m A J-sheaf is an mj-algebra, but not all mj-algebras are J-sheaves.
m An my-algebra gives formula for gluing, but no uniqueness guarantee.

To each Grothendieck top'y J, we need (m,n, 1) where C << C.
m The topology J assigns to each V € C a set Jy, “covering families” ...
® ... and each F € Jy is assigned a subfunctor Sg C C[V].
m From this data we define m € Poly:
m= 3 Y %
VeOb(C) Feldy
The Grothendieck top'y axioms endow the bimodule and monad structure.

An algebra structure mo P nop assigns Camace<Pq0
a section hy(F,s) € Py to each V-covering h
family F and matching family s of sections. P

34/49

Outline

Applications
m Interacting Moore machines
m Mode-dependence
m Databases
m Cellular automata
m Deep learning

34/49

Bringing the abacus out of the monastery

| hope it's now clear that we've got a well-oiled machine:

m Poly and Cat? have excellent formal properties, and
m we can see how they work using very concrete calculations.

Our next job is to take this shiny abacus out for a spin.

m How do | see Poly as appropriate for the Glass Bead Game?
m We can use this instrument to talk about many aspects of the world.

35/49

Moore machines

Definition
Given sets A, B, an (A, B)-Moore machine consists of:
m aset S, elements of which are called states,
m a function r: S — B, called readout, and 2 °
m a function u: S x A — S, called update.
It is initialized if it is equipped also with
m an element sy € S, called the initial state.

We refer to A as the input set, B as the output set of the Moore machine.

v

36/49

Interacting Moore machines

Moore machines

Definition
Given sets A, B, an (A, B)-Moore machine consists of:
m aset S, elements of which are called states,
m a function r: S — B, called readout, and 2 °
m a function u: S x A — S, called update.
It is initialized if it is equipped also with
m an element sy € S, called the initial state.

We refer to A as the input set, B as the output set of the Moore machine.

v

Dynamics: an (A, B)-Moore machine (S, r,u,sp) is a “stream transducer”:
m Given a list/stream [ag, a1, ...] of A’s...
m let sp11 = u(sn, an) and b, == r(sy).
m We thus have obtained a list/stream [bg, b1, ...] of B's.

36/49

Interacting Moore machines

Moore machines as maps in Poly

We can understand Moore machines “{:}® in terms of polynomials.

m A Moore machiner: S —+Bandu: SxA—=Sis:

m A function S — B x SA, i.e. a By”-coalgebra.
m (It can also be phrased as a polynomial map Sy° — By*))

37/49

Interacting Moore machines

Moore machines as maps in Poly

We can understand Moore machines “{:}® in terms of polynomials.

m A Moore machiner: S —+Bandu: SxA—=Sis:

m A function S = B x §4,ie. a ByA—coaIgebra.
m (It can also be phrased as a polynomial map Sy° — By*))

A p-coalgebra allows different input-sets at different positions.
m For arbitrary p € Poly we can interpret a map ¢: S — p< S as:

m a readout: every state s € S gets a position i = ¢1(s) € p(1)
® an update: for every direction d € pl[i], a next state ¢o(s,d) € S.

37/49

Moore machines as maps in Poly

We can understand Moore machines “{:}® in terms of polynomials.

m A Moore machiner: S - Bandu: SxA—=Sis:
m A function S = B x §4,ie. a ByA—coaIgebra.
m (It can also be phrased as a polynomial map Sy° — By*))
A p-coalgebra allows different input-sets at different positions.
m For arbitrary p € Poly we can interpret a map ¢: S — p< S as:
m a readout: every state s € S gets a position i = ¢1(s) € p(1)
® an update: for every direction d € pl[i], a next state ¢o(s,d) € S.
Even more general: a functor S: C — Set for any category C.
m This generalizes the above, because p-Coalg = ¢,-Set.
m Imagine its elements (c, s) as states; each reads out its object c € C...
m ... and for any morphism f: ¢ — ¢/, it can be updated to (¢/,s.f).
We'll call any of these things dynamical systems.

37/49

Wiring diagrams

We can have a bunch of dynamical systems interacting in an open system.

Each box represents a monomial, e.g. ps = Cy”*B € Poly.
m The whole interaction, p; sending outputs to p> and p3, etc....
m ... is captured by a map of polynomials ¢: p;1 ® -+ ® ps — q.
m Given the positions (outputs) of each p;, we get an output of g...
m ... and when given an input of g, each p; gets an input.

