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Drazin Inverses in Ring Theory

In a ring R, a Drazin inverse of x € R is a xP € R such that:

o [D.1] There is a k € N such that xk+1xP = xk

o [D.2] xPxxP = xP

o [D.3] xPx = xxP
While a Drazin inverse may not always exist, if a Drazin inverse exists then it is unique, so we
may speak of the Drazin inverse.

The "inverse” part in the term “Drazin inverse” is justified since it is a generalization of the usual
notion of inverse. In a ring R, if x € R is invertible, then x~! is the Drazin inverse of x.

The term Drazin inverse is named after Michael P. Drazin (1929 - still alive!), who originally
introduced the concept of Drazin inverses in rings under the name “pseudo-inverse”

@ Michael P. Drazin Pseudo-inverses in associative rings and semigroups. (1958)



Drazin Inverses in Ring Theory

In a semigroup R, a Drazin inverse of x € R is a xP € R such that:

o [D.1] There is a k € N such that xk+1xP = xk

o [D.2] xPxxP = xP

o [D.3] xPx = xxP
While a Drazin inverse may not always exist, if a Drazin inverse exists then it is unique, so we
may speak of the Drazin inverse.

The "inverse” part in the term “Drazin inverse” is justified since it is a generalization of the usual
notion of invertise. In a monoid R, if x € R is invertible, then x~! is the Drazin inverse of x.

The term Drazin inverse is named after Michael P. Drazin (1929 — still alive!), who originally
introduced the concept of Drazin inverses in rings under the name “pseudo-inverse”

@ Michael P. Drazin Pseudo-inverses in associative rings and semigroups. (1958)



Drazin Inverses all around

Drazin inverses have an extensive literature and active area of research:
o Studied in-depth in ring theory and semigroup theory
o Connected to strong w-regularity
@ Connected to Fitting's results (Fitting’s Lemma or Fitting’s Decomposition result)

o Studied in matrix theory since every complex square matrix has a Drazin inverse. So the
Drazin inverse has many application and is a very useful tool for computations

But what about Drazin inverses in category theory?



Drazin Inverses in Category Theory

For any object A in a category X, the homset X(A, A) of endomorphisms of type A is a monoid
with respect to composition. As such, we may consider Drazin inverses in X(A, A), or in other
words, we may talk about Drazin inverses of endomorphisms in an arbitrary category.
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However not much has been done with Drazin inverses in category theory!

To the best of our knowledge, the only discussion of Drazin inverses in category theory appears in
a section of a paper by Puystjens and Robinson:

@ R. Puystjens & D. W. Robinson Generalized Inverses of Morphisms with Kernels. (1987)

where they provide an existence property of Drazin inverses in an additive/Abelian category.



Drazin Inverses in Category Theory

For any object A in a category X, the homset X(A, A) of endomorphisms of type A is a monoid
with respect to composition. As such, we may consider Drazin inverses in X(A, A), or in other
words, we may talk about Drazin inverses of endomorphisms in an arbitrary category.

However not much has been done with Drazin inverses in category theory!

To the best of our knowledge, the only discussion of Drazin inverses in category theory appears in
a section of a paper by Puystjens and Robinson:

@ R. Puystjens & D. W. Robinson Generalized Inverses of Morphisms with Kernels. (1987)
where they provide an existence property of Drazin inverses in an additive/Abelian category.
At some point after we wrote this paper:

@ R. Cockett & J.-S. P. Lemay Moore-Penrose Dagger Categories. (2023)

Robin became fascinated by Drazin inverses! We realized lots can be said about Drazin inverses
using a categorical point of view.



Quick summary of our paper

The purpose of our paper was to develop Drazin inverses from a categorical perspective. We both
review the ring/semigroup theory stuff, and also provide novel results.

@ Drazin inverses in a category
o Consider Drazin categories and many examples

@ How Drazin inverses behave well with well-known categorical constructions

A 2-categorical perspective on Drazin inverses (rank!)

o Relating Drazin inverses to idempotent splitting

Relate Drazin inverse to eventual image duality:
@ T. Leinster The Eventual Image. (2022)
o Drazin inverses in additive/Abelian categories, recapturing Fitting's results

@ Generalize the notion of Drazin inverses to that of Drazin opposing pairs.

We'll go through some of this today. For more details, please go see our paper:

https://arxiv.org/pdf/2402.18226.pdf

Warning, it is a long paper: Robin claimed this was suppose to be a 20 page paper, which | never
believed!


https://arxiv.org/pdf/2402.18226.pdf

Drazin Inverses in a Category

Definition

In a category X, a Drazin inverse of x : A — A is an endomorphism xP : A — A such that?:
o [D.1] There is a k € N such that xk+1xD = xk

o [D.2] xPxxP 2

=x
o [D.3] xPx = xxP

If x: A— A has a Drazin inverse x? : A — A, we say that x is Drazin, and call the least k such
that xk*1xP = xk the Drazin index of x, which we denote by ind(x) = k.

2Composition is written in diagrammatic order — not that it will matter much...
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Proposition

In a category X, if x : A — A has a Drazin inverse, then it is unique.




Drazin Inverses are unique!

Proposition

In a category X, if x : A — A has a Drazin inverse, then it is unique.

Proof.

Suppose that x : A — A has two possible Drazin inverses y : A— Aand z: A — A.

So explicitly, there is a k € N such that x¥xy = x¥, and also that yxy = y and xy = yx, and
there is a k/ € N such that x¥' xz = xk/, and also that xz = zx and zxz = z.

Now set j = max(k, k’). Then we can compute that:
witly = s = sl 2t = i 2= At

Then we compute that:

WV = XJyJ+1 — ZXJ+1yJ+1 — ZXijj+1 = zxy = Zj+1Xij — ZJ+1XJ+1y — ATl — >
So y = z, and we conclude that the Drazin inverse is unique. O

From now on we may speak of the Drazin inverse of an endomorphism x (if it exists of course)
and denote it by xP.
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Definition

A Drazin category is a category such that every endomorphism has a Drazin inverse.

Since Drazin inverses are unique, being Drazin is a property of a category rather than a structure.



Drazin Categories **NEW**

Definition

A Drazin category is a category such that every endomorphism has a Drazin inverse.

Since Drazin inverses are unique, being Drazin is a property of a category rather than a structure.

It is always possible to construct a Drazin category from any category by considering the full
subcategory determined by the objects whose every endomorphism is Drazin.

Definition

In a category X, an object A is a Drazin object if every endomorphism x : A — A is Drazin. Let
D (X) be the full subcategory of Drazin objects of X.

