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Abstract

Ehresmann’s introduction of differentiable groupoids in the 1950s may be seen as

a starting point for two diverging lines of research, many-object Lie theory (the

study of Lie algebroids and Lie groupoids) and sketch theory. This thesis uses

tangent categories to build a bridge between these two lines of research, providing

a structural account of Lie algebroids and the Lie functor.

To accomplish this, we develop the theory of involution algebroids, which are

a tangent-categorical sketch of Lie algebroids. We show that the category of Lie

algebroids is precisely the category of involution algebroids in smooth manifolds,

and that the category of Weil algebras is precisely the classifying category of an

involution algebroid. This exhibits the category of Lie algebroids as a tangent-

categorical functor category, and the Lie functor via precomposition with a functor

∂ : Weil1→TGpd,

bringing Lie algebroids and the Lie functor into the realm of functorial semantics.
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Preface

This thesis is the original work of the author.

This thesis project arose from attempts to broadly understand differential ge-

ometry, and in particular the differential geometry of mechanics. First steps were

taken with Jonathan Gallagher in understanding how the enriched perspective on

category theory introduced in Garner (2018) might relate to differential geometric

structures. The basic structures in this thesis, however, came out of discussions

and collaboration with Matthew Burke in the Lie theory context.

Chapter 1 is an introduction to the theory of tangent categories, and contains

no new results. Chapter 2 began as a joint project with Matthew, who ultimately

had to leave the project due to time constraints, although by that time we had

already found the basic structure of the proof that differential bundles are vec-

tor bundles in the category of smooth manifolds (proved in Theorem 2.5.1). The

current structure of the chapter, particularly with the emphasis on associative coal-

gebras of the weak tangent comonad (T ,ℓ) and the tight connection to Grabowski’s

previous work on the Euler Vector Field construction (Grabowski and Rotkiewicz

(2009)), is original work. The basic results in that chapter appear in MacAdam

(2021); however, the results have been streamlined (there was originally a notion

of a strong differential bundle, in Section 2.4 it is observed that all differential bun-

dles are strong), and there are some new observations about linear connections

(Theorem 2.6.6).

Chapter 3 is a rewrite of a preprint written with Matthew on involution alge-

broids (Burke and MacAdam (2019)), while Section 3.4 is due to conversations with

Richard Garner (we expect to release a new paper on involution algebroids based

on these results as a joint work). The original idea of augmenting an anchored
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bundle with an involution map is entirely due to Matthew, and the isomorphism

on objects between involution and Lie algebroids follows calculations shared by

Richard Garner (Proposition 3.4.12). My own contribution in this section comes

from connecting this to the work of Martínez (2001), as well as giving the bijection

on morphisms for involution and Lie algebroids (Theorem 3.5.1).

The first three chapters provide the background required for the deeper re-

sults in Chapter 4. In the work of Weinstein (1996); Martínez (2001); de León

et al. (2005) on Lie algebroids, it was observed that the “prolongation” of a Lie

algebroid acted like a tangent bundle. Proposition 4.5.1 makes this intuition pre-

cise by showing the prolongation is a second tangent structure on the category

of Lie algebroids. The main theorem in this chapter (Theorem 4.4.8) shows that

involution algebroids in a tangent category C are equivalent to tangent functors

(A,α) from Weil1 to C so that the functor A preserves transverse limits and the

natural transformation α is T -cartesian (Definition 4.4.1). These are entirely new

observations about Lie algebroids and are original work of the author.

Finally, Chapter 5 puts the first four chapters into the language of enriched

category theory, using Garner’s enriched perspective on tangent categories (Gar-

ner (2018)). The first original results in this chapter demonstrate that differential

bundles and anchored bundles are models of W -sketches (Propositions 5.2.6

and 5.2.10), whereW is the site of enrichment for tangent categories. Next, the

enriched theories framework of Bourke and Garner (2019) is used to prove Theo-

rem 5.4.14, that involution algebroids are models of a nervous theory, which is

the enriched version of Theorem 4.4.8. The thesis concludes with the Lie Real-

ization, Theorem 5.5.13, which is a new characterization of Lie differentiation

and introduces an entirely new way to construct adjunctions between categories

of “smooth groupoids” and categories of “Lie algebroids” using purely enriched-

categorical methods (this is in contrast to the geometric approach used in Crainic

and Fernandes (2003) and the homotopy theoretic approach in Sullivan (1977)).

This thesis touches on relatively advanced topics in two areas of math: differ-

ential geometry (Lie algebroids) and enriched category theory (enriched nerve

constructions). I have striven to keep it as self-contained as possible, introduc-

ing the category of smooth manifolds and tangent categories and including an

appendix with the basics of enriched category theory and locally presentable cat-
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egory theory. Material on foundational category theory (which is to say, anything

that can be found in MacLane (1988)) and basic differential calculus (see any

calculus textbook) is used without citation or introduction; this includes limit,

adjunction, monads and monadicity theorems, and the calculus of Kan exten-

sions and coends. Some facts about horizontal composition spans are used in

Chapter 4, but nothing that goes beyond the basic definition.
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Notation

We start with a table of symbols:

Notation

C,D, . . . A (usually tangent) category, treated as a general context for mathematics, denoted

using mathbb

A ,C , . . . A small category treated as a mathematical object, denoted by mathcal

A, B , . . . Objects in a category and also functors. written using capital letters

f ,φ Morphisms in a category and natural transformations: lower-case Roman and

Greek letters

f ◦ g The composition of two maps g : A→ B , f : B →C (applicative notation)

πi The projection from the i t h component of an n-fold pullback A0q0
×q1

. . . qn−1
×qn

An

or a product
∏n Ai

F.G Composition of two functors, F :D→E,G :C→D (applicative notation)

φ.G Whiskering of a natural transformation

⊗ Tensor product in a monoidal category

⊠ A restricted notion of span composition, introduced in Definition 4.3.3

T , p , 0,+,ℓ, c The data for an arbitrary tangent category, introduced in Definition 1.3.2

D ,⊙, 0, !,δ The data for an infinitesimal object, introduced in Definition 1.3.7

T n Iterated application of an endofunctor T

Tn The n-fold pullback power of p : T → i d for a tangent category, T p×p . . . p×p T
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We also provide a table of categories:

Notation

SMan The category of smooth manifolds

Cℓ The category of lifts in a tangent category C, introduced in Definition 2.2.3

NonSing(C) The category of non-singular lifts in a tangent category C, introduced in Defini-

tion 2.3.1

PDiff(C) The category of pre-differential bundles in a tangent category C, introduced in

Definition 2.4.1(i)

Diff(C) The category of differential bundles in a tangent categoryC, introduced in Defini-

tion 2.4.1(ii)

LieAlgd The category of Lie algebroids, introduced in Section 3.1

InvAlgd(C) The category of anchored bundles in a tangent categoryC, introduced in Defini-

tion 3.2.1

Anc(A) The category of anchored bundles in a tangent categoryC, introduced in Defini-

tion 3.2.1

AncL (A) The category of involution algebroids with chosen prolongations in a tangent

category C
Weil1 The category of Weil algebras, introduced in Section 4.1

W Notation for the Weil algebra N[x ]/x 2

W The category of transverse-limit-preserving functors Weil1→ Set, introduced in

Definition 5.1.1

Weiln1 The category of Weil algebras with width n , used in Definition 5.2.8

Weil∗1 The full subcategory of Weil1 spanned by {N, W }
L The classifyingW -category of an anchored bundles and all of its prolongations,

introduced in Definition 5.4.12
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Introduction

The study of Lie groupoids and Lie algebroids goes back to Charles Ehresmann

and his student Jean Pradines in the late 1950s, building upon Sophus Lie’s original

research into the application of groups of smooth symmetries to solving ordinary

differential equations (Lie (1893)). Motivated by partial differential equations,

Ehresmann (1959) introduced the notion of a differentiable groupoid, which mod-

els the internal symmetries of a smooth manifold, in contrast to the external

symmetries given by a Lie group (a group object in the category of smooth mani-

folds) or Lie group action. Pradines (1967) extended the Lie functor (which sends

Lie groups and Lie group actions to Lie algebras and Lie algebra actions) from

external to internal symmetries and introduced the notion of a Lie algebroid. In

doing so, he identified some shortcomings in Ehresmann’s original definition of

differentiable groupoids, introducing the modern notion of a Lie groupoid.

Ehresmann’s investigations into differentiable groupoids initiated one of the

major differential geometry research programmes of the second half of the twen-

tieth century, the study of Lie groupoids and Lie algebroids (which one may refer

to as many-object Lie theory to distinguish it from the “single-object” Lie groups

and Lie algebras that had classically been studied). Research into many-object

Lie theory in the 80s and 90s focused on extending Lie’s second theorem and

the Cartan–Lie theorem, which in modern terms state that Lie algebras form a

coreflective subcategory of Lie groups; that is, the Lie functor has a fully faithful left

adjoint (Mackenzie and Xu (2000); Moerdijk and Mrčun (2002); Nistor (2000)). The

left adjoint is often called Lie integration, and in their famous paper Crainic and

Fernandes (2003) found the exact conditions governing whether a Lie algebroid

integrates to a Lie groupoid. Weinstein (1996) initiated a line of research into
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classical mechanics on Lie algebroids and groupoids, extending Poincarè’s devel-

opment of mechanics on a space with a Lie group action and the Euler–Poincarè

equations (Poincaré (1901); see Marle (2013) for a modern treatment); this has

been further developed by Eduardo Martinez and his collaborators (de León et al.

(2005); Martínez (2001); Martínez (2018); Fusca (2018)).

However, Ehresmann’s work in differentiable groupoids signalled a change in

focus for his own research, as he increasingly focused within the then-new area

of category theory. Over the course of the 60s and 70s Ehresmann published a

string of influential papers in the nascent area of functorial semantics, developing

the formalism of sketch theory. Sketch theory has proven to be highly influential

in mathematical logic, and has been active for some 40 years, being extended to

syntax/semantics adjunctions Gabriel and Ulmer (2006), enriched category theory

Kelly (1982) and generalized limit doctrines Adámek et al. (2002). The influence

of sketch theory can still be seen on Lie theory in the work of Kirill Mackenzie and

his collaborators to develop the theory of double Lie algebroids, Lie-algebroid

groupoids, double-vector bundles, and other tensor-product theories (Mackenzie

(1992, 2011)).

This thesis aims to provide a structural account of the Lie functor from Lie

groupoids to Lie algebroids, using tangent categories Cockett and Cruttwell (2014)

to unify Ehresmann’s many-object Lie theory and sketch theory. Tangent cate-

gories provide a syntactic description of tangent structure based on Kock and

Lawvere’s synthetic differential geometry (Kock (2006), Lawvere (1979)) and the

Weil functor formalism (a comprehensive account may be found in Kolár et al.

(1993), while the explicit link to abstract tangent structure is found in Leung (2017),

another line of research in differential geometry that has run parallel to modern

Lie theory (albeit with some exchange, e.g. Kolár (2007)). Recent work has recast

tangent categories as a class of enriched categories (Garner (2018)), making it

possible for modern techniques from sketch theory and functorial semantics to

be applied to differential geometry. In doing so, we demonstrate that the lan-

guage of tangent categories sheds light on the study of classical mechanics on Lie

algebroids and groupoids, as well as Mackenzie’s investigations into “Ehresmann

doubles” of vector bundles and Lie algebroids.
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Overview

The first three chapters of this thesis build on previous work in the tangent cate-

gory literature (for example, Cockett and Cruttwell (2017, 2018); Lucyshyn-Wright

(2018)), providing tangent-categorical sketches of differential-geometric struc-

tures. These structures follow Ehresmann’s original notion of a sketch quite closely;

they are specified as graphs (a collection of objects and arrows in the category)

with a set of diagrams that must commute and cones that must be universal, ex-

cept that the data may now include the tangent functor T and the tangent natural

transformations p , 0, +, ℓ, and c . Each sketch is accompanied by a proof that

its category of models in smooth manifolds (which we shall often write SMan) is

precisely the category of geometric structures it seeks to model.

The first chapter reviews the basic theory of tangent categories, paying particu-

lar attention to the category of smooth manifolds. The first examples of “sketches”

from the tangent categories literature are covered, namely differential objects

and affine connections, which model vector spaces and connections respectively

(Cockett and Cruttwell (2017, 2018)). The chapter concludes with a study of tan-

gent submersions, which model submersions from classical differential geometry

and are a useful example of the sort of work that occurs in Chapters 2 and 3.

The second and third chapters develop tangent categorical sketches for vector

bundles and Lie algebroids respectively. Chapter 2 extends the observation due

to Grabowski and Rotkiewicz (2009) that the category of vector bundles is a full

subcategory of multiplicative monoid actions by the non-negative realsR+, and

then applies the Euler vector field construction (Definition 2.1.8). The tangent cat-

egorical sketch for a vector bundle, called a differential bundle, is then developed

based on a morphism λ : E → T E , and an isomorphism of categories between

differential bundles in SMan and the category of smooth vector bundles is proved.

Chapter 3 introduces involution algebroids, which replace the bracket of a Lie

algebroid with an involution map

σ : Aϱ×TπT A→ Aϱ×TπT A

(where ϱ : A→ T M is the anchor of the Lie algebroid). Using Martinez’s presenta-

tion of the structure equations for a Lie algebroid (Martínez (2001)), we are once
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again able to prove an isomorphism of categories, this time that the category

of Lie algebroids is isomorphic to that of involution algebroids in SMan. This

provides the initial bridge between differential geometric structures and tangent

categorical sketches, making it possible to apply more sophisticated techniques

in Chapters 4 and 5.

The fourth chapter constructs a syntactic tangent category for Lie algebroids,

and demonstrates that Lie algebroids are precisely generalized tangent bundles.

We call this result the Weil nerve, as it follows the same structure as Grothendieck’s

original nerve theorem Segal (1974), in this case using the categories presentation

of tangent categories due to Leung (2017). This result has useful implications for

the study of generalized mechanics and geometric structures on Lie algebroids, as

it introduces a novel tangent structure on the category of Lie algebroids. This novel

tangent structure corresponds to Poincarè/Weinstein/Martinez’s characterization

of classical mechanics on a Lie algebroid.

The fifth and final chapter introduces the enriched categories perspective on

tangent categories from Garner (2018), so that the work in Chapters 2 and 3 may

be rephrased using the enriched sketches of Kelly (2005). We construct a functor

from the syntactic category of involution algebroids to the syntactic category of a

groupoid-in-a-tangent-category, thus giving a presentation of the Lie functor in

the spirit of Ehresmann’s sketch theory. The syntactic version of the Lie functor

is built by constructing another novel tangent structure on the category of Lie

groupoids (or more generally, groupoids in a tangent category), which also agrees

with previous investigations into classical mechanics on a Lie groupoid. As a final

result, we demonstrate that in a locally presentable tangent category we may use a

left Kan extension to construct a left adjoint to the Lie functor, which we call the

the Lie realization.
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Chapter 1

Tangent categories

Tangent categories are an example of convergent evolution in mathematics, in

which two unrelated lines of research with very different aims have arrived at a

common endpoint, in this case the same formal setting for abstract differential ge-

ometry. The older line of research has its roots in differential geometry proper and,

in particular, Weil’s algebraic characterization of the tangent bundle of a smooth

manifold (Weil (1953)). Weil’s work motivated Kock and Lawvere’s development of

synthetic differential geometry, presented in the book of the same name Lawvere

(1979); Kock (2006) as well as the Weil functor formalism of Kolár et al. (1993). The

second, more recent line of research has its foundations in theoretical computer

science following the publication of Linear Logic by Girard (1987). Ehrhard and

Regnier noticed that some models of linear logic have a notion of the “Taylor series

approximation” of a proof; this led to the development of differential linear logic

by Ehrhard and Regnier (2003). Blute, Cockett, and Seely studied the categorical

semantics of models of linear logic equipped with the derivative operation - that

is, they identified those categories whose internal language are were models of

differential linear logic - developing a categorical theory of differentiation in Blute

et al. (2006, 2009).

Tangent categories arise naturally in each line of research: on the first path with

the distillation of synthetic differential geometry into abstract tangent functors in

Rosický (1984), and more recently when Cockett and Cruttwell refined abstract

tangent functors following their investigations into the manifold categories of

5



cartesian differential restriction categories in Cockett et al. (2011); Cockett and

Cruttwell (2014). In a sense, they are categories that axiomatize Weil’s charac-

terization of the tangent bundle as an endofunctor in a way that captures the

combinatorics of higher-order derivatives when looking at a certain class of inter-

nal commutative monoids (Cockett and Seely (2011)), as will be made precise in

Chapter 4. Tangent categories also pull Kock and Lawvere’s synthetic differential

geometry into the framework of enriched category theory, which is explored in

Chapter 5.

Instances of tangent structure abound throughout mathematics and com-

puter science. For example, many categories of geometric spaces have natural

tangent structure, such as the category of convenient manifolds (the category of

manifolds modelled locally by convenient vector spaces Kriegl and Michor (1997))

and the category of schemes (see point (ii) in Example 2 of Garner (2018)). An ex-

ample from mathematical logic is the category of Köthe sequence spaces( Ehrhard

(2002)), and categorical models of the differential lambda-calculus (Cockett and

Gallagher (2019)). More recently, tangent and differential categories have found

applications in differentiable programming and machine learning (Wilson and

Zanasi (2021)), and to understanding Johnson and McCarthy’s functor calculus

Bauer et al. (2018).

This thesis studies differential geometric structures using the language of

tangent categories, following the tradition of synthetic differential geometry. As

such, this chapter will develop tangent categories with a focus on the category of

smooth manifolds. Extending the study of these formal structures in the context

of novel tangent categories is a significant endeavour and should be treated as a

direction for future research. The first section introduces Cartesian differential

categories as the categorical axiomatization of multivariable calculus. The second

section introduces the category of smooth manifolds and two characterizations

of its tangent bundle (kinematic versus operational), while the third section iden-

tifies the structure of the kinematic tangent bundle that characterizes abstract

tangent structures. The fourth section presents a pair of structures that allow for

“local-coordinate calculations” in the tangent category of differential objects and

connections. The final section introduces tangent submersions. A submersion

is a differentiable map between differentiable manifolds whose differential is
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everywhere surjective; as a preview of the work in Chapters 2 and 3, this section

shows that in the category of smooth manifolds, a tangent submersion is precisely

a submersion. Section 1.5 first appeared in MacAdam (2021), and is the only

original work in this chapter.

1.1 Differential calculus

As with most treatments of synthetic differential geometry, e.g. Kock (2006), it

makes sense to begin with the differential calculus - in this case, an introduction

to the categorical theory of differentiation. Categorical differentiation has recently

gained quite a bit of attention due to its relationship with machine learning Cock-

ett et al. (2020), and applications to homotopy theory Bauer et al. (2018). This

section will just consider the basic structures introduced in Blute et al. (2009),

and the canonical example of a cartesian differential category (the category of

finite-dimensional real vector spaces and smooth maps between them).

Definition 1.1.1. [Definition 1.2.1 Blute et al. (2009)] A cartesian left additive

category is a cartesian category1 C so that:

(i) Each hom-setC(A, B ) is a commutative monoid with addition +AB and zero

map 0AB : A → B (the subscript AB will be suppressed when the context is

clear).

(ii) The composition operation ◦ preserves addition on the left:

(g +h ) ◦ f = g ◦ f +h ◦ f

(iii) Projection is an additive map (preserves addition):

πi ◦ ( f + g ) = (πi ◦ g ◦ f ) + (πi ◦ g )

Where πi denotes the projection from the i t h component of a product or

pullback. j

1We use the standard notation where 1 is the terminal object, × is product, and πi is the i t h

projection.
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There are various examples of cartesian left additive categories - they all fit

the same pattern of a category where each object is equipped with a non-natural,

but coherent, choice of linear structure:

Example 1.1.2.

(i) Any category with biproducts is a cartesian left additive category where every

map is additive.

(ii) The category of cartesian spaces CartSp, whose objects are finite-dimensional

real vector spaces and morphisms are smooth maps between them, is a carte-

sian left additive category." Clearly smooth maps from A→ B are closed under

addition, projection is an additive map, and (g +h ) ◦ f = g ◦ f +h ◦ f .

(iii) The category of topological vector spaces and continuous morphisms is a

cartesian left additive category.

In fact, cartesian left additive categories may equivalently be described as

cartesian categories where each object has a coherent choice of commutative

monoid structure.

Proposition 1.1.3 (Blute et al. (2009)). The following are equivalent:

(i) C is a cartesian left additive category

(ii) C is a cartesian category so that each object has a chosen commutative monoid

structure (A,+A , 0A)where the following coherence holds:

(A×B )2 A×B

A2×B 2

+A×B

τ +A×+B

(where τ= ((π0 ◦π0,π0 ◦π1), (π1 ◦π0,π1 ◦π1))).

(iii) There is a category with biproductsC+ and a bijective-on-objects subcategory

inclusion i :C+ ,→C that creates products.
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Cartesian left additive categories provide an appropriate to define a differ-

entiation operation. Recall that the usual derivative of a map f : R→ R from

elementary calculus can be written

∂ f

∂ x
:R→R.

More generally, for a map f :Rn →R, one writes the Jacobian of f at x :

J [ f ] :Rn → (Rn ⊸Rm ) :=







∂ f1
∂ x1

. . . ∂ f1
∂ xn

...
...

...
∂ f1
∂ x1

. . . ∂ f1
∂ xn







The Jacobian, however, requires some notion of a “matrix”2 representing a linear

map from Rn to Rm —not every category that has a notion of differentiation

supports that operation. Instead, the directional derivative:

D [ f ](x , v ) := lim
d→0

f (x + t · v )
t

gives an appropriately general notion of differentiation that extends to categories

where the space of linear maps A → B is not representable by an object in the

category 3. A cartesian differential category axiomatizes the directional derivative

as a combinator on a cartesian left-additive category.

Definition 1.1.4. [Definition 2.1.1 in Blute et al. (2009)] A cartesian differential

category is a cartesian left additive category equipped with a combinator (e.g. a

function on hom-sets)

A
f
−→ B

A×A −−→
D [ f ]

B

satisfying the following axioms:

[CD.1] Additive:

D [ f + g ] =D [ f ] +D [g ] D [0] = 0

2This would be called an internal hom in the categorical logic literature.
3In the case of automatic differentiation, it is also worth noticing that computing the directional

derivative of a map Rn →Rm has complexity 2O ( f ), while forming the Jacobian has complexity
nO ( f ), so the directional derivative is a more appropriate primitive for purely practical computa-
tional reasons (see Section 5 of Hoffmann (2016) for a discussion of the computational complexity
of forward-mode automatic differentiation).
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[CD.2] Additive in the second variable:

D [ f ] ◦ (g , h +k ) =D [ f ] ◦ (g , h ) +D [ f ] ◦ (g , k ) D [ f ] ◦ (g , 0) = 0

[CD.3] Projection is linear:

D [πi ] =πi ◦π1 D [i d ] =π1

[CD.4] Pairing:

D [( f , g )] = (D [ f ], D [g ])

[CD.5] Chain rule:

D [g ◦ f ] =D [g ] ◦ (π0, D [ f ])

[CD.6] Linear in the second variable:

D [D [ f ]] ◦ ((a , 0), (0, d )) =D [ f ] ◦ (a , d )

[CD.7] Symmetry of partial differentiation:

D [D [ f ]] ◦ ((a , b ), (c , d )) =D [D [ f ]] ◦ ((a , c ), (b , d ))

Example 1.1.5. The category of cartesian spaces (Example 1.1.2(ii)), CartSp, is

the canonical cartesian differential category. Let f : Rn → Rm , and consider its

Jacobian at x ∈Rn , J [ f ](x ) ∈Rn×m . Define the differential combinator:

D [ f ] ◦ (u , v ) = J [ f ](v ) ·u = lim
t→0

f (x + t · v )
t

.

In Bauer et al. (2018), the authors construct a cartesian differential category based

on the Abelian functor calculus of Johnson and McCarthy (1998).

In Wilson and Zanasi (2021), the authors consider a cartesian differential cate-

gory whose objects are Z2-modules to apply gradient-based methods to learn the

parameters of of Boolean circuits.

Every cartesian differential category comes with a notion of linearity. This

notion of linearity is strictly stronger than additivity - there do exist examples of

non-linear additive maps.
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Definition 1.1.6 (Definition 2.2.1 of Blute et al. (2009)). A map f : A→ B is linear

whenever D [ f ] ◦ (0AB , i d ) = f .

We denote the category of linear maps in a cartesian differential category

C as Lin(C). The category Lin(C) will have biproducts, and will be a cartesian

differential subcategory of C.

Lemma 1.1.7 (Corollary 2.2.3 in Blute et al. (2009)). LetC be a cartesian differential

category, and denote its category of linear maps as Lin(C).

(i) Linear maps preserve addition.

(ii) The category Lin(C) is a bijective-on-objects subcategory ofCwith biproducts,

and the inclusion Lin(C) ,→C creates products.

(iii) Every category with biproducts is a cartesian differential category, where

D [ f ] = f ◦π1,

and this differential structure makes the inclusion Lin(C) ,→C preserve the

left additive structure and differential combinator (that is, it is a cartesian

differential functor).

