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A tangent category is a category X with:
m A tangent functor T : X — X

m A projection natural transformation p : T — 1 with pullback powers
T,M preserved by T.

m A addition natural transformation +: T, — T
m A zero natural transformation 0:1 — T
m A vertical lift natural transformation ¢: T — T2

m A canonical flip natural transformation ¢ : T2 — T2
oM
0 J+ 0
PR PR

M ™ ™ c
p Tp

and some conditions
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Example: N°*

Let N*® be the category with
m The free f.g. N-modules N*, k € N as objects
m N-linear maps as morphisms

There is a tangent structure on N® given by

Ty(N*) = NF x N2

+e =1 x add ek = (g, Mo, 71, 73)

Oy =1x0 Ly = (7, 0,0, ) m

NF ' T(NF) = Nk x N ' T2(NF) = N* x NF x NF x N*
Pne = T T(PN’»‘) = (mo, m2)
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Tangent functors

A lax tangent functor between tangent categories (X, Tx) and (Y, Ty)
is a pair (F,a) of a functor F: X — Y and a natural transformation
a: Fo Tx — Ty o F compatible with the tangent structure, e.g.

a [e3
FoTx—TyoF FO(TX)2—2*(TV)2°F

F& J?p, F(+.,)l l*

FoTly ——TyoF
[e3

It is called a strong tangent functor if o is an isomorphisms and F
preserves the pullbacks that are part of the definition of a tangent
structure.
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Tangent natural transformations

Let (X, Tx) and (Y, Ty) be tangent categories and (F, ), (F',a') :
(X, Tx) = (Y, Ty) be lax tangent functors. A tangent natural
transformation (F,«) = (F',a’) is a natural transformation

p:F=F.

It is called linear if

Pry
Folxy ———— F'oTx

al la
TYOFT—)”TYOF’

¥(e

commutes.
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Biategories of tangent Categories

We can now look at
m lax tangent functors with tangent natural transformations,
m lax tangent functors with linear tangent natural transformations,
m strong tangent functors with tangent natural transformations, or
m strong tangent functors with linear tangent natural transformations.

This gives us four variants of bicategories of tangent categories, e.g.
TANG,,, the bicategory with

m Tangent categories as objects
m Lax tangent functors as 1-morphisms
m Tangent natural transformations as 2-morphisms.

Given two tangent categories (X, Tx), (Y, Ty) there are 1-categories of
lax tangent functors (X, Tx) — (Y, Ty)

LaxFun(X, Y) LaxFun, (X, Y)
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Differential bundles

In a tangent category one can define a differential bundle E over M:

E,
|-
Lt
M - E »T'(E)

such that finite pullback powers of g exist and are preserved by T",

0, m\)T
2_,(71'0 mA)T (o) TE

lwoq . T(q)l

M —TM

is a pullback and some additional conditions hold.
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First examples

The tangent bundle TM £ M is a differential bundle.

Ben MacAdam showed that differential bundles in SmMan are exactly
vector bundles. For example R x R over R:

E,=RxRxR

C=1.x0 la:l x add
s
M:Fi(iE:?‘ixR—)T(E):i\X?XRXR
q=" A=1x0x0x1g
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Example: Nt — NC

In the tangent category N°, the following is a differential bundle:

E, = N?
c=0 la:add
_
M=N+—"F-N——+T(E) = N?
q:' )‘_<071>

A differential bundle over the terminal object is called a differential
object.

Proposition (Differential bundles as differential objects)

A differential bundle is a differential object in the slice category.
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Morphisms of differential bundles

A morphism of differential bundles from (E, M, g,0,(,\) to
(E',M',q',0’,¢', ) in X is a pair of morphisms
f:E— E' g:M— M such that

ELE’

|l I

M — M
9

commutes. It is called additive if the first two diagrams commute and
linear if the third diagram commutes.

fa g
By — E} MM
N A R
E — F E — FE
f f
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Classification of differential bundles
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Differential functors

A lax tangent functor (F, «) between tangent categories (X, Tx) and
(Y, Ty) is called lax differential if it
m 7" o F preserves pullbacks over the terminal object Vn € N, and
m «: FoTx = TyoF is Cartesian, i.e. its naturality squares are
pullbacks.
It is called strong differential if it also preserves the terminal object.

Proposition (preservation)

Strong differential functors send differential objects to differential objects.
Lax differential functors send differential objects to differential bundles.
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Classification

Proposition (Induced functor)

For any differential bundle E % M in any tangent category X there is a
lax differential functor from N°.

Fe:N* - X
N—-M N—E NoE
(n-(—):N—>N)»—><anoAn:E—>E>

The natural transformation ag : Fgo Tye = Tx o Fe is

(aE)Nl = T(O‘) o} <OO7T0,>\O7T1> By — T(E), (OtE)Nk = ((aE)Nl)k.
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Equivalence of Categories

There is an equivalence of categories
Diﬁ'_F‘lmlin(N', X) ~ DiﬁBunlm(X)

DiffFun(N*®, X) ~ DiffBun,qq(X)

where DiffFun and DiffFuny, are the full subcategory of differential
functors in LaxFun and LaxFuny;,.

An additive morphism f : E — E', g : M — M’ between differential
bundles E % M, E’ L5 M’ induces

©: Fe= Fg one s F(NK) = B, — E|

additivity <> naturality (¢ and o are images of maps in N°*)
linearity <> compatibility with a.g and o
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What about N°®

N* encodes commutative monoids

Mon(X) ~ Funy (N*, X)

James Cranch showed that the Duskin-Nerve of the bicategory
Span(FinSet) encodes homotopy commutative monoids.

E := N(Span(FinSet))

So E is the co-version of N°.
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In tangent co-categories

Make this equivalence a definition

Definition

The category of differential bundles in a tangent infinity Category X is
the category of lax tangent functors E,, — X preserving pullbacks over
the terminal object with cartesian natural transformations.

What properties do such differential bundles have?
Is the tangent bundle still a differential bundle? Yes (Michael Ching)
Are the differential objects in the slice category still the differential
bundles?

Even in the 1-category case
Can one understand connections through this perspective?
How does this relate to Michael Ching's E = M X1y TE xg M?
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