For any category X, D (X) is a Drazin category. Moreover, X is Drazin if and only if D (X) = X.




Drazin Inverse Example: Matrices

Example

Let F be field and MAT(F) be the category of matrices over k, that is, the category whose
objects are natural numbers n € N and where a map A: n — m is an n X m F-matrix.
Composition given by matrix multiplication and the identity on n is the n-dimensional identity
matrix. Endomorphisms in MAT(F) correspond precisely to square matrices: so an endomorphism
A:n— nisan nXx nsquare matrix A. Then MAT(F) is a Drazin category.




Drazin Inverse Example: Matrices

Example

Let F be field and MAT(F) be the category of matrices over k, that is, the category whose
objects are natural numbers n € N and where a map A: n — m is an n X m F-matrix.
Composition given by matrix multiplication and the identity on n is the n-dimensional identity
matrix. Endomorphisms in MAT(F) correspond precisely to square matrices: so an endomorphism
A:n— nisan nXx nsquare matrix A. Then MAT(F) is a Drazin category.

So for an n X n matrix A, to compute its Drazin inverse we first write it in the form:

_p|C Of
A—P{O N}P

for some invertible n X n matrix P, an invertible m X m matrix C (where m < n), and a nilpotent
n—mx n— m matrix N (that is, N* = 0 for some k € N). Then the Drazin inverse of A is the
n x n matrix AP defined as follows:

p_p[Ct 0] 51
A _P{O O}P

The Drazin index of A corresponds precisely to the index of A, which is the least k € N such that
rank(AX*1) = rank(Ak).

v

Drazin inverses of complex matrices are well studied and have many applications.

@ S. Campbell & C. Meyer. Generalized inverses of linear transformations.



Drazin Inverse Example: Modules

Let R be a ring and let R-MOD be the category of (left) R-modules and R-linear morphisms
between them. In general, R-MOD is not Drazin...
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between them. In general, R-MOD is not Drazin...

For example when R = Z, the Z-linear endomorphism f : Z — Z defined f(x) = 2x does not have
a Drazin inverse. Why?




Drazin Inverse Example: Modules

Example

Let R be a ring and let R-MOD be the category of (left) R-modules and R-linear morphisms
between them. In general, R-MOD is not Drazin...

For example when R = Z, the Z-linear endomorphism f : Z — Z defined f(x) = 2x does not have
a Drazin inverse. Why?

If f had a Drazin inverse fP : Z — 7Z, by Z-linearity, it must be of the form fD(x) = nx for some
n € Z. Then by [D.1] we would have that for some k € N, 2k*1nx = 2kx for all x € Z. This
would imply that 2n = 1, but since n € Z, this is a contradiction.

So Z-MOD is not Drazin.




Drazin Inverse Example: Modules

Example

While R-MOD may not always be Drazin, there are various characterizations of Drazin R-linear
endomorphism!

B Z. Weng Class of drazin inverses in rings. (2017)
In particular, an R-linear endomorphism f : M — M is Drazin if and only if

M = im(f¥) @ ker(f¥)
for some k > 1 and this decomposition is sometimes called Fitting’s decomposition. In this case,
f becomes an isomorphism on im(f¥), and its Drazin inverse is the inverse on this component.
Then an R-module M is said to satisfy Fitting’s Lemma if every endomorphism has a Fitting’s
decomposition (or equivalently if R-MOD(M, M) is strongly m-regular).

@ E. P. Armendariz, J. W. Fisher, and R. L. Snider. On injective and surjective endo-morphisms of finitely generated
modules. (1978)

As such, the Drazin objects in R-MOD are precisely the R-modules which satisfy Fitting’s Lemma.
v




Drazin Inverse Example: Modules — Fitting Interlude

Hans Fitting was a German mathematician who died in 1938 — unexpectedly — at the young age
of thirty-one. His results (written in German) are now so fundamental that they are simply
referred to as “Fitting's Lemma” and “Fitting's decomposition theorem”.

@ H. Fitting. Die theorie der automorphismenringe abelscher gruppen und ihr bei nicht iven gruppen. (1933)

Fitting’s Decomposition Theorem says that for every endomorphism of a finite length R-module
gives a Fitting Decomposition. Fitting’s Lemma says that every endomorphism of an
indecomposible finite length module is either an isomorphism or a nilpotent.

This implies that every R-linear endomorphism of a finite length R-module is Drazin, and thus
finite length R-modules are Drazin. So the full subcategory of finite length R-modules is Drazin.

REMARK: While every finite length R-module is Drazin, there are modules which do not have
finite length which are Drazin. Ex. Q seen as a Z-module is Drazin but not of finite length!




Drazin Inverse Example: Finite Sets

Example
Let FinSET be the category of finite sets and functions between them. FinSET is Drazin.

When X is a finite set, one way of understanding the Drazin inverse of a function f : X — X, is
to consider the inclusion of subsets:

X Dim(f) Dim(f2) D ... Dim(fX) = im(F* 1) = ...

which must eventually stabilize after at most k < |X| steps. Then f becomes an isomorphism on
im(fk). Then the Drazin inverse of f is:

FO(x) = Fi-d o (F4(02))

Every finite set enriched category is Drazin.




Drazin Inverse Example: Sets

Let SET be the category of sets and functions between them.
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Example

Let SET be the category of sets and functions between them.

SET is not Drazin. For example the successor function s : N — N, s(n) = n+ 1, does not have a
Drazin inverse. Why?




Drazin Inverse Example: Sets

Example
Let SET be the category of sets and functions between them.

SET is not Drazin. For example the successor function s : N — N, s(n) = n+ 1, does not have a
Drazin inverse. Why?

Suppose that s had a Drazin inverse s : N — N. By [D.3], we would have that:
sP(n) = s°(s"(0)) = s"(s°(0)) = s°(0) +
So sP(n) = sP(0) + n. Now if ind(s) = k, by [D.1] we would have that:
k = s%(0) = sP(s**1(0)) = sP(k +1) = sP(0) + k + 1

This implies that 0 = sP(0) + 1 — which is a contradiction since s°(0) € N.

But we may still ask what are the Drazin objects are...




Drazin Inverse Example: Sets

Example
Let SET be the category of sets and functions between them.

SET is not Drazin. For example the successor function s : N — N, s(n) = n+ 1, does not have a
Drazin inverse. Why?

Suppose that s had a Drazin inverse s® : N — N. By [D.3], we would have that:
sP(n) = s°(s"(0)) = s"(s°(0)) = s°(0) +
So sP(n) = sP(0) + n. Now if ind(s) = k, by [D.1] we would have that:
k = s%(0) = sP(s**1(0)) = sP(k +1) = sP(0) + k + 1

This implies that 0 = sP(0) + 1 — which is a contradiction since s°(0) € N.

