Adjoints in Double Categories of Quantales and Cauchy Completeness

Susan Niefield

Union College Schenectady, NY

FMCS 2024

Idea

- Lawvere (1973): Cauchy completeness for \mathcal{V} -categories introduced metric spaces as categories enriched in $[0,\infty]$
- Paré (2021): Adjoints and Cauchy completeness in double categories concentrating on commutative rings
- N (2024): Generalized and applied to rigs and quantales
- Today: Three double "categories" of quantales

Suplattices (JT)

Sup: The category of complete lattices and \bigvee -preserving maps

Example: $\operatorname{Rel}_{I,J}(X) = \{I \longrightarrow J\}$, the set of X-valued relation $I \times J \longrightarrow X$, for a suplattice X

Sup is a symmetric monoidal closed category since, for all X,

$$Sup(X, -)$$
: $Sup \longrightarrow Sup$

has a left adjoint, denoted by $X \otimes (-)$

- ▶ Can show $Sup(X \otimes Y, Z) \cong Bilinear(X \times Y, Z)$
- ▶ Construct $X \otimes Y$ by generators $x \otimes y$ and relations
- ▶ Or define $X \otimes Y = \mathbf{Sup}(X, Y^{\circ})^{\circ}$

Quantales

Quant The category of monoids in Sup

Objects: quantales Q, \bigvee , \cdot , e

Morphisms: preserve \bigvee , \cdot , e

Example: Given $I \xrightarrow{r} J \xrightarrow{s} K$ on Q, define $(sr)_{ik} = \bigvee_{j \in J} s_{jk} r_{ij}$.

Then $\operatorname{Rel}_I Q = \operatorname{Rel}_{I,I}(Q)$ is a quantale with $e_{ii} = e, e_{ij} = \bot; i \neq j$

Note: $I \stackrel{\alpha}{\longrightarrow} J$ induces $\operatorname{Rel}_J Q \stackrel{\operatorname{Rel}_\alpha Q}{\longrightarrow} \operatorname{Rel}_I Q$ in **Quant**

Double Categories

A double category $\mathbb D$ is a pseudo internal category in CAT

$$\mathbb{D}_1 \times_{\mathbb{D}_0} \mathbb{D}_1 \xrightarrow{\bullet} \mathbb{D}_1 \xrightarrow{\overset{s}{\longleftarrow} \overset{s}{\longleftarrow}} \mathbb{D}_0$$

Objects D of \mathbb{D}_0 , called objects of \mathbb{D}

Morphisms $D \xrightarrow{f} E$ of \mathbb{D}_0 , called horizontal morphisms of \mathbb{D}

Objects $D \xrightarrow{V} F$ of \mathbb{D}_1 , called vertical morphism of \mathbb{D}

A cell is special if f and g are identity morphisms. The vertical morphisms and special cells form a bicategory denoted by $Vert(\mathbb{D})$.

Example 1: A strict double category of quantales

 $\mathbb{Q}\mathrm{uant}_{str}$

Objects: quantales Q,

Horizontal morphisms: quantale homomorphisms $Q \xrightarrow{f} R$

Vertical morphisms: lax maps $Q \xrightarrow{v} S$, i.e., v is monotone with $v(q)v(\bar{q}) \leq v(q\bar{q})$ and $e_S \leq v(e_Q)$

Cells:
$$v \not\downarrow \stackrel{f}{\longrightarrow} R$$

 $S \xrightarrow{g} T$ i.e., $g(v(q)) \le w(f(q))$

Note: Every quantale map $Q \xrightarrow{f} R$ has a lax right adjoint $R \xrightarrow{f^*} Q$, since f preserves \bigvee , $f(e_Q) \leq e_R$, $f(f^*rf^*\bar{r}) \leq f(f^*r)f(f^*\bar{r}) \leq r\bar{r}$.