38/49

Wiring diagrams

We can have a bunch of dynamical systems interacting in an open system.

Each box represents a monomial, e.g. ps = Cy”*B € Poly.
m The whole interaction, p; sending outputs to p> and p3, etc....
m ... is captured by a map of polynomials ¢: p;1 ® -+ ® ps — q.
m Given the positions (outputs) of each p;, we get an output of g...
m ... and when given an input of g, each p; gets an input.
m Now each subsystem can be endowed with a coalgebra S; — p; < S;.
m We tensor and compose to give S — g< S, where S :== 57 x --+ X S5.
So ¢ applied to dynamics in ps, ..., ps gives dynamics in q.

38/49

Mode-dependence

More general interaction

Supplier 1 Supplier 1
Supplier 2 Supplier 2

The whole picture above represents one morphism in Poly.
m Let's suppose the company chooses who it wires to; this is its mode.
m Then both suppliers have interface Wy for W € Set.
m Company interface is 2y": two modes, each of which is W-input.
m The outer box is just y, i.e. a closed system.
So the picture represents a map Wy @ Wy ® 2y — y.
m That's a map 2W?y"W — 4.
m Equivalently, it's a function 2W?2 — W. Take it to be evaluation.
m In other words, the company’s choice determines which w € W it
receives.

Change
supplier!

39/49

Mode-dependence

Other sorts of dynamical systems

Dynamical systems are usually defined as actions of a monoid T.
m Discrete: N, reversible: Z, real-time: R.
m If T is a monoid and S is a set, a T-action on S is equivalently...

m ... afunctor S: T — Set, as in our general definition above.

40/49

Mode-dependence

Other sorts of dynamical systems

Dynamical systems are usually defined as actions of a monoid T.
m Discrete: N, reversible: Z, real-time: R.
m If T is a monoid and S is a set, a T-action on S is equivalently...

m ... afunctor S: T — Set, as in our general definition above.

Summary: Poly can encode dynamical systems and rewiring diagrams.

40/49

Categorical databases

One view on databases is that they're basically just copresheaves.

Employee Worksln Department
— Admin

Department.Admin.WorksIn = idpepartment

A functor [: C — Set (i.e. C <—— 0) can be represented as follows:

Employee Il Wurksln Mngr Department || Admin
bLue TRRRx
T**** bLue orca P9 Q
orca bLue orca

41/49

Categorical databases

One view on databases is that they're basically just copresheaves.

Employee WorkslIn Department
C = Mngr C ° ¢ ? °
T Admin

Department.Admin.WorksIn = idpepartment

A functor /: C — Set (i.e. C SR 0) can be represented as follows:

Employee Il Worksln | Mngr Department || Admin
bLue ToREEE
T**** bLue orca P9 Q
orca bLue orca

But where's the data? What are the employees names, etc.?

41/49

Categorical databases

One view on databases is that they're basically just copresheaves.

Employee
e

Department.Admin.WorksIn = idpepartment

WorkslIn Department
—> °
Admin

More realistically, data should include

Employee || FName | Worksin | Mngr
Alan P9 M

T**** Dani bLue orca

orca Sara bLue orca

attributes and look like this:

Department || DName

Secr

bLue H Sales T****

41/49

Categorical databases

One view on databases is that they're basically just copresheaves.

Employee Worksln Department
C = Mngr C ° ¢ ? °
‘_ Admin

Department.Admin.WorksIn = idpepartment

More realistically, data should include attributes and look like this:

Employee || FName Worksln | Mngr Department || DName Secr
H Alan ‘ M bLue H Sales T****

T**** bLue

bLue

Dani orca

orca Sara orca

m Assign a copresheaf T: Ob(C) — Set, e.g. T(Employee) = String.
m Using the canonical retrofunctor C - Ob(C), attributes are given by
a:
c«—1 <o
Lo

Ob(C) =<0

41/49

Data migration

The framed bicategory structure of Cat? is very useful in databases.

m We hinted at this in the last slide, adding attributes via a retrofunctor.
m But so-called data migration functors are precisely prafunctors.

