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Introduction

Let E be a commutative subsemigroup of idempotents, that is, a subsemilattice, of a
semigroup S, and let † : S → E be a unary operation. We say that S satisfies the left

ample condition with respect to E, if

(AL) ae = (ae)†a for all a ∈ S and e ∈ E.

For the dual property, we usually denote the unary operation by ∗ and so the right ample

condition with respect to E is

(AR) ea = a(ea)∗ for all a ∈ S and e ∈ E.

When E is actually the set of all idempotents of S, we drop the phrase “with respect
to” and refer simply to the left or right ample condition.

Recall that a partial permutation of a nonempty set X is a bijection σ : Y → Z for some
subsets Y, Z of X, and that the set of all such partial permutations (denoted by IX) is
a monoid under the usual composition of partial functions. Note that if σ : Y → Z is a
member of IX , then so is its inverse σ−1 : Z → Y so that on IX , we can define three unary
operations −1, † and ∗ as follows: for σ ∈ IX ,

σ−1 is the inverse of σ; σ† = σσ−1 and σ∗ = σ−1σ.

Suppose that the semigroup S is isomorphic to a subemigroup of IX via an isomorphism
θ. We say that S is inverse if Sθ is closed under −1, that S is left ample if Sθ is closed
under † and that S is right ample if Sθ is closed under ∗. An ample semigroup is one
which is both left and right ample. Note that any inverse semigroup is ample. Left ample
semigroups used to be known as left type A semigroups.

As usual, E(S) denotes the set of all idempotents of a semigroup S. It is immediate
from the definition that, in a left ample semigroup S, the idempotents commute with each
other, and so E(S) is a subsemilattice of S. A left ample semigroup satisfies the left
ample condition, and similarly, a right ample semigroup the left ample condition. The two
ample conditions are the properties that underly much of the structure theory for inverse
semigroups, and so it is reasonable to expect that analogous structure results hold for left
ample semigroups.
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Classes of semigroups more general than (left) ample semigroups but which satisfy one or
both of the ample conditions have been widely studied. We mention type SL2 γ-semigroups
[2], weakly (left) ample and weakly (left) E-ample semigroups [4, 18, 19, 10, 11, 12], twisted
LC -semigroups [15, 16] and guarded semigroups [26]. In fact, twisted LC -semigroups are
the same things as weakly left C(S)-semigroups and type SL2 γ-semigroups.

In the talk we will concentrate on approaches to structural properties of left ample and
ample semigroups, with just brief mentions of some generalisations.

In the theory of left ample semigroups, a generalisation of Green’s relation R which we
now describe plays a role which is to some extent analogous to that of R in the theory
of inverse semigroups. On any semigroup S, the relation R∗ is defined by the rule that
(a, b) ∈ R∗ if and only if the elements a, b of S are related by Green’s relation R in some
oversemigroup of S. The relation R∗ seems to have been introduced by Lyapin [22], and,
as observed by Pastijn [28] and McAlister [25], aR∗b is equivalent to the condition that
xa = ya if and only if xb = yb for all x, y ∈ S1. Given this, it is easy to see that R∗ is a
left congruence on S.

One can define the left-right dual L ∗ of R∗ in a similar way, and then we put H ∗ =
R∗

∩L ∗ and D∗ = R∗
∨L ∗. If S is a regular semigroup, that is, for every element a ∈ S,

there is an element b ∈ S such that aba = a, then R∗ = R and L ∗ = L etc.
We can now give an abstract characterisation of left ample semigroups (see [6]). A

semigroup S is left ample if and only if every R∗-class contains an idempotent, E(S) is a
subsemilattice of S and the left ample condition is satisfied:

ae = (ae)†a for all a ∈ S and e ∈ E(S).

Of course, there is a similar characterisation of right ample semigroups using the relation
L ∗ and the right ample condition:

ea = a(ea)∗ for all a ∈ S and e ∈ E(S).

It is clear from these descriptions that right cancellative monoids are left ample, and that
cancellative monoids are ample.