1.2 The category of smooth manifolds

Tangent categories axiomatize a more general structure than differential calculus,

one in which spaces are only “locally linear.” The category of smooth manifolds

gives the historically canonical example, and a good portion of this thesis relates to

structures internal to that category, so it seems worthwhile to set a working defini-

tion for that context. We follow Tu (2011), and allow for disconnected components

of a manifold to have different dimensions.

Definition 1.2.1. [Definitions 5.5–5.7 in Tu (2011)] A chart on a topological space

M is pair (Ui ,φi : Ui ,→Rn ), where Ui is an open subset Ui ⊆M andφi : Ui →Rn is

a local homeomorphism. An atlas is a collection of charts {(Ui ,φi : Ui →Rn )|i ∈ I }
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φi

φ−1
i φ−1

j

φ j

M

Ui
Uj

φi (Ui )

Rm

ψi j

φ j (Uj )

Rm

Figure 1.1: Overlapping charts in an atlas (Credit for this tex code belongs to user
Cragfelt https://tex.stackexchange.com/a/388493/101171.)

(where n is fixed for each connected component of M ) so that for each i , j ∈ I , the

transition functionψi , j that completes the diagram

φ−1
i (Ui ∩Uj ) Rn

Ui ∩Uj Uj

φi

⊆

φ j

ψi , j

is a smooth map. A smooth manifold is a topological space equipped with a

(maximal4) atlas. A morphism of smooth manifolds is a topological map f : M →N

that is locally smooth - for each chart pair of charts (Ui ,φi ) on M and (Vj ,θ j ), see

Figure 1.1 for an illustration. The map f is smooth whenever each map fi , j that

4With respect to subset inclusion.
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completes the diagram is smooth

Ui Vj

M N
f

fi , j

The category of smooth manifolds, SMan, is the category of smooth manifolds

and their morphisms.

Remark 1.2.2. In Chapter 2, some results will implicitly use partition of unity

arguments, which require that the underlying topological space for a manifold is

Hausdorff and has a countable basis (i.e. it is second-countable). We will avoid

any direct reference to these properties, and so we omit them from the definition of

a smooth manifold.

Example 1.2.3.

(i) Each vector spaceRn , for n ∈N, has a canonical smooth manifold structure

whose atlas is a single chart (the identity map Rn →Rn ).

(ii) Most geometric shapes that do not have any singularities or sharp edges can

be equipped with an atlas without any issue. For example, consider the circle:

{(cos(x ), sin(x )) : x ∈ [−π,π)}

For any appropriately small ε> 0, there are two charts from Iε = (−ε,π+ε);

φ0(t ) = (cos(t ), sin(t )), φ1(t ) = (cos(t −π), sin(t −π))

making the circle a smooth manifold.
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Category theory has not seen as many applications in differential geometry

as it has in topology or algebra, likely because the category of smooth manifolds

(Definition 1.2.1) is somewhat poorly behaved. The two main reasons that the

category of smooth manifolds is “inconvenient” are as follows:

• The set of smooth maps between two manifolds M , N fails, in general, to

form a smooth manifold; thus, the category is not cartesian closed.

• The category of manifolds does not have quotients or arbitrary fibre prod-

ucts.

However, the category of smooth manifolds admits some limits, for example finite

products.

Proposition 1.2.4 (1.12 Kolár et al. (1993)). The category SMan of smooth manifolds

has finite products.

Proof. Given two manifolds M , N , take the product of their underlying topological

spaces together with the product charts

(φi ×ψ j ) : Ui ×Vj →Rn ×Rm .

The category of smooth manifolds—using our definition where disconnected

components of a manifold may have different dimensions—does have a class of

(co)limits used throughout this paper, namely idempotent splittings.

Definition 1.2.5 (Borceux and Dejean (1986)). An idempotent is an endomorphism

e : E → E so that e ◦ e = e . The splitting of an idempotent is given by a pair of

maps e = s ◦ r so that r ◦ s = i d . The existence of a splitting of an idempotent e is

equivalent to asking that the following pair of parallel arrows has a (co)equalizer:

E E
e

The idempotent splittingC of a category (also known as the Cauchy completion

of the category), is the full subcategory of presheaves [Co p ,Set] that are retracts of
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representable functors. Any functor into a category with idempotent splittings will

factor through this inclusion of categories, so it is the free cocompletion ofC under

idempotent splittings.

Proposition 1.2.6 (Lawvere (1989)). The category of smooth manifolds is the idem-

potent splitting of the category whose objects are open subsets of Cartesian spaces

and whose morphisms are smooth maps f : U →V .

An idempotent in the idempotent splitting of a category is also an idempotent

in the base category, and thus admits a splitting.

Corollary 1.2.7. The category of smooth manifolds is closed to idempotent split-

tings: for every map e : M → M so that e = e ◦ e there exists a pair of maps

r : Q →M , s : M →Q so that e = s ◦ r, r ◦ s = i d .

The main construction of interest on the category of smooth manifolds, for

tangent categories at least, is the tangent bundle. Given a smooth map f : M →N ,

restrict it to a morphism between coordinate patches, so it may be regarded as a

map f |U : U →V , where U ⊆Rm , V ⊆Rn . This gives a local derivative operation

(remembering that πi denotes the i t h projection from a product
∏n Ai )5

D [ f |U ] : U ×Rm →Rn ,
( f |U ◦π0, D [ f |U ]) : U ×Rm →V ×Rn .

The tangent bundle makes this construction global; that is, there is a functor

T : SMan→ SMan giving an assignment

T .M
T . f
−→ T .N

that agrees with the local derivative on coordinate patches of M , N .

Definition 1.2.8 (Kolár et al. (1993)). Write the algebra of smooth functions on

a manifold as C∞(M ) := SMan(M ,R). The set SMan(R, M )/∼= of tangent vectors

on a smooth manifold M comprises the curves R→M subject to the equivalence

relation that for a pair of curvesφ,θ :R→M ,φ ∼= θ if and only ifφ(0) = θ (0) and

for every f ∈C∞(M ),
∂ f ◦φ
∂ x

(0) =
∂ f ◦θ
∂ x

(0).

5The wording here was originally muddled, it has since been corrected.
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The set SMan(R, M )/ ∼= has a naturally determined smooth manifold structure

which we call the tangent bundle over M , T M .

Example 1.2.9.

(i) For a vector space, the space of linear paths crossing through a point v ∈V is

isomorphic to V , so T V ∼=V ×V .

(ii) The tangent bundle above the circle is diffeomorphic to the cylinder. This is

follows from the classical result that a tangent vector on the circle must be

perpendicular to its position vector.

The tangent bundle lifts the “local derivative” into a globally defined construc-

tion, so the tangent bundle construction is functorial.

Proposition 1.2.10. The tangent bundle is a product-preserving endofunctor on

the category of smooth manifolds.

Proof. Functoriality follows by showing that a morphism of smooth manifolds

preserves the equivalence relation on curves that defines a tangent vector:

∀g ∈C∞(M ),
∂ g ◦φ
∂ x

(0) =
∂ g ◦θ
∂ x

(0)

Note that if f : N →M ∈C∞(N ), so that g ◦ f ∈C∞(M ), the chain rule ensures

that

∀g ∈C∞(N ),
∂ f ◦ g ◦φ
∂ x

(0) =
∂ f ◦ g ◦θ
∂ x

(0)

To show that T is product-preserving, it suffices to show that the equivalence

classes of curves are stable under pairing. First, note that for any M andφ ∼= θ :

R→M ,

(φ, i d )∼= (θ , i d ) :R→M ×R
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Given a pair of curves θM ,ψM :R→M , where θM
∼=ψM and similarly θN

∼=ψN

for N , this implies that

f ◦ (φM ,φN )

= f ◦ (φM × i d ) ◦ (i d ,φN )

= f ◦ (φM × i d ) ◦ (i d ,θN )

= f ◦ (i d ,θN ) ◦ (φM × i d )

= f ◦ (i d ,θN ) ◦ (θM × i d )

= f ◦ (θM ×θN )

so (φM ,φN )∼= (θM ,θN ).

The scalar action by R on tangent vectors and a partially defined addition

additionally give the tangent bundle the structure of a fibered R-module (that is,

an R-module in the slice category SMan/M whose objects are morphisms into

M , f : X →M , and morphisms are commuting triangles).

Proposition 1.2.11. The tangent bundle over M is anR-module in SMan/M , as

follows: let γ,ω be tangent vectors on M , and define

• p : T M →M ; p (γ) = γ(0).

• 0 : M → T M ; 0(m ) = [r 7→m ] (the constant map R→M sending all r ∈R to

m ∈M )

• ·p : T M ×R→ T M ;γ ·p r = [x 7→ γ(r · x )]

• + : T M p×p T M → T M := [γ], [ω] 7→ [γ+ω] (where addition around γ(0) =

ω(0) is defined using local coordinates).

The second derivative is involved in the more nuanced axioms for a cartesian

differential category, namely linearity in the vector argument and the symmetry

of mixed partial derivatives. First, set f |U to be the restriction of f : M →N to a

map between local coordinate patches U ⊆M , V ⊆N , and then define

f0 = f |U ◦π0 ◦π1, ,
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and

f1 =D [ f ] ◦ (π0 ◦π0,π1 ◦π0), f2 =D [ f ] ◦ (π0 ◦π0,π0 ◦π1) .

The axioms [C D C .6], [C D C .7] then give:

(U ×Rn )× (Rn ×Rn ) (V ×Rm )× (Rm ×Rm )

T 2M T 2N

T M T .N

(U ×Rn ) (V ×Rm )

T 2. f

T . f

(( f0, f1),( f2,D [D [ f |U ]]))

( f ,D [ f |U ])

ℓ ℓ((π0,0),(0,π1)) ((π0,0),(0,π1))

(U ×Rn )× (Rn ×Rn ) (V ×Rm )× (Rm ×Rm )

T 2M T 2N

T 2M T 2.N

(U ×Rn )× (Rn ×Rn ) (V ×Rm )× (Rm ×Rm )

c((π0◦π0,π0◦π1),(π1◦π0,π1◦π1)
T 2. f

T 2. f

c ((π0◦π0,π0◦π1),(π1◦π0,π1◦π1)

(( f0, f1),( f2,D [D [ f |U ]])

(( f0, f2),( f1,D [D [ f |U ]])

The two natural transformations ℓ and c —the vertical lift and canonical flip—

capture these coherences. Locally, ℓ is the map inserting zeros into the second

and third coordinates, while c flips the second and third arguments, leading to

the coherences established in the next proposition. To capture these coherences

on the tangent bundle, first note that a tangent vector on T M is equivalent to an

equivalence class of surfaces on M ,

φ ∼= θ :R2→M ⇐⇒φ(0, 0) = θ (0, 0)

and ∀ f ∈C∞(M ),
∂ f ◦φ
∂ xi

(0, 0) =
∂ f ◦θ
∂ xi

(0, 0), i = 0, 1

Proposition 1.2.12 (Cockett and Cruttwell (2014)). There are two natural trans-

formations

ℓ : T M → T 2M ;ℓ([γ]) = [γ ◦ (π0 ·Rπ1)] c : T 2M → T 2M ; c ([γ]) = [γ ◦ (π1,π0)]
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satisfying the following coherences:

(i) ℓ.T ◦ ℓ= T .ℓ ◦ ℓ6

(ii) The following maps are morphisms of fibred R-modules.

T M T 2M

M T M

ℓ

p p .T

0

T M T 2M

M T M

ℓ

p T .p

0

(iii) c ◦ c = i d

(iv) T .c ◦ c .T ◦T .c = c .T ◦T .c ◦ c .T

(v) c ◦ ℓ= ℓ

(vi) T .c ◦ c ◦T .ℓ= ℓ.T ◦ c .

Observation 1.2.13. Equation (iv) is known as the Yang–Baxter equation. It is

one of the coherences for a symmetric monoidal category, and states that the twist-

ing operation between two variables is coherent. We may regard the category of

endofunctors on a category as a strict monoidal category and use string diagram

notation (see e.g. Selinger (2010)). Interpreting the map c as twisting two strings,

the coherence becomes

=

The projection p : T M →M is locally trivial: for each connected component

of M that is modeled on Rn , each point m lies in an open subset Um so that

p−1(Um )∼=Um×Rn . This local triviality property leads to the following universality

condition.

6Recall that we are using the 2-categorical notation described in the front-matter
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Proposition 1.2.14. The following diagram is an equalizer:

T M T 2M T Mp

T .p

0◦p◦p
ℓ

Therefore the diagram in the following corollary is a pullback:

Corollary 1.2.15. Write the map µ : T M p×p T M → T 2M to be T .+ ◦(ℓ×0). The

following diagram is a pullback:

T M p×p T M T 2M

M T M
0

T .p

µ

⌟

The five maps (p , 0,+, c ,ℓ), along with their coherences and universal proper-

ties, characterize the kinematic tangent bundle, axiomatized as a tangent structure

in the next section. However, there is an equivalent characterization of the tan-

gent bundle for a finite-dimensional smooth manifold that will be important

throughout this thesis: the operational tangent bundle. We first need to define

the module of vector fields on a manifold, where a vector field is essentially an

ordinary differential equation defined on a manifold rather than a cartesian space.

Definition 1.2.16 (3.1,3.3 of Kolár et al. (1993)). A vector field on a manifold M

is a section X : M → T M of the projection p : T M →M so that p ◦X = i dM . The

set of vector fields on a manifold M is written χ(M ) and carries a C∞(M )-module

structure using the fibered R-module structure on p : T M →M :

X +χ(M ) Y :=+.M ◦ (X , Y ), 0χ(M ) := 0.M , f ·χ(M ) X (m ) := f (m ) ·T M X (m )

where X , Y ∈χ(M ), f ∈C∞(M ).

The moduleχ(M ) has an important universal property as a C∞(M )-module—

it is precisely the module of derivations of C∞(M ):

χ(M ) = {X : C∞(M )→C∞(M ) :∀ f , g ∈C∞(M ), X ( f · g ) = X ( f ) · g + f ·X (g )}
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Proposition 1.2.17 (3.4 of Kolár et al. (1993)). There is an isomorphism of C∞(M )

modules:

Der(C∞(M ))∼=χ(M ).

Finally, we observe that there is a C∞(M )-Lie algebra structure on χ (M ), with

two equivalent definitions. First, there is the kinematic definition of the bracket,

which is induced using the universality of the vertical lift. Given vector fields X , Y

on M , note that

X = p .T ◦ (T .Y ◦X −T M c ◦T .X ◦Y ), 0= T .p ◦ (T .Y ◦X −T M c ◦T .X ◦Y )

so by Corollary 1.2.15, there is a unique map [X , Y ] : M → T M so that

(T .Y ◦X −T M c ◦T .X ◦Y ) =µ([X , Y ], X ). (1.1)

Similarly, there is a bracket defined on Der(M )using the anticommutator of deriva-

tions:

[X , Y ]( f ) = X (Y ( f ))−Y (X ( f )). (1.2)

These brackets are equivalent for finite-dimensional smooth manifolds.

Proposition 1.2.18. [Mackenzie (2013)] Recall that a Lie algebra over a ring R is

an R -module A equipped with a bilinear map

[−.−] : A⊗A→ A

that is alternating and satisfies the Jacobi identity:

[X , [Y , Z ]] + [Z , [X , Y ]] + [Y , [Z , X ]] = 0.

The two brackets on χ(M ) (viewed as a Lie algebra) from Equations 1.1 and 1.2

coincide.

1.3 Tangent structures

This section develops the categorical framework to study more general categories

of smooth manifolds by axiomatizing the tangent bundle, tangent categories,
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which first appeared in Rosický (1984). An arbitrary tangent category is signifi-

cantly more general than smooth manifolds and captures examples of categories

with “tangent bundle” from computer science and logic, as developed in Cockett

and Cruttwell (2014). First, observe that tangent categories forget the base ring

from the previous section and only consider the fibered commutative monoid

structure of the tangent bundle.

Definition 1.3.1. An additive bundle in a category C is a triple E
q
−→M ,+ : E q×q

E → E ,ξ : M → E which gives (q ,+,ξ) the structure of a commutative monoid in

the slice categoryC/M . If (q ,ξ,+), (q ′,ξ′,+′) are both additive bundles, a bundle

morphism

E E ′

M M ′

q

f

q

f0

is additive if f ◦+=+′ ◦ ( f ◦π0, f ◦π1) and f ◦ξ= ξ′ ◦ f0. The category of additive

bundles in a a category C is given by additive bundles in C and additive bundle

morphisms.

We will often write pullback powers of an additive bundle E q×q . . . q×q E as

En , and use infix notation to write addition so + ◦ (a , b ) becomes a + b . In the

category of smooth manifolds, the tangent bundle functor gives a well-behaved

functorial vector bundle. A tangent category has a functorial additive bundle and

axiomatizes the coherences and universal properties of the tangent bundle from

the category of smooth manifolds.

Definition 1.3.2 (Rosický (1984); Cockett and Cruttwell (2014)). A tangent struc-

ture consists of a functor T :C→C equipped with natural transformations

p : T ⇒ i d , 0 : i d ⇒ T ,+ : T p×p T ⇒ T

ℓ : T ⇒ T .T c : T .T ⇒ T .T

satisfying the following axioms; we call a category equipped with a tangent structure

a tangent category.

[TC.1] Additive bundle axioms:
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(i) Pullback powers of p exist and are preserved by T ; write these Tn .

(ii) Each triple (p .M : T M →M ,0.M : M → T M ,+.M : T2M → T M ) is

an additive bundle.

T T T2 T

i d i d i d

+

p◦πi p
p 0 (1.3)

[TC.2] Symmetry axioms:

(i) Involution:
T .T T .T

T .T

c

c (1.4)

(ii) Yang–Baxter: c .T ◦T .c ◦ c .T = T .c ◦ c .T ◦T .c

T .T .T T .T .T

T .T .T T .T .T

T .T .T T .T .T

T .c

c .T

T .c

c .T c .T

T .c

(1.5)

(iii) Naturality equations:

T .T T .T T T

T .T .T T .T .T T .T .T T .T T .T

T .T2 T2T T .T T .T

T .T T .T T T

T .ℓ

c

c .T T .c

ℓ.T

(c ◦T .π0,c ◦T .π1)

T .+ +.T

c

c

p .T T .p

0.T

c

T .0

(1.6)

[TC.3] Lift axioms:
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(i) Naturality with addition:

T T .T T .T T .T T2 T .T2

i d T T T T T .T

(ℓ◦π0,ℓ◦π1)

+ +

ℓ

T .ℓ

0

0

0.T

ℓ

p

0

T .p (1.7)

(ii) Coassociativity:

T T .T

T .T T .T .T

ℓ

ℓ

T .ℓ

ℓ.T (1.8)

(iii) Symmetric co-multiplication:

T T .T

T .T

ℓ

c
ℓ

(1.9)

(iv) Universality: for µ := T .+ ◦(0 ◦π0,ℓ ◦π1), the following diagram is a

pullback for all X :

T2X T 2X

X T X

µ

p◦πi T .p

0

Definition 1.3.3 (Cockett and Cruttwell (2014)). A tangent category is monoidal

whenever C is a monoidal category, T is a monoidal functor, and +, p , c ,ℓ are

monoidal natural transformations. A tangent category is cartesian wheneverC is

cartesian and is a strict monoidal tangent category for products.

Notation 1.3.4. Throughout this thesis, two key pieces of notation apply:

• Tn denotes pullback powers of p : T ⇒ i d (and more generally En for q : E →
M ); iterated powers of T are written T n .

• There will often be long strings of Tn pullbacks and functors F : A→ B , so

a 2-categorical notation where functor composition is written with a pe-

riod, Tn .F.T ′m , will often be adopted. While the natural transformation c at
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Tn .Tm .M under the image of the functor T would often be written T (cTn .Tm .M ),

in this thesis it will be written as

T .c .Tn .Tm .M : T .T 2.Tn .Tm ⇒ T .T 2.Tn .Tm

while the composition of 2-cells will be written using ◦ in applicative order,

rather than the diagrammatic order typically used in the tangent category

literature. That is, the composition

A
g
−→ B

f
−→C

would be written f ◦ g rather than g f .

Example 1.3.5. Applying the results from section 1.2, the category of smooth mani-

folds is a tangent category. Recall that if M is a smooth manifold, there is a coordi-

nate patch m ∈U ,→M around each point m ∈M so that U ∼=U ′ ⊆Rn . fibre above

U , p−1(U ), is locally isomorphic to U ′×Rn and similarly (p ◦p )−1(U )∼=U ′× (Rn )3,

so that:

p : U ×Rn →U (m , x ) 7→m

0 : U →U ×Rn m 7→ (m , 0)

+ : U ×Rn ×R n →U ×Rn (m , x , y ) 7→ (m , x + y )

ℓ : U ×Rn →U ×Rn ×Rn ×Rn (m , x ) 7→ (m , 0, 0, x )

c : U ×Rn ×Rn ×Rn →U ×Rn ×Rn ×Rn (m , x , y , z ) 7→ (m , y , x , z )

The study of tangent categories is closely related to Lawvere’s synthetic dif-

ferential geometry, first introduced in Lawvere (1979) and later developed in

Kock (2006); Lavendhomme (1996); Moerdijk and Reyes (1991). The setting of

synthetic differential geometry is a topos E (for our purposes, we need only a

complete, cartesian closed category) equipped with a chosen ring object R that

satisfies the Kock-Lawvere axiom: given the object of nilpotent elements in R ,

D = [d : R |d 2 = 0], the following map is an isomorphism:

α : R ×R → [D , R ]; α(a , b ) = (d 7→ a +d b ).

One can find a class of objects that form a tangent category: the infinitesimally

linear objects.
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Definition 1.3.6. LetC be a model of synthetic differential geometry where the ring

object is (R , ·,1,+,0). An object M in a model of synthetic differential geometry is

infinitesimally linear when it satisfies the following axioms.

(i) The following natural morphism must be an isomorphism:

[D (2), M ]∼= [D , M ]0∗×0∗ [D , M ]; where D (2) := [(d0, d1) ∈D 2 : di ·d j = 0].

(ii) M satisfies property W (credited by Kock (2006) to Gavin Wraith), namely

that the following diagram is a ternary equalizer:

[D , M ] [D ×D , M ] [D , M ]

[0◦!×D ,M ]

[(0×0)◦!,M ]

[D×0◦!,M ]

[·,M ]

(We will often use M as shorthand for i dM in diagrams).

An infinitesimal object generalizes the object D in the category of infinitesi-

mally linear objects in a model of synthetic differential geometry. The definition

adopted in this thesis is a strict generalization of the definition given in Cockett

and Cruttwell (2014): here, we work with a symmetric monoidal closed category

rather than a cartesian closed category in order to capture some examples from

logic.

Definition 1.3.7 (Definition 5.6 Cockett and Cruttwell (2014)). An infinitesimal

object in a symmetric monoidal category

(C,⊗, I ,α,ρ,σ)

is a tuple (⊙ : D ⊗D →D ,0 : I →D ,ε : D → I ,δ : D →D (2)) (where D (n ) denotes

pushout powers of 0) so that:

[IO.1] Pushout powers D (n ) of 0 : I →D exist, and ε ◦0= i dI .

[IO.2] ⊙ is a commutative semigroup with zero, so that the following diagrams

commute:

D ⊗D D ⊗D D ⊗D ⊗D D ⊗D D D ⊗D

D D D D

⊙

σ

⊙

⊙⊗D

⊙D⊗⊙

⊙

(D ,0)

⊙
0D ◦ε
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The third diagram shows that 0 is an absorbing element rather than a unit

(think of 0 as being in the commutative semigroup on the set [0, 1) given by

multiplication).

[IO.3] The map δ : D →D (2)makes (0 : I →D ,δ,ε) into a commutative comonoid

in the coslice I /C:

D D (2) D D (2) D D (2)

D D (2) D (3) D (2)

δ

δ

D+I δ

δ+I D

δ

δ

(ι1|ι0)
(0◦ε+I D )

δ

[IO.4] The following diagram commutes (⊙ is coadditive):

D ⊗D D

D ⊗D (2) D (2)

1×δ

(ι0◦⊙|ι1◦⊙)

δ

⊙

The notation ( f |g ) : A+B →C for pushouts/coproducts is dual to pairing

( f ′, g ′) : C → A ×B for pullbacks/products, just as ιi is dual to projection.

Therefore, ( f |g ) ◦ ι0 = f just as π0 ◦ ( f , g ) = f .

[IO.5] The following diagram is a coequalizer:

D ⊗ I D ⊗D D (2)
0◦ε⊗0

D⊗0 (⊙|I ε⊗D )◦(δ⊗i d )

There are two tangent structures associated to an infinitesimal object in a

symmetric monoidal category C. The first relies on the exponentiability of the

infinitesimal object, while the second tangent structure is on the opposite category

of C. The enriched perspective on tangent structure in Section 5.1 will clarify the

relationship between these two tangent structures.

Proposition 1.3.8. Let (C,⊗, I ,α,ρ,σ) be a symmetric monoidal category, and

⊙ : D ⊗D →D , 0 : I →D ,ε : D → I ,δ : D →D (2)

define an infinitesimal object in C.
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(i) There is a tangent structure on Co p , where T =D ⊗ (−).

(ii) IfC is also a symmetric monoidal closed category, then it is a tangent category

with T = [D ,−].