But we may still ask what are the Drazin objects are...

A set X is Drazin in SET if and only if X is a finite set. Therefore D (SET) = FinSET.




Properties of Drazin Inverses

Now let's look at some properties of Drazin inverses.



WARNING about composition

Unfortunately, Drazin inverses do not necessarily play well with composition.
Even if x and y are Drazin, xy may not be Drazin...

And even if xy is Drazin, we might not have that (xy)P is equal to yPxP...



Strongly m-Regular

Definition

In a category X, x : A — A is strongly m-regular if there exists endomorphisms y : A — A and
z:A— A, and p, q € N such that yxPt1 = xP and x9t1z = x9.

In a category X, x : A — A is Drazin if and only if it x is strongly w-regular.

For = set y = z = xP. For <, set k = max(p, q) and xP := xkzk+1

— yhtlgk,

Strongly m-regular rings have been studied in-depth:

@ E. P. Armendariz, J. W. Fisher, and R. L. Snider. On injective and surjective endo-morphisms of finitely generated
modules. (1978)

@ P. Ara. Strongly m-regular rings have stable range one. (1996)
@ G. Azumaya. Strongly m-regular rings. (1954)
@ M. F. Dischinger. Sur les anneaux fortement r-regulier. (1979)

W. K. Nicholson. Strongly clean rings and Fitting’s Lemma. (1999)



Isomorphisms and Drazin Index of 0

Lemma

In a category X, x : A — A is Drazin with ind(x) = 0 if and only if x is an isomorphism.
Explicitly:

o If x is an isomorphism, then it is Drazin where x® = x=1 and ind(x) = 0;
1_,D

o If x is Drazin and ind(x) = 0, then x is an isomorphism where x—1 = xP.

In particular, the identity 14 : A — A is Drazin and its own Drazin inverse, 12 =14




Group Inverses and Drazin Index < 1

Definition

In a category X, a group inverse of x : A — A is an endomorphism x? : A — A such that the
following equalities hold:

o [G.1] xxPx = x;
o [G.2] xPxxP = xP;
o [G.3] xPx = xxP.

Lemma

In a category X, x : A — A is Drazin with ind(x) < 1 if and only if x has a group inverse.
Explicitly:

o If x has a group inverse xP, then x is Drazin with the group inverse xP being its Drazin
inverse and ind(x) < 1;

D

o If x is Drazin and ind(x) < 1, then its Drazin inverse x“ is its group inverse.




Drazin Inverse of a Drazin Inverse

In a category X, let x : A — A be Drazin. Then:

o xP is Drazin where xPP := xxPx and ind(xP) < 1;

o xPD js Drazin where xPPP = xD

’

o Ifind(x) < 1, then xPP = x




In a category X, if x : A — A is Drazin, then x" is Drazin where (x")P = (xP)".

In a category X, x : A — A is Drazin if and only if there is a k € N such that x*t1 : A — A is
Drazin.




We now turn our attention to other properties of Drazin inverse that have a more categorical
flavour....



We now turn our attention to other properties of Drazin inverse that have a more categorical
flavour.... We first observe that Drazin inverses are absolute, that is, every functor preserves
Drazin inverses on the nose.

Proposition

Let F: X — Y be a functor and let x : A — A be Drazin in X. Then F(x) : F(A) — F(A) is
Drazin in Y where F(x)P = F(xP) and ind (F(x)) < ind(x).




We now turn our attention to other properties of Drazin inverse that have a more categorical
flavour.... We first observe that Drazin inverses are absolute, that is, every functor preserves
Drazin inverses on the nose.

Proposition

Let F: X — Y be a functor and let x : A — A be Drazin in X. Then F(x) : F(A) — F(A) is
Drazin in Y where F(x)P = F(xP) and ind (F(x)) < ind(x).

If a category X is equivalent to a category Y which is Drazin, then X is Drazin.

So for a field k, let k-FVEC be the category of finite dimensional k-vector spaces and k-linear
maps between them. Since k-FVEC is equivalent to MAT(k), we get that k-FVEC is Drazin.
(Another way to see this is that finite dimensional vector spaces are have finite length).




Commuting Squares

In a category X, let x: A— A and y : B — B be Drazin. If the diagram on the left commutes,
then the diagram on the right commutes:

X XD
A X oA A oA
fl if - fl \Lf
B— -8B B— -8B
Y yD

This is quite useful for constructing new Drazin categories:
o (Co)Slice categories;
o (Co)algebras of endofuctions;

@ Chu Construction



Drazin Inverses and Idempotents

There is a deep connection between Drazin inverses and idempotents!
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ex = xxD). Then ex is an idempotent.




Drazin Inverses and ldempotents

There is a deep connection between Drazin inverses and idempotents!

Let x : A — A be Drazin. Define the map ex := xPx : A — A (or equivalently by [D.3] as
ex = xxD). Then ex is an idempotent.

An idempotent e : A — A is Drazin, its own Drazin inverse, eP = e, and ind(e) < 1. Moreover,
ind(e) =0 if and only if e = 14.




Drazin Inverses and ldempotent Splitting

Another way of understanding Drazin inverses is as isomorphisms in the idempotent splitting.
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Another way of understanding Drazin inverses is as isomorphisms in the idempotent splitting.

For a category X, let Split(X) be its idempotent splitting. Recall:
o Objects are pairs (A, e) consisting of an object A and an idempotent e: A — A
Af:(Ae)— (B,e')isamap f:A— Bsuch that efe’ = f (or equivalently ef = f = fe').

o Composition same as in X

Identity maps are 140y == e: (A, e) = (A,e).



Drazin Inverses and ldempotent Splitting

Another way of understanding Drazin inverses is as isomorphisms in the idempotent splitting.

For a category X, let Split(X) be its idempotent splitting. Recall:
o Objects are pairs (A, e) consisting of an object A and an idempotent e: A — A
o Af:(Ae)— (B,¢e)isamapf:A— Bsuch that efe’ = f (or equivalently ef = f = fe').

o Composition same as in X

Identity maps are 140y == e: (A, e) = (A,e).

Theorem

x : A — A is Drazin in X if and only if there is an idempotent e : A — A such that for some
k €N, xk*1: (A e) — (A, e) is an isomorphism in Split(X).

Proof.

