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Classical McKay Correspondence
McKay (1980): Finite subgroups G ≤ SL(2,C)

Irreducible representations of G ⇔ Singularity of C2/G

Visualization of the connection: ADE Dynkin diagrams
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Example: An

Natural representation:
ρnat : Z/(n + 1) ≤ SL(2,C)

1 7→
(
ζ 0
0 ζ−1

)
, ζ := e

2πi
n+1

Irreducible representations:
ρi : Z/(n + 1) → C∗

1 → ζ i 0 ≤ i ≤ n

ρnat = ρ1 ⊕ ρ−1, ρnat ⊗ ρi = ρi+1 ⊕ ρi−1
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Equivalence of Categories

Kapranov–Vasserot (1998): Db
G (C2) ∼= Db(Y )

• Y is the resolution of C 2/G .

(Ito–Nakamura (1999): Y ≃ G -Hilb(C2))

• D is the derived category of coherent sheaves.
Its objects are (bounded) complexes of coherent sheaves.

• The equivalence comes from the universal closed subscheme
of G -Hilb(C2) as a moduli space.
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Generalizing McKay

• Bridgeland–King–Reid (2001):

For G ≤ SL(3,C), Db
G (C3) ∼= Db(Y )

• Wunram (1988): G ≤ GL(2,C) small

exceptional divisors ⇔ special representations

• Ishii–Ueda (2015): G ≤ GL(2,C) small

Db(Y ) ↪→ Db
G (C2) with SOD of Db

G (C2)

• Kawamata (2016): any finite G ≤ GL(2,C),GL(3,C)
Db(Y ) ↪→ Db

G (C2) with SOD of Db
G (C2)

• Polishchuk–Van den Bergh Conjecture: G ≤ GL(2,C)
reflection group

Db
G (C2) has SOD in bijection with irred. rep.s of G
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Semi-Orthogonal Decompositions

SOD with E1, . . . ,Em exceptional sequence:

Db
G (C2) = ⟨D(Y ),E1, . . . ,Em⟩

• semi-orthogonality, “generates” category, exceptional objects

• Example (Beilinson): Db(Pn) = ⟨O,O(1), . . . ,O(n − 1)⟩
• When G is a reflection group (my case of interest) it is

conjectured the exceptional objects should be in bijection with
the non-trivial irreducible representations of G .
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Some reflection groups of interest
• Classical McKay groups in SL(2,C) are all index 2 subgroups

of reflection groups in U(2,C).

• Representation theory closely related to intersections with
SL(2,C)

• A′
n and An example:
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A′
n case

• Potter (2018): Explicit description of SOD for A′
n.

• Let G ≤ GL(2,C), H := G ∩ SL(2,C), A := G/H ≃ Z/(2),
Y := H-Hilb(C2), M the minimal res. of C2/G (itself)

• Strategy:
• (Ishii–Ueda) Db

G (C2) ∼= Db
A(Y )

• Db
A(Y ) ∼= ⟨D([Y /A]can,D(D̃1), . . . ,D(D̃r ), intersections of D̃i ⟩

Di are components of branch locus of A acting on H-Hilb(C2).
• If Y /A is smooth. . . (toric charts for Y )
• D([Y /A]can ∼= ⟨D(M),E1, . . . ,Es⟩ where the Ei are divisors to

be blown down in Y /A to get M.
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Results in A′
n case

• n even: DG (C2) ∼= ⟨D(M),E1, . . . ,E n
2
,D(D̃)⟩

• n odd: DG (C2) ∼= ⟨D(M),E1, . . . ,E n+1
2
,D(D̃1),D(D̃2)⟩

• Capellan (2024) confirms matching of semi-orthogonal
decomposition with representations.



Work in progress: other reflection groups

• Same strategy for SOD’s as Potter.

• However, these singularities are not toric

• Main tool: explicit computations in H-Hilb(C2) using Ito and
Nakamura’s work Example: G = G12



Example: G = G12

E6 and E ′
6:

Db
G (C2) ∼= ⟨D(M),E1, . . . ,E4,D(P1),D(D̃)⟩

Interesting difference: Branch locus of Y /A comes from both
C2/G branch locus and a fixed P1 in the exceptional locus of Y
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Thank you!