Proof.

(i) The opposite category of C is a symmetric monoidal category:

(Co p ,⊗, I ,α−1,ρ−1,σ).

The tangent functor is D ⊗ (−), and the projection is

p =D ⊗ (−) 0o p

−→ I ⊗ (−)
ρ−1

−→ (−).

The zero map is given by

(−)
ρ
−→ I ⊗ (−) ε

o p

−→D ⊗ (−).

Addition in Co p is given by co-addition in C:

D (2)⊗ (−)
δo p⊗(−)
−−−−→D ⊗ (−).

The lift is given by the semigroup structure (along with the monoidal coher-

ences):

D ⊗ (−)
⊙⊗(−)
−−−→ (D ⊗D )⊗ (−) α

−1

−→D ⊗ (D ⊗ (−)).

The flip is also given by monoidal coherences, combined with the symmetry

on the monoidal category:

D ⊗ (D ⊗ (−)) α−→ (D ⊗D ) ◦ (−)
σ⊗(−)
−−−→ (D ⊗D )⊗ (−) α

−1

−→D ⊗ (D ⊗ (−)).

(ii) First, we identify the following natural isomorphisms:

u : i d ⇒ [I ,−], b : [A, [B ,−]]⇒ [A⊗B ,−].

• The tangent functor is [D ,−], and the triple (0 : I → D ,δ : D → D (2),

ε : D → I ) gives the additive bundle structure

p : [D ,−] 0∗−→ [I ,−] u−→ i d , 0 : i d
u−→ [I ,−]

[ε,−]
−−→ [D ,−]

+ : [D (2),−] δ
∗
−→ [D ,−].
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Note that by the continuity of [−, M ] : Co p → C, we have [D (2), M ] ∼=
[D , M ]p×p [D , M ].

• The lift is given by

ℓ : [D ,−] ⊙
∗
−→ [D ⊗D ,−] b−1

−→ [D , [D ,−]].

• The canonical flip is given by

c : [D , [D ,−]] b−→ [D ⊗D ,−] σ
∗
−→ [D ⊗D ,−] b−1

−→ [D , [D ,−]].

The coherences and couniversality properties of an infinitesimal object,

along with the continuity of

[−, M ] :Co p →C

then induce the coherences and universality properties for the tangent bun-

dle. This completes the proof.

The tangent structure on Co p induced by the infinitesimal object is the dual

tangent structure on C. This will be revisited in Chapters 4 and 5 when looking at

tangent categories from the enriched perspective.

Returning to synthetic differential geometry, the co-universality conditions on

an infinitesimal object corresponds to infinitesimal linearity (Definition 1.3.6). In

some sense, the category of infinitesimally linear objects is the largest subcategory

of E for which D is an infinitesimal object.

Corollary 1.3.9. In a model of synthetic differential geometry (E , R ), the object

D = [d ∈R |d 2 = 0] is an infinitesimal object in the category of infinitesimally linear

objects in E .

This thesis makes use of the 2-category of tangent categories (Section 2.3 of

Cockett and Cruttwell (2014)), which formalizes the notion of a morphism of

tangent structure and 2-cells between them. This 2-categorical framework is a

departure from the classical theory of synthetic differential geometry, where the

literature only really addresses morphisms of tangent structure in the form of fully

faithful embeddings SMan ,→Microl(E ).
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Definition 1.3.10. Let (C,T), (D,T′) be a pair of tangent categories. A pair (F :C→
D,α : F.T ⇒ T ′.F ) is a tangent functor if the following diagrams commute:

F F.T F.T2 F.T F.T F

T .F T2.F T .F T .F

F.T T .F F.T 2 T .F.T T 2.F

F.T 2 T .F.T T 2.F F.T 2 T .F.T T 2.F

F.+

α2

+.F

α α

F.p

p .F0.F

F.0

α

ℓ.FF.ℓ

α

α.T T .α

α.T T .α

α.T T .α

F.c c .F

A tangent functor is strong wheneverα is a natural isomorphism; for a sub-(tangent

category) inclusion, α = i d . A tangent functor (F,α) between cartesian tangent

categories is a cartesian tangent functor if F is an isomonoidal functor and α is a

monoidal natural transformation.

Example 1.3.11.

(i) The coherences on the canonical flip c guarantee that (T :C→C, c : T .T ⇒
T .T ) is a strong tangent endofunctor on any tangent category.

(ii) Given a pair of tangent functors (A,α) :C→D, (B ,β ) :D→E, the composition

(B .A :C→E,β .A ◦B .α : B .A.T C B .T D .A T E .B .AB .α β .A
)

is a tangent functor.

(iii) A model of synthetic differential geometry (E , R ) is well-adapted whenever

there is a fully faithful, strict tangent functor from SMan to the category of

microlinear spaces of E , SMan ,→Microl(E ). The original development of

well-adapted models for synthetic differential geometry may be found in

Dubuc (1981), and the reader may check Bunge et al. (2018) for a recent

account of the construction of such models, or section 3 of Kock (2006).
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Definition 1.3.12. A tangent natural transformation γ between tangent functors

(F,α), (G ,β ) is a natural transformation so that the following diagram commutes:

F.T (A) G .T (A)

T .F (A) T .G (A)

γT A

αA βT A

T γA

If F,G are cartesian tangent functors, thenγ is cartesian whenever it is an isomonoidal

natural transformation.

Definition 1.3.13. We will call the 2-category of tangent categories, tangent func-

tors, and tangent natural transformations TangCat. The 2-category of cartesian

tangent categories is CartTangCat.

1.4 Local coordinates in a tangent category

This section develops some structures to facilitate reasoning about higher tan-

gent bundles, using “local coordinates.” In the case of a cartesian differential

category, T n (A) =
∏

2n A, whereas for an open subset U ⊆Rm the tangent bundle

decomposes as T nU ∼=U × (Rm )2
n−1. This section introduces two structures that

allow for these arguments in an arbitrary tangent category: differential objects

and connections.

Definition 1.4.1 (Cockett and Cruttwell (2018)). A differential object7 in a carte-

sian tangent category is a commutative monoid (A,+A ,0A) such that there is a

section-retract pair A
λ−→ T A

p̂
−→ A which exhibits T (A) as a biproduct in the cate-

gory of commutative monoids:

A⊕A ∼= T A.

Concretely, a differential object is a commutative monoid equipped with λ : A→
T A, p̂ : T A→ A, p̂ ◦λ= i d so that the following axioms hold:

7Not to be confused with 4.1 from Barr (2002).
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DO.1 Coherence between + and λ, p̂ :

T (A×A) T A A×A A

T A×T A T A×T A

A×A A T (A×A) T A

p̂

T .+A

(Tπ0,Tπ1)

p̂×p̂

+A

+A

λ×λ

(Tπ0,Tπ1)−1

T .+A

λ

DO.2 Coherence between 0A and 0.A:

A 1 A 1

T A A T A A

0

!

0A

p̂

λ

p

!

0A

DO.3 Coherence between +A and +.A:

T2A A×A A×A T2A

T A A A T A

p̂×p̂

+A+

p̂

λ×λ

+A

λ

+

DO.4 Coherence between λ and p̂ with ℓ:

T A T 2A A T A

A T A T A T 2A

ℓ

T .p̂

p̂

p̂ λ

λ

ℓ

T .λ

A map f : A→ B between differential objects (A,λA , p̂A ,+A , 0B )→ (B ,λB , p̂B ,+B , 0B )

is linear whenever f preserves the lifts and projections

(T . f ◦λA =λB ◦ f ) and (p̂B ◦T . f = f ◦ p̂A).

Following the work in Section 3 of Cockett and Cruttwell (2018), it is sufficient

to check that f preserves λ or p̂ (each condition implies the other).

Example 1.4.2.
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(i) In the category of smooth manifolds, the real numbers are a differential object,

as T .R=R[x ]/x 2, so the lift map in this case is

λ(a ) = 0+a · x , p̂ (a + b · x ) = b .

More generally, finite-dimensional real vector spaces, with their canonical

smooth manifold structure, are exactly differential objects in the category of

smooth manifolds. The lift map is defined using TR∼=R[x ]/x 2, so that

V
(0,1R)
−−−→ T (V ×R)

T ·V−→ T V .

This is equivalent to the isomorphism T .V =R [x ]/x 2⊗V .

(ii) Every object in a cartesian differential category has a canonical differential

object structure, as T A := A×A.

Classically, the tangent space above each point of a smooth manifold is a

vector space. We have a similar result for differential objects from Cockett and

Cruttwell (2018).

Lemma 1.4.3. Suppose we have the following pullback in a cartesian tangent

category C, and all powers of T preserve it.

E T M

1 M

ι

! p

m

There is a unique differential object structure (E ,λ, p̂ ) so that ℓ ◦ ι = T .ι ◦λ.8

There are two natural classes of morphisms between differential objects, linear

and “smooth” (that is, arbitrary morphisms).

Definition 1.4.4 (Cockett and Cruttwell (2018)). Let C be a cartesian tangent

category. We define the following categories:

(i) Diff(C) is the category of differential objects and arbitrary morphisms, so for

any differential objects A, B , we have Diff(C)(A, B ) :=C(A, B ).

8Some diagrammatic notation had creeped into the original draft here, I have fixed it.
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(ii) DLin(C) is the category of differential objects and linear morphisms.

The category of differential objects and smooth maps is a cartesian differential

category, exhibiting differential calculus as a specialized logic in a tangent category.

Proposition 1.4.5 (Section 3.5 of Cockett and Cruttwell (2018)). Let C be a carte-

sian tangent category. Then:

(i) Diff(C) is a cartesian differential category, where we define the differential

combinator D to be

A
f
−→ B

A×A
λ×0−−→ T (A×A)

T .+A−−→ T (A)
T ( f )
−−→ T (B )

p̂B−→ B

(where λA ,+A are the lift and addition for the differential object structure on

A, and p̂B is the projection map on the differential object structure on B ).

(ii) There is an equality of categories, Lin(Diff(C)) = DLin(C), meaning that a

morphism between differential objects in the cartesian tangent category C is

linear if and only if it is linear in the cartesian differential category Diff(C).

Recall that if M is an open subset ofRn , the second tangent bundle of an open

subset U ⊆Rn splits as

T 2(U ) = T (U ×Rn ) = (U ×Rn )× (Rn ×Rn ) = T3U .

Every smooth manifold admits such a decomposition on its second tangent bun-

dle; these are known as a affine connections9 and provide a way to reason about

an object as though it has local coordinates in an arbitrary tangent category.

Definition 1.4.6 (Cockett and Cruttwell (2017)). In a tangent categoryC, define

the following:

(i) An affine vertical connection is a map κ : T 2M → T M so that

9The prefix “affine” differentiates these from more general connections on differential bundles,
which are introduced in Section 2.6.
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a) κ is a vertical descent, namely a section of the vertical lift ℓ : T M → T 2M ,

so κ ◦ ℓ= i d ;

b) κ is compatible with both lifts on T 2M : T .κ ◦ ℓ.T = T .κ ◦T .ℓ= ℓ ◦κ.

(ii) An affine horizontal connection is a map∇ : T2→ T 2M so that

a) ∇ is a horizontal lift, namely a section to the horizontal descent (p .T , T .p ) :

T 2⇒ T2, so that (p .T , T .p ) ◦∇= i d ;

b) ∇ is compatible with the linear structures on T 2, T2:T .∇ ◦ (ℓ × 0)

= ℓ ◦∇a nd T .∇(0× ℓ) = T .ℓ ◦∇.

(iii) An affine connection is a pair (κ,∇) comprising a vertical and horizontal

connection on M satisfying the compatibility conditions:

a) T .+ ◦(+.T ◦ (ℓ ◦κ, T .0 ◦p .T ),∇(p .T , T .p )) = i dT 2M ,

b) κ ◦∇= 0 ◦p ◦πi .

An affine connection is torsion-free if κ ◦ c = κ.

The data of a vertical connection is sufficient to define a full connection, as

observed in Lucyshyn-Wright (2018).

Lemma 1.4.7 (Lucyshyn-Wright (2018)). A full connection is equivalent to a vertical

connection in which the following diagram is a fiber product:

T M

T 2M T M M

T M

p

p

p

p .T

T .p

κ

Example 1.4.8.

(i) Every differential object in a tangent category has a canonical vertical con-

nection given by (p ◦ p .T , p̂ ◦ T .p̂ ). A morphism of differential objects will

preserve this vertical connection.
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(ii) Every smooth manifold has a non-natural choice of Riemannian metric.

By the fundamental theorem of Riemannian geometry, there is a torsion-

free connection associated with the metric. (See any standard reference on

Riemannian geometry, e.g. do Carmo (1992).)

Connections allow for arguments on higher powers of the tangent bundle to

be pushed down to pullback powers of T .

Observation 1.4.9. Suppose M , N each have connections (κ−,∇−). The map T 2. f :

T 2M → T 2N can be written using local coordinatesÖT 2. f : T3M → T3N as

T 2M T 2N

T3M T3N

T .+◦(+.T ◦(ℓ◦π2,T .0◦π0),∇(π0,π1))

T 2. f

(p .T ,T .p ,κN )

whereÖT 2. f is given by

(T . f ◦π0, T . f ◦π1, T . f ◦π2+N ∇[ f ](π0,π1))

with∇[ f ] := κN ◦T 2. f ◦∇M .

Note that in the case that f preserves the connections,∇[ f ] = 0, as

κN ◦T 2. f ◦∇M = T f ◦κM ◦∇M = T f ◦0 ◦p = 0 ◦ f ◦p .

1.5 Submersions

The category of smooth manifolds is incomplete: there are cospans10 X
f
−→M

g
←−

Y for which the pullback fails to exist. Following Thom (1954), the pullback of a

cospan exists and is preserved by T (i.e. it is a T-limit) whenever for each point

f (x ) = g (y ), the direct sum of the images of Tx f and Ty g is the full vector space

Tf (x )M , such cospans are called transverse. Submersions, then, form a convenient

class of maps, as any cospan where one map is a submersion will be transverse.

More precisely:

10Following a general convention in category theory, where the prefix "co"-X means an X in the
opposite category, a cospan in C is a span in the dual category of C.
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Definition 1.5.1. If A and B are smooth manifolds, a smooth function f :

A→ B is a submersion if and only if the derivative D f |a of f at every point a ∈ A

is a surjective linear map.

With this definition we have the following result:

Proposition 1.5.2. In the category of smooth manifolds, let the class of submersions

be denoted byS .

(i) Submersions are closed under the tangent functor: f ∈S ⇒ T . f ∈S .

(ii) Submersions are closed to pullback along arbitrary maps:

X g ∗X X

N M N Mg

f ∈S g ∗ f ∈S

g

f

ḡ

⌟

This will often be referred to as T -stability under reindexing, as it induces a

functor between slice categories:

g ∗ : Submersions/M → Submersions/N .

The properties of the class of submersions in the category of smooth manifolds

were studied in Cockett and Cruttwell (2018) and axiomatized as a tangent display

system.

Definition 1.5.3. A tangent display system in a tangent category C is a class of

mapsD in C that is

• stable under the tangent functor, d ∈D ⇒ T .d ∈D,

• T -stable under reindexing (as in Proposition 1.5.2).

We call any tangent display system that is closed to retracts in the arrow category

a retractive display system. If for all M , pM ∈ D, we call D a proper (retractive)

display system.
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This section will show that the submersions in the category of smooth mani-

folds give a retractive display system, yielding a general construction of retractive

display systems from display systems.

The definition of a submersion may be rephrased as follows: f is a submersion

if and only if for all a ∈ A and all v ∈ T (B ) such that f a = p v , there exists a w ∈ T (A)

such that T . f ◦w = v . This is a weakly universal cone over A
f
−→ B

p
←− T B : there

exists at least one morphism into it for any other cone over the diagram.

Definition 1.5.4. A commuting square is a weak pullback if for any x : X → A

and y : X → B so that f x = g y , there exists a map X →W making the following

diagram commute:

X

W A

B C

x

y

∃

a

b f

g

If the above diagram is a weak pullback for each T n , then it is a weak T -pullback.

Lemma 1.5.5. Should the pullback of A
f
−→C

g
←− B exist, Definition 1.5.4 is equiva-

lent to asking that the induced map (a , b ) : W → A f ×g B be a split epimorphism.

Proof. Let r be a retract of (a , b ) : W → A f ×g B . For any X
(x ,y )
−−→ A f ×g B , the map

r ◦ (x , y ) exhibits the diagram as a weak pullback. For the converse, the unique

map (a , b ) : W → A f ×g B will be a section of any map A f ×g B →W induced by

weak univerality.

We now restate the submersion property for a map f using global elements

(for all a ∈ A and all v ∈ T (B ) such that f a = p v , there exists a w ∈ T (A) such that

T ( f )w = v ) using generalized elements.
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Definition 1.5.6. An arrow f : A→ B in a tangent category is a tangent submersion

if and only if the naturality diagram

T A T B

A B

T f

p p

f

is a weak T -pullback.

Following Lemma 1.5.5, in the case that the pullback exists this is equivalent

to asking for a section h : A f ×p T B → T A of the horizontal descent (p , T f ) : T A→
A f ×pT B (this section is sometimes called a horizontal lift in differential geometry

literature Cordero et al. (1989)). In smooth manifolds, the T -pullback along the

projection p : T ⇒ i d always exists, so to prove that every submersion is a tangent

submersion it suffices to show the existence of a horizontal lift.

Proposition 1.5.7. In the category of smooth manifolds, the tangent submersions

are precisely the submersions (Definition 1.5.1)

Proof. There is an explicit construction of a horizontal lift for a classical smooth

submersion in VII.1 of Cushman and Bates (2015).

It is possible to show that the T -stability properties for submersions in the

category of smooth manifolds follow from the general theory of weak pullbacks.

We begin by showing that weak pullbacks satisfy a weakened version of the pull-

back lemma and then show that the retract of a weak pullback is a weak pullback

(the second lemma is Lemma 2.1 of Adámek et al. (2010)).

Lemma 1.5.8 (Pullback lemma). Consider the diagram

• • •

• • •
(A)

f

g (B )

(i) If f , g are jointly monic and (A)+ (B ) is a weak pullback, then (A) is a weak

pullback.
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(ii) If (A), (B ) are weak pullbacks then (A) + (B ) is a weak pullback.

Proof.

(i) If (A)+ (B ) is a weak pullback, a map can be induced for a cone over (A) by

concatenating it with (B ); the jointly monic condition on f , g guarantees

that the map induced for (A) + (B )will commute for (A).

(ii) Given a cone for (A)+ (B ) induce a map for (B ), which then induces a cone

for (A).

Lemma 1.5.9. (Weak) pullbacks are closed to retracts.

Proof. Suppose that S ′ is a weak pullback, and S is a retract of it in the category of

commuting squares. Consider the following diagram (suppressing the subscripts

for s , r ):

Z A A′ A

B B ′ B

C C ′ C

D D ′ D

x

y

s

x ′

y ′

r

x

y
w

s

w ′

r

w

z

s

z ′

r

zs r

Given a cone for S , there is a corresponding cone for S ′ which induces a map

Z → A′ and postcomposition with rA gives the desired map into A.

Using these lemmas, it is straightforward to prove that the following T -stability

properties hold for tangent submersions.

Lemma 1.5.10. In any tangent category X,

(a) tangent submersions are closed to composition;

(b) tangent submersions are closed to retracts;

(c) any T -pullback of a tangent submersion is a tangent submersion.
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Proof. (a) follows from Lemma 1.5.8 while (b) follows from Lemma 1.5.9. It re-

mains to prove (c). Consider a T -pullback, where u is a tangent submersion:

A M

B N

f

v u

g

By naturality, the outer paths of the following two diagrams are equal:

T A T M M

T B T N N

T f

T v

p

T u u

T g p

=
T A A M

T B B N

p

T v

f

v u

p g

Note that the left diagram is a weak pullback by composition. Therefore the

outer perimeter of the right diagram is a weak pullback, and the right square is a

pullback, so the left square is a weak pullback by Lemma 1.5.8, as desired.

The class of tangent submersions is closed to retracts in the arrow category

and is conditionally T -stable under reindexing (if the T -pullback of a tangent

submersion exists, it is a tangent submersion). This stability property leads to the

following result:

Proposition 1.5.11. LetX be a tangent category that allows for reindexing of the

class of tangent submersionsR . Then the class of tangent submersions is a display

system.

Proof. Any class of maps that is closed to reindexing is a tangent display system,

and the class of submersions is closed to retracts in the arrow category.

Corollary 1.5.12. The class of submersions in the category of smooth manifolds is

a proper retractive display system.

41



Chapter 2

Differential bundles

Our principal aim in this thesis is to provide an abstract tangent-categorical

axiomatization for Lie algebroids. To accomplish this, we must provide an axiom-

atization for Lie algebroids which is essentially algebraic (in the sense of Freyd and

Kelly (1972)). However, in the category of smooth manifolds, Lie algebroids are de-

fined in terms of vector bundles and these are prima facie a highly non-algebraic

notion.

In addition to algebraic axioms which make it anR-module in the slice over

its base M , a vector bundle q : E →M satisfies a crucial topological requirement:

it must be locally trivial. This means that the projection q : E → M must be

locally isomorphic to a projection π0 : U ×Rn →U for some open subset U of M

and natural number n . It is this property that permits calculations using local

coordinates, an approach deeply enshrined in the culture of differential geometry.

Cockett and Cruttwell (2017) introduced the algebraic notion of a differential

bundle. Evidence that differential bundles are the appropriate generalization of

vector bundles was provided by showing how classical results for vector bundles

could be generalized to differential bundles in any tangent category Cockett

and Cruttwell (2017, 2018). However, the precise relationship in the category of

smooth manifolds between vector bundles and differential bundles was left open.

The main result of this chapter (see MacAdam (2021)) is that vector bundles and

differential bundles coincide in the category of smooth manifolds.

The axiomatization of differential bundles focuses on another important prop-
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erty of vector bundles: given a vector bundle q : E →M and a vector v in the

fibre Ex above x ∈M , the tangent space Tv (Ex ) can be naturally identified with

Ex . This gives a lift map λ : E → T E which can be axiomatized. While the lift

map had long been noted in the differential geometry literature in the guise of

the Euler vector field (see 6.11 of Kolár et al. (1993) and also Section 1 of Michor

(1996) which explicitly uses the term "lift"), it had not been adopted as the basis

of an abstract axiomatization.

More recently, in the differential geometry literature, Grabowski and Rotkiewicz

(2009) and Bursztyn et al. (2016) realized that the multiplicativeR+-action on the

total space E determines the vector bundle structure of q : E →M , and conversely

such a multiplicative action determines a vector bundle precisely when its Euler

vector field (Definition 2.1.8) satisfies an additional “non-singular” property. This

chapter extends these more recent observations on vector bundles to differential

bundles.

The chapter begins by reviewing vector bundles, describing the Euler vector

field construction that sends a vector bundle q : E →M to a "lift" mapλ : E → T E

from Grabowski and Rotkiewicz (2009), whereas the rest of the chapter contains

new results developed in collaboration with Matthew Burke. The second section

establishes that these lifts are associative coalgebras for the weak comonad (T ,ℓ),

and that there is a fully faithful functor from vector bundles into the category

of lifts for smooth manifolds. The third section identifies the universal property

satisfied by the lift (or equivalently Euler vector field), while the fourth section

shows that a non-singular lift corresponds precisely to a differential bundle. The

fifth section proves the main theorem of the chapter: vector bundles are precisely

differential bundles for smooth manifolds. The final section contains some re-

marks on extending affine connections to arbitrary differential bundles, which

will be useful in Chapter 3.

2.1 Vector bundles

A vector bundle over a manifold M axiomatizes the notion of a smoothly varying

family of vector spaces indexed by the points m ∈M . The driving example is that

of the tangent bundle over a smooth manifold M , where the fibre above each
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point m ∈M is the tangent space Tm M . The manifold structure guarantees that

the projection is locally trivial: given a chart U ,→M , the next pullback splits as a

product:

U ×Rn T M

U M

p
⌟

The local triviality of the tangent bundle is essential for various constructions and

is part of the definition of a vector bundle.

Definition 2.1.1. A vector bundle is a tuple

(q : E →M ,ξ : M → E ,+ : E q×q E → E , · :R×E → E )

of morphisms in SMan so that

(i) the tuple (q ,ξ,+, ·) defines an R-module in SMan/M ;

(ii) the map q : E →M is locally trivial.

The fibred R-module structure means E is a family of vector spaces indexed by M ,

{Em |m ∈M }.

It is important to note that the local triviality axiom guarantees that the pro-

jection of a vector bundle is a submersion (Definition 1.5.1); thus pullback powers

of q : E →M exist and are preserved by the tangent functor.

Example 2.1.2. Consider the cylinder, defined as the subset of R3 spanned by

C = {(x , y , z )|x 2+ y 2 = 1, z ∈R}:

R

Above each point i ∈ S 1 = {(x , y )|x 2+ y 2 = 1} the fibre over i is R. For each point i ,

we can choose a sufficiently small ε and take the open set

Ui = {(x , y ) ∈ S 1|(ix − x )2+ (i y − y )2 ≤ ε},
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which may be flattened to (−(1+ε), 1+ε)×R.

