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Overview

1. The Stone-von Neumann Theorem

2. Variants of the Heisenberg group

3. Symplectic forms, the symplectic group, and the projective
Clifford group

4. Formulating the symplectic form category-theoretically

5. Some interactions between: sufficiency of (enriched) global
elements, associativity, linear distributivity, nuclearity, etc.



The Stone-von Neumann Theorem

I The starting point for quantum mechanics is to consider the
canonical commutation relations. These are encoded by the
Heisenberg group G , of which there are multiple versions.

I The quotient G/Z(G ), called the phase space, is abelian and
has a structure called the symplectic form, which (if done
right) remembers the structure of G , that is, the CCRs.

I The Stone-von Neumann-Mackey Theorem states that the
Heisenberg group has a unique center-fixing unitary irrep
[1, 2]. This ends up being a crucial tool in the theory. The
representation space is the Hilbert space.

I Goal is to define a kind of category C such that one may
reason about objects equipped with a symplectic form, and
hopefully get the Stone-von Neumann-Mackey Theorem.



Symplectic forms concretely

A symplectic form on a free finitely generated R-module V is an
alternating nondegenerate bilinear form ω : V ⊗ V → R.

I Nondegenerate means dωe : V → V ∗ is an isomorphism.

I Alternating means ω(v , v) = 0 for all v ∈ V .

I Skew-symmetric or anti-symmetric means
ω(u, v) + ω(v , u) = 0 for all u, v ∈ V .

I Every alternating form is skew-symmetric, but the converse
holds iff R has odd characteristic, complicating the even case.

I Symplectic group: Sp(V , ω) = {φ ∈ GL(V ) |φ∗ω = ω}.
Given Q ⊆ V , define Qω = {v ∈ V |ω(q, v) = 0∀ q ∈ Q}. A
subspace Q is isotropic if Q ⊆ Qω, coisotropic if Qω ⊆ Q, and
Lagrangian if it is both, or equivalently, if it is maximally isotropic.

Same idea for LCA,1 but ω : V ⊗ V → U(1). In each version, R2n

gets a canonical symplectic form, but in LCA, Z2n is Lagrangian.

1
LCA = the category of locally compact (Hausdorff) abelian groups.



Examples of Heisenberg groups
Each Heisenberg group listed here is a central extension:

1 Λ G V 1

where the phase space V ∈ ob(C ) is an abelian group/module/
vector space with symplectic form, but G is nonabelian.

Λ = Z(G ) G V C
U(1) 〈e iθ,X ,Z 〉 2 (Z/d)2n LCA

U(1) Heis(R2n) R2n LCA

comm. ring R
{(

1 q λ
1 p

1

)}
R2n fgf-R-Mod

〈e2πi/d〉 ∼= Z/d 〈X ,Z 〉 (Z/d)2n LCA or fgf-Zd -Mod
(for d even or odd) iso. to first one

〈eπi/d〉 ∼= Z/2d 〈X ,Y ,Z 〉 (Z/d)2n LCA or fgf-Zd -Mod...
(for d even only)

2
X , Y , Z , and I are the qudit Pauli matrices. Noncentral generators are n-fold Kronecker products of these.



The projective Clifford group

The n qud it Pauli matrices are given on the standard basis of
symbols |r〉 (for r ∈ Z/d) for C[Z/d ] ∼= Cd by:

X |r〉 = |r + 1〉 , Z |r〉 = ζr |r〉 , Y = σXZ , ζ = a cplx dth root of 1
σ= a square root of ζ

The groups Pd ,n = 〈X ,Z 〉 and P′d ,n = 〈X ,Y ,Z 〉 have orders d2n+1

resp. d ′d2n, where d ′ = { 2d :d even
d :d odd } is the order of σ.

By the S-vN-M Theorem, (which applies to the version with U(1)
center,) the center-fixing automorphisms of P′d ,n precisely comprise
the projective Clifford group:

PCl′d ,n = {[U] ∈ PU(dn) |UgU† ∈ P′d ,n ∀ g ∈ P′d ,n}

For the multiqubit case (d = 2), the “small version” PCld ,n doesn’t
contain the (projectivized) S gate ( 1

i ). Elements of the “large
version” PCL′d ,n are in bijection with pairs (µ, ψ) ∈ V ∗ × Sp(V ).3

3Nontrivial. See [3, 4] or upcoming math paper with Jennifer Paykin.