Companions and Conjoints

A companion for $X \xrightarrow{f} Y$ is a vertical morphism $X \xrightarrow{f_*} Y$ and cells

$$X \xrightarrow{\operatorname{id}_{X}} X \qquad X \xrightarrow{f_{*}} Y \\ \operatorname{id}_{X}^{\bullet} \downarrow \eta \quad \downarrow f_{*} \qquad f_{*} \downarrow \varepsilon \quad \downarrow \operatorname{id}_{Y}^{\bullet} \\ X \xrightarrow{f} Y \qquad Y \xrightarrow{\operatorname{id}_{Y}} Y$$

whose horizontal and vertical compositions are identities.

A conjoint for f is a vertical morphism $Y \xrightarrow{f^*} X$ and cells

$$\begin{array}{ccc}
X \xrightarrow{f} Y & Y \xrightarrow{\operatorname{id}_{Y}} Y \\
\operatorname{id}_{X}^{\bullet} \downarrow & \overline{\eta} & \downarrow f^{*} & f^{*} \downarrow & \overline{\varepsilon} & \downarrow \operatorname{id}_{Y}^{\bullet} \\
X \xrightarrow[\operatorname{id}_{X}]{} X & X \xrightarrow{f} Y
\end{array}$$

Proposition

If f has a companion and conjoint, then $f_* \dashv f^*$ in $Vert(\mathbb{D})$.

Cauchy Completeness

Definition

An object Y of $\mathbb D$ is Cauchy complete if every left adjoint vertical morphism $v: X \dashrightarrow Y$ is a companion of some $f: X \longrightarrow Y$; and $\mathbb D$ is a Cauchy double category, if every object is Cauchy complete.

Proposition

 $\mathbb{Q}\mathrm{uant}_{\mathit{str}}$ has companions and conjoints; and is Cauchy.

Proof.

Suppose $v\dashv w$ in $\mathbb{Q}\mathrm{uant}$, where $Q\overset{\checkmark}{\longrightarrow} R$. Since v is lax and preserves \bigvee , to see it is a quantale morphism, it suffices to show $v(e_Q)\leq e_R$ and $v(q\bar{q})\leq v(q)v(\bar{q})$. But, $e_Q\leq w(e_R)$ and

$$q\bar{q} \leq wv(q)wv(\bar{q}) \leq w(v(q)v(\bar{q}))$$

Example 2

Quant

Objects: quantales Q,

Horizontal morphisms: quantale homomorphisms $Q \xrightarrow{f} R$

Vertical morphisms: (S, Q)-bimodules $Q \xrightarrow{M} S$

Cells:
$$Q \xrightarrow{f} R$$

 $S \xrightarrow{g} T$

$$(S, Q)$$
-homomorphsms $M \xrightarrow{\varphi} N$

Problem: Quant is not Cauchy, since one can show that

- 1. Quant has companions with $f_* \cong R$, for all $Q \xrightarrow{f} R$, but
- 2. $Q \xrightarrow{M} R$ has a right adjoint iff M is projective as an R-module

Projective R-Modules

Let $Q \stackrel{f}{\longrightarrow} \operatorname{Rel}_{I} R$ be a non-unitary homomorphism, and define

$$M_f = \{\mathbf{x} \in R^I\} | \mathbf{x} f(e) = \mathbf{x}\}$$

where $R^I = \coprod_{i \in I} R = \prod_{i \in I} R$. Then M_f is an (R, Q)-bimodule via

$$(r\mathbf{x})_i = rx_i \qquad \mathbf{x}q = \mathbf{x}f(q)$$

Theorem [N, Lawvere Festschrift]

Suppose $Q \xrightarrow{M} R$. Then M is projective iff there is a a non-unitary homomorphism $Q \xrightarrow{f} \operatorname{Rel}_{I} R$ s.t. $M \cong M_{f}$ as an (R, Q)-bimodule.

Proof.