The sections of a vector bundle also give rise to a C∞(M )-module, generalizing

that aspect of the tangent bundle’s fibred R-module structure.

Lemma 2.1.3. Given a vector bundle q : E →M , write the set of sections of q as

Γ (q ); as, for example, Γ (p .M ) =χ(M ) (recall the notation from Definition 1.2.16).

The set Γ (q ) has a C∞(M )-module structure in much the same way as χ(M ):

X +Γ (q ) Y :=+ ◦ (X , Y ), 0Γ (q ) := ξ, ( f ·Γ (q ) X )(m ) := f (m ) ·X (m )

There are also a variety of general constructions that yield vector bundles.

Example 2.1.4.

(i) The tangent bundle is a vector bundle: the construction in Section 1.2 makes

it clear that the projection p : T M →M is a locally trivial, fibred R-module

over the base space M .

(ii) A trivial vector bundle over M with fibres in V is the product M × V . In

particular, every vector space is a trivial vector bundle above the one-point

space {∗}.

(iii) Each Tk M will be locally trivial; locally it looks like the k -fold product of the

tangent space p−1
k (U )

∼=U × (Rn )k for an n-dimensional manifold M . More

generally, one can take the fibrewise pullback Ek = E q×q E q×q . . . q×q E and

discover a vector bundle over M .

(iv) The cotangent bundle of M , T ∗M , has the dual vector space of Tm M above

each point M : T ∗m (M ) = (Tm M )∗. This space can be appropriately topolo-

gized to be smooth, and a set of sections of Γ (T ∗M ) is isomorphic to the set of

morphisms T M →R that are linear in each fibre. This construction may be

applied to any vector bundle and is called the dual vector bundle.

(v) Consider the space Λn (E ), the alternating tensor product of E ∗. The set of sec-

tions of this vector bundle is equivalent to the alternating n-linear morphism

En →R; when restricted to the tangent bundle, this is the space of differential

n-forms.
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There are two constructions on vector bundles that will be necessary to prove

the main theorem of this section.

Proposition 2.1.5. Let (q : E →M ,ξ,+q , ·q ) be a vector bundle.

(i) For any map f : N →M , the T -reindexing of q by f is a vector bundle:

f ∗E E

N M

q

f

f ∗q

f̄

⌟ (2.1)

(ii) Any retract of q in the space of arrows is a vector bundle; that is, given

F E F

N M N

q
r ′

r

π

s

s ′

π (2.2)

if there is a vector bundle structure on q , then there is a vector bundle structure

on π.

The category of vector bundles has “locally linear” bundle morphisms as its

maps.

Definition 2.1.6. A morphism of vector bundles between q : E →M andπ : F →N

is a commuting square

E F

M N

q

f

v

π

that is fibrewise linear, so that above each fibre

f |m : Em → Fv (m )

46



is a linear morphism of vector spaces. This may equivalently be stated as a mor-

phism of fibred R-modules, so that the following diagrams commute:

E F E F

M N M N

E2 F2 R×E R× F

E F E F

q

f

v

π ξ ζ

f

v

+ +
f

f2

·E

R× f

·F
f

Example 2.1.7.

(i) For the pullback vector bundle in Diagram 2.1, the pair ( f̄ , f ) is a linear

bundle morphism.

(ii) For the section/retract vector bundle structure from Diagram 2.2, the section

and retract are linear morphisms. Note that this is exactly the splitting of a

linear idempotent on q : E →M .

The lift on the tangent bundle was defined in Section 1.2 as

[γ]∼ 7→ [γ ◦ ·R]∼.

Instead, consider the action of R on a tangent vector:

([γ]∼, r ) 7→ [γ ◦ (r · x )]∼.

Note that T .· gives the equation

T . · ◦([ω ◦ (x , y )], [(a , b ) 7→ a + b · x ]) = (ω ◦ (a · x , a · b · y ));

so the lift map ℓ can be rederived as follows:

T M T M ×R T (T M ×R) T 2M

[γ] ([γ], 1) ([γ ◦π0], [r 7→ 1 • r ]) [γ ◦ •R]

(i d ,1R) 0×λ

This general construction is known as the Euler vector field of a multiplicative

action by R+.
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Definition 2.1.8. Consider a multiplicative monoid action a :R+× E → E . The

Euler vector field1 of the action is the morphism λ : E → T E constructed as follows:

λ := E
(i d ,1R◦!)
−−−−→ E ×R 0×λ−−→ T E ×TR∼= T (E ×R) T .a−→ T E .

Local triviality for the tangent bundle is encoded by the universality of the

vertical lift condition. A similar universality condition holds for vector bundles.

Proposition 2.1.9. Let q : E →M be a vector bundle with corresponding Euler

vector field λ. Then the following diagram is a T -pullback:

E T E

M E ×T M
(ξ,0)

q

λ

(p ,T .q )

Exploiting the fact that fibredR-modules have subtraction, the following result

holds.

Corollary 2.1.10. The following two diagrams are T-equalizers:

E2 T E T M

T M p×q E T E E

µE :=0◦π0+T qλ◦π1

νE :=T .ξ◦π0+pλ◦π1

T .q

T .q◦0◦p

p

p◦T .ξ◦T .q

(recall that E2 is the pullback of a submersion along a submersion and is therefore

guaranteed to exist and be preserved by the tangent functor).

Proof. Given v : X → T E so that

T .q ◦ v = T .q ◦0 ◦p ◦ v

then

p ◦ (v −T .q 0 ◦p ◦ v ) = p ◦ v −q p ◦ v = ξ ◦q ◦ v.

So there is a unique v ′ so that

λ ◦ v ′ = (v −T .q 0 ◦p ◦ v )
1Somewhat confusingly, the Euler vector field is almost never a vector field.
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meaning that

v = 0 ◦p ◦ v +T .q λ ◦ v ′ =µ(0 ◦p ◦ v, v ′)

as required. The projection q is a submersion, so the pullback E2 is preserved

by the tangent functor, as is the pullback in Proposition 2.1.9, and the same

calculation may be applied for each T n . The proof for ν follows by the same

argument.

Recall that the class of submersions forms a retractive display system in the cat-

egory of smooth manifolds (Definition 1.5.3), so they are stable under reindexing

and closed to retracts. We may now infer the following:

Corollary 2.1.11. The projection for a vector bundle is a submersion.

Proof. This follows from the fact that π : T E → E is a submersion, so that q ◦π0 :

E q×pT M →M is a submersion, so the map q : E →M is a retract of the projection

p .E : T E → E in the arrow category.

Preservation of the Euler vector field is also sufficient to guarantee that a

morphism f : E → F determines a vector bundle morphism.

Proposition 2.1.12. Let q : E →M ,π : F → N be a pair of vector bundles with

Euler vector fieldsλE ,λF . Then a bundle morphism ( f , v ) : q →π is a vector bundle

morphism if and only if

λF ◦ f = T . f ◦λE

Proof. Note that the νF map from Corollary 2.1.10 is monic, and if f preserves

the lift, it preserves ν:

νF ◦ (T .v, f ) = + ◦ (T .ζ ◦T .v,λF ◦ f ) = + ◦ (T . f ◦T .x i , T . f ◦λE ) = T . f ◦νE .
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Next, observe that T .v × f is the unique map making the following diagram com-

mute:
M E

T M p×q E T E

T N p×q F T F

N F

∃!

ν

ν

T . f

p

p

f

q◦π1

π◦π1

ζ

ξ

⌟

⌟

Now ν is a vector bundle morphism and monic, and T . f is a vector bundle mor-

phism, so it follows that T .v × f is a vector bundle morphism and hence f is also

a vector bundle morphism. The reverse implication is immediate.

2.2 Lifts for the tangent weak comonad

The lift ℓ : T ⇒ T 2 gives rise to a weak comonad. Weak comonads were introduced

in Wisbauer (2013) and have a natural notion of an associative algebra2. An

associative coalgebra of the weak comonad (T ,ℓ) is called a lift; this chapter will

demonstrate that lifts provide the essential structure necessary to formulate vector

bundles.

Definition 2.2.1. A weak comonad on a category C is an endofunctor S :C→C
equipped with a coassociative map δ : S ⇒ S .S:

S S .S

S .S S .S .S

δ

δ S .δ

δ.S

An associative algebra of a weak comonad is an object E equipped with a map

λ : E → S E so that
E S .E

S .E S .S .E

λ

λ δ.E

S .λ

2This is not strictly true. Wisbauer has a more nuanced hierarchy of almost-monads, and in his
language (T ,ℓ)would be an endofunctor with an associative product.
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A morphism of these algebras is a map f : (E ,λ)⇒ (D ,γ) so that

E D

S .E S .D

f

S . f

λ γ

Recall that for a full (co)monad, there is an adjunction between the base

category and the category of (co)algebras. That result is weakened in this case:

Lemma 2.2.2. For every weak comonad on a category C, there is a free coalgebra

functor

F :C→CoAlg(C); E 7→ (S .E ,δ : S .E → S .S .E )

an underlying object functor

U : CoAlg(C)→C; (E ,λ) 7→ E

and a natural transformation

λ : i d ⇒ F.U ;
E S .E

S .E S .S .E

λ

S .λ

λ δ

Definition 2.2.3. A lift in a tangent category C is an associative coalgebra of (T ,ℓ),

namely, a pair (E ,λ : E → T E ) so that the following diagram commutes:

E T E

T E T 2E

λ

λ

ℓ.E

T .λ

A morphism of lifts is a coalgebra morphism. The category of lifts and lift mor-

phisms in a tangent category C is written Lift(C).

Note that the tangent bundle is not, in general, a comonad: while the tangent

projection has the correct type for a counit, p : T ⇒ i d , it does not satisfy p ◦ℓ= i d .

In fact, if p were a counit, this would force i d = p ◦ℓ= 0◦p so that 0 = p−1, thus if

(T ,ℓ, p ) is a comonad then T is naturally isomorphic to the identity functor.
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Example 2.2.4.

(i) For every object M in a tangent categoryC, the pair (T M ,ℓ : T M → T 2M ) is

a lift, called the free lift on M .

(ii) Every object M in a tangent category has a trivial lift, 0 : M → T M , where

T .0 ◦0= ℓ ◦0.

(iii) Every differential object has a lift λ; the coherence is equivalent to axiom

[D 0.3] in Definition 1.4.1.

(iv) The Euler vector field of a multiplicativeR+-action h : R+×E → E in SMan is

a lift. Recall that the Euler vector field over the scalar action sM : T M ×R→R
induces the vertical lift on a manifold:

ℓ= T .sM ◦ (0,λR ◦1R◦!).

In the category of smooth manifolds, TR∼=R[x ]/x 2, where λ(r ) = [x 7→ r · x ]
corresponds to the map λ′(r ) = 0+ r · x . Similarly, there is an isomorphism

R[x , y ]/(x 2, y 2) so that for the maps 0.Ta nd T .0,

0.T (a + r · x )∼= a + r · x +0y +0x y , T .0(a + r · x )∼= a +0x + r · y +0x y .

Since we know that (0+ x )(0+ y ) = (0+ x y ) in R[x , y ]/(x 2, y 2) (following

1.4.2), we can use these isomorphisms to see that

ℓ ◦λR ◦1R◦!= (0.T ◦λR ◦1R◦!) ·T 2.R (T .0 ◦λR ◦1R◦!).

Consider a monoid action (R+, h ) on a manifold E . The Euler vector field of

this action,

λ : E
(i d ,1R◦!)
−−−−→ E ×R

(0,λR)
−−−→ T E ×TR T .h−→ T E
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will define an algebra if the induced scalar action on T E commutes with the

natural scalar action:

T .λ ◦λ= T 2.h ◦ (T .0 ◦λ, T .λ ◦0 ◦1R◦!)

= T 2.h ◦ (T .0 ◦T .h ◦ (0,λ ◦1R◦!), 0 ◦λ ◦1R◦!)

= T 2.h ◦ (T 2.h ◦ (T 0 ◦0, T 0 ◦λ ◦1R◦!), 0 ◦λ ◦1R◦!)

= T 2.h ◦ (T .0 ◦0, (T .0 ◦λ ◦1R◦!) ·T 2.R (0.T ◦λ ◦1R◦!))

= T 2.h ◦ (ℓ ◦0,ℓ ◦λ ◦1R◦!)

= ℓ ◦T .h ◦ (0,λ ◦1R◦!)

= ℓ ◦λ.

Observation 2.2.5. Recall that by Proposition 2.1.12, morphisms preserve a monoid

action if and only if they preserve the associated Euler vector field of the action.

This means the Euler vector field construction gives a fully faithful functor from

monoid actions to lifts in the category of smooth manifolds, and therefore from the

category of vector bundles to the category of lifts in SMan.

The following proposition gives a pair of constructions on lifts—closure under

the tangent functor and finite T -limits—that will be useful in this section.

Lemma 2.2.6. Let C be a tangent category.

(i) The tangent functor lifts to an endofunctor on the category of lifts inC.

(ii) Given a diagram

D :D→ Lift(C)

in the category of lifts ofC, if the T -limit of U .D exists inC, then limU .D has

a natural liftλ′ associated to it so that (limU .D ,λ′) is the limit of D in Lifts(C).
(That is, T -limits of lifts are computed pointwise in the base category.)

Proof.

(i) Simply check that

T .(c ◦T .λ) ◦ c ◦T .λ= T .c ◦T 2.λ ◦ c ◦T .λ= T .c ◦ c .T ◦T 2.λ

= T .c ◦ c .T ◦T .ℓ ◦T .λ= ℓ.T ◦ c ◦T .λ.
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(ii) Concretely, a tangent terminal object will have a lift:

(1, 1
0−→ T .1∼= 1).

Given (E ,λ) and (F, l ), if the tangent product E × F exists there is a lift

(E × F, E × F
λ×l−−→ T E ×T F ∼= T (E × F )).

Given the T -equalizer of a fork f , g : (E ,λ)→ (F, l ), the equalizer has a lift

induced as follows:

C E F

T .C T .E T .F

f

g

k

λ

k

λ
T . f

T .g

l

Proposition 2.2.7. The category of lifts is a tangent category.

Proof. The tangent functor sends

f : (E ,λ)→ (F, l )
T . f : (T E , c ◦T .λ)→ (T F, c ◦T .l ).

To see that this is still an algebra morphism, compute

c ◦T .l ◦T . f = c ◦T 2. f ◦T .λ= T 2. f ◦ c ◦T .λ

The structure maps are the structure maps on the underlying object of the lift; the

universality conditions follow by Proposition 2.2.6.

The following idempotent is key in the theory of lifts and will be used in

defining non-singular lifts (Definition 2.3.1), and its splitting will present the

projection and zero-section of a vector bundle (Definition 2.4.1).

Proposition 2.2.8. The category of lifts in a tangent category C has a natural

idempotent:

e : i d ⇒ i d ; e(E ,λ) : (E ,λ)
p◦λ
−−→ (E ,λ).
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Proof. First, we see that e = p ◦λ is an idempotent:

p ◦λ ◦p ◦λ= p ◦p .T ◦T .λ ◦λ= p ◦p .T ◦ ℓ ◦λ= p ◦0 ◦p ◦λ= p ◦λ.

Moreover, every f : (E ,λ)→ (F, l ) preserves the idempotent:

f ◦p ◦λ= p ◦T . f ◦λ= p ◦ l ◦ f .

Finally, note that the idempotent is a lift morphism.:

T .λ ◦λ= ℓ ◦λ= c ◦ ℓ ◦λ= c ◦T .λ ◦λ

which implies that

λ ◦ e =λ ◦p ◦λ= p ◦T .λ ◦λ= p ◦ c ◦T .λ ◦λ= T .p ◦T .λ ◦λ= T .e ◦λ.

2.3 Non-singular lifts

Grabowski and Rotkiewicz (2009) introduced the notion of a non-singular lift as

a means to axiomatize the Euler vector field of a vector bundle’s multiplicative

R+-action. While it is not immediately clear that our definition is the same as

Grabowski’s, the results of Section 2.5 will justify the use of this language as they

are necessarily the same.

Definition 2.3.1. A lift (E ,λ) in a tangent categoryC is non-singular whenever the

following diagram is a T -equalizer:

E T E T Eλ T .e

e .E

where e .E = p ◦ℓ (the idempotent associated to the free lift on E ) and T .e = T .p ◦T .λ

(the image of the idempotent associated to (E ,λ) under the tangent functor). The

category of non-singular lifts is written NonSing(C).

The most prominent class of examples is given by the Euler vector field of the

R-action on a vector bundle.
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Proposition 2.3.2. The Euler vector field of a vector bundle is a non-singular lift.

Proof. Let (q : E → M ,+,ξ, ·) be a vector bundle with Euler vector field λ. By

Proposition 2.1.9, the diagram

T M

E T E

E

λ

T .q

p◦T .ξ◦T .q
p

T .q◦0◦p

is a T -limit. The T -universality of this diagram will hold if and only if the diagram

is universal after each parallel pair of arrows is post-composed by a T -monic. A

section is a T -monic, so the previous diagram is T -universal if and only if the

following diagram is T -universal:

E T E

E T E

T M T E

p

ξ◦q◦p

T .q

0◦q◦p

λ

0

T .ξ

Now simplify this diagram using the fact that T .(ξ ◦q ) = T .e , 0 ◦p = e .E :

T E

E T E

T E

e .T

e .E ◦T .e

T .e

e .E ◦T .e

λ

Note that the the two pairs of parallel arrows have a common arrow, implying

that they may be pulled together into a single ternary equalizer. All that remains

to check, then, is that for any x : X → T E ,

(e .e ◦ x = T .e ◦ x = e .E ◦ x ) ⇐⇒ (T .e ◦ x = e .E ◦ x ).
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The forward implication is trivial, so it remains to prove the reverse. Suppose

T .e ◦ x = e .E ◦ x ; then

e .e ◦ x = e .E ◦T .e ◦ x = e .E ◦ e .E ◦ x = e .E ◦ x

giving the result, namely that the diagram

E T E T Eλ T .e

e .E

is a T -equalizer.

Every map f : E → F gives a map of free coalgebras T . f : (T E ,ℓ)→ (T F,ℓ) and

the idempotent e is a coalgebra morphism by Proposition 2.2.8, so the following

is immediate:

Proposition 2.3.3. A non-singular lift is an equalizer in the category of lifts:

(E ,λ) (T E ,ℓ) (T E ,ℓ)λ T .e

e .E

Observe that the category of non-singular lifts is closed under finite limits in

the category of lifts.

Proposition 2.3.4. The category of non-singular lifts inC is closed under T -limits:

(i) The tangent functor on lifts preserves non-singular lifts, so that if (E ,λ) is

non-singular then (T E , c ◦T .λ) is non-singular.

(ii) The trivial lift on an object, 0 : M → T M , is non-singular.

(iii) T -products of non-singular lifts are non-singular lifts.

(iv) T -equalizers of non-singular lifts are non-singular lifts.

Proof.

(i) This follows from the fact that the non-singularity condition is a T -limit.

(ii) The zero map splits the idempotent 0◦p , so it is the equalizer of 0◦p , p ◦0=

i d .
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(iii) This follows by stability of limits under products.

(iv) The following diagram commutes by naturality:

C E F

T .C T .E T .F

T .C T .E T .F

λ λ

f

T . f

T .g

e .E T .e e .F T .e

T . f

T .g

g
λ

e .C T .e

Each horizontal diagram is a T -equalizer, and the two columns on the right

are T -equalizers, so the column on the left is a T -equalizer.

Finally, when a tangent category has certain T -equalizers, there is an idempo-

tent monad on the category of lifts, whose algebras are non-singular lifts:

Theorem 2.3.5. LetC be a tangent category with chosen T -equalizers of idempo-

tents. Then the following equalizer determines a left-exact idempotent monad on

the category of lifts, whose algebras are non-singular lifts.

(F, l ) (T .E ,ℓ) (T .E ,ℓ)
e .E

T .e

Proof. First, take the equalizer in Lift(C); the functor sends (E ,λ) to the chosen

limit (F, l ).The unit of the monad is the unique morphism from (E ,λ) to the

equalizer (F, l ) induced by universality:

(F, l ) (T E ,ℓ) (T E ,ℓ)

(E ,λ)
λ

T .e

e .E
∃!

Note that non-singular lifts are closed under finite limits, so (F, l ) is a non-singular

lift. If (E ,λ) is a nonsingular lift then λ : (E ,λ)→ (T E ,ℓ) equalizes the diagram,
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so there is a unique isomorphism (F, l )∼= (E ,λ), making the multiplication of the

monad a natural isomorphism (and thus yielding an idempotent monad). The

functor is defined as a T -limit and therefore preserves all T -limits of lifts, so it is

left-exact.

In the category of smooth manifolds, ℓ is the Euler vector field of anR+-action,

this guarantees that every λ is the Euler vector field of a multiplicative R+-action.

We note the following corollary.

Corollary 2.3.6. In the category of multiplicative R+ actions in SMan, multipli-

cation by 0 is equivalent to the natural idempotent e in the fully faithful functor

sending an R+-action to its Euler vector field. By non-singularity, the following

diagram is an equalizer, giving E a multiplicative action byR+ whose Euler vector

field is λ:

(E , ·E ) (T E , ·T ) (T E , ·T )
T .e

e .T

λ

Moreover,λ is the Euler vector field of this lift, and the following diagram commutes:

E T E T E

R+×E R+×T E R+×T E

T (R+×E ) T (R+×T E ) T (R+×T E )

T E T T E T T E

T (R+×e .E )

T (R+×T .e )

R+×λ

·pT ·p
e .E

T .eT λ

T ·E

(1R,i d ) (1R,i d ) (1R,i d )

λR×0 λR×0λR×0

e .E

T .e

R+×e .E

R+×T .e

λ

R+×λ

2.4 Differential bundles

This section introduces (pre-)differential bundles, which provided the rest of the

data for a vector bundle: namely the projection, the zero section, and the ad-

dition map. The zero section and projection data arise by splitting the natural

idempotent e : i d ⇒ i d , and non-singularity will induce the addition map. Every
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differential bundle satisfies a pair of universality diagrams, linking this presen-

tation of differential bundles to the original definition in Cockett and Cruttwell

(2018).

Definition 2.4.1.

(i) A pre-differential bundle is a lift λ : E → T E equipped with a chosen splitting

of the natural idempotent e = p ◦λ from Proposition 2.2.8. Pre-differential

bundles are formally written (q : E →M ,ξ,λ), where q : E →M is the retract,

ξ : M → E the section, and λ : E → T E the lift (the types are only necessary

for the projection as the rest may be inferred, and will generally be suppressed

to save space).

(ii) A differential bundle is a pre-differential bundle (q : E →M ,ξ,λ) with the

properties that λ is non-singular and T -pullback powers of q exist.

Morphisms of (pre-)differential bundles are exactly morphisms of their underly-

ing lifts. The categories of (pre-)differential bundles are exactly (pre-)differential

bundles and lift morphisms, and are written Pre(C),DBun(C) respectively.

Recall that as e is a natural idempotent in the category of lifts, any lift mor-

phism will preserve e and will consequently preserve its idempotent splitting.

Preserving the idempotent means that every differential bundle morphism is a

bundle morphism, where the base map is given by

E F

M N

q

f

π

m :=π◦ f ◦ξ

We now look at the limits of (pre-)differential bundles.

Observation 2.4.2.

(i) The limit for a diagram of pre-differential bundles is the limit of the underlying

lifts equipped with a chosen splitting of p ◦λ due to basic properties about

idempotent splittings.
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(ii) The limit for a diagram of differential bundles is the limit in the category of

pre-differential bundles (the lift will be universal by Proposition 2.3.4), so

long as T -pullback powers of the resulting projection exist.

Because there is a projection associated to a (pre-)differential bundle, the

T -reindexing operation described in Proposition 1.5.2 can now be applied. This

gives a pullback differential bundle in a similar way to Proposition 2.1.5.

Lemma 2.4.3 (Cockett and Cruttwell (2018)). Let (q : E → M ,ξ,λ) be a (pre-)

differential bundle in a tangent category C, and consider a T -pullback in C:

u∗E E

N Mu

qu∗q

ū

⌟

Then the induced triple maps

T .u∗E T E N

u∗E E u∗E E

N M N M

T N T M

u

qu∗q

ū

⌟

T .ū

λ

0

T .q

T .u

0

T .u∗q

u∗λ

q

u

⌟

ξ◦u
u∗ξ

induce a (pre-)differential bundle (u∗q : u∗E →N , u∗ξ, u∗λ). If λ is non-singular

and T -pullback powers of u∗q exist, then (u∗q , u∗ξ, u∗λ) is a differential bundle.

Proof. Note that a pre-differential bundle (q : E → M ,ξ,λ) in C may also be

regarded as a pre-differential bundle (q : (E ,λ)→ (M , 0),ξ,λ) in Lift(C). Take the

following pullback in Lift(C):

(u∗E , u∗λ) (E ,λ)

(N , 0) (M , 0)u

q
⌟

It follows by construction that ι ◦u∗λ=λ ◦ ι. Thus the result holds.
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Proposition 2.4.4. Let (q : E →M ,ξ,λ) be a non-singular pre-differential bundle

in a tangent category C, so that T -pullback powers of q exist. Then there is an

additive bundle structure (q ,ξ,+q ) so that the differential bundle morphisms are

additive:

(λ,ξ) : (q ,ξ,+q )→ (p , 0,+) (λ, 0) : (q ,ξ,+q )→ (T .q , T .ξ, T .+q ).