Comparison with existing “categories + quantum” ideas
I Dagger categories. Recall that fdHilb is an example of a

dagger category. The Hilbert space for a system of n qud its is
H = (Cd)⊗n ∼= Cdn

. This is the relevant object in fdHilb. In
contrast, the phase space V = (Z/d)2n lies in LCA or
C = fgf-Zd -Mod. The Stone-von Neumann Theorem says
there exists a unique projective unitary irrep of V :

ρ : V → PU(H)

This may be viewed as a functor C̃ → D where C̃ = BV and
D = Hilbert spaces with projective unitaries (only); • 7→ H.

I Weinstein category. This idea pertains to a symplectic
manifold. In contrast, what we’re looking at could be seen as
looking at a single “tangent space”, but the objects don’t
have to be smooth. Although viewing ρ (above) as a functor
suggests suggests a multi-object version (oidification), this
direction is beyond my current scope due to complications in
connecting the tangent spaces (objects).



What properties and structure are needed on C?

To answer this, let’s look at how certain aspects of the theory of
finite dimensional symplectic vector spaces internalize.

Define nondegenreate bilinear form ω : V ⊗ V → ⊥ in any LDC
(C ,⊗,

&

). Now if SubC (V⊗2) has colimits,4 define I 2V � V⊗2:

(I 2V � V⊗2) ∼=
∐

x :>→V

x⊗2 in SubC (V⊗2) = monos(C ) ↓ V⊗2

The motivation is that in R-Vect, (
∧

2V )∗ = {alt forms}, where:

I 2V = span{x⊗2 | x ∈ V } and
∧

2V ∼= V⊗2/I 2V

So if C is preabelian, we may construct ω from a global element
ω̃ : > → (

∧
2V )∗. Finally, the theory of f.d. symplectic vector

spaces requires direct sums (biproducts ⊕). Since ⊗ is closed, ⊕
distributes over ⊗ (in the traditional sense). Anything else? (Yes.)

4I am brushing size issues under the rug here.



Enrichment and generator
I Sometimes need enrichment and/or sufficiency of global elts.

I Let C and K be categories and let > ∈ ob(C ).

I Suppose el : C → K is full, and we have faithful functors
El : C → Set and U : K → Set where this commutes:

C

K Set

el
El

U

Then el is (full and) faithful.

I Def. If C is K -enriched, let’s say C is determined by its
global elements if el = homC (>,−) : C → K is ff.

I Concretely, the main task is to find suitable K ; prove el is full.

I Abstractly, use the fact that ff functors reflect structure.

I Relevant examples: Each of fgf-R-Mod and LCA is
enriched over itself, and el is chosen to be the internal hom.



Isotropy – example of internalization
Idea: before we had Qω = {v ∈ V | q[(v) = 0 ∀ q ∈ Q}, where
q[ := ω(q,−) : V → R. Things work out nicely if we define:

U V ∗ d−e denotes “left currying”

Q V b−c denotes “right currying”

dq[e

q

x

dωe

Writing ∪ and ∩ for the coproduct and product in SubC (V ), let:

Qω
U

⋂
q∈UQ ker bq[c ker bq[c V ∗Udef πq kq bq[c

This lets us define Qω
gen =

⋃
U⊆Q Qω

U , and then (−)ω> and (−)ωgen.

Proposition 1. If monos(C ) is determined by its global elements,
and (−)ω is a contravariant endofunctor on SubC (V ) with double
negation translation (such as (−)ω>), then maximally isotropic
subobjects are coisotropic.



Lax functors respecting “magmal” products ⊗ and �
I Some properties (de Morgan duality, etc.) of (−)ω and as well

as negations can be understood in the following framework.

I Let C and D be categories, and consider an adjunction:

D ⊥ C

R

L

I Further let ⊗ : C × C → C and � : D ×D → D. There could
be associators or not; units and unitors or not.

I In any case, L is oplax iff R is lax:

L(Y ⊗ X )→ LX � LY RX ⊗ RY → R(Y � X )

I The same holds in OplaxMonCat in place of Cat, and
likewise for the other variants, by “doctrinal adjunction” [5] or
seen directly. In this setting, ≥ 3 of 4 directions hold.



Negations

I Let C be a K -enriched category, and consider:

⊗ : C × C → C > ∈ ob(C ) with unitors

We neither impose an associator nor a braiding.