For the = take the idempotent e,. Then x**1: (A, &) — (A, ex) is an isomorphism in Split(X).

| \

The < direction requires more work. Briefly, if x**1 : (A, e) — (A, e) is an isomorphism in
Split(X) with inverse v : (A, e) — (A, e). Then the Drazin inverse of x is x? := vxk = xkv. O

v




Quick Word about Eventual Image Duality and Drazin Inverses

We also look at the relationship between Drazin inverses and Leinster’'s eventual image duality.



Quick Word about Eventual Image Duality and Drazin Inverses

We also look at the relationship between Drazin inverses and Leinster’'s eventual image duality.

Briefly, an endomorphism x : A — A has an Eventual Image Duality if the diagram:

X A X A X A X
has both a limit and colimit, which are canonically isomorphic.

@ T. Leinster The Eventual Image. (2022)

Definition

x : A — A is Drazin split if it is Drazin and the induced idempotent e, := xxP : A — A splits.

An endomorphism that is Drazin split has eventual image duality.




Expressive Rank

For a square matrix A (over a field), an intuitive way of finding its Drazin inverse is to iterate A
until the rank does not change (which is always guaranteed to happen):

rank(AK) = rank(AK*1) = rank(A¥2) = . ..

When this happens, one can reverse any later iterations and thus build a Drazin inverse. The
same principle holds true for linear endomorphisms on a finite-dimensional vector space or
endomorphisms on a finite set.
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endomorphisms on a finite set.

We'd like to make this procedure rigorous categorically.

This involves making precise what is meant by “rank”. In linear algebra, the rank of a matrix or a
linear transformation is the dimension of its image space. So we wish to generalize this in a
category by associating every map to a natural number which represents its rank.



Expressive Rank

For a square matrix A (over a field), an intuitive way of finding its Drazin inverse is to iterate A
until the rank does not change (which is always guaranteed to happen):

rank(AK) = rank(AK*1) = rank(A¥2) = . ..

When this happens, one can reverse any later iterations and thus build a Drazin inverse. The
same principle holds true for linear endomorphisms on a finite-dimensional vector space or
endomorphisms on a finite set.

We'd like to make this procedure rigorous categorically.

This involves making precise what is meant by “rank”. In linear algebra, the rank of a matrix or a
linear transformation is the dimension of its image space. So we wish to generalize this in a
category by associating every map to a natural number which represents its rank.

We express this in terms of a colax functor into a 2-category which we call Rank.



To help with notation, for n,m € N we denote n A m = min(n, m).

Rank is the 2-category defined as follows:
[0-cells]: n € N;

[1-cells]: m: ni — n» where m < n1 A ny, the identity on nis n: n— n, and
composition of my : ny — np and my : np — n3 is my A my : np — n3;

[2-cells]: my = mo if and only if m; < my.

For a category X, by a colax functor rank : X — Rank, we mean a mapping which associates
objects of X to 0-cells, maps of X to 1-cells, so rank(f) = m : rank(A) = n; — rank(B) = n
where m < n; and m < np. We also ask that a colax functor preserves identities,

rank(14) = rank(A), while for composition we only require that rank(fg) < rank(f) A rank(g).

For objects, we think of rank(A) as the dimension of A.

For maps we think of rank(f) as the rank of f.

Note that for every map f : A — B, by definition we have that rank(f) < rank(A) and
rank(f) < rank(B).



Expressive Rank

A category X is said to have expressive rank if:

o [ER.1] X comes equipped with a colax functor rank : X — Rank;
o [ER.2] X has a factorization system (£, M) which expresses rank:

A rank(A)
f im(f) rank(f) rank(im(f)
B rank(B) !

then rank(f) = rank(ef) = rank(my) = rank(im(f)).
o [ER.3] rank reflects isomorphisms, that is, if f : A — B and rank(f) = rank(A) = rank(B),
then f is an isomorphism.

In a category X with expressive rank, we call rank(A) the dimension of an object A, and we call
rank(A) the rank of a map f.




Expressive Rank Examples

For a field k, MAT (k) has expressive rank, where the factorization system is the usual
surjection-injection factorization system, rank(n) = n, and for a matrix A, rank(A) is the usual
rank of the matrix.

For a field k, k-FVEC also has expressive rank, where the factorization system is the usual
surjection-injection factorization system, for a finite-dimensional vector space V,
rank(V) = dim(V), and for a linear transformation f, rank(f) = dim(im(f)).

FinSet has expressive rank, where the factorization system is the usual surjection-injection
factorization system, for a finite set X, rank(X) = |X|, and for a function f, rank(f) = |[im(f)|.

The category of finite length modules over a ring also has expressive rank.




Expressive Rank

A category which has an expressive rank is Drazin.




Expressive Rank

Proof.

For any endomorphism x : A — A we get a descending chain of inequalities:
rank(A) = rank(x®) > rank(x!) > rank(x?) > ...

Let r = min,en(rank(x")) and set k to be the least natural number such that rank(x¥) = r. Once
the sequence hits this rank, all subsequent ranks are equal, so r = rank(x¥) = rank(x*1) = . ...




Expressive Rank

Proof.
For any endomorphism x : A — A we get a descending chain of inequalities:
rank(A) = rank(x%) > rank(x?) > rank(x?) > ...

Let r = min,en(rank(x")) and set k to be the least natural number such that rank(x¥) = r. Once
the sequence hits this rank, all subsequent ranks are equal, so r = rank(x¥) = rank(x*1) = . ...

Then we show that the unique map 7« : im(x¥) — im(x¥) induced by the factorization system
which makes the following diagram commute:

is an isomorphism using that rank reflects isomorphisms. Then define

—1
xP: = e (5K L. O




Today's Story

Now we are going to discuss Drazin inverses in additive categories. We will discuss:

@ Revisit 7-regularity

@ Core-Nilpotent Decomposition

o Kernel-Cokernel Coincidence

o Generalizing Matrix Example in finite biproduct setting

o Generalizing Image-Kernel Decomposition in Abelian category setting



What Robin means by an additive category

In our paper, and in this talk, by additive category we mean a category X which is enriched over
Abelian groups, that is, every homset X(A, B) is an Abelian group (written additively) and
composition is a group homomorphism.



Sums, Negatives, and Scalar Multiplication

o Similarly to the case of the usual inverse, the Drazin inverse does not necessarily behave well
with sums. Indeed, the sum of Drazin endomorphisms x and y is not necessarily Drazin, and
even if x + y was Drazin, then the Drazin inverse (x + y)P is not necessarily the sum of the
Drazin inverses xP + yD.
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o If x: A— Ais Drazin, then —x : A — A is Drazin where (—x)? = —xP and
ind(—x) = ind(x).