Furthermore, every differential bundle morphism preserves addition.

Proof. Non-singularity forces the existence of an addition map:

E2 T2E T2E

E T E T E

∃!+q +

λ×λ

λ

e .E

T .e

+

(e×e ).E

T2.e

Note that this diagram commutes because T2E is a pre-differential bundle whose

lift is ℓ×ℓ, and also + is a linear morphism, so it commutes with the addition map

e ◦a + e ◦ b = e ◦ (a × b ). Post-composition with λ ensures that ξ is the unit and

that associativity holds. A differential bundle morphism will induce a morphism

of the equalizer diagrams that induce each addition map to preserve addition.

Recall that by Proposition 2.3.2, the Euler vector field for every vector bundle

is a non-singular lift. If T M q×q E exists, the map

νE : T M p×q E
T .ξ×λ
−−−→ T2E

+.E−→ T E

may be formed. Similarly, using the additive bundle structure from Proposition

2.4.4, the µmap may be formed:

µE : E q×q E
0×λ−−→ T (E q×q E )

T .+q
−−→ T E

Note that any differential bundle morphism will preserve µ and ν.

Lemma 2.4.5. Differential bundle maps preserve µ(x , y ) := 0 ◦ x +T .q λ ◦ y and

ν(v, y ) := T .ξ ◦ v +p λ ◦ y .
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Proof. The following diagram demonstrates that lift maps preserve ν:

E q×p T M F q ′×p T N

T .E T .F

T .E T .F

ν ν

f ×T .m

T . f

T .g

e .e T .e e .e T .e

T . f

T .g

g×T .n

Similarly, this diagram demonstrates that lift maps preserve µ:

T E T F

T E2 T F2

E2 F2

(T . f ×T . f )

(λ×0) (λ′×0)

( f × f )

T .+ T .+′

T f

Lemma 2.4.6. Consider the full subcategory of differential bundles in C whose

objects are differential bundles (E ,λ) so that the forks

E2 T E T M

T M p×q E T E E

µE :=0◦π0+T qλ◦π1

νE :=T .ξ◦π0+pλ◦π1

T .q

T .q◦0◦p

p

p◦T .ξ◦T .q

(2.3)

are T -equalizers. This subcategory is closed under T -equalizers.

Proof. Start with the T -equalizer of lifts:

C E F
f

g

k
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Observe that k is a lift map, so by Lemma 2.4.5, the following diagram commutes:

C q c ×p T P E q×p T M F q ′×p T N

T .C T .E T .F

T .C T .E T .F

ν ν

f ×T .m

T . f

T .g

e .e T .e e .e T .e

T . f

T .g

k×T .k ′

ν

e .e T .e

T .k

T .k

g×T .n

Next, since k is a morphism of pre-differential bundles, by Lemma 2.4.5 the

following diagram commutes:

C2 E2 F2

T .C T .E T .F

T .C T .E T .F

µ µ

f2

T . f

T .g

e .e T .e e .e T .e

T . f

T .g

g2

µ

e .e T .e

The top row follows because maps satisfying Rosicky’s universality condition pre-

serve µ, and the bottom row by the naturality of e .C and the fact that linear maps

preserve the natural idempotent. Thus, if E , F satisfy the universality diagrams

in Diagram 2.3, the equalizer C will as well, because T -equalizers are closed to

T -limits in the category of fork diagrams.

Theorem 2.4.7. For every differential bundle (q : E →M ,ξ,λ) in a tangent category,

the diagram

E2 T E T M
µE T .q

T .q◦0◦p

is a T -equalizer, and if T M p×q E exists, then

E q×p T M T E E
νE :=λ◦π0+p T .ξ◦π0

p

p◦T .ξ◦T .q

is a T -equalizer.
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Proof. The tangent bundle satisfies both universality conditions, and by Lemma

2.4.6 every differential bundle will satisfy these conditions by the non-singularity

of the lift.

Corollary 2.4.8. In a complete tangent category, the category of differential bundles

is precisely the category of algebras of the monad in Theorem 2.3.5 on pre-differential

bundles.

Remark 2.4.9. The universality conditions in Theorem 2.4.7 demonstrate that this

definition of differential bundle agrees with that of Cockett and Cruttwell (2018).

2.5 The isomorphism of categories

It is now straightforward to show that the main theorem of this chapter holds.

First, observe that for every differential bundle (q : E →M ,ξ,λ) in the category of

smooth manifolds, the T -pullback E p×q T M exists , as p is a submersion. Note

that the universality of the two diagrams is equivalent:

E q×p T M T E E
νE :=λ◦π0+p T .ξ◦π0

p

p◦T .ξ◦T .q

E q×p T M T E

M E

νE

λ◦π0+p T .ξ◦π1

p

ξ

⌟

Thus the following holds.

Theorem 2.5.1. There is an isomorphism of categories between vector bundles and

differential bundles in smooth manifolds.

Proof. Note that Proposition 2.3.2 gives a fully faithful functor from the category

of vector bundles to differential bundles of smooth manifolds, as the lift associated

to the vector bundle is non-singular and the projection and zero section give the

rest of the structure of a differential bundle: as remarked after Definition 2.1.1,

local triviality guarantees that the projection is a submersion, so pullback powers

of the projection exist, yielding a differential bundle.

To see there is an isomorphism on objects, recall that every differential bundle

is a fibred R-module by Corollary 2.3.6, and that this identification is a bijective
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mapping (it recovers the original R-action from the Euler vector field of the R-

action, and vice versa). Last, note that the universality condition

E q×p T M T E

M E

νE

λ◦π0+p T .ξ◦π1

p

ξ

⌟

along with Proposition 2.1.5 ensures the local triviality of q , so that the unique

fibred R-module structure associated to a differential bundle is indeed a vector

bundle.

2.6 Connections on a differential bundle

The connections discussed in this section generalize the notion of an affine con-

nection to a differential bundle, giving a “local coordinates” presentation for

T E similar to the presentation of T 2M as T3M induced by an affine connection.

Chapter 3 makes extensive use of connections on vector bundles, so it is useful to

set out the basic definitions before embarking on algebroid theory.

Definition 2.6.1 (Cockett and Cruttwell (2017)). Let (q : E →M ,ξ,λ) be a differ-

ential bundle in a tangent category C.

• A vertical connection is a map κ : T E → E so that

(i) κ is a vertical descent, and hence a retract of the lift; thus, κ ◦λ= i d ;

(ii) κ is compatible with both differential bundle structures on T E , so that

the maps

κ : (T E ,ℓ)→ (E ,λ)

κ : (T E , c ◦T .λ)→ (E ,λ)

are lift morphisms.

• A horizontal connection is a map∇ : E q×p T M → T E so that
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(i) ∇ is a horizontal lift, and so is a retract of (p .E , T .q ) : T E → E q×pT M 3;

thus, (p , T .q ) ◦∇= i d ;

(ii) ∇ is compatible with each pair of lifts, so that the maps

∇ : (E q×p T M ,λ×ξ)→ (T E , c ◦T .λ)

∇ : (E q×p T M , 0× ℓ)→ (T E ,ℓ)

are lift morphisms.

• A full connection is a pair (κ,∇) that satisfies the following compatibility

relations:

(i) κ ◦∇= ξ ◦q ◦π0,

(ii) ∇(p , T .q ) +T .q µ(p ,κ) = i d , so that there is an isomorphism E q ×p

T M p×q E ∼= T E .

A notion that will be useful when dealing with classical differential geometry

is that of a covariant derivative, whose definition is equivalent to that of a vertical

connection in the category of smooth manifolds.

Definition 2.6.2. Let (q : E →M ,ξ,λ,κ) be a vertical connection.4 The covariant

derivative associated to (κ,∇) is the map

∇(−)[=] : Γ (π)× Γ (p )→ Γ (π); (A, X ) 7→ (κ ◦T A ◦X ).

Lucyshyn-Wright (2018) drastically simplified the notion of a full connection

by showing that it is exactly a vertical connection satisfying a universal property.

Proposition 2.6.3 (Lucyshyn-Wright (2018)). A connection on a differential bundle

is equivalently specified by a vertical connection

κ : T E → E

3That (p .E , T .q ) land in the pullback E q×p T M is a consequence of naturality, as p ◦T .q = q ◦p .
4The definition of a covariant derivative only uses a vertical connection.
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so that the following diagram exhibits T E as a biproduct in the category of differ-

ential bundles over M :

E

T E T M M

E

p

T q

κ

q

q

p

There is also a notion of flatness for connections that extends to vertical

connections on a differential bundle.

Definition 2.6.4. A connection κ on a differential bundle (q : E →M ,ξ,λ) is flat

whenever

κ ◦T .κ ◦ c = κ ◦T .κ.

We can see that connections are closed under similar constructions to differen-

tial bundles, in particular idempotent splittings and the reindexing construction

from Lemma 2.4.3.

Lemma 2.6.5. Let (q : E →M ,ξ,λ)be a differential bundle equipped with a vertical

connection.

(i) Any linear retract of (q ,ξ,λ)will have a vertical connection.

(ii) The pullback differential bundle induced by pulling back q along f : N →M

will have a vertical connection.

If the vertical connection is flat or is part of a full connection (that is, it satisfies the

universality condition in Proposition 2.6.3), then the induced connection will be as

well.

Proof. The universal property induces the vertical connection in each case. The

construction will preserve flatness as it is an equational condition, and it preserves

effectiveness by the commutativity of limits.

68



There is no reason for every differential bundle in a tangent category to have

a connection (for example, the tangent bundle in the free tangent category Weil1
in Chapter 4 is a differential bundle that does not have a connection). However, if

the total space of a differential bundle has an affine connection, this induces a

compatible connection on the differential bundle and its base space.

Theorem 2.6.6. Let (q : E →M ,ξ,λ) be a differential bundle in a tangent category

in C, where E has a (flat) vertical connection. Then the total space M and the

differential bundle (q ,ξ,λ) each have a (flat) vertical connection. If the connection

is full (so there is a compatible horizontal connection), then the induced connections

are likewise full.

Proof. By the strong universality condition for differential bundles, the differential

bundle (q ◦π0 : E q×p T M →M , (ξ,0),λ× ℓ) is the pullback differential bundle

of p : T E → E along ξ : M → E . This gives (q ◦π0, (ξ,0), (λ,ℓ)), a (flat, effective)

vertical connection by Lemma 2.6.5, and so it yields (q : E → M ,ξ,λ) and (p :

T M →M , 0,ℓ) as (flat, effective) vertical connections by the idempotent splitting

property.

Every smooth manifold has an affine connection, thus inducing a connection

on any vector bundle.

Corollary 2.6.7. Every vector bundle has a connection.

69



Chapter 3

Involution algebroids

This chapter accomplishes the first major goal of this thesis by providing a tangent-

categorical axiomatization of Lie algebroids, namely involution algebroids. Much

like vector bundles, Lie algebroids are a highly non-algebraic notion (in the sense

of Freyd and Kelly (1972)), being vector bundles equipped with a Lie algebra

structure on the set of sections of the projection. Furthermore, the bracket on

sections must satisfy a product rule with respect to R-valued functions on the

base space (the Leibniz law), introducing another piece of non-algebraic structure

to the definition. The tangent-categorical definition of Lie algebroids will treat

the tangent bundle as the “prototypical Lie algebroid” in which the vertical lift

ℓ : T ⇒ T 2 identifies the vector bundle structure and the canonical flip c : T 2⇒ T 2

plays the role of the Lie bracket.

Lie algebroids are the natural many-object analogue to Lie algebras, in the

same way that Lie groupoids are the many-object analogue of Lie groups. In the

single-object case, a Lie group is classically thought of as a space of symmetries

for some smooth manifold (one often identifies a group action G ×M →M ), and

a Lie algebra may similarly be thought of as a space of derivations (often identified

as a sub-Lie-algebra of χ(M ) for a manifold M ). The extension of groups to

groupoids is natural; in fact, Brandt’s introduction of groupoids in Brandt (1927)

predates MacLane and Eilenberg’s invention of category theory in Eilenberg and

MacLane (1945) by nearly two decades. The translation of Lie algebras to the

many-object case is not as straightforward. The first step is to replace the vector
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space underlying a Lie algebra with a vector bundle (π : A→M ,ξ,λ). The idea

is to axiomatize this vector bundle so that each section in Γ (π) corresponds to

a derivation on C∞(M ). The anti-commutator operation on derivations from

Proposition 1.2.18 suggests there should be a Lie bracket [−,−] : Γ (π)⊗ Γ (π)→
Γ (π) (similar to the partially-defined multiplication for a groupoid), while the

correspondence with derivations on C∞(M ) suggests there be a vector bundle

morphism ϱ : A→ T M satisfying the Leibniz law:

[X , f ·Y ] = f · [X , Y ] + [X , f ] ·Y ; [X , f ] := p̂ ◦T . f ◦ϱ ◦X 1 (3.1)

(the full definition of Lie algebroids may be found in 3.1.1). This “operational”

definition of Lie algebroids makes it difficult to describe their morphisms, and

furthermore it essentially fails to be an algebraic structure in the classical sense,

as it axiomatizes structure on the set of sections of a map rather than a morphism

in the category itself.

Involution algebroids were introduced to provide a tangent-categorical presen-

tation of Lie algebroids, similar to the relationship between differential bundles

and vector bundles. Chapter 2 focused on the Euler vector field construction on

a vector bundle, showing that this induced a fully-faithful functor from vector

bundles to associative coalgebras (lifts) of the weak comonad (T ,ℓ), and identified

vector bundles with a subcategory of Lift(SMan) satisfying a universal property.

The corresponding construction for Lie algebroids, then, is the canonical involu-

tion, which was identified by Eduardo Martinez and his collaborators (a clearly

written exposition may be found in Section 4 of de León et al. (2005)). Given a

Lie algebroid (π : A →M ,ϱ : A → T M , [−,−] : Γ (π)⊗ Γ (π)→ Γ (π)), its canonical

involution is a map

σ : Aϱ×TπT A→ Aϱ×TπT A.

Using this σ map, there is a straightforward characterization of Lie algebroid

morphisms: a Lie algebroid morphism is precisely a vector bundle morphism

1Recall the notation from Lemma 2.1.3.
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( f , m ) : A→ B that preserves the anchor and involution maps:

A B Aϱ×TπT A BϱB×T .πB T B

T M T N Aϱ×TπT A BϱB×T .πB T B

ϱA ϱB

f

T .m

σB

f ×T . f

σA

f ×T . f

Furthermore, it is implicit in Martinez’s work (Martínez (2001)) that σ satisfies

axioms corresponding to the Lie algebroid axioms. Thus, involutivity corresponds

to antisymmetry of the Lie bracket

σ ◦σ= i d ⇐⇒ [X , Y ] + [Y , X ] = 0,

while the Leibniz law holds if and only if theϱmap sends the algebroid involution

to the canonical flip on M ,

T .ϱ ◦π1 ◦σ= c ◦T .π ◦ϱ ⇐⇒ ∀ f ∈C∞(M ), [X , f ·Y ] = f · [X , Y ] + [X , f ] ·Y

(using the same definition as before for [X , f ]).

The idea of an involution algebroid, then, is to axiomatize the canonical in-

volution directly, just as differential bundles axiomatize the Euler vector field of

a differential bundle. An involution algebroid is a differential bundle equipped

with a pair of structure maps

ϱ : A→ T M , σ : Aϱ×TπT A→ Aϱ×TπT A

satisfying a collection of axioms. Some of them are straightforward translations of

the structure equations for Lie algebroids given in Martínez (2001), for instance

T .ϱ ◦λ= ℓ ◦ϱ, σ ◦σ= i d , T .ϱ ◦π1 ◦σ= c ◦T .ϱ ◦π1.

However, this requires a new coherence between the Euler vector field of the

underlying vector bundle and the involution map:

σ ◦ (ξ ◦π,λ) = (ξ ◦π,λ).
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The most striking new fact about this coherence is that the Jacobi identity on the

bracket [−,−] corresponds to the Yang–Baxter equation onσ:

Aϱ×TπT AT .ϱ×T 2.πT 2A Aϱ×TπT AT .ϱ×T 2.πT 2A

Aϱ×TπT AT .ϱ×T 2.πT 2A Aϱ×TπT AT .ϱ×T 2.πT 2A

Aϱ×TπT AT .ϱ×T 2.πT 2A Aϱ×TπT AT .ϱ×T 2.πT 2A

σ×c .A

σ×c .A

1×T .σ

σ×c .A

1×T .σ

This is both surprising (it is a new characterization of a central object of study

in differential geometry and mathematical physics) and yet in a way expected

(the work in Cockett and Cruttwell (2015), Mackenzie (2013) indicates that the

Lie algebra structure on the set of vector fields over a manifold follows from the

Yang–Baxter equation on c ). This vector-field-free presentation of the Jacobi

identity allows for a structural approach to Lie algebroids that drives the work

presented in Chapters 4 and 5.

As with Chapter 2, the first section is expository, and is concerned with intro-

ducing the category of Lie algebroids. The second section introduces anchored

bundles, together with the space of prolongations of an anchored bundle. The

relationship between anchored bundles and involution algebroids is equivalent to

that between reflexive graphs and groupoids (the subject of Chapter 5), the space

of prolongations of an anchored bundle being equivalent to the set of composable

arrows for a groupoid. This section is mostly a translation of Martinez’s prolonga-

tion construction to a general tangent category. The rest of the chapter contains

new results, developed in collaboration with Matthew Burke and Richard Garner.

Section 3 introduces involution algebroids, which are anchored bundles equipped

with an involution map on their space of prolongations. Section 4 considers an

anchored bundle in a tangent category with negatives that is equipped with a

connection. The connection gives an involution algebroid a “local coordinates”

presentation (in the sense of Section 1.4) that is equivalent to the local characteri-

zation of Lie algebroids from Section 1. The final section of this chapter establishes

the main result: the category of Lie algebroids is isomorphic to that of involution

algebroids in smooth manifolds.
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3.1 Lie algebroids

This section reviews the basic theory of Lie algebroids: their definition and that

of their morphisms, along with some introductory examples. The classical defini-

tion will not appear elsewhere in this chapter, however, as we quickly introduce

Martinez’s structure equations for a Lie algebroid (Martínez (2001)), then translate

them into tangent-categorical terms using a connection.

Definition 3.1.1. A Lie algebroid is a vector bundle π : A→M equipped with an

anchorϱ : A→ T M and a bracket [−,−] : Γ (π)⊗Γ (π)→ Γ (π) satisfying the following

axioms:

• bilinear: [a X1+b X2, Y ] = a [X1, Y ]+b [X2, Y ] and [X , a Y1+b Y2] = a [X , Y1]+

b [X , Y2]

• anti-symmetric: [X , Y ] + [Y , X ] = 0

• Jacobi: [X , [Y , Z ]] = [[X , Y ], Z ] + [Y , [X , Z ]]

• Leibniz: [X , f ·Y ] = f · [X , Y ] + [X , f ] ·Y

(where [X , f ] is defined as in Equation 3.1).

Example 3.1.2.

(i) The canonical example of a Lie algebroid is, of course, the tangent bundle

using the operational tangent bundle from Definition 1.2.16.

(ii) A Lie algebra is a Lie algebroid over the terminal object: for a group G , the

bundle of source-constant tangent vectors is the usual Lie functor from Lie

groups to Lie algebras, because a groupoid is a one-object group.

(iii) The bundle of source-constant tangent vectors s , t : G →M of a Lie groupoid

forms a Lie algebroid. This bundle is defined by the pullback

A T G T M

M T M ×G

(T .s ,p )

(0,e )

π

T .t

ϱ

⌟
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where the projection is π and the target is given by ϱ in the diagram. There is

an injectiveR-module morphism from sections of π, Γ (π) to vector fields on

G , χ(G ), and the Lie bracket on G is closed over the image of this lift, putting

a Lie bracket on Γ (π). In particular, we can see that T M is the bundle of

source-constant tangent vectors for the pair groupoid on a manifold M :

T M T (M ×M )

M (M ×M )×T M

(p ,T .π0)

(∆,0)

p

(i d ,0◦p )

⌟

Given (u , v ) : X → T (M ×M ) above (m , m ) : X → T M with u = 0 ◦m, it

follows that u = 0 ◦p ◦u, so v is the unique map induced into T M .

(iv) Every group is a groupoid over a single object. The Lie algebroid associated

with a group G , then, is the usual Lie algebra.

(v) From the Hamiltonian formalism of mechanics, every Poisson manifold has

an associated Lie algebroid. A Poisson manifold is a manifold M equipped

with a Poisson algebra structure on C∞(M ), namely a Lie algebra that is also

a derivation:

[ f · g , h ] = f · [g , h ] + [ f , h ] · g

where · is the multiplication in the algebra C∞(M ) as in Lemma 2.1.3. The

cotangent bundle over a Poisson manifold M is canonically a Lie algebroid,

called a Poisson Lie algebroid Courant (1994).

(vi) Any Lie algebra bundle—that is, a vector bundle equipped with a Lie bracket

on its space of sections—is a Lie algebroid, with anchor map ξ ◦π.

Morphisms of Lie algebroids are notoriously difficult to work with, and have

an involved definition.

Definition 3.1.3. Let A, B be a pair of anchored bundles over M , N , and Φ : A→ B

an anchored bundle morphism over a map φ : M → N . A Φ-decomposition of

X ∈ Γ (πA) is a set of X i ∈ Γ (πB ) and fi ∈C∞(M ) so that

Φ ◦X =
∑

i

fi ·X i ◦φ.
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An anchor-preserving vector bundle morphism Φ is a Lie algebroid morphism if

and only if for any X , Y ∈ Γ (πA) and Φ-decompositions {X i , fi },{Yj , g j } of X , Y , the

following equation holds:

Φ ◦ [X , Y ] =
∑

fi · g j · ([X i , Yj ] ◦φ) +
∑

[X , fi ] · (X i ◦φ)−
∑

[Y , g j ](Yj ◦φ).

The equation defining a Lie algebroid morphism holds independently of the

choice of Φ-decomposition (see Higgins and Mackenzie (1990) for a proof).

Example 3.1.4.

(i) If A, B are Lie algebroids over a base manifold M , Φ : A→ B is a Lie algebroid

morphism if and only if it preserves the anchor and Lie bracket.

(ii) Given two Lie algebroid morphisms f : A→ B , g : B →C , their composition

g ◦ f is also a Lie algebroid morphism.

(iii) A Poisson Sigma model (see Bojowald et al. (2005)) is a morphism of Lie

algebroids

φ : TΣ→ T ∗M

for which Σ is a 2-dimensional manifold and TΣ denotes its tangent Lie

algebroid, while M is a Poisson manifold and T ∗M denotes the Lie algebroid

structure on its cotangent bundle .

Lie algebroids are a natural generalization of Lie algebras to the “multi-object”

setting, but they are ill-suited for a functorial presentation of the theory. A step in

this direction is to consider the coordinate-based presentation of the Lie bracket

and its coherences due to Martínez (2001). Let A be an anchored bundle over M

equipped with a bilinear bracket on its space of sections, and choose a pair of

bases for Γ (π) and χ (M ): for Γ (π)write {eα}, and for χ(M )write { ∂∂ x i }. The anchor

and bracket then have a presentation in local coordinates:

ϱ(eα) =
∑

i

ϱi
α

∂

∂ x i
[eα, eβ ] =
∑

γ

C
γ
αβ eγ

(from here on out, we use Einstein summation notation to simplify our calcula-

tions, so instead write

ϱ(eα) =ϱ
i
α

∂

∂ x i
[eα, eβ ] =C

γ
αβ eγ
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with
∑

suppressed). The following characterization of the Lie algebroid axioms

uses Martinez’s structure equations.

Proposition 3.1.5. [Martínez (2001)] An anchored bundle A over M equipped with

a bracket is a Lie algebroid if and only if ϱ and [−,−] satisfy the following structure

equations:

(i) Alternating:

C ν
αβ +C ν

βα = 0

(ii) Leibniz:

ϱ j
α

∂ ϱi
β

∂ x j
=ϱi

γC
γ
αβ +ϱ

j
β

∂ ϱi
α

∂ x j

(iii) Bianchi:

0=ϱi
α

∂ C ν
βγ

∂ x i
+ϱi

β

∂ C ν
γα

∂ x i
+ϱi

γ

∂ C ν
αβ

∂ x i
+C

µ
βγC ν

αµ+C µ
γαC ν

βµ+C
µ
αβC ν

γµ

This proposition is a straightforward translation of the Lie algebroid axioms

into local coordinates using a covariant derivative. First, recall that by the smooth

Serre–Swan theorem (11.33 Nestruev (2003)), the bilinearity of the bracket

[−,−] : Γ (π)× Γ (π)→ Γ (π)

as a morphism of C∞(M )-modules guarantees that it corresponds to a bilinear

morphism A2→ A of vector bundles, meaning that there exists a globally defined

bilinear map A2→ A that is equal to the Lie bracket when applied to sections of

the projection. We record this as a lemma:

Lemma 3.1.6. For every Lie algebroidA , there is a bilinear morphism

〈−,−〉 : A2→ A

so that for any sections X , Y ∈ Γ (π), 〈X , Y 〉= [X , Y ].