(\Leftarrow) Define $M_f \underset{\tau}{\stackrel{\sigma}{\rightleftharpoons}} R^I$ by $\sigma(\mathbf{x}) = \mathbf{x}$ and $\tau(\mathbf{x}) = \mathbf{x} f(e) \in M_f$, since $\tau(\mathbf{x}) f(e) = \mathbf{x} f(e) f(e) = \mathbf{x} f(e) = \tau(\mathbf{x})$, and so M_f projective.

$$(\Rightarrow)$$
 See [N]

Another Horizontal "Category" of Quantales

 $Q \xrightarrow{(I,f)} R$; I a set and $Q \xrightarrow{f} \operatorname{Rel}_{I} R$ a non-unitary homomorphism

Composition:
$$Q \xrightarrow{(I,f)} R \xrightarrow{(J,g)} S$$
, denoted $(J \times I, g * f)$ via $Q \xrightarrow{f} \text{Rel}_{I} R \xrightarrow{\text{Rel}(g)} \text{Rel}_{I} (\text{Rel}_{J} S) \cong \text{Rel}_{J \times I} S$

Problem: Associativity fails

$$((K,h)\circ(J,g))\circ(I,f)=(K\times(J\times I),h*(g*f))$$
$$(K,h)\circ((J,g)\circ(I,f))=((K\times J)\times I,(h*g)*f)$$

Get a bicategory of quantales!

Example 3: A Verity double bicategory of quantales

 $\mathbb{Q}\mathrm{uant_{bicat}}$

Objects: quantales Q,

Horizontal bicategory:
$$Q \xrightarrow{(I,f)} R$$
 and $Q \xrightarrow{(\hat{I},\hat{f})} R$

Vertical bicategory: (S, Q)-bimodules $Q \xrightarrow{M} S$ and $Q \xrightarrow{\downarrow \mu} S$

Squares:
$$M
ightharpoonup R$$

$$S = \sum_{\substack{Q \to \bullet \\ V \text{ of } (J,g)}}^{(I,f)} R$$

$$M
ightharpoonup Rel_{I,J}(N)$$

Plus actions, and compatibility (Verity '92).

Example 3, cont.

Vertical composition uses:

Note: $\mathbb{I}^{op} \times \mathbb{Q}uant \xrightarrow{\mathrm{Rel}} \mathbb{Q}uant$ is a lax double functor, where \mathbb{I} is the double category of sets, bijective functions, and cells

$$\begin{array}{c} I \stackrel{\alpha}{\longrightarrow} J \\ (I,K) \Big| \stackrel{(\alpha,\beta)}{\longrightarrow} \Big| (J,L) \\ K \stackrel{\beta}{\longrightarrow} L \end{array}$$

Cauchy Completeness

Lemma

 $\mathbb{Q}uant_{\mathrm{bicat}}$ has companions.

Proof.

Given
$$Q \xrightarrow{(I,f)} R$$
, show $(I,f)_* = M_f \subseteq R^I$.

Theorem

 $\mathbb{Q}uant_{bicat}$ is Cauchy.

Proof.

Suppose $Q \xrightarrow{M} R$ has a right adjoint. Then M is projective as a left R-module, and so $M \cong M_f$ as an (R, Q)-bimodule, for some

$$Q \xrightarrow{(I,f)} R$$
. Thus, $M \cong (I,f)_*$, as desired.

Remark

 $\mathbb{Q}\mathrm{uant_{bicat}} \text{ is the "Kleisli double bicategory" of a graded monad, i.e., a lax double functor } \mathbb{P}^\mathrm{op} \times \mathbb{Q}\mathrm{uant} \longrightarrow \mathbb{Q}\mathrm{uant} \text{ such that}$

$$(\mathbb{I}^{op}, \times) \longrightarrow (Lax(\mathbb{Q}uant, \mathbb{Q}uant), \circ)$$

is strong monoidal.

References

- ▶ Joyal and Tierney, An Extension of the Galois Theory of Grothendieck, Amer. Math. Soc. Memoirs 309, (1984).
- Lawvere, Metric spaces, generalized logic, and closed categories, Rend del Sem. XLIII (1973); TAC Reprints 1 (2002), 1–37.
- Niefield, Cauchy completeness and adjoints in double categories, to appear in TAC Lawvere Festschrift.
- Paré, Morphisms of rings, Outstanding Contributions to Logic 20, Springer (2021), 271–298.
- ▶ Verity, Enriched Categories, Internal Categories, and Change of Base, Ph.D. Dissertation, University of Cambridge, (1992); TAC Reprints 20 (2011), 1–266.