Sums, Negatives, and Scalar Multiplication

o Similarly to the case of the usual inverse, the Drazin inverse does not necessarily behave well
with sums. Indeed, the sum of Drazin endomorphisms x and y is not necessarily Drazin, and
even if x + y was Drazin, then the Drazin inverse (x + y)P is not necessarily the sum of the
Drazin inverses xP + yD.

o If x: A— Ais Drazin, then —x : A — A is Drazin where (—x)? = —xP and
ind(—x) = ind(x).

o If we happen to be in a setting where we can scalar multiply maps by rationals g € Q, then
if x is Drazin, then so is %X where (gx)D = %XD if 5 # 0.

o In particular, in such a setting, for m > 1, we would have that if x is Drazin, then

mx = x+ x4 ...+ x is also Drazin where (mx)P = %XD.

@ Even more generally, if R is a ring, then in a category X which is enriched over R-modules,
for any unit u € R, if x is Drazin then ux is Drazin where (ux)D =u1xD.



Revisiting Strongly 7-Regular

Definition

In a category X, x : A — A is strongly 7-regular if there exists endomorphisms y : A — A and
z:A— A, and p, q € N such that yxPt1 = xP and x9t1z = x9.

In a category X, x : A — A is Drazin if and only if it x is strongly w-regular.

Strongly m-regular rings have been studied in-depth:

@ E. P. Armendariz, J. W. Fisher, and R. L. Snider. On injective and surjective endo-morphisms of finitely generated
modules. (1978)

@ P. Ara. Strongly m-regular rings have stable range one. (1996)
@ G. Azumaya. Strongly m-regular rings. (1954)
@ M. F. Dischinger. Sur les anneaux fortement 7-regulier. (1979)

W. K. Nicholson. Strongly clean rings and Fitting’s Lemma. (1999)



Revisiting Strongly 7-Regular

Notice the definition of strongly m-regular can be separated in two:

Definition

In a category X, x : A — A is said to be:

o right 7-regular if there is an endomorphism x® : A — A and a k € N such that
xkt1xR — xk The k € N is a called a right 7-index.

o left m-regular if there is an endomorphism x- : A — A and a k € N such that xtxkT1 = xk,

The k € N is a called a left m-index.

o Clearly, an endomorphism which is strongly m-regular is equivalent to being both right
m-regular and left m-regular.

@ So being both right m-regular and left m-regular is equivalent to being Drazin.



Revisiting Strongly 7-Regular

Notice the definition of strongly m-regular can be separated in two:

In a category X, x : A — A is said to be:

o right 7-regular if there is an endomorphism x® : A — A and a k € N such that
xkt1xR — xk The k € N is a called a right 7-index.

o left m-regular if there is an endomorphism x- : A — A and a k € N such that xtxkT1 = xk,

The k € N is a called a left m-index.

o Clearly, an endomorphism which is strongly m-regular is equivalent to being both right
m-regular and left m-regular.

@ So being both right m-regular and left m-regular is equivalent to being Drazin.

o However in general, being right m-regular is not equivalent to being left w-regular. So being
right/left m-regular is not equivalent to being strong mw-regular/Drazin.



Dischinger’s Result

C. R. Acad. Sc. Paris, t. 283 (11 octobre 1976)

Série A — 571

ALGEBRE. — Sur les anneaux fortement n-réguliers.

Note (*) de M. Friedrich Dischinger, présentée par M. Jean Leray.

On montre qu’un anneau n-régulier a droite est nécessairement n-régulier a gauche. En vertu de
ce résultat, il est possible de remplacer les notions de w-régularité a droite ou & gauche par la notion
de m-régularité forte. D’autre part, on introduit la notion nouvelle de m-régularité compléte, et on
donne des conditions suffisantes pour la coincidence de ces deux notions.

1. Soit A un anneau associatif et unitaire, mais non nécessairement commutatif. Un
élément a de A a été appelé m-régulier a droite (resp. 4 gauche) (') sil existe un n = 1 et
un beA tel que a"*' b = a" (resp. ba"*! = a") et on dit que a est fortement n-régulier
§'il est m-régulier 4 droite et 4 gauche. Soit « un élément de A inversible a droite; alors,
u est un exemple d’un élément n-régulier a droite, et pour que u soit fortement n-régulier,
il faut et il suffit que u soit inversible & gauche.

On dit que I’anneau A est n-régulier a droite (resp. a gauche, resp. fortement n-régulier)
si tout élément de A est m-régulier a droite (resp. @ gauche, resp. fortement m-régulier).
Si A est n-régulier a droite, on voit que tout élément u de A inversible a droite est inversible
a gauche. Plus généralement : tout élément a d’un anneau n-régulier & droite A est-il
n-régulier & gauchc? Des réponses partielles & cette question étaient connues : [voir (1),

(3 et (%)]. Nous allons donner la réponse générale, qui est affirmative. Ainsi, les trois
propriétés d’un anneau définies ci-dessus coincident

THEOREME 1. — Tout anneau A m-régulier a droite est m-régulier a gauche.
La démonstration donnée ici, qui est beaucoup plus simple que la démonstration donnée
d’abord par P'auteur, est due & H. Zschinger.

In a ring R, for any a € R, a is right w-regular if and only if a left w-regular.




Dischinger's Result

Unfortunately the same is not true for an arbitrary category (in fact Dischinger even remarks that
his proof does not extend to semigroups).
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Dischinger's Result

Unfortunately the same is not true for an arbitrary category (in fact Dischinger even remarks that
his proof does not extend to semigroups).

In our paper, we show that Dischinger’s result generalizes to the setting of an additive category.

Definition

In a category X, an object A € X is said to be right (resp. left) m-regular if every endomorphism
of type A — A is right (resp. left) w-regular. Similarly, a category X is said to be right (resp.
left) w-regular if every endomorphism in X is right (resp. left) m-regular.

In an additive category X, an object A is right wt-regular if and only if A is left w-regular.
Therefore, an additive category X is right m-regular if and only if X is left w-regular.

The proof follows the same steps as Dischinger, however, we fill in some gaps and provide some
of the details which were omitted.

An additive category X is Drazin if and only if X is right (or left) m-regular.




Nilpotents and Zero Morphisms

o In an additive category, an endomorphism n: A — A is said to be nilpotent if there is a
k € N such that nk = 0, and the smallest such k is called the nilpotent index of n.

o Nilpotent endomorphisms are precisely the Drazin endomorphisms whose Drazin inverse is 0.

@ In this case, the Drazin index and the nilpotent index coincide.