There are two structure maps derived from 〈−,−〉 that encode the coherences

of a Lie algebroid. The first map measures the extent to which the anchor maps

fail to preserve the chosen connections on the vector bundle π : A→M and the

tangent bundle p : T M →M .
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Definition 3.1.7. Let A be a Lie algebroid, and for a chosen horizontal connection

∇ on A and vertical connection κ′ on T M , set

{v, x }κ′,∇ := T M p×q A
∇−→ T A

T .ϱ
−→ T 2M

κ′−→ T M .

When the choice of connection is evident by context, we will suppress the subscript.

Observation 3.1.8. The above parentheses bracket corresponds to the symbol

{−,−}=ϱ j
β

∂ ϱi
α

∂ x j
.

The Leibniz coherence may be rewritten as follows:

Lemma 3.1.9. Let A be an anchored bundle with a bilinear bracket (inducing an

involutionσ). Choose connections (κ,∇), (κ′,∇′) on A and T M respectively. The

bracket and anchor map satisfy the Leibniz law if and only if

ϱ ◦ 〈x , y 〉(κ,∇)+ {ϱx , y }(κ′,∇) = {ϱy , x }(κ′,∇).

Proof. The condition is equivalent to the identity

ϱ j
α

∂ ϱi
β

∂ x j
=ϱi

γC
γ
αβ +ϱ

j
β

∂ ϱi
α

∂ x j
.

The Bianchi axiom measures the failure of the Jacobi identity in local coordi-

nates, and states that it must be corrected for by the curvature of the brackets. We

see that

C ν
αµC

µ
βγ = [eα, [eβ , eγ]]

while
∂ C ν

βγ

∂ x i
eν = κ ◦T (〈−,−〉(κ,∇)) ◦∇A2 ◦ (

∂

∂ x i
, eβ , eγ)

determines a trilinear map

{
∂

∂ x i
, eβ , eγ}(κ,∇) := κ ◦T (〈−,−〉(κ,∇)) ◦∇A2 ◦ (

∂

∂ x i
, eβ , eγ).

This is the second derived map used in the structure equations for a Lie algebroid.
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Definition 3.1.10. Let (π : A→M ,ξ,λ,ϱ) be an anchored bundle equipped with a

bilinear map

〈−,−〉 : A2→ A.

The derived ternary bracket {−,−,−} : T M p×πAπ×πA→ A is defined as

{v, x , y }(κ,∇) := T M p×πAπ×πA
∇[A2]
−−−→ T A2

T .〈−,−〉
−−−−→ T A

κ−→ A

where∇[A2] is the pairing (∇(π0,π1),∇(π0,π2)).

Observation 3.1.11. The ternary bracket corresponds to the following symbol:

{−,−,−}(κ,∇) :=ϱi
α

∂ C ν
βγ

∂ x i
.

Lemma 3.1.12. Let A be an anchored bundle over M with a bilinear bracket and

denote the induced involution by σ. Choose a pair of connections and write the

derived maps 〈−,−〉,{−,−,−}. Then

(i) the bracket is antisymmetric if and only if its globalization is; that is, 〈eα, eβ 〉+
〈eβ , eα〉= 0;

(ii) the bracket satisfies the Jacobi identity if and only if it is alternating in the last

two arguments and

0=
∑

γ∈Cy(3)

〈xγ0
, 〈xγ1

, xγ2
〉〉+
∑

γ∈Cy(3)

{ϱxγ0
, xγ1

, xγ2
}.

Proof.

(i) This is equivalent to C ν
αβ +C ν

βα = 0.

(ii) This is equivalent to

0=C
µ
βγC ν

αµ+C µ
γαC ν

βµ+C
µ
αβC ν

γµ+ϱ
i
α

∂ C ν
βγ

∂ x i
+ϱi

β

∂ C ν
γα

∂ x i
+ϱi

γ

∂ C ν
αβ

∂ x i
.
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Proposition 3.1.13. A Lie algebroid is exactly an anchored vector bundle (π : A→
M ,ξ,λ,ϱ)with a bilinear, alternating map

〈−,−〉 : A2→ A; 〈x , y 〉+ 〈y , x 〉= 0

so that for any connection (∇,κ) on A, the maps

{v, x }(κ,∇) := κ′ ◦T .ϱ ◦∇(v, x ), {v, x , y }(κ,∇) := κ ◦T (〈−,−〉(κ,∇)) ◦∇A2 ◦ (v, x , y )

(3.2)

satisfy the equations

(i) ϱ ◦ 〈x , y 〉+ {ϱx , y }(κ′,∇) = {ϱy , x }(κ′,∇),

(ii)
∑

γ∈Cy(3)〈xγ0
, 〈xγ1

, xγ2
〉〉+
∑

γ∈Cy(3){ϱxγ0
, xγ1

, xγ2
}(κ,∇) = 0.

There is also a local coordinates presentation of morphisms as in Section

2 of Martínez (2018). An anchored bundle morphism A → B is a Lie algebroid

morphism whenever

f βγ A
γ
αδ +ϱ

i
δ

∂ f
β
α

∂ x i
= B

β
θσ f θα f σδ +ϱ

i
α

∂ f
β
δ

∂ x i
.

The A and B arguments are understood as the brackets, so this condition can be

rewritten as

f βγ A
γ
αδ = f ◦ 〈α,δ〉, B

β
θσ f θα f σδ = 〈 f ◦α, f ◦δ〉.

Set the following notation for maps between vector bundles with connection:

f : A→ B (κA ,∇A , A,λA) (κB ,∇B , B ,λB )
∇[ f ] : A2→ B := κB ◦T . f ◦∇A (3.3)

The ϱ terms are understood to be the torsion, so that

ϱi
δ

∂ f
β
α

∂ x i
= κ ◦T . f ◦∇(ϱeδ, eα) =∇[ f ](ϱeδ, eα),

ϱi
α

∂ f
β
δ

∂ x i
= κ ◦T . f ◦∇(ϱα,δ) =∇[ f ](ϱeα, eδ),

using the notation set up in Equation 3.3. The notion of a Lie algebroid morphism,

then, has the following presentation:
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Proposition 3.1.14 (Martínez (2018)). Let (π : A → M ,ϱA , 〈−,−〉A), (q : B →
N ,ϱB , 〈−,−〉B ) be a pair of Lie algebroids with chosen connections (κ−,∇−). An

anchor-preserving vector bundle morphism f : A→ B is a Lie algebroid morphism

if and only if

f ◦ 〈eα, eδ〉+∇[ f ] ◦ (ϱeδ, eα) = 〈 f ◦α, f ◦δ〉+∇[ f ] ◦ (ϱeα, eδ).

3.2 Anchored bundles

Anchored bundles are to Lie algebroids what reflexive graphs are to groupoids.

Each theory has (mostly) the same structure, but while a reflexive graph is missing

a groupoid’s composition operation, an anchored bundle lacks a Lie algebroid’s

bracket operation. This section reviews the basic theory of anchored bundles and

their prolongations (see Mackenzie (2005) for more details).

Definition 3.2.1. An anchored bundle in a tangent category is a differential bundle

(A
π−→M ,ξ,λ) equipped with a linear morphism

A T M

M

ϱ

π p

A morphism of anchored bundles is a linear bundle morphism ( f , v ) that preserves

the anchors
T A T B A B

A B T M T N

λ l

f

T . f

ρϱ

f

T .v

The category of anchored bundles and anchored bundle morphisms in a tangent

category C is written Anc(C), and a generic anchored bundle is written (A
π−→

M ,ξ,λ,ϱ).

There are two pullbacks that are associated with every anchored bundle. These

play the role of the spaces of composable arrows G2 :=G t×s G ,G3 :=G t×s G t×s G

for a reflexive graph s , t : G →M .
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Definition 3.2.2. Let (A
π−→M ,ξ,λ,ϱ) be an anchored bundle. Its first and second

prolongations are given by the limits

L (A) T A L 2(A) T 2A

A T M T A T 2M

A T M

ϱ

T .π
⌟

T 2.π

T .ϱ

T .π

ϱ

⌟

(The notation for the fibre product is slightly non-standard, as it is not technically

a pullback.) Throughout this chapter, it will always be assumed that the first

and second prolongations of an anchored bundle exist (although no choice of

prolongation is explicitly made).

Remark 3.2.3. It is not strictly necessary that the prolongations of an anchored

bundle exist; this condition is primarily a matter of convenience when discussing

involution algebroids. Every result in this section, that does not explicitly mention

prolongations, holds for an anchored bundle independently of their existence.

Example 3.2.4.

(i) For any object M , i d : T M → T M is an anchor for the tangent differen-

tial bundle, and every f : M → N yields a morphism of anchored bundles.

Moreover, for any anchored bundle over M the anchor is itself a morphism

of anchored bundles (A,π,ξ,λ,ϱ) → (T M , p ,0,ℓ, i d ). This induces a fully

faithful functor:

C ,→Anc(C).

This inclusion has a left adjoint, which sends an anchored bundle (π : A→
M ,ξ,λ,ϱ) to its base space M (the unit is the anchor map ϱ), so that C is a

reflective subcategory of Anc(C).

(ii) For any differential bundle (A,π,ξ,λ), the map 0 ◦π : A→ T M is an anchor

and every morphism f : A → B of differential bundles again yields a mor-

phism of anchored bundles. The naturality of 0 ensures that every differential
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bundle morphism will preserve this trivial anchor map, giving a fully faithful

functor

DBun(C) ,→Anc(C).

This functor has a right adjoint that replaces the anchor map with the trivial

anchor map

(π : A→M ,ξ,λ,ϱ) 7→ (π : A→M ,ξ,λ, 0 ◦π)

where the counit is given by the natural idempotent e = ξ ◦π : (A,λ)→ (A,λ).

It is trivial to check that the anchor map is preserved by the bundle morphism

(e , i d ):

ϱ ◦ξ ◦π= 0 ◦T .i d ◦π

and so the following diagram commutes:

T M T M

A A

0◦π

p◦λ

ϱ

This means that differential bundles are a coreflective subcategory of an-

chored bundles.

(iii) Any reflexive graph (s , t : C →M , e : M → C ) in a tangent category has an

anchored bundle (when sufficient limits exist), constructed as

C ∂ T .C T .C
e .T1

T .e s

(where e s : C →C = e ◦ s ). Construct a lift on C ∂ :

T .C ∂ T 2C1 T 2C1

C ∂ T .C1 T .C1

e .C1

T .e s

ℓ ℓ

T .e .C1

T .T .e s

λ

This lift will be non-singular by the commutativity of T -limits. The pre-

differential bundle data is given by the projection

C ∂ ,→ T .C
p .e s

−−→M .
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The section is induced by

M
(0.e )
−−→ T .C

while post-composition with T .t gives the anchor map:

C ∂ ,→ T .C
T .t−→ T .C .

The diagram is a pullback by composition, and the outer perimeter defines

the pullbackL (A). Note that any reflexive graph morphism will give rise to

an anchored bundle morphism by naturality, making the construction of an

anchored bundle from a reflexive graph functorial.

(iv) For any object M in a tangent category, cM : T 2M → T 2M is an anchor on

(T .p , T .0, c ◦T .ℓ), and every map f : M →N gives a morphism of anchored

bundles.

(v) For any anchored bundle (q : E →M ,ξ,λ,ϱ), the differential bundle (T .q , T .ξ,

c ◦T .λ) has an anchor

ϱT : T E
T .ϱ
−→ T 2M

c−→ T 2M .

The first prolongation of an anchored bundleL (A) behaves similarly to the

second tangent bundle, except that it does not have a canonical flip. In the def-

inition of an affine connection, the tangent bundle played a similar role to the

“arities” of a theory. There is a lift map that makes this connection stronger:

Definition 3.2.5. Let (π : A → M ,ξ,λ,ϱ) be an anchored bundle in a tangent

category C. We define a generalized lift:

λ̂ : A→ Aϱ×TπT A := (ξ ◦π,λ).

This generalized lift satisfies the same coherences as the lift on the second

tangent bundle:

Proposition 3.2.6. Let (π : A →M ,ξ,λ,ϱ) be an anchored bundle in a tangent

category C. It follows that

(i) (Coassociativity of λ̂) (λ̂× ℓ) ◦ λ̂= (i d ×T .λ̂) ◦ λ̂;
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(ii) (Universality) the following diagram is a T -pullback:

A2 Aϱ×TπT A

M A

µ̂

π0π◦πi

ξ

⌟

where µ̂ := (ξ ◦π ◦π0,µ).

Proof.

(i) Compute

(λ̂× ℓ) ◦ λ̂= (ξ ◦π ◦ξ ◦π,λ ◦ξ ◦π,ℓ ◦λ)

= (ξ ◦π, T .(ξ ◦π) ◦λ, T .λ ◦λ)

= (π0, T .(ξ ◦π) ◦π1, T .λ ◦π1) ◦ (ξ ◦π,λ)

= (i d ×T (λ̂)) ◦ λ̂.

(ii) Use the pullback lemma to observe that the following diagram is universal

for any anchored bundle:

A2 L (A) T A

M A T M
ξ ϱ

0

Tππ0π◦π1

µ̂ π1

µ

The top triangle of the diagram commutes by definition. The right square

and outer perimeter are pullbacks by definition, and the bottom triangle also

commutes by definition. The pullback lemma ensures that the left square

is a pullback, so for every anchored bundle, the general lift is universal for

L (A). Now post-compose with the involution:

A2 L (A) L (A)

M A A
ξ

π0π◦π1

µ̂

i d

pπ1

σ

ν̂
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It suffices to check that the top triangle commutes, soσ ◦ µ̂= ν:

σ◦µ̂◦(a , b ) =σ◦((ξ◦π, 0)◦a+π0
(ξ◦π,λ)◦b ) = (i d , T .ξ◦ϱ◦a )+pπ1

(ξ◦π,λ)◦b .

Thus, the lift (ξπ,λ) involution algebroid is universal forL (A).

Example 3.2.7.

(i) For T (M ) = T (M ), the space of prolongations is T (M )i d ×T p T 2M = T 2M ,

and the second prolongation is given by T 2M .

(ii) In a tangent category with a tangent display system, if π ∈D then the prolon-

gations for (π,ξ,λ,ϱ) automatically exist. In particular, for every anchored

bundle in the category of smooth manifolds, all prolongations exist because

the projection is a submersion (see Section 1.5).

(iii) For any differential bundle with the anchor 0 ◦ π, it follows that L (A) ∼=
Aπ×π◦πi

(A2) ∼= A3. The universality of the vertical lift factors b into (a1, a2),

as the following diagram is a pullback:

A3 Aπ×πA T A

A M T M

π0

(π1,π2) µ

ππi Tπ

π 0

(iv) Returning to the anchored bundle constructed from a graph, the space of

prolongationsL (A) embeds into the second tangent bundle of the space of

composable arrows:

Aϱ×TπT A ,→ T 2(G t ×s G ).

The category of anchored bundles is, in a sense, “tangent monadic” over the

category of differential bundles: the forgetful functor from anchored bundles to

differential bundles “creates” T -limits and the tangent structure (this is all made

precise in Chapter 5 using an enriched perspective on tangent categories).
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Observation 3.2.8. A limit of anchored bundles is the limit of the underlying

differential bundles. Because the anchor is preserved by every map in the diagram,

this induces a natural transformation for any D :D→Anc(C ):

D Anc(C) Anc DBun(C)
D

S

U
ϱ

Thus, limU .S .D computes the limit of the underlying objects, while limU .D com-

putes the limit of the underlying differential bundles in the diagram. The an-

chor/unit map, then, induces a differential bundle map:

limϱi : (lim Ai , limλi )→ (T .(lim
i

Mi ),ℓ.(lim
i

Mi )).

This is the limit in the category of anchored bundles (so long as pullback powers of

the limit projection and the two prolongations of the limit anchor bundle exist).

The tangent structure on lifts defined in Proposition 2.2.7 lifts to a tangent

structure on anchored bundles.

Lemma 3.2.9. The category of anchored bundles in a tangent category has a tangent

structure that maps objects as follows:

(π : A→M ,ξ,λ,ϱ) 7→ (T .π : T A→ T M , T .ξ, c ◦T .λ, c ◦T .ϱ)

where the structure maps are all defined using the pointwise structure maps in C.

Proof. Given an anchored bundle (q : A→M ,ξ,λ,ϱ), there is an anchor on the

differential bundle (T q , T ξ, c ◦T λ) given by c ◦Tϱ; the diagram commutes by

naturality and the coherences on c ,ℓ.

T 2A T 3M T 3M

T A T 2M T 2M

T M T M T M

T q T p

c ◦T λ c ◦T ℓ ℓ

c

p
Tϱ

T 2ϱ T c

The tangent structure maps and universality properties all follow from the for-

getful property of the functor from anchored bundles to differential bundles as a

consequence of Observation 3.2.8.
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For any anchored bundle A, there are two differential bundles associated to

L (A). The first is the usual pullback differential bundle given by pulling back T .π

along ϱ as in Lemma 2.4.3:

Aϱ×TπT A T A

A T M

π1

π0 Tπ

ϱ

This gives the differential bundle structure

(Aϱ×TπT A
π0−→ A, A

(i d ,T .ξ◦ϱ)
−−−−−−→ Aϱ×TπT A, Aϱ×TπT A

(0,c ◦T .λ)
−−−−−→ T (Aϱ×TπT A)).

Taking the fibre product in the category of anchored bundles as in Observation

3.2.8 yields the second differential bundle structure:

(A,π,ξ,λ)
(ϱ,i d )
−−−→ (T M , p , 0,ℓ)

(Tπ,π)
←−−− (T A, p , 0,ℓ).

The two lifts behave similarly to the pair (T .ℓ,ℓ.T ) on the second tangent bundle,

and (ℓ,λT ) on the tangent bundle of a pre-differential bundle.

Lemma 3.2.10. Let C be a tangent category and Anc(C) the category of anchored

bundles inC. If T -pullback powers of p ◦π0,π1 : Aϱ×TπT A→ A exist, then there

are two differential bundles onL (A), with lifts induced as

(L (A),λ× ℓ) (T A,ℓ) (L (A), 0× (c ◦T .λ)) (T A, c ◦T .λ)

(A,λ) (T M ,ℓ) (A, 0) (T M , 0)ϱ

T .π
⌟

T .π

ϱ

⌟

with structure maps

1. (L (A)
p◦π1−−→ A, A

(ξπ,0)
−−−→L (A),L (A) λ×ℓ−−→ T ◦L (A)),

2. (L (A)
π0−→ A, A

(i d ,T .ξ◦ϱ)
−−−−−−→L (A),L (A) 0×c ◦T .λ−−−−→ T .L (A)).

Furthermore, the two lifts λL and λϱ commute:

c ◦T .(λ× ℓ) ◦ (0× c ◦T .λ) = T .(0× c ◦T .λ) ◦ (λ× ℓ).
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Proof. The two differential bundles exist as a consequence of Observation 2.4.2

and Lemma 2.4.3, respectively. The commutativity of limits follows by postcompo-

sition, as both c ◦T .λ,ℓ and λ, 0 commute by the differential bundle axioms.

The above lemma determines a functor, which we denoteL , that sends an

anchored bundle inC to an anchored bundle in Lift(C) (equipped with the tangent

structure from Proposition 2.2.7).

Proposition 3.2.11. There is a functorL from anchored bundles inC to anchored

bundles in the category of lifts Lift(C), that sends an anchored bundle (π : A →
M ,ξ,λ,ϱ) to the tuple in Lift(C)

πL := (L (A), 0× c ◦T .λ)
p◦π1−−→ (A, 0),

ξL := (A, 0)
(ξ◦π,0)
−−−→ (L (A), 0× c ◦T .λ)

λL := (L (A), 0× c ◦T .λ)
(λ×ℓ)
−−→ (T (L (A)), c ◦T (0× c ◦T .λ),

ϱL := (L (A), 0× c ◦T .λ)
π1−→ (T A, c ◦T .λ)

(note that this functor lands in anchored bundles of non-singular lifts; see Defini-

tion 2.3.1). Morphisms of anchored bundles

( f , m ) : (π : A→M ,ξ,λ,ϱ)→ (q : E →N ,ζ, l ,δ)

are sent to

L ( f , m ) := f T m×T m T f : Aϱ×TπT A→ E δ×T q T E

Proof. First, note that the tuple

(πL :L (A)→ A,ξL ,λL ,ϱL )

is an anchored bundle, and that each morphism is a lift morphism:

• πL : (L (A), 0× c ◦T .λ)→ (A, 0) follows because

T .p ◦T .π1 ◦ (λ× ℓ) = T .p ◦ ℓ ◦π1 = 0 ◦p ◦π1

• ξL : (A, 0)→ (L (A), 0× c ◦T .λ) follows since

(T .ξ◦T .π, T .0)◦0= (0◦ξ◦π, T .0◦0) = (0◦ξ◦π, c ◦T .λ◦0) = (0×c ◦T .λ)◦(ξ◦π, 0)
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• λL : (L (A), 0× c ◦T .λ)→ (T .L (A), 0× c ◦T .(c ◦T .λ)) follows by the commu-

tativity of 0× c ◦T .λ) and λ× ℓ, and

• ϱL : (L (A), 0× c ◦T .λ)→ (T A, c ◦T .λ) is a lift by definition of ϱL =π1.

This gives an anchored bundle in the category of non-singular lifts in C.

Next, check that the mapping is functorial. To see thatL ( f , m ) preserves the

lifts, note that ( f , m ) gives a morphism of diagrams for each pullback in Lift(C)
defining the two lifts, so the induced mapL ( f , m ) preserves each lift. To see that

L ( f , m ) preserves the anchor, check that

ϱL B ◦L ( f , m ) =π1 ◦ ( f ×T . f ) = T . f ◦π1 = T . f ◦ϱL A .

Corollary 3.2.12. In a tangent categoryCwhere pullbacks along differential bundle

projections exist, such as a tangent category equipped with a proper retractive

display system (Definition 1.5.3) like the category of smooth manifolds, there is an

endofunctor on the category of anchored bundles in C,

L ′ : Anc(C)→Anc(C) =U Lift.L .

Observation 3.2.13. T -Limits in Anc(Lift(C)) are computed as pointwise limits

in C by Observations 3.2.8 and 2.4.2, andL is constructed as a limit, so it follows

thatL preserves T -limits.

Proposition 3.2.14. The prolongation endofunctor L ′ : Anc(C) → Anc(C) has

natural transformations

• p ′ :L ′⇒ i d

• 0′ : i d ⇒L ′

• +′ :L ′p ′×p ′L ′⇒L ′

• ℓ′ :L ′⇒L ′.L ′

satisfying all of the axioms of a tangent category that do not incvolve the canonical

flip (Definition 1.3.2).
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(Sketch). Note that the full argument is given in Section 4.3, but it is not difficult to

sketch it out here. For the projection, zero map, and addition, use the differential

bundle structure induced by Corollary 3.2.11. To see the lift axiom, note that up

to a choice of pullback, we have:

L ′.L ′(π : A→M ,ξ,λ,ϱ) =



























(p ◦π1, p ◦π2) : L 2(A)→L (A)

(ξ ◦π ◦π0, 0 ◦π1, 0 ◦π2) : L (A)→L 2(A)

(λ× ℓ× ℓ) : L 2(A)→ T .L 2(A)

(π1,π2) : L 2(A)→ T .L (A)

The “lift map” is then

ℓ′ :L ′⇒L ′.L ′; L (A) A×T .λ̂−−−→L 2(A)

(where we recall that λ̂= (ξ ◦π,λ) : A→L (A)).

Remark 3.2.15. The structure described in Proposition 3.2.11 leads to the theory

of double vector bundles, developed by MacKenzie and his collaborators F. and

Mackenzie (2019); Mackenzie (1992). A double vector bundle is a commuting square

D B

A M

q D
A

q D
B

q A
q B

where each projection is a vector bundle projection, and “vertical” and “horizontal”

orientations of the square are each vector bundle homomorphisms. It was observed

by Grabowski and Rotkiewicz (2009) that this is equivalent to a pair of commuting

R+-actions on the total space E ; following the development in Chapter 2, this is a

commuting pair of non-singular lifts on E ,

λA ,λB : E → T E , T .λB ◦λA = c ◦T .λA ◦λB .

A proper exposition of the so-called “Ehresmann doubles” (Mackenzie (2011)) for

the structures in Lie theory would substantially expand the scope of this thesis, and

so it has been relegated to the margins.
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Finally, observe that a connection (see Section 2.6) on an anchored bundle’s

underlying differential bundle behaves similarly to an affine connection.

Lemma 3.2.16. Let (π : A→M ,ξ,λ,ϱ) be an anchored bundle withL (A) existing

in a tangent category C. If (π,ξ,λ) has a connection, then define

κ̂ := κπ1, ∇̂ :=∇(π0,ϱπ1)

and note that

(i) κ̂ :L (A)→ A is a retract of (ξπ,λ), and κ̂ : (L (A), l )→ (A,λ) is linear for both

l = (λ× ℓ), (0× c ◦T .λ);

(ii) ∇̂ : A2→L (A) is a section of (π0, p ◦π1) and is bilinear;

(iii) there is an isomorphismL (A)∼= A3:

∇(p ◦π1,ϱ ◦π0) +(π,T .π) µ̂(p ◦π1, κ̂) = i d .