I Further assume C is biclosed (in the K -enriched sense):

homC (X ⊗ Y ,Z ) ∼= homC (X ,Y ( Z )∈ ob(K ) left currying

homC (Y ⊗ X ,Z ) ∼= homC (X ,Z (Y )∈ ob(K ) right currying

I Fix some ⊥ ∈ ob(C ), and form negations:5

(−)¬ = −( ⊥ : C → C op left negation
¬(−) = ⊥ (− : C op → C right negation

Then we get the negation adjunction (−)¬ a ¬(−).

5Caution: (−)ωgen and (−)ω> are not negations on C ↓ V . We are now
thinking about the original category C (or a slight generalization).



Reflexivity viewed as an adjoint equivalence

I (C ,⊗) is left reflexive if the counit of negation is an iso
X
∼→ ¬(X¬). Thus, (C ,⊗) is left reflexive iff (−)¬ : C � C op

is an embedding; reflexive iff (−)¬ a ¬(−) is an equivalence.

I The counit is double negation translation. Caution: its
opposite is the unit, whereas its inverse (if it exists) is
double negation elimination.

I Intermediately, negation may be an idempotent adjunction
(generalizing the Triple Dual Problem [6]):

(−)¬ηX : X¬
∼→ (¬(X¬))¬

Example: C is a model of intuitionistic logic (⊗ = ∧, � = ∨).

I Negation becomes an equivalence C ' C co op of monoidal
categories with strong monoidal functors in the presence of
strong de Morgan duality...



Nuclearity and the de Morgan laws (without distribution)

I Given C , ⊗, >, ⊥ as before, give C op a “unital magmal
structure” � : C op × C op → C op with unit ⊥.
We do not require ⊗ and � to distribute or linearly distribute.

I Call (C ,⊗,�) left nuclear if it is equipped6 with a natural
isomorphism of the following form (resp. right version):

Y ¬ � X¬ ∼= X (op Y ¬ left nuclearizer
¬Y (X ∼= ¬X �op ¬Y right nuclearizer

I There is also a strong version: Y � X¬ ∼= X (op Y . (left)

I (C ,⊗,�) has left (strong) de Morgan law if (−)¬ is
strong, i.e. we keep track of a natural isomorphism:

(X ⊗ Y )¬ ∼= Y ¬ � X¬

The right strong de Morgan duality uses right negations.

6Canonical nuclearizers should be used for ∗-autonomous categories [7, 8].



Associativity
I Let (C ,⊗,>) be a biclosed unital magmal category.

I Prop 2. If any (hence all) of the following natural
isomorphisms exist, they canonically determine each other:

associateXYZ : (X ⊗ Y )⊗ Z
∼→ X ⊗ (Y ⊗ Z )

internal left curryXYZ : (X ⊗ Y )( Z
∼→ X ( (Y ( Z )

internal right curryXYZ : Z ((Y ⊗ X )
∼→ (Z (Y ) (X

lollipopXYZ : (X ( Z ) (op Y
∼→ X ( (Z (op Y )

I Prop 3. Substituting ⊥ for Z , one may show that if C has an
associative structure (above), then a left nuclear structure
equivalently defines a de Morgan duality structure.

I Prop 4. If C has an associative structure, then a natural
isomorphism Y ∼= ¬(Y ¬) equivalently defines a natural
isomorphism X ( Y ∼= X¬ (Y ¬.

I Prop 5. Associativity also enables internal composition,
(which appears in the inverse formula for the nuclearizer [8]).



Nuclearity, reflexivity, and the de Morgan laws
I Prop 6. If (C ,⊗) is left reflexive, then ⊗ has a left bd de

Morgan dual �, which is unique up to iso. Moreover, ⊗ is the
right bd de Morgan dual of �.

I Prop 7. If C is determined by its global elements as well as
by its global co-elements, then ⊗ is associative. If it is also
left reflexive, then it has a left nuclear structure.

I Def. An LDC consists of linearly distributing structures ⊗ and

&

on a category C , with units > and ⊥, respectively. A
∗-autonomous category is an LDC where ⊗ is biclosed,

&

is
bicoclosed, and where each object X has left and right linear
adjoints X ∗ a X a ∗X in the linear delooping bicat. BC [9].

I Thm. In an LDC, left nuclearity implies left reflexivity [?]...

I Q1: Is a reflexive biclosed bicoclosed (non-assoc.) LDC
always (non-assoc.) ∗-autonomous? Q2: Always associative?
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