In any additive category X, n: A — A is nilpotent if and only if n is Drazin with n® = 0.
Explicitly:

o If n is nilpotent with nilpotent index k, then n is Drazin where n® = 0 and ind(n) = k;

o If n is Drazin with Drazin inverse n® = 0, then n is nilpotent with nilpotent index ind(n).

In particular, the zero morphism 0 : A — A is Drazin and its own Drazin inverse, 0P =o.




Core-Nilpotent Decomposition

For matrices, an important concept in relation to the Drazin inverse is the notion of the
core-nilpotent decomposition:

@ The core of a matrix is defined as the Drazin inverse of its Drazin inverse

o While its nilpotent part is the matrix minus its core.
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For matrices, an important concept in relation to the Drazin inverse is the notion of the
core-nilpotent decomposition:

@ The core of a matrix is defined as the Drazin inverse of its Drazin inverse

o While its nilpotent part is the matrix minus its core.

In any additive category X, for a Drazin endomorphism x : A — A,

@ The core of x is the endomorphism ¢x : A — A defined by ¢cx = xPD = xxDx.

o The nilpotent part of a Drazin endomorphism is ny = x — cx : A = A.

The pair (cx, nx) is called a core-nilpotent decomposition.




Core-Nilpotent Decomposition

For matrices, an important concept in relation to the Drazin inverse is the notion of the
core-nilpotent decomposition:

@ The core of a matrix is defined as the Drazin inverse of its Drazin inverse

o While its nilpotent part is the matrix minus its core.

In any additive category X, for a Drazin endomorphism x : A — A,

@ The core of x is the endomorphism ¢x : A — A defined by ¢cx = xPD = xxDx.

o The nilpotent part of a Drazin endomorphism is ny = x — cx : A = A.

The pair (cx, nx) is called a core-nilpotent decomposition.

We wish to prove that having a core-nilpotent decomposition is equivalent to being Drazin. To
justify this claim, it is useful to have a definition of a core-nilpotent decomposition which is
independent of x being Drazin.



Core-Nilpotent Decomposition

In an additive category X, a core-nilpotent decomposition of x : A — A is a pair (c, n) of
endomorphisms ¢ : A — A and n: A — A such that:

o [CND.1] c is Drazin with ind(c) <1 (so ¢ has a group inverse);
o [CND.2] n is nilpotent with nilpotent index k € N (so that nk = 0);

e [CND.3] cn = 0 = ng;

o [CND.4] x =c+n.




Core-Nilpotent Decomposition

In an additive category X, a core-nilpotent decomposition of x : A — A is a pair (c, n) of
endomorphisms ¢ : A — A and n: A — A such that:

o [CND.1] c is Drazin with ind(c) <1 (so ¢ has a group inverse);
o [CND.2] n is nilpotent with nilpotent index k € N (so that nk = 0);
e [CND.3] cn = 0 = ng;

o [CND.4] x =c -+ n.

Theorem

| A\

In an additive category X, x : A — A is Drazin if and only if x has a core-nilpotent
decomposition. Explicitly:

o If x is Drazin then (cx, nx) is a core-nilpotent decomposition;
o If x has a core-nilpotent decomposition (c, n), then x is Drazin with xP = cP.

Moreover, if x is Drazin, then (cx, nx) is its unique core-nilpotent decomposition.




Generalizing the matrices approach

Recall that for an n X n matrix A, to compute its Drazin inverse we first write it in the form:

. cC o0 1
AiP{O N}P

for some invertible n X n matrix P, an invertible m x m matrix C (where m < n), and a nilpotent
n—m x n— m matrix N (that is, N¥ = 0 for some k € N).

Then the Drazin inverse of A is the n x n matrix AP defined as follows:

c1 o] ,—
D 1
A—P{: :}P

We wish to generalization this approach, and we can do so in a setting with finite biproducts!



Finite Biproducts and Matrices

We now work in an additive category with finite biproducts: we denote the biproduct by &®.

Recall the matrix representation for maps between biproducts. Indeed, recall that a map of type
F:A1®...® A, — B1 @ ... ® Bn is uniquely determined by a family of maps f; ; : A; — B;. As
such, F can be represented as an n X m matrix:

fin h2 ... fm

hi1 ha ... fbn
F:=

fn 1 fn,2 v fn,m

Moreover, composition corresponds to matrix multiplication, and identities correspond to the
identity matrix.



Fitting Decomposition

Definition

In an additive category X with finite biproducts, a Fitting decomposition of x : A — A is a triple
(p, e, m) consisting of an isomorphism p : A — | & K, an isomorphism « : | — I, and a nilpotent
endomorphism 7 : K — K such that the following equality holds:

a 0] 4
X=pPly P

We will show that a map Fitting decomposition is Drazin.



Fitting Decomposition

Definition

In an additive category X with finite biproducts, a Fitting decomposition of x : A — A is a triple
(p, e, m) consisting of an isomorphism p : A — | & K, an isomorphism « : | — I, and a nilpotent
endomorphism 7 : K — K such that the following equality holds:

a 0] 4
X=pPly P

We will show that a map Fitting decomposition is Drazin. To get the if and only if statement, we
need to discuss idempotent complement splitting.



Drazin Split

Let x : A — A be Drazin. Define the map ex := xPx : A — A (or equivalently by [D.3] as
e = xxD). Then ey is an idempotent.

Definition

x : A — A is Drazin split if it is Drazin and the induced idempotent e, := xxP : A — A splits.




Drazin Complement Split

o In an additive category, the complement of an idempotent e : A — A is the endomorphism
e®: A — Adefined as e€ := 1, — e.

@ The complement of an idempotent is again an idempotent, so we may consider when it
splits. In an additive category, we say that an idempotent e is complement-split if e€ is split.

Definition

In an additive category X, x : A — A is Drazin complement-split if x is Drazin and its induced
impotent e, : A — A (i.e. ex = xxP = xDx) is complement-split.

Definition

In an additive category X, x : A — A is Drazin decomposable if x is both Drazin split and Drazin
complement-split.




Drazin Decomposable and Fitting Decomposition

In an additive category X with finite biproducts, x : A — A is Drazin decomposable if and only if
X has a Fitting's decomposition. Explicitly:




Drazin Decomposable and Fitting Decomposition

In an additive category X with finite biproducts, x : A — A is Drazin decomposable if and only if
X has a Fitting's decomposition. Explicitly:

o If x is Drazin decomposable, where e splits viar: A— | and s : | — A, and e splits via
rc: A— K and s¢ : K — A, then define the mapsp: A— I &K, a: 1 — 1, andn: K - K

as follows:

p=1[r r] o = sxr n = s ner

Then (p, a,m) is a Fitting’s decomposition of x.