Example 3.2.17. Every vector bundle in the category of smooth manifolds has a

connection; it follows that Lemma 3.2.16 holds for every anchored bundle in the

category of smooth manifolds.

Remark 3.2.18. The category of anchored bundles in a tangent category is almost

a tangent category, except that it lacks a symmetry map. The “differential objects”

in such a category will act like a cartesian differential category, except that the

symmetry of mixed partial derivatives fails. There has been some interest in settings

for differentiable programming where the symmetry of mixed partial derivatives

need not hold (see Definition 3.4 along with the discussion at the end of Section 6

in Cruttwell et al. (2021)); the category of anchored bundles in a tangent category

appears to be a source of examples.

3.3 Involution algebroids

Involution algebroids are a tangent-categorical axiomatization of Lie algebroids.

Recall that a Lie algebroid has almost all of the structure of the operational tangent
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bundle, in particular a Lie bracket on sections that satisfies the Leibniz law so

that it gives a directional derivative. In Proposition 3.2.14, it was demonstrated

that the category of anchored bundles have almost all of the same maps as the

tangent bundle, the only structure map missing being the canonical flip

c : T 2M ⇒ T 2M

which, we may recall from the chapter introduction (and Cockett and Cruttwell

(2015), Mackenzie (2013)), is used in constructing the Lie bracket of vector fields in

a tangent category with negatives. Thus, a natural next step is to add an involution

map to an anchored bundle and require that it satisfies the same coherences as c

from the tangent bundle.

Definition 3.3.1. An involution algebroid is an anchored bundle (A,π,ξ,λ,ϱ)

equipped with a mapσ :L (A)→L (A) satisfying the following axioms:

(i) Involution:
L (A) L (A)

L (A)

σ

σ

(ii) Double linearity:

T .L (A) T .L (A)

L (A) L (A)σ

0×c ◦T .λ

T .σ

λ×ℓ

(iii) Symmetry of lift:

A L (A)

L (A)

λ̂=(ξ◦π,λ)

σ
λ̂

(iv) Target:

L (A) T A T 2M

L (A) T A T 2M

σ

π1 T .ϱ

π1 T .ϱ

c
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(v) Yang–Baxter:

L 2(A) L 2(A)

L 2(A) L 2(A)

L 2(A) L 2(A)

σ×c σ×c

σ×c

A×T .σ A×T .σ

A×T .σ

A is an almost-involution algebroid if the involution does not satisfy the Yang–

Baxter equation. A morphism of involution algebroids is a morphism of anchored

bundles, so thatL ( f ) ◦σA =σB ◦L ( f ). (Note that becauseσ is an isomorphism

andσ=σ−1,

σ : (L (A), 0× c ◦T .λ)→ (L (A),λ× ℓ)

is linear as well.) Write the category of involution algebroids and involution alge-

broid morphisms in C is written Inv(C).

Observation 3.3.2. It is not immediately clear that the Yang–Baxter equation is

well-typed. This follows from the target axiom (iv) and the double linearity axiom

(ii). Starting with (u , v, w ) : Aϱ×TπT AT .ϱ×T 2.πT 2A, we see thatσ× c is well-typed

if and only if

T .ϱ ◦π1 ◦σ(u , v ) = T 2.π ◦ c ◦w = c ◦T 2.π ◦w = c ◦T .ϱ ◦ v.

Similarly, 1×T .σ is well-typed if T .ϱ ◦u = T .π◦π0 ◦T .σ(v, w ); then use the double

linearity axiom to compute

T .π ◦π0 ◦T .σ(v, w ) = T .π ◦T .p ◦T .π1(v, w ) = T .π ◦T .p ◦w

= T .p ◦T 2.π ◦w = T .p ◦T .ϱ ◦ v = T .π ◦ v.

This perspective on Lie algebroids has already appearad in the work of Mar-

tinez and his collaborators in de León et al. (2005), where a “canonical involution”

was derived on space of prolongations of a Lie algebroid using the formula

σ :L (A)→L (A);σ(x , y , z ) =σ(y , x , z + 〈x , y 〉).
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The structure of this map has been largely unexplored; helpfully, involution al-

gebroids succeed in reverse-engineering axioms for an involution map that will

induce a Lie bracket on the sections of the projection map. The bracket from

the original Lie algebroid is induced using the same formula as for the bracket of

vector fields on the tangent bundle:

λ ◦ [X , Y ]∗ =
�

(π1 ◦σ ◦ (i d , T .X ◦ϱ) ◦Y −p T .Y ◦X ◦ϱ)−T .π 0Y
�

.

Furthermore, a morphism of anchored bundles is a Lie algebroid morphism if

and only if it preserves the derived involution map.

Example 3.3.3.

(i) For any M inC, (T M , p , 0, i d , c ) is an involution algebroid. Furthermore, for

any involution algebroid anchored on M , (ϱ, i d ) is a morphism of involution

algebroids (by the target axiom). This defines a fully faithful functor C ,→
Inv(C). The same construction as the anchored bundle case in Example 3.2.4(i)

exhibits C as a reflective subcategory of Inv(C).

(ii) For any differential bundle, the trivial anchored bundle (π : A→M ,ξ,λ, 0◦π)
has an involution using the isomorphismL (A)∼= A3, given byσ := (π1,π0,π2)

(proving this map satisfies the involution algebroid axioms is just an exercise in

combinatorics). It follows that every differential bundle morphism gives rise to

a morphism of these trivial involution algebroids. The same construction from

the anchored bundle case (Example 3.2.4(ii)) exhibits Diff(C) as a coreflective

subcategory of involution algebroids.

(iii) Consider a groupoid

s , t : G →M , e : M →G , (−)−1 : G →G , m : G2→G .

The underlying reflexive graph has an associated anchored bundle, con-

structed in Example 3.2.4, and the space of prolongations of this anchored

bundle includes into (T 2.G2). Note that there is a well-formed involution

map:

σ(u , v ) = c ◦ ((0 ◦p ◦ v )−1; (T .0 ◦u ); v )
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The direct proof of this involves a more conceptual construction, which is the

focus of Section 5.5.

An involution algebroid resembles a generalized tangent bundle, and so the

lift (ξ ◦π,λ) : A→L (A) satisfies the same universality conditions as ℓ : T ⇒ T 2.

The double linearity condition is equivalent to the naturality condition for c ,ℓ in

Definition 1.3.2:

L (A) L (A) T 2 T 2

L 2(A) L 2(A) L 2(A) T 3 T 3 T 3

T .ℓ

c .T T .c

c

ℓ.Ti d×T .λ̂

σ

σ×c i d×T .σ

λ̂×ℓ (3.4)

which, using string diagrams for monoidal categories (Selinger (2010)), is the

equation

=

where the circle denotes the lift and c is the crossing of two lines.

Proposition 3.3.4. Let (π : A→M ,ξ,λ,ϱ) be an anchored bundle, and suppose

that

σ :L (A)→L (A)

satisfies the involution axiom (i) and the symmetry of lift axiom (iii), and further-

more that the involution “exchanges” the idempotents associated to the two lifts

(λ× ℓ) and (0× c ◦T .λ) onL (A) (Proposition 2.2.8)

σ ◦ ((p ◦λ)× (p ◦ ℓ)) = (p ◦0)× (p ◦ c ◦T .λ) = i d × (T .p ◦T .λ)

Then the double linearity axiom is equivalent to the left-hand commuting diagram

in Diagram 3.4:

(λ̂× ℓ) ◦σ= (i d ×T .σ) ◦ (σ× c ) ◦ (i d ×T .λ̂).
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Proof. Starting with the left-hand side of the equation,

(i d ×T .σ) ◦ (σ× c ) ◦ (i d ×T .λ̂) ◦ (u , v )

= (i d ×T .σ) ◦ (σ× c ) ◦ (u , T .ξ ◦T .π ◦ v, T .λv )

= (i d ×T .σ) ◦ (σ ◦ (u , T .ξ ◦ϱ ◦u ), T .λv )

= (i d ×T .σ) ◦ (ξ ◦π ◦u , 0 ◦ϱ ◦u , T .λv )

= (i d ×T .σ) ◦ (ξ ◦π ◦u , 0 ◦T .π ◦ v, T .λv )

= (ξ ◦π ◦u , T .σ ◦ λ̂ ◦ v ).

For the right-hand side:

(λ̂,ℓ) ◦σ ◦ (u , v )

= (ξ ◦π ◦π0 ◦σ ◦ (u , v ), (λ× ℓ) ◦σ ◦ (u , v ))

= (ξ ◦π ◦p ◦ v, (λ× ℓ) ◦σ ◦ (u , v ))

= (ξ ◦p ◦T .π ◦ v, (λ× ℓ) ◦σ ◦ (u , v ))

= (ξ ◦p ◦ϱ ◦u , (λ× ℓ) ◦σ ◦ (u , v ))

= (ξ ◦π ◦u , (λ× ℓ) ◦σ ◦ (u , v ))

= (ξ ◦π ◦u , T .σ ◦ (0× c ◦T .λ) ◦ (u , v )).

So the naturality equation 3.4 is equivalent to

T .σ ◦ (0× c ◦T .λ) = (λ× ℓ) ◦σ.

The category of involution algebroids is “tangent monadic” over the cate-

gory of anchored bundles, in the same sense that anchored bundles are tangent

monadic over the category of differential bundles, or internal categories over

reflexive graphs in a category. The “tangent monadicity” leads to a similar obser-

vation about T -limits of involution algebroids as in Observation 3.2.8.

Observation 3.3.5. The forgetful functor from involution algebroids to anchored

bundles creates limits; that is to say, the T -limits of the underlying anchored bundles

give the limits of involution algebroids. Recall that by Observation 3.2.13, the limit
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L (lim Ai ) = limL (Ai ) in the category of anchored bundles, and this induces a map

between objects in C
limσi : limL (Ai )→ limL (Ai ).

The axioms for an involution algebroid are induced by universality.

Note that a point-wise tangent structure may be defined following the an-

chored bundles example from Lemma 3.2.9:

Proposition 3.3.6. For a tangent category C, the category of involution algebroids

has a “point-wise” tangent structure that maps objects as follows:

(π : A→M ,ξ,λ,ϱ,σ) 7→ (T .π, T .ξ, c ◦T .λ, T .ϱ,σT )

whereσT is defined as

σT := (1×c c ) ◦T .σ ◦ (1×c c ) :L (AT )→L (AT ). (3.5)

Proof. The tangent structure on involution algebroids is inherited from the func-

tor Inv(C)→Anc(C). Thus, it suffices to give the involution map for the tangent

involution algebroid.

Note that given (π : A→M ,ξ,λ,ϱ,σ), the space of prolongations on (T .π, T .ξ,

c ◦T .λ, c ◦T .ϱ) is T Ac ◦T .ϱ×T 2πT 2A. We can construct an isomorphism between

the objectsL (T A) and T (L (A)) in C using the cospan isomorphism

T A T 2M T 2A

T A T 2M T 2A

c ◦T .ϱ T 2.π

T .ϱ T 2.π

i d c c

thus inducing a map

T Ac ◦T .ϱ×T 2πT 2A
i d×c−−→ T (Aϱ×TπT A)

T .σ−→ T (Aϱ×TπT A)
i d×c−−→ T Ac ◦T .ϱ×T 2πT 2A

which we callσT . The linearity and involution axioms follow by construction.

Now check the rest of the axioms. For the unit:

(1×c c ) ◦T .σ ◦ (1×c c ) ◦ (T .(ξ ◦π), c ◦T .λ)

= (1×c c ) ◦T .σ ◦ (T (ξπ), T λ) = (1×c c ) ◦ (T .(ξ ◦π), T .λ) = (T .(ξ ◦π), c ◦T .λ).
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For the anchor:

T .ϱT ◦π1 ◦σT = T (c ◦Tϱ) ◦π1 ◦ (1×c c ) ◦T .σ ◦ (1×c c )

= T .c ◦ c ◦T 2.ϱ ◦T .π1 ◦T .σ ◦ (1×c c ) = T .c ◦ c ◦T .c ◦T 2.ϱ ◦T .π1 ◦ (1×c c )

= c ◦T .c ◦ c ◦T 2ϱ ◦ c ◦π1 = c ◦T c ◦T 2.ϱ ◦π1 = c ◦T .ϱT ◦π1.

The Yang–Baxter equation is straightforward to check.

The tangent bundle is a canonical involution algebroid on every object in a

tangent category, and the anchor induces a morphism from an involution alge-

broid to the tangent involution algebroid on its base space. The anchor acts as a

reflector from involution algebroids in C to C itself.

Proposition 3.3.7. Any tangent categoryC is a reflective subcategory of the category

of involution algebroids in C.

Proof. First, observe that the inclusion of C into Inv(C) (Definition 3.3.1) is fully

faithful because the anchor on the tangent involution algebroid is i d : T M → T M .

This means that the only involution algebroid morphisms T A → T B are pairs

(T f , f ), f : A → B . Now consider the functor Inv(C) → C that sends (π : A →
M ,ξ,λ,ϱ,σ) to M : this gives an endofunctor S : Inv(C) → Inv(C) along with a

natural transformation ϱ : i d ⇒ S , so that S .ϱ = ϱ.S = i d , given by the anchor

map. Thus, the categoryC is the category of algebras for an idempotent monad

on Inv(C).

Corollary 3.3.8. Let
bA = (π : A→M ,ξ,λ,ϱ,σ)

be an involution algebroid in a tangent category C.

(i) The morphism

(T .π,π) : T A→ T M

is an involution algebroid morphism from the tangent involution algebroid

on A to the tangent involution algebroid on M .
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(ii) The morphism

(ϱ, i d ) : bA→ T M

is an involution algebroid morphism.

If pullback powers of p ◦π1 :L (A)→ A exist, then

(p ◦π1 :L (A)→ A, (ξ ◦π, 0), (λ× ℓ))

is a differential bundle; note that π0 acts as an anchor. If the prolongations exist,

then

(p ◦π1 :L (A)→ A, (ξ ◦π, 0), (λ× ℓ),π0,σ′)

is an involution algebroid; this follows from computing the pullback in the category

of involution algebroids (σ′ is induced as in Observation 3.2.8).

The above corollary puts an involution algebroid structure on the differential

bundle (L (A),λ× ℓ). Note that the map σ gives an isomorphism of differential

bundles

(L (A),λ× ℓ)→ (L (A), 0× c ◦T .λ).

Martinez observed that the canonical involutionσ puts a unique Lie algebroid

structure on (L (A), 0× c ◦T .λ), andσ is a uniquely determined isomorphism of

involution algebroids (see de León et al. (2005)):

Corollary 3.3.9. For an involution algebroid (π : A→M ,ξ,λ,ϱ,σ), the isomor-

phism of differential bundles

σ : (L (A), 0× c ◦T .λ)→ (L (A),λ× ℓ)

induces a second involution algebroid structure onL (A).

Recall that Proposition 3.2.14 sketched out a proof that the category of an-

chored bundles inChas an endofunctorL ′ and natural transformations p ′, 0′,+′,ℓ′

satisfying the axioms of a tangent structure; this endofunctor and the natural

transformations all lift to Inv(C). The involution mapσ is the missing piece that

gives a tangent structure on Inv(C). The construction may be spelled out here at a

big-picture level, but the actual proof brings up tricky coherence issues that make

up the bulk of Chapter 4.
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Proposition 3.3.10. The category of involution algebroids in a tangent category C
has a second tangent structure, where the tangent functor is given by

L ′ : Inv(C)→ Inv(C)

and the tangent natural transformations are given as in Proposition 3.2.14, with

the canonical flip

σ′ :L ′.L ′→L ′.L ′ :=L 2(A)
1×T .σ−−−→L 2(A).

Starting with an involution algebroid,L ′(A) andL ′.L ′(A) are given by

L ′(A)







































π′ : L (A)
p◦π1−−→ A

ξ′ : A
(ξ◦π,0)
−−−→L (A)

λ′ : L (A) λ×ℓ−−→ T .L (A)

ϱ′ : L (A)
π1−→ T A

σ′ : L 2(A)
σ×c−−→L 2(A)

L ′.L ′(A)







































π′′ L 2(A)
(p◦π1,p◦π2):−−−−−−−→L (A)

ξ′′ : L (A)
(ξ◦π◦π0,0◦π1,0◦π2)−−−−−−−−−−−→L 2(A)

λ′′ : L 2(A)
(λ×ℓ×ℓ)
−−−−→ T .L 2(A)

ϱ′′ : L 2(A)
(π1,π2)−−−→ T .L (A)

σ′′ : L 3(A)
(σ×c×c )
−−−−−→L 3(A)

(whereL 3(A) = Aϱ×TπT AT .ϱ×T 2.πT .(Aϱ×TπT A)). The tangent natural transfor-

mations are given by

• p :L ′⇒ i d ; L (A)
π0−→ A

• 0 : i d ⇒L ′; A
(i d ,T .ξ◦T .π)
−−−−−−−→L ′(A)

• + :L ′2⇒L
′; Aϱ×T .π◦πi

T2A
i d×+−−−→L (A)

• ℓ :L ′(A)⇒L ′.L ′; L (A)
1×T .(ξ◦π,λ)
−−−−−−→L 2(A)

• ϱ′ :L ′⇒ T

• c :L ′.L ′(A)⇒L ′.L ′; L 2(A)
1×T .σ−−−→L 2(A).

Proof. Deferred to Section 4.5.
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3.4 Connections on an involution algebroid

In this section we take an involution algebroid with a chosen linear connection on

its underlying anchored bundle (Definition 3.3.1, 2.6.1), and rederive Martinez’s

structure equations for a Lie algebroid (Proposition 3.1.5).

In a tangent category Cwith negatives, there is a natural transformation

n : T ⇒ T

making each fibred commutative monoid (p : T M ⇒M , 0,+, n ) a fibred abelian

group. Because the additive bundle structure on differential bundles is induced via

universality (Proposition 2.4.4), in a tangent category with negatives the additive

bundle structure for differential bundles will likewise have negatives. We adopt

the following notation for the “fibred linear algebra” used in this section, as there

are a significant number of computations done on bundles with multiple choices

of additive bundle structure (e.g. the second tangent bundle of a differential

bundle has three additive bundles structures).

Notation 3.4.1. Let E be an object with multiple differential bundle structures

(πi : E →M i ,ξi ,λi ) in a tangent category with negatives. Addition over a specific

differential bundle is written using infix notation, where a subscript is added to

the symbol denoting the projection of the differential bundle. Letting x , y : X → E

denote a pair of generalized elements for which the πi -addition operation is well-

defined; we set

x +π[i ] y = X
(x ,y )
−−→ E π[i ]×π[i ]E

+i

−→ E .

Similar notation is used for subtraction:

x −π[i ] y = X
(x ,y )
−−→ E π[i ]×π[i ]E

i d×n [i ]
−−−−→ E π[i ]×π[i ]E

+i

−→ E .

Throughout this section, we work in a tangent category Cwith negatives and

a chosen anchored bundle (π : A→M ,ξ,λ,ϱ), equipped with a connection (κ,∇),
whose base object has a torsion-free connection (κ′,∇′) and a morphism

σ :L (A)→L (A)
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that exchanges the two projection maps p ◦π1,π0, meaning that the following

diagram commutes:

L (A)

A A

L (A)

π0 p◦π1

σ

p◦π1 π0

The following notation will be useful when working with local coordinates.

Notation 3.4.2. First, recall the∇-notation for morphisms of differential bundle

where each morphism has a choice of connection from Equation 3.3:

f : A→ B (κA ,∇A , A,λA) (κB ,∇B , B ,λB )
∇[ f ] := κB ◦T . f ◦∇A : A2→ B

Let

(π : A→M ,ξ,λ,ϱ), (q : B →N ,ζ, l ,ρ)

be a pair of anchored bundles equipped with connections. “Hatting” a map f :

L (A)→L (B ) refers to the map:

bf : A3
ν̂(π0,π2)+∇̂(π0,π1)−−−−−−−−−−→L (A)

f
−→L (B )

(π0,p◦π1,κ◦π1)−−−−−−−−→ B3.

Similarly, for f : T A→ T B ,

bf : T M p×πAπ×πA
ν(π0,π2)+∇(π0,π1)−−−−−−−−−−→ T A

f
−→ T B

(π0,p◦π1,κ◦π1)−−−−−−−−→ T M p×q Bπ×q B

Clearly,Öf ◦ g = bf ◦ bg . Similarly, a map A3 → B3 may be “barred” to form a map

L (A)→L (B ):

g :L (A)
(π0,p◦π1,κ◦π1)−−−−−−−−→ A3

g
−→ B3

ν̂(π0,π2)+∇̂(π0,π1)−−−−−−−−−−→L (B ).

It is straightforward to see that bf = f ,bg = g .

Lemma 3.4.3. σ :L (A)→L (A) induces a bracket on Γ (π):

λ ◦ [X , Y ] = (σ ◦ (i d , T X ◦ϱ) ◦Y −Tπ (i d , T Y ◦ϱ) ◦X )−0 ◦Y .
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Proof. Let X , Y ∈ Γ (π) and compute:

p ◦π1 ◦ (σ ◦ (i d , T X ◦ϱ) ◦Y −π0
(i d , T Y ◦ϱ) ◦X )

= p ◦ (π1 ◦σ ◦ (i d , T X ◦ϱ) ◦Y −Tπ T Y ◦ϱ ◦X )

= p ◦π1 ◦σ ◦ (i d , T X ◦ϱ) ◦Y −π p ◦T Y ◦ϱ ◦X

=π0 ◦ (i d , T X ◦ϱ) ◦Y −Y ◦p ◦ϱ ◦X

= Y −Y = ξ,

π0 ◦ (σ ◦ (i d , T X ◦ϱ) ◦Y −π0
(i d , T Y ◦ϱ) ◦X )

=π0 ◦σ ◦ (i d , T X ◦ϱ) ◦Y −ππ0 ◦ (i d , T Y ◦ϱ) ◦X

= p ◦π1 ◦ (i d , T X ◦ϱ) ◦Y −π X

= p ◦T X ◦ϱ ◦Y −π X = X −π X = ξ.

The universality of the lift induces a new section [X , Y ] so that

λ ◦ [X , Y ] = (σ ◦ (i d , T X ◦ϱ) ◦Y −Tπ (i d , T Y ◦ϱ) ◦X )−0Y .

Definition 3.4.4. The map σ :L (A)→L (A) is linear whenever the two bundle

morphisms

σ : (L (A),λ× ℓ)→ (L (A), 0× c ◦T λ) σ : (L (A), 0× c ◦T λ)→ (L (A),λ× ℓ)

are linear, and cosymmetric if

σ ◦ bλ= bλ= (ξπ,λ).

Note that wheneverσ is linear and cosymmetric,σ ◦ µ̂(u , v ) = ν̂(u , v ).

Linearity and unit axioms, along with the connection on the differential bun-

dle, force the existence of a bilinear bracket 〈−,−〉 as in the definition of a Lie

algebroid in Proposition 3.1.13.

Proposition 3.4.5. For an anchored bundle (π : A→M ,ξ,λ,ϱ)with connection

(κ,∇), a cosymmetric and bilinearσ is equivalent to a bilinear 〈−,−〉 : A2→ A, with

the correspondence given by

〈−,−〉 : κ ◦σ ◦∇−π κ ◦∇
σ :L (A)−−−−−−−−−−→

(π1,π0,π2+〈π0,π1〉)
L (A)
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Proof. Derive

Òσ ◦ (x , y , z ) = (y , x ,κ ◦σ ◦ (∇(ϱx , y ) +p◦π1
µ(y , z )))

= (y , x ,κ ◦σ ◦∇(ϱx , y ) +π κ ◦σ ◦µ(y , z ))

= (y , x ,κ ◦σ ◦∇(ϱx , y ) +π κ ◦ν ◦ (y , z ))

= (y , x ,κ ◦σ ◦∇(ϱx , y ) +π z )

=: (y , x , 〈x , y 〉+π z )

where 〈−,−〉 is certainly bilinear. The converse is immediate: take

Òσ(u , v, w ) := (v, u , w + 〈u , v 〉).

It is easy to see thatσ is linear and cosymmetric.

The linear bracket must be involutive for the bilinear bracket to be alternating.

Proposition 3.4.6. Ifσ is cosymmetric and linear, then the bilinear bracket 〈−,−〉
is alternating if and only ifσ ◦σ= i d .

Proof. First, note thatσ ◦σ= i d if and only ifÒσ ◦Òσ= i d . Then check that

Òσ ◦Òσ(u , v, w ) =Òσ(v, u , w + 〈u , v 〉) = (u , v, w + 〈u , v 〉+ 〈v, u〉).

By the cancellativity of addition on A,

w =w + 〈u , v 〉+ 〈v, u〉 ⇐⇒ 0= 〈u , v 〉+ 〈v, u〉.