42/49

Data migration

The framed bicategory structure of Cat? is very useful in databases.

m We hinted at this in the last slide, adding attributes via a retrofunctor.
m But so-called data migration functors are precisely prafunctors.

A prafunctor C <P 9 Din ¢Mody can be understood as follows.

m First, it's a functor C — 1Modg, so what's an object in {Mod4?
m We said it's a formal coproduct of formal limits in @.
m A formal limit in @ is called a conjunctive query on @.

So a prafunctor 1 e Disa disjoint union of conjunctive queries.
Let's call @ a duc-query on @.

42/49

Data migration

The framed bicategory structure of Cat? is very useful in databases.
m We hinted at this in the last slide, adding attributes via a retrofunctor.
m But so-called data migration functors are precisely prafunctors.

A prafunctor C <P 9 Din ¢Mody can be understood as follows.

m First, it's a functor C — 1Modg, so what's an object in {Mod4?
m We said it's a formal coproduct of formal limits in @.
m A formal limit in @ is called a conjunctive query on @.

So a prafunctor 1 e Disa disjoint union of conjunctive queries.
Let's call @ a duc-query on @.

City jn State in County>
e — O < []

Example: if © = < , a duc-query might be...

(City X stateCity) + (City X stateCounty) + (County X state County)

A general bimodule P € oMody is a C-indexed duc-query on @.

42/49

Cellular automata

Cellular automata

Cellular automata are like Moore machines, except with no internal state.
m Here's a picture of a glider from Conway's Game of Life:

43/49

Cellular automata

Cellular automata

Cellular automata are like Moore machines, except with no internal state.
m Here's a picture of a glider from Conway's Game of Life:

m Gol takes place on a grid, a set V :=Z x Z of "squares”
m Each square has neighbors; think of the grid as a graph A = V.
m Each square can be in one of two states: white or black.

43/49

Cellular automata

Cellular automata

Cellular automata are like Moore machines, except with no internal state.
m Here's a picture of a glider from Conway's Game of Life:

Gol takes place on a grid, a set V :=7Z x Z of “squares”

Each square has neighbors; think of the grid as a graph A = V.
Each square can be in one of two states: white or black.

The state at any square is updated according to a formula, e.g.
If the square is B and has 2 or 3 B neighbors, it stays B

If the square is [J and has 3 B neighbors, it turns B

Otherwise it turns / remains [J.

43/49

Cellular automata

Cellular automata as algebras in Cat’

How do we encode this in Cat??
m We encode the graph A = V as a prafunctor Vy P Vy
m Each v € V queries its neighbors (and itself).
m The carrier of the prafunctor for Gol is g := V/°.
m In fact, g's a profunctor: it preserves the terminal, (go V) = V.

44 /49

Cellular automata

Cellular automata as algebras in Cat’

How do we encode this in Cat??
m We encode the graph A = V as a prafunctor Vy << Vy
m Each v € V queries its neighbors (and itself).
m The carrier of the prafunctor for GolL is g := V°.
m In fact, g's a profunctor: it preserves the terminal, (go V) = V.
m We encode the color-set for each node as a prafunctor Vy «£q0
m In Gol, each v € V gets the set 2; i.e. C:=2V.
m We encode the update formula as a map u of prafunctors
Vy < Vy < 0
ﬂu

C

44 /49

Cellular automata

Cellular automata as algebras in Cat’

How do we encode this in Cat??
m We encode the graph A = V as a prafunctor Vy < Vy
m Each v € V queries its neighbors (and itself).
m The carrier of the prafunctor for GolL is g := V°.
® In fact, g's a profunctor: it preserves the terminal, (go V) = V.
m We encode the color-set for each node as a prafunctor Vy «£40
m In Gol, each v € V gets the set 2; i.e. C:=2V.
m We encode the update formula as a map v of prafunctors

m And we encode the initial color setup as a point V = C:
v

m
ﬂu
C

From here you can iteratively “run” the cellular automaton.
44 /49

Cellular automata

Running the cellular automaton

Vy<T<1Vy<1T<1Vy<1T<1Vy<1lLTI<10

Use that Vy +Yq 0is terminal and Vy <24 Vy preserves terminals.

45/49

What is deep learning?