Drazin Decomposable and Fitting Decomposition

In an additive category X with finite biproducts, x : A — A is Drazin decomposable if and only if
X has a Fitting's decomposition. Explicitly:

o If x is Drazin decomposable, where e splits viar: A— | and s : | — A, and e splits via
rc: A— K and s¢ : K — A, then define the mapsp: A— I &K, a: 1 — 1, andn: K - K
as follows:

p= [r r‘] a = sxr 1 = s nxrc

Then (p, a,m) is a Fitting’s decomposition of x.

o If x has a Fitting’s decomposition (p, «,n), then x is Drazin complement-split with Drazin
inverse defined as follows:
2ot Yo
0 0

1

and moreover, writing p: A — I ® K and p~* : | & K — | in matrix form:

p=[r ] =]

the induced idempotent ex : A — A splitsviar: A— | ands: | — A, and e : A — A splits
viarc:A— K ands®: K — A.

v




Fitting Decomposition and Core-Nilpotent Decomposition

In an additive category X with finite biproducts, if x : A— A has a Fitting's decomposition
(p, 0, m), and is therefore Drazin, then the core and nilpotent-part of x are determined by:

a 0 —1 0 0 —1
. T




Kernel-Cokernel Coincidence

Robinson and Puystjens provide conditions for being Drazin in an additive category in terms of
kernels and cokernels, and also a formula for the Drazin inverse in this setting.

@ R. Puystjens & D. W. Robinson Generalized Inverses of Morphisms with Kernels. (1987)

THEOREM 2. Let ¢: X = X be a morphism of an additive category €,
and let i > 0 be an integer. If k: K - X is a kernel of ¢': X — X, then ¢ has
a Drazin inverse ¢° in € and i > Drazin index of ¢ if and only if &' has a
cokernel N\: X — L, kX: K — L is invertible, and ¢'** + A(kA) " 'k: X > X is
invertible. In this case, y = A(xA)~*: X - K is a cokernel of ¢', ¢¢° + yk =
1y, and

P =g (¢i+1+yx)<1=(¢u1+w)*1¢.‘.



Kernel-Cokernel Coincidence

Robinson and Puystjens provide conditions for being Drazin in an additive category in terms of
kernels and cokernels, and also a formula for the Drazin inverse in this setting.

@ R. Puystjens & D. W. Robinson Generalized Inverses of Morphisms with Kernels. (1987)

THEOREM 2. Let ¢: X = X be a morphism of an additive category €,
and let i > 0 be an integer. If k: K - X is a kernel of ¢': X — X, then ¢ has
a Drazin inverse ¢° in € and i > Drazin index of ¢ if and only if &' has a
cokernel N\: X — L, kX: K — L is invertible, and ¢'** + A(kA) " 'k: X > X is
invertible. In this case, y = A(xA)~*: X - K is a cokernel of ¢', ¢¢° + yk =
1y, and

P =g (¢i+1+yx)<1=(¢u1+w)*1¢.‘.

We revisited their result and showed how their setup is in fact equivalent to being Drazin
complement-split.



Kernel-Cokernel Coincidence

In an additive category X, x : A — A is Drazin complement-split if and only if there is a k € N
such that x*t1 has a kernel and cokernel:

et N
ker(xktl)>—— " 5 A A——" > coker(xkt1)
0

such that kX is an isomorphism and x**1 : (A, e ) — (A, e ,.) is an isomorphism in Split(X),
where e, is the complement of the idempotent ey . = NN

In an additive category X, if x : A — A is Drazin complement-split and ind(x) = k, then the
following equality holds:

XD — Xk(Xk+1 + 65)71 — (Xk+1 + e;)flxk




Kernel-Cokernel Coincidence — a remark

Rather than asking that x¥*1 is an isomorphism in the idempotent splitting, Robinson and
Puystjens ask that xkt1 4 ex,x be an actual isomorphism. However, the following lemma shows
that these statements are equivalent.

In an additive category X, if f : (A, e) — (A, e) is a map in Split(X), then f : (A,e) — (A, e) is
an isomorphism in Split(X) if and only if f + €€ is an isomorphism in X.




Generalizing the module approach

Recall that for an R-linear endomorphism f : M — M, f is Drazin if and only if
M =im(f¥) @ ker(f¥)

for some k > 1, which we call a Fitting Image-Kernel Decomposition.

We generalize this sort of decomposition in an Abelian category and show that it is indeed
equivalent to being Drazin.



Image-Kernel Decomposition

In an Abelian category X, denote the kernel and image of an endomorphism x : A — A, as follows:

0

ker(x)- u A X A

im(f
where recall that x and ¢ are monic, and ¢ is epic. Now define v as the canonical map:

Y= H Sim(x) @ ker(x) — A

Definition

In an Abelian category X, a map x : A — A has an image-kernel decomposition in case the map
1 as defined above is an isomorphism.




Image-Kernel Decomposition

In an Abelian category X, denote the kernel and image of an endomorphism x : A — A, as follows:

0

ker(x)- u A X A

im(f
where recall that x and ¢ are monic, and ¢ is epic. Now define v as the canonical map:

Y= M Sim(x) @ ker(x) — A

Definition

In an Abelian category X, a map x : A — A has an image-kernel decomposition in case the map
1 as defined above is an isomorphism.

Theorem

In an Abelian category X, x : A — A is Drazin if and only if there is some k € N such that x*t1
has an image-kernel decomposition.




Let's take a quick look at the proof

For the = direction: our objective is to show that ¢ : im(x**1) @ ker(x**1) — Ais an
isomorphism. To construct its inverse, we need to first construct maps A — im(x**1) and
A — ker(xk+1).



Let's take a quick look at the proof

For the = direction: our objective is to show that ¢ : im(x**1) @ ker(x**1) — Ais an
isomorphism. To construct its inverse, we need to first construct maps A — im(x**1) and
A — ker(xk+1).
o First note that by idempotency and [D.3], we get that e, = eft! = (xP)kT1xk+1 So by
using the universal property of the image, there is a monic map im(ex) — im(x**1), which
then allows us to build a map ¢; : A — im(x”l) such that ¢10 = ex.

o On the other hand, we have that ex**! = 0. So by the universal property of the kernel, let
¢ : A — ker(x¥T1) be the unique map such that B2k = €.