The original impetus for investigating (left) ample semigroups came from the study of
monoids via their actions on sets by analogy with the study of rings via their actions on
modules. The only monoid S over which every S-set is projective is the one element monoid,
but we get a more interesting class when we assume only that every principal left ideal is
projective. A principal left ideal Sa of S is projective if and only if for some idempotent
e there is a bijection θ : Sa → Se which preserves the action of S and maps a to e. Note
that this is equivalent to saying that aR∗e. Such monoids were called left PP monoids.
Examples are furnished by the multiplicative monoids of left PP rings, and by regular
semigroups. The latter observation inspired the study of the structure of such monoids,
the first result being obtained by Kilp [17] for commutative monoids; this was subsequently
generalised in [5] to monoids with central idempotents where it is shown that a monoid is
left PP with central idempotents if and only if it is a semilattice (with greates element) of
right cancellative monoids. This compares with the description of regular semigroups with
central idempotents (which are necessarily inverse) as semilattices of groups.
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The left ample condition is easily seen to hold in right PP monoids with central idem-
potents; indeed, they are just left ample monoids with central idempotents, and so these
results suggest that the structure theory for inverse semigroups should inform the study
left ample semigroups. There are three main approaches for investigating the structure
of inverse semigroups. One to be discussed in Mark Kambites’ talk is via the theory of
Schein [29] relating inverse semigroups and inductive groupoids which is studied in depth
in Lawson’s book [21]. Another which was initiated by Munn in [27] is via the fundamental
representation of an inverse semigroup in what is now known as the Munn semigroup of
the semilattice E(S). The third approach is via McAlister’s theory of E-unitary covers
and the P -theorem [23, 24].

The first extension of the groupoid approach was due to Armstrong in [1] where she
showed that the category of ample semigroups and (2,1,1)-homomorphisms is isomorphic
to the category of inductive cancellative categories and order-preserving functors. This
was generalised to weakly ample semigroups and inductive categories by Lawson in his
thesis [18]. In [20], he gave a further generalisation which showed that ampleness is not the
crucial property for this kind of result. One-sided results along these lines have recently
been obtained by Hollins, a research student of Gould at York.

Given a semilattice E, the Munn semigroup TE is the inverse subsemigroup of IE con-
sisting of all isomorphisms between principal ideals of E. The semilattice of idemotents
of TE is isomorphic to E, and Munn showed that for any inverse semigroup S there is
a homomorphism from S into TE(S) which maps E(S) isomorphically onto E(TE(S) and
induces the maximum idempotent separating congruence on S. The maximum idempo-
tent separating congruence on an inverse semigroup is the largest congruence contained in
Green’s relation H . An ample semigroup does not necessarily have a maximum idempotent
separating congruence, but there is a largest congruence in H ∗. Munn’s result is extended
to an ample semigroup S to give a homomorphism from S into TE(S) mapping E(S) iso-
morphically onto E(TE(S) and inducing the largest congruence contained in H ∗ [7]. This
result was generalised to weakly abundant semigroups independently by El Qallali [4] and
Lawson [18].

On a left ample semigroup S, there is a least congruence σ such that S/σ is a right
cancellative monoid. We say that S is proper if for all elements a and b of S such that
a+ = b+ and aσb, we have a = b. It is well known that an inverse semigroup is proper
if and only if it is E-unitary (see, for example, [14, Proposition 5.9.1]). Example 3 of [6]
shows that the corresponding statement does not hold for left ample semigroups, but it
proper semigroups that we work with for the analogues of McAlister’s covering theorem
and P -theorem.

Let S be a left ample semigroup and T be a right cancellative monoid. We say that
a left ample semigroup P is a proper cover of S (over T ) if P is proper and there is a
surjective +-homomorphism α from P onto S which maps E(P ) isomorphically onto E(S)
(and is such that P/σ ∼= T ). The existence of proper covers for left ample monoids and
an analogue of the P -theorem were given in [6]; the results are easily extended to the
semigroup case. Two sided versions of these theorems can be found in [19]. The results
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have been refined in, for example, [8, 9] and extended to the weakly left ample case in
[10, 11, 12].
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