In Backprop as functor* “deep learning” is expressed in terms of SMCs.
m Objects are Euclidean spaces R”; monoidal product is x.
® A morphism R ~~ R" consists of
m Another Euclidean space RP, parameter space,
m A function /: RP x R™ — R", implement
m A function U: RP x R x R" — RP x R™, update and backprop
m Explanation:

m The update takes an (inp, outp) pair and updates the parameter.
m Without backprop, morphism composition cannot be defined.

*Fong, B; Spivak, DI; Tuyéras, R. “Backprop as functor”. LICS 2019.
46 /49

What is deep learning?

In Backprop as functor* “deep learning” is expressed in terms of SMCs.
m Objects are Euclidean spaces R”; monoidal product is x.
® A morphism R ~~ R" consists of
m Another Euclidean space RP, parameter space,
m A function /: RP x R™ — R", implement
m A function U: RP x R x R" — RP x R™, update and backprop
m Explanation:
m The update takes an (inp, outp) pair and updates the parameter.
m Without backprop, morphism composition cannot be defined.
m Typically, I and U have very particular forms.

m / is usu. a composite of linear maps and logistic-like maps.
m U is usu. gradient descent along a “loss covector” £ € T*(R")=R".

*Fong, B; Spivak, DI; Tuyéras, R. “Backprop as functor”. LICS 2019.
46 /49

Deep learning in Poly

The best-known methods use calculus, but the structure is set-theoretic.
Learn(A,B) .= {(P,I,U) | P € Set,|: PxA — B,U: PxAxB — PxA}
We can see this inside of Poly:

Learn(A, B) = [Ay”, By®]-Coalg

That is, it's the cat'y of dynamical systems in [Ay”, By®], where recall

[Ay* ByPl= >

p: AyA—ByB

An (A, B)-learner is thus a set P and a map P — [Ay”, ByB] < P.

47 /49

Deep learning

Learners’ languages

For any polynomial p, the category p-Coalg forms a topos.

m Indeed, letting ¢, be the cofree comonoid on p,...
m ..there is an equivalence p-Coalg = c,-Set.
m Since ¢, is free on a graph, c¢,-Set is about as easy as toposes get.

48/49

Deep learning

Learners’ languages

For any polynomial p, the category p-Coalg forms a topos.

m Indeed, letting ¢, be the cofree comonoid on p,...

m ..there is an equivalence p-Coalg = c,-Set.

m Since ¢, is free on a graph, c¢,-Set is about as easy as toposes get.
In particular, the topos p-Coalg has an internal type theory and logic.

m The logic describes constraints on dynamical systems.

m A proposition ¢ is any subobject of the terminal p-coalgebra:

B a set ¢ of p-trees where if t € ¢ then so is the subtree at any node.

48/49

Learners’ languages

For any polynomial p, the category p-Coalg forms a topos.

m Indeed, letting ¢, be the cofree comonoid on p,...

m ..there is an equivalence p-Coalg = c,-Set.

m Since ¢, is free on a graph, c¢,-Set is about as easy as toposes get.
In particular, the topos p-Coalg has an internal type theory and logic.

m The logic describes constraints on dynamical systems.

m A proposition ¢ is any subobject of the terminal p-coalgebra:

B a set ¢ of p-trees where if t € ¢ then so is the subtree at any node.
Gradient descent-backprop is a proposition in [R™y®" R"y®"]-Coalg.

m That is, it is a constraint on (R™,R")-learners.

m It has a very particular flavor: it can be checked in one timestep.

But the logic is much more expressive. We'll leave that for a later time.

48 /49

Outline

A Conclusion
m Summary

48/49

Summary

Poly is a category of remarkable abundance.
m It's completely combinatorial.
m Calculations using “the abacus” are concrete.
m Much is already familiar, e.g. (y +1)% = y? +2y + 1.
m It's theoretically beautiful.
m Comonoids are categories.
m Coalgebras are copresheaves.
m It's got a wide scope of applications.
m Databases and data migration.
m Dynamical systems and cellular automata.
m Deep learning and its generalizations.

Thank you for your time; questions and comments welcome.

49/49

	Introduction
	The abacus
	Plan

	Theory
	 as a category
	A quick tour of
	Comonoids in
	The framed bicategory Cat
	Monads in Cat

	Applications
	Interacting Moore machines
	Mode-dependence
	Databases
	Cellular automata
	Deep learning

	Conclusion
	Summary