Then define ¢ as:
p=[b1 ¢2] : A—im(x*T1) @ ker(x*TT)

which we show is indeed the inverse of ¢ (which requires a bit of work!)
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For the < direction: To show that x is Drazin, we will show that 1) is part of a Fitting
decomposition of x.
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o Define v : im(x¥*1) — im(x**1) to be the composite a: = tx¢1. To show that « is an
isomorphism, since we are in Abelian category, we showed that « is monic and epic.
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o By the universal property of the kernel, there exists a unique map 7 : ker(x¥*1) — ker(xk+1)
such that nk = kx. Which we show is nilpotent.



Let's take a quick look at the proof

For the < direction: To show that x is Drazin, we will show that 1) is part of a Fitting
decomposition of x.

So let ¢1 : A — im(x**1) and ¢2 : A — ker(x¥*1) be the components of
P71 A — im(x*1) @ ker(xk+1).

o Define v : im(x¥*1) — im(x**1) to be the composite a: = tx¢1. To show that « is an
isomorphism, since we are in Abelian category, we showed that « is monic and epic.

o By the universal property of the kernel, there exists a unique map 7 : ker(x¥*1) — ker(xk+1)
such that nk = kx. Which we show is nilpotent.

Then we also computed out that:
1 |@ 0 _
vt ls ou=x

So we conclude that (¢, @, n) is a Fitting’s decomposition of x. So we get that x is Drazin.
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Drazin Inverses of Opposing Pairs of Maps

Arriving with categorical eyes to the subject of Drazin inverses it is natural to want to have a
Drazin inverse of an arbitrary map.

However, to have a Drazin inverse of a map f : A — B, one really needs an opposing map
g : B — A to allow for the iteration which is at the heart of the notion of a Drazin inverse.
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Drazin Inverses of Opposing Pairs of Maps

In a category X, we denote a pair of maps of dual type f : A— B and g: B — A by
(f,g): A=—= B and refer to it as an opposing pair.

In a category X, a Drazin inverse of (f,g): A === B is an opposing pair

D D
(g7,fe): A== B satisfying the following properties:

D
o [DV.1] There is a k € N such that (fg)*ffs = (fg)* and (gf)<gg? = (gf)~.

D
The map f& : B — A is called the Drazin inverse of f over g, while the map g% :A— Bis

called the Drazin inverse of g over f.




Drazin Opposing Pairs

So how do Drazin inverses of opposing pair relate to the usual Drazin inverse?

Lemma

In a category X, for an opposing pair (f,g) : A=—= B, fg : A— A is Drazin if and only if
gf : B — B is Drazin. Explicitly,

o If fg is Drazin, then gf is Drazin where (gf)P: = g(fg)P(fg)Pf;

o If gf is Drazin, then fg is Drazin where (fg)P: = f(gf)P(gf)Pg.

Definition

In a category X, a Drazin opposing pair is an opposing pair (f,g): A== B such that fg or
gf is Drazin.
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Drazin Opposing Pairs

So how do Drazin inverses of opposing pair relate to the usual Drazin inverse?

In a category X, (f,g): A === B has a Drazin inverse if and only if (f,g) is a Drazin opposing

pair. Explicitly:
D 2
f g

o If (f,g) has a Drazin inverse (g ) then (f, g) is a Drazin opposing pair where

D D
(fg)P: = g% f& with and (gf)P: = Eg%
D
e If (f,g) is a Drazin opposing palr then (f, g) has a Drazin inverse (g% f &) where
D
f = g(fg)P = (gf)°g and g7 = f(gf)° = (fg)°F
v

Definition

In a category X, an opposing pair (f,g): A === B is Drazin if (f,g) is a Drazin opposing pair

or equivalently if (f,g) has a Drazin inverse.




Recovering Drazin Inverses

Lemma

In a category X, x : A — A is Drazin if and only if (x,14) : A=—= A s Drazin, or equivalently
if (La,x): A=—=A s Drazin. Explicitly:

D D
o If x is Drazin then (x,14) has a Drazin inverse with x'A = xP and 1x = xxP;

D p
o If (x,14) is Drazin, then x is Drazin where xD = xla1x

A category X is Drazin if and only if every opposing pair in X is Drazin.
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Drazin Inverses in Dagger Categories

An important source of a pair of opposing maps in a dagger category is the pair of a map and its
adjoint.

A dagger category is a category X equipped with a functor  : X°? — X which is the identity on
objects and involutive. Explicitly, this means that for every map f : A — B, there is a map of
dual type f : B — A called the adjoint of f such that:

(fz)t = gtft 1 =14 it =

So for any map f : A — B, we get the opposing pair (f, fT) : A—= B, which we call an
adjoint opposing pair.

D
In a dagger category X, if (f,f1): A=—= B has a Drazin inverse then frT = ((fJf)%)Jr and so

D
(f, FHP = ((fT)%, (f7)1) is an adjoint opposing pair.




Moore-Penrose Inverses

We use to Drazin opposing pairs to give a new perspective on Moore-Penrose inverses.

In a dagger category X, a Moore-Penrose inverse of a map f : A — B is a map of dual type
f°: B — A such that:

[MP.1] ffof =f
[MP.2] foffo = f°
[MP.3] (ffe)t = fro
[MP.4] (fof)t = fof

Like Drazin inverses, Moore-Penrose inverses are unique.

ﬁ R. Cockett & J.-S. P. Lemay Moore-Penrose Dagger Categories. (2023)



Moore-Penrose Inverses

We use to Drazin opposing pairs to give a new perspective on Moore-Penrose inverses.
In a dagger category X, a Moore-Penrose inverse of a map f : A — B is a map of dual type
f°: B — A such that:

[MP.1] ffof =f
[MP.2] foffo = f°
[MP.3] (ffe)t = fro
[MP.4] (fof)t = fof

Like Drazin inverses, Moore-Penrose inverses are unique.

@ R. Cockett & J.-S. P. Lemay Moore-Penrose Dagger Categories. (2023)

Proposition

In a dagger category X, f : A — B has a Moore-Penrose inverse if and only if

(f,fT): A=—= B is a Drazin inverse. Explicitly:

o If f has a Moore-Penrose inverse, then (f, 1) is the Drazin inverse of (f°T, f°).

o If (f,f1) is a Drazin inverse of an adjoint opposing pair (g,g'), then f has a Moore-Penrose
inverse with f° = gt fgf.

i




razin Inverses to come? Future work?

https://arxiv.org/pdf/2402.18226.pdf
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More about Drazin Inverses to come? Future work?

https://arxiv.org/pdf/2402.18226.pdf

HOPE YOU ENJOYED MY TALK!
THANK YOU FOR LISTENING!
MERCI!

js.lemay@mqg.edu.au
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