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- Con is the category of Hilbert spaces and linear contractions.

- FCon is the full subcategory of finite-dimensional Hilbert spaces.
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DAGGER CATEGORIES

- A dagger category is a category equipped with a choice of fT: Y — X
foreach f: X — Y, such that

"= (9)" =f'g' (M =r

- Examples include Con and FCon where the dagger is the adjoint.
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CHARACTERISATION OF CON

Theorem (Heunen, Kornell and van der Schaaf)
A dagger rig category (D, ®, I, &, 0) is equivalent to Con if and only if
1. Ois initial,

2. i1:(lgl@0ﬂl@l) andizz(I%O@lﬂl@l) are jointly epic,

8. every dagger monomorphism is a Rernel,

9. every directed diagram has a colimit.



GOAL FOR TODAY:
A similar characterisation of FCon
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SCALARS AND VECTORS FROM CONTRACTIONS

foo= fQ
Con(C,X) = {xeX||x[|<1}
(a—a-x) X

Con(C,C) = {aeC]|lal <1

X={I-x|xeX|x|<1aeC|a<1a#0}
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THE SCALAR LOCALISATION

- The object | corresponds to the 1-dimensional space C.

- Construct C from D by “formally inverting” the elements of D(/,)\{0}
(like the field of fractions)

- C(I,1) is an involutive field

- C(I,X) is an orthomodular space over C(I,1) with (x]y) = xTy.



SOLER’S THEOREM

Theorem (Solér, 1995)

If an orthomodular space over an involutive field has an orthonormal
sequence, then it is actually a Hilbert space over R or C.



SOLER’S THEOREM

Theorem (Solér, 1995)

If an orthomodular space over an involutive field has an orthonormal
sequence, then it is actually a Hilbert space over R or C.

Apply to C(/, I*N) to show that C(/, /) is R or C.



SUBGOAL:
A conceptual proof that
the field of scalars of CisR or C
that does not use infinite dimensionality
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SEQUENTIAL COLIMITS OF CONTRACTIONS

Con has sequential colimits.

colim X,

For each x € X;,
IXI| > [Ifix]| = [If2fx) > ...

x|l = inf|[fn ... ofiX|| = lim [|fn ... ofiX|
neN n— oo



BIG IDEA:
Turn these observations about Con
into definitions about D and C.
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POSITIVITY AND ORDER

Suppose that D satisfies the axioms for Con, and
let C be the scalar localisation of D.

P={aeC(l,I)|a=xixfor some X and some x € C(I,X)}

xIx>yly <<= y=fxforsomef e D(X,Y)
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INFIMA FROM SEQUENTIAL COLIMITS

xfx; = i, = 0 > XTX:ri]QII;XnTXn

J1 J2
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IDENTIFYING THE REAL OR COMPLEX NUMBERS

P is a partially ordered strict semifield (field without negatives) that has
infima of bounded decreasing sequences.

Theorem (DeMarr, 1967)

Every partially ordered field that has infima of bounded decreasing
sequences is isomorphic to R.

The most challenging part of our work was bridging the gap.

10



CHARACTERISATION OF CON

Theorem (Heunen, Kornell and van der Schaaf)
A dagger rig category (D, ®, 1, &, 0) is equivalent to Con if and only if

1. Ois initial,

2. i1:(lgl@0ﬂl@l) andizz(I%O@lﬂl@l) are jointly epic,

8. every dagger monomorphism is a Rernel,

9. every directed diagram has a colimit.
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FINITE DIMENSIONALITY

- The sequential diagram

\

5 “ e
7

7

X1 (x1,0) (x1,%2) = (X1, %2, 0) (X1, X2, X3) — (X1, X2, X3, 0)
y C? C3

C
does not have a colimit in FCon.
- A diagram is bounded if it admits a cocone of monomorphisms.

- FCon has colimits of bounded sequential diagrams.

- An object X is dagger finite if fif = 1implies fft =1 forall f: X — X.
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FINITE DIMENSIONALITY

- The sequential diagram

X2) = (X1, %2, 0) (X1, %2, X3) = (X1, X2, X3, 0)

0) (x1,
> C? > C oo

X1 = (X1,

C

does not have a colimit in FCon.
- A diagram is bounded if it admits a cocone of monomorphisms.
- FCon has colimits of bounded sequential diagrams.
- An object X is dagger finite if fif = 1implies fft =1 forall f: X — X.

- An object in Con is dagger finite if and only if it is finite dimensional.
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CHARACTERISATION OF FCON

Theorem (Di Meglio and Heunen)
A dagger rig category (D, ®, 1,6, 0) is equivalent to FCon if and only if

1. O is initial,

2. i1:(lgl@oﬂeo+l@l) andiZ:(I%O@l—O@LI@I) are jointly epic,

8. every dagger monomorphism is a kernel,
9. every bounded sequential diagram has a colimit,

10. every object is dagger finite.
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ALL AXIOMS FOR FCON

1. Ois initial,

i1:(I%I@O@O+I@I) andizz(l%O@l—O@LI@l) are jointly epic,

N

i'd 0 # i,'d for some d: | — 1 &1,

w

4. |is dagger simple,

5. I'ls a monoidal separator,



ALL AXIOMS FOR FCON

6. ifx: A— Xandy: A— Y are epic, then x'x = yy if and only if y = fx
for some isomorphism f: X — Y,

7. every parallel pair has a dagger equaliser,
8. every dagger monomorphism is a kernel,
9. every bounded sequential diagram has a colimit,

10. every object is dagger finite.

15



DAGGER FINITENESS

- An object X is called dagger finite when, for each f: X — X,
fif =1 = ffl=1



DAGGER FINITENESS

- An object X is called dagger finite when, for each f: X — X,
fif =1 = ffl=1

- Finite-dimensional implies dagger finite by rank-nullity



DAGGER FINITENESS

- An object X is called dagger finite when, for each f: X — X,
fif =1 = ffi =1
- Finite-dimensional implies dagger finite by rank-nullity
- The right-shift map R: ¢,(N) — ¢,(N) satisfies
R(X1,X2,...):(O,X1,...) and RT(XW,Xz,...):(X27X3,...)

so RTR = 1and RRT # 1; hence /,(N) is not dagger finite



DAGGER FINITENESS

- An object X is called dagger finite when, for each f: X — X,
fif =1 = ffi =1
- Finite-dimensional implies dagger finite by rank-nullity
- The right-shift map R: ¢,(N) — ¢,(N) satisfies
R(X1,X2,...):(O,X1,...) and RT(XW,Xz,...):(X27X3,...)

so RTR = 1and RRT # 1; hence /,(N) is not dagger finite

- 0,(N) embeds isometrically in all infinite-dimensional Hilbert spaces,
so no infinite-dimensional Hilbert space is dagger finite