Observation 3.4.7. A bilinear 〈−,−〉 on an anchored bundle with a connection

induces the maps

{v, x }(κ,∇) := κ′ ◦T .ϱ ◦∇(v, x ), {v, x , y }(κ,∇) := κ ◦T (〈−,−〉(κ,∇)) ◦∇A2 ◦ (v, x , y )

from Equation (3.2) in Proposition 3.1.13.
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Proposition 3.4.8. Letσ be cosymmetric and bilinear, with the associated bracket

〈−,−〉. Then

Tϱ ◦π1 ◦σ= c ◦Tϱ ◦π1

if and only if the Leibniz equation is satisfied:

ϱ ◦ 〈u , v 〉+ {ϱv, u}= {ϱu , v.} (3.6)

Proof. Following the given notation and using the hypothesis that the connection

is torsion-free on M ,

ÛTϱ ◦π1(u , v, w ) = (ϱu ,ϱv, w + {u , v }) bc (x , y , z ) = (y , x , z ).

Computing each side,

dTϱ ◦cπ1 ◦Òσ ◦ (u , v, w ) =dTϱ ◦cπ1 ◦ (v, u , w + 〈u , v 〉)

=dTϱ ◦ (ϱv, u , w + 〈u , v 〉)

= (ϱv,ϱu ,ϱw +ϱ〈u , v 〉+D [ϱ](ϱv, u ))

= (ϱv,ϱu ,ϱw +ϱ〈u , v 〉+ {v, u}),

bc ◦dTϱ ◦cπ1(u , v, w ) = bc (ϱu ,ϱv,ϱw + {u , v })

= (ϱv,ϱu ,ϱw + {u , v }),

so it follows that the two terms are equal if and only if the desired equality holds.

Lemma 3.4.9. Letσ be linear and cosymmetric. Then

(i) T (〈−,−〉) : T A2→ T A satisfies

ÛT (〈−,−〉)(ax , u y , uz , ux y , ux z )

= (ax , 〈u y , uz 〉,{ax , u y , yz }+ 〈u y , ux z 〉+ 〈ux y , uz 〉);

(ii) T .σ satisfies

Û(i d ×T (Òσ))(ux , u y , ux y , uz , ux z , u y z , ux y z )

= (ux , uz , ux z , u y , ux y , u y z + 〈u y , uz 〉,

ux y z + {ax , u y , yz }+ 〈u y , ux z 〉+ 〈ux y , uz 〉).
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Proof.

(i) By the universality of the vertical lift and bilinearity of 〈−,−〉, the outer

squares below are pullbacks:

A4 A2

T (A) T (A)

T M T M

M M

µA2

(〈π0,π1〉,〈π0,π3〉+〈π1,π2〉)

µA

T 〈,〉

Tπ◦Tπi Tπ

0

0

so that

T (〈, 〉)(0, u y , uz , ux y , ux z ) =µ
A(〈u y , uz 〉, 〈u y , ux z 〉+ 〈ux y , uz 〉).

Now we compute

T (〈, 〉)(µA2 ((u y , yz ), (ux y , ux z ))+p ∇A2 (ax , (u y , uz )))

= T (〈, 〉)µA2 ((u y , uz ), (ux y , ux z ))+p T (〈, 〉) ◦∇(ax , (u y , uz ))

=µA(〈u y , uz 〉, 〈u y , ux z 〉+ 〈ux y , uz 〉) +p T (〈, 〉) ◦∇(ax , (u y , uz ))

and then postcompose this with (Tπ, p ,κ) to obtain

(0, 〈u y , uz 〉, 〈u y , ux z 〉+ 〈ux y , uz 〉) +p (ax , 〈u y , uz 〉,{ax , u y , yz })

= (ax , 〈u y , uz 〉,{ax , u y , yz }+ 〈u y , ux z 〉+ 〈ux y , uz 〉).

(ii) Consider the following diagram:

T M p×πA3π×πA3 T M p×πA3π×πA3

T (A3) T (A3)

T ◦L (A) T ◦L (A)

dTÒσ

∇A3
+pµ

A3

TÒσ

T (π1,π0,π2+〈π0,π1〉)
T (∇′+π0µ

′))

(T (π3),p ,κA3 )

Tσ

T (π0,p◦π1,κ◦π1)
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We want to finddTÒσ= ÛT (π1,π0,π2+ 〈π0,π1〉). Note that

T (π1,π0,π2+π 〈π0,π1〉) = T (π1,π0,π2) +Tπ T (ξππi ,π0, 〈π0,π1〉).

The left term is straightforward:

ÛT (π0,π1,π2)(ax , (u y , ux y ), (uz , ux z ), (u y z , ux y z ))

= (ax , (uz , ux z ), (u y , ux y ), (u y z , ux y z ))

and for the right term, use part (i) of this lemma:

ÛT 〈−,−〉◦ÛT (π0,π1))(ax , (u y , ux y ), (uz , ux z ), (u y z , ux y z ))

=ÛT 〈−,−〉(ax , u y , ux y , uz , ux y z )

= (ax , 〈u y , uz 〉,{ax , u y , yz }+ 〈u y , ux z 〉+ 〈ux y , uz 〉)

Then compute

dTÒσ(ax , u y , ux y , uz , ux z , u y z , ux y z )

= (ax , uz , ux z , u y , ux y , u y z + 〈u y , uz 〉, ux y z +q )

where q = {ax , u y , yz }+ 〈u y , ux z 〉+ 〈ux y , uz 〉, giving the desired equation.

Proposition 3.4.10. Let σ be cosymmetric, doubly linear, and involutive, and

satisfy the target axiom. Thenσ satisfies the Yang–Baxter equation if and only if

〈−,−〉 and {−,−,−} satisfy the Bianchi identity:

0=
∑

γ∈Cy(3)

〈xγ0
, 〈xγ1

, xγ2
〉〉+
∑

γ∈Cy(3)

{ϱxγ0
, xγ1

, xγ2
.} (3.7)

Proof. We expandÛi d ×Tσ and×σ× c . Start with T (i d ×σ), which was derived in

Lemma 3.4.9:

σ1(u ) = Û(i d ×T (Òσ))(ux , u y , ux y , uz , ux z , u y z , ux y z )

= (ux , uz , ux z , u y , ux y , u y z + 〈u y , uz 〉,

ux y z + 〈u y , ux z 〉+ 〈ux y , uz 〉+ {ϱ ◦ux , u y , uz }).
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Using the fact that κ′ is torsion free, so ĉ (ux z , u y z , ux z y ) = (u y z , ux z , ux y z ), it

follows that

σ2(ux , u y , ux y , uz , ux z , u y z , ux y z ) = (u y , ux , ux y + 〈ux , u y 〉, uz , u y z , ux z , ux y z ).

Then compute

σ2σ1σ2(u )

=
�

uz , u y , u y z + 〈u y , uz 〉, ux , ux z + 〈ux , uz 〉, ux y + 〈ux , u y 〉, z1

�

,

σ1σ2σ1(u )

=
�

uz , u y , u y z + 〈u y , uz 〉, ux , ux z + 〈ux , uz 〉, ux y + 〈ux , u y 〉, z2

�

.

Note that the first five terms are equal, so it suffices to check z1 = z2 for z1 =

π6σ1σ2σ1(u ), z2 =π6σ2σ1σ2(u ).

z1 = ux y z + 〈u y , ux z 〉+ 〈ux y , uz 〉+ {ϱ ◦ux , u y , uz }+ {ϱ ◦uz , ux , u y }

+ 〈ux , u y z + 〈u y , uz 〉〉+ 〈ux z + 〈ux , uz 〉, u y 〉

= ux y z + 〈u y , ux z 〉+ 〈ux y , uz 〉+ {ϱ ◦ux , u y , uz }+ {ϱ ◦uz , ux , u y }

+ 〈ux , u y z 〉+ 〈ux , 〈u y , uz 〉〉+ 〈ux z , u y 〉+ 〈〈ux , uz 〉, u y 〉

= ux y z + 〈ux y , uz 〉+ {ϱ ◦ux , u y , uz }+ {ϱ ◦uz , ux , u y }

+ 〈ux , u y z 〉+ 〈ux , 〈u y , uz 〉〉+ 〈〈ux , uz 〉, u y 〉,

z2 = ux y z + 〈ux , u y z 〉+ {ϱ ◦u y , ux , uz }+ 〈ux y + 〈ux , u y 〉, uz 〉

= ux y z + 〈ux , u y z 〉+ {ϱ ◦u y , ux , uz }+ 〈ux y , uz 〉+ 〈〈ux , u y 〉, uz 〉.

So z1 = z2 is equivalent to requiring

ux y z + 〈ux y , uz 〉+ {ϱ ◦ux , u y , uz }+ {ϱ ◦uz , ux , u y }

+ 〈ux , u y z 〉+ 〈ux , 〈u y , uz 〉〉+ 〈〈ux , uz 〉, u y 〉

= ux y z + 〈ux , u y z 〉+ {ϱ ◦u y , ux , uz }+ 〈ux y , uz 〉+ 〈〈ux , u y 〉, uz 〉;

cancelling alike terms, this is equivalent to

〈ux , 〈u y , uz 〉〉+ 〈〈ux , uz 〉, u y 〉+ {ϱ ◦ux , u y , uz }+ {ϱ ◦uz , ux , u y }

= {ϱ ◦u y , ux , uz }+ 〈〈ux , u y 〉, uz 〉.
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Using the fact that 〈−,−〉 and {−,−,−} are alternating in the last two arguments,

this is equivalent to

0= 〈ux , 〈u y , uz 〉〉+ 〈〈ux , uz 〉, u y 〉+ 〈uz , 〈ux , u y 〉〉

+ {ϱ ◦ux , u y , uz }+ {ϱ ◦uz , ux , u y }+ {ϱ ◦u y , uz , ux }

= 〈ux , 〈u y , uz 〉〉+ 〈u y , 〈uz , ux 〉〉+ 〈uz , 〈ux , u y 〉〉

+ {ϱ ◦ux , u y , uz }+ {ϱ ◦uz , ux , u y }+ {ϱ ◦u y , uz , ux }

giving the desired identity.

Corollary 3.4.11. Let (π : A → M ,ξ,λ,ϱ) be an anchored bundle in a tangent

category with negatives, with anchored connection (∇,κ) on A and torsion-free

affine connection (∇′,κ′) on M . An involution algebroid structure on A is equivalent

to a bilinear map

〈−,−〉 : A2→ A

with derived maps

{−,−} : Aπ×p T M → T M := κ′ ◦Tϱ ◦ (π0,π1),

{−,−,−} : T M p×π◦πi
A2→ A;{a , u1, u2} := κ ◦T (〈−,−〉) ◦ (∇(a , u1),∇(a , u2))

satisfying

(i) 〈−,−〉 is linear and cosymmetric,

(ii) 〈−,−〉 is alternating,

(iii) 〈−,−〉 and {−,−} satisfy the Leibniz equation, Equation 3.6.

(iv) 〈−,−〉,{−,−}, and {−,−,−} satisfy the Bianchi identity, Equation (3.7).

Morphisms of involution algebroids may also be characterized by preservation

of the tensor.

Proposition 3.4.12. Let A, B be a pair of involution algebroids with chosen con-

nections in a tangent category with negatives. Then an anchored bundle morphism

f : A→ B is an involution algebroid morphism if and only if (recalling the notation

from Equation 3.3)

∇[ f ](x , y ) + 〈 f ◦ x , f ◦ y 〉=∇[ f ](y , x ) + f ◦ 〈x , y 〉.
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Proof. Note that

(σ ◦L ( f ) =L ( f ) ◦σ)

⇐⇒ (π1,π0,π2+ 〈π0,π1〉) ◦ ( f ◦ x , f ◦ y , f ◦ z +∇[ f ](x , y ))

= ( f , f , f ◦π2+∇[ f ](π0,π1)) ◦ (y , x , z + 〈x , y 〉)

while the second condition reduces to

∇[ f ](x , y ) + 〈 f ◦ x , f ◦ y 〉=∇[ f ](y , x ) + f ◦ 〈x , y 〉.

3.5 The isomorphism of Lie and involution algebroid

categories

Sections 3.1 and 3.4 have made the relationship between involution algebroids and

Lie algebroids clear. It is important to note that while the proofs used connections

as a tool to identify the local coherences satisfied by involution and Lie algebroids,

the construction of a Lie algebroid from an involution algebroid (or vice versa) is

independent of the choice of connection.

Theorem 3.5.1. There is an isomorphism of categories between Lie algebroids and

involution algebroids in smooth manifolds.

Proof. For the equivalence of categories, note that by Propositions 3.1.13 and

3.1.14, Corollary 3.4.11, and Proposition 3.4.12 there is an isomorphism of cate-

gories between involution algebroids with a choice of connection and Lie alge-

broids with a choice of connection (morphisms are not restricted to connection

preserving morphisms). This allows us to chain together isomorphisms

Inv(SMan)∼= Inv(SMan)ChosenConn
∼= LieAlgdChosenConn

∼= LieAlgd.

To complete the proof, we must show that the assignment that sends an

involution algebroid to a Lie algebroid whose bracket is given by

λ ◦ [X , Y ]∗ =
�

(π1 ◦σ ◦ (i d , T .X ◦ϱ) ◦Y −p T .Y ◦ϱ◦)−T .π 0 ◦Y
�

, (3.8)
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is a bijection on objects, which brings up some subtleties. First, while an involu-

tion map

σ : Aϱ×TπT A→ Aϱ×TπT A

is defined with respect to a particular choice of pullback Aϱ×TπT A, the category

of involution algebroids does not distinguish between different choices of this

pullback (and therefore different representations of the mapσ), and it is not part

of the data of an involution algebroid. It is immediate by universality that the

left-hand-side of Equation 3.8 is independent of the choice of pullback Aϱ×TπT A.

Now, recall that the canonical involution of a Lie algebroid is uniquely by

Theorem 4.7 of de León et al. (2005) (this was also mentioned in Corollary 3.3.9).

Once we make a choice of prolongation Aϱ×TπT A, we have made a choice of

pullbackL (A) in LieAlgd, which uniquely determines the canonical involution

σ : Aϱ×TπT A→ Aϱ×TπT A.

While the exact mapσ depends on the choice of pullback Aϱ×TπT A, they all deter-

mine the same involution algebroid, thus proving the bijection correspondence

of objects.

112



Chapter 4

The Weil nerve of an algebroid

The first three chapters of this thesis demonstrated that tangent categories allow

for an essentially algebraic description of Lie algebroids by axiomatizing the be-

haviour of the tangent bundle, and showing that a Lie algebroid over a manifold

M is a “generalized tangent bundle”, namely an involution algebroid. This chapter

will make precise the sense in which an involution algebroid is a generalized

tangent bundle, by showing that the category of involution algebroids in a tan-

gent category C is equivalent to a certain tangent-functor category from the free

tangent category over a single object to C, or more generally that there is a fully

faithful functor

Inv(C) ,→TangLax(FreeTangCat(∗),C).

This functor, the Weil nerve of an involution algebroid, builds a functor from

the free tangent category over a single object to C using a span construction.

This chapter primarily builds on two pieces of work: Leung’s construction of the

free tangent category Weil1 (Leung (2017)) , and Grothendieck’s original nerve

construction (first published in Segal (1974)).

To understand Leung’s construction of the free tangent category, and more

generally his actegory-theoretic presentation of tangent categories (Section 4.2),

we first look at Weil’s original insight relating the kinematic and operational de-

scriptions of the tangent bundle in SMan. The definition of a tangent vector on a

manifold M as an equivalence class of curves (Definition 1.2.8) puts a bijective

correspondence between tangent vectors and R-algebra homomorphisms from

113



the ring of smooth functions C∞(M ) to the ring of dual numbers:

C∞(M )→R[x ]/x 2.

The hom-setRAlg(C∞(M ),R[x ]/x 2) is precisely the set of derivations on C∞(M ),

which defines the operational tangent bundle discussed in Definition 1.2.16: there

is a natural smooth manifold structure on this set. The Weil functor formalism,

most notably developed in Kolár et al. (1993), extends this observation to a general

class of endofunctors on SMan. For example, the fibre product T2M corresponds

to R-algebra morphisms,

C∞(M )→R [x , y ]/(x 2, y 2, x y ),

while the second tangent bundle corresponds to R-algebra morphisms into the

tensor product,

C∞(M )→R [x ]/(x 2)⊗R [y ]/(y 2) =R [x , y ]/(x 2, y 2).

By applying Milnor’s exercise (Problem 1-C Milnor and Stasheff (1974)), which

states that the C∞ functor

SMan→RAlgop; M 7→C∞(M ) = SMan(M ,R)

is fully faithful, the structure maps occur as natural transformations. For example,

the tangent projection is induced by the morphism

p :R[x ]/x 2 a+b x 7→a−−−−−→R,

so that

T M
p
−→M = [C∞(M ),R[x ]/x 2]

(p )∗−→ [C∞(M ),R].

The zero map and addition are similarly induced by

0 :R a 7→a+0x−−−−−→R [x ]/x 2 and + : R [x , y ]/(x 2, y 2, x y )
a+b x+c y
−−−−−−−→
7→a+(b+c )x

R [x ]/x 2,

respectively, while the lift and flip are induced by the morphisms

ℓ :R[x ]/x 2 a+b x−−−−−→
7→a+b x y

R[x , y ]/(x 2, y 2)
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and

c :R[x , y ]/(x 2, y 2)
a+b x+c y+d x y
−−−−−−−−−−−→
7→a+c x+b y+d x y

R[x , y ]/(x 2, y 2).

More generally, there is a monoidal category of Weil algebras (Definition 4.1.1)

which has a monoidal action on the category of smooth manifolds. The Weil func-

tor formalism, then, studies differential geometric structures from the perspective

of the endofunctors and natural transformations induced by this action. Leung’s

insight is that there is an analogous category of commutative rigs1 built by re-

placingR[x ]/x 2 withN[x ]/x 2, called Weil1 (Definition 4.1.3); a tangent structure

is precisely a monoidal action by Weil1 satisfying some universal properties. In

particular, this category Weil1 is precisely the free tangent category over a point,

FreeTang(∗), so that every object A in a tangent category C determines a strict

tangent functor

T (−)A : Weil1→C; V 7→ T V A

and morphisms f : A→ B are in bijective correspondence with tangent-natural

transformations T (−)A⇒ T (−)(B ).

The axioms of an involution algebroid in a tangent category C correspond

bijectively with those of the tangent bundle - this suggests that an involution

algebroid should determine a tangent functor from Weil1 toC. A first guess would

lead one to think that p :N[x ]/x 2→N is sent to π : A→M , 0 to ξ, and + to +A . As

the space of prolongationsL (A) = Aϱ×TπT A plays the role of the second tangent

bundle, we can see that

ℓ : N [x ]/x 2→N [x , y ]/(x 2, y 2) 7→ (ξ ◦π,λ) : A→L (A),

and

c : N [x , y ]/(x 2, y 2)→N [x , y ]/(x 2, y 2) 7→σL (A)→L (A).

This pattern may be neatly summed up using span composition - we will construct

a functor that sends N[x ]/x 2 to the span

A

M T M

ϱπ

1A rig is a ring without negatives, i.e. a commutative monoid equipped with a bilinear multipli-
cation.
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and the tensor product N[x ]/x 2 ⊗N[x ]/x 2 to the span composition (e.g. the

pullback)

L (A)

A T A

M T M T 2M

ϱπ T .π T .ϱ

⌟

which is the space of prolongations. This leads to the first major result of this

chapter, the Weil Nerve (Theorem 4.3.9), which states there is a fully faithful

embedding

NWeil : Inv(C) ,→ [Weil1,C].

This bears a strong similarity to Grothendieck’s original nerve theorem, which

takes an internal category s , t : C →M and constructs a functor∆o p →C (where

∆o p is the monoidal theory of an internal monoid) by sending tensor to span

composition, and the composition and unit maps given span morphisms

C2 M

M M M M

C C

s◦π0 t ◦π1

s t

m

s t

e

while the unit and associativity axioms for a category are exactly the unit and

associativity laws for a monoid in this setting. The Segal conditions identify exactly

the functors C : ∆o p → C that lie in the image of the nerve functor N as those

whose [n ]t h object is sent to the wide pullback C ([n ]) =C [2]t ×s C [2] . . . t ×s C [2].

The corresponding result for involution algebroids is found in Theorem 4.4.8,

which states that a tangent functor (A,α) : Weil1→C is the nerve of an involution

algebroid if and only if A preserves tangent limits and α is a T -cartesian natural

transformation (this forces A.(W ⊗n ) = Aϱ×T .πT A . . . T n−1ϱ×T nπT n A). The similarity

between the Weil nerve and Grothendieck/Segal’s nerve runs deep, and in Chapter

5 we demonstrate that the enriched perspective on tangent categories puts these

both into the same formal framework.
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Sections 4.1 and 4.2 give a detailed introduction to the Weil functor formalism

(Kolár et al. (1993),Bertram and Souvay (2014)) and Leung’s unification of Weil

functors with tangent categories Leung (2017). The rest of the chapter contains

contains new results developed by the author. Section 4.3 proves the embedding

part of the Weil nerve theorem, that the category of involution algebroids em-

beds into the category of tangent functors and tangent natural transformations

[Weil1,C]. Section 4.4 identifies exactly those tangent functors (A,α) : Weil1→C
that are the nerve of an involution algebroid, completing the proof of the Weil

nerve theorem. Section 4.5 uses the Weil nerve to develop a novel tangent struc-

ture on the category of involution algebroids in a tangent category (in particular,

the category of Lie algebroids will have this novel tangent structure).

4.1 Weil algebras and tangent structure

This section gives a more thorough introduction to the Weil functor formalism of

Kolár et al. (1993), and in particular how the structure maps of a tangent category

may be teased out of it. We begin by introducing Weil algebras, and the prolonga-

tion of a smooth manifold by a Weil algebra. (The relationship with prolongations

of involution algebroids from Definition 3.2.1 will be made clear in Section 4.3.)

Definition 4.1.1. An R-Weil algebra2 is a finite-dimensional R-algebra V so that

V = R⊕ V̇ as R-modules and V̇ is a nilpotent ideal. The category RWeil is the

full subcategory of RAlg spanned by the R-Weil algebras. The prolongation of a

manifold by a Weil algebra V is given by the manifold

T V M :=RAlg(C∞(M ,R), V ).

Eck (1986) showed that every product-preserving endofunctor on the cate-

gory of smooth manifolds is constructed as the Weil prolongation by some Weil

algebra. Consequently, R-algebra homomorphisms induce natural transforma-

tions between these product-preserving endofunctors on the category of smooth

manifolds.

2Not to be confused with the normal usage of “Weil algebra” in Lie theory, e.g. Meinrenken and
Pike (2021).
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Example 4.1.2. Consider the following R-Weil algebras and their associated pro-

longation functors.

(i) Prolongation by R induces the identity functor, and the tangent bundle is

given byR[x ]/x 2. The tangent projection, then, is equivalent to theR-algebra

morphism

p :R[x ]/x 2→R; p (a + b x ) = a

while the 0-map induces the zero vector field:

0 :R→R[x ]/x 2; 0(a ) = a +0x .

(ii) The algebraR[xi ]1≤i≤n/(xi x j )1≤i≤ j≤n = (R[x ]/x 2)n is the wide pullback Tn M =

T M p×p T M . . . p×p T M . In particular, prolongation by R[x , y ]/(x 2, y 2, x y )

gives the bundle T2M = T M p×p T M . The R-algebra morphism

+ :R[x , y ]/(x 2, y 2, x y )→R [x ]/x 2; +(a0+a1 x +a2 y ) = a0+ (a1+a2)x

corresponds to the addition of tangent vectors.

(iii) The algebra R[x , y ]/(x 2, y 2) = (R[x ]/x 2)⊗ (R[x ]/x 2) is the second tangent

bundle T 2M = T T M . The vertical lift T → T 2 is induced by the morphism

ℓ :R[x ]/x 2→R[x , y ]/(x 2, y 2); ℓ(a + b x ) = a + b x y .

(iv) The monoidal symmetry map induces c : T 2⇒ T 2, as follows:

c : (R[x ]/x 2)⊗ (R[y ]/y 2)→ (R[y ]/y 2)⊗ (R[x ]/x 2);

c (a + b1 x + b2 y + b3 x y ) = a + b2 x + b1 y + b3 x y .

(v) For n ≥ 2, the algebra R[x ]/x n gives the n-jet bundle. Note that this is the

equalizer of ⊗nR[x ]/x 2 by the symmetry actions of Sn .

Further examples may be found in the monograph Kolár et al. (1993). Tangent

categories bridge the gap between the Weil functor approach to studying the

differential geometry of smooth manifolds and the synthetic differential geom-

etry approach of axiomatizing a tangent bundle using nilpotent infinitesimals.
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The main structure axiomatized here is that of monoidal action of a symmetric

monoidal category on a category M ×C→C, or equivalently, a lift from a cate-

gory to the category of complexesC→ [M ,C], which involves translating a bit of

classical category theory to the 2-categorical setting.

Example 4.1.2 leads to the classical theorem that the category of smooth

manifolds has an action by the category of R-Weil algebras that preserves all

connected limits that exist. These “natural” universal properties (in the sense

of Kolár et al. (1993)) is foundational to synthetic differential geometry; see, for

example, Chapter Two of Lavendhomme (1996). Unfortunately, Weil algebras are

not an ideal syntactic presentation: they are not a finitely presentable category,

and it is not immediately clear when a diagram is a connected limit.3 Moving from

R-algebras to commutative rigs and restricting to an appropriate subcategory

solves this problem.

Definition 4.1.3 (Definition 3.1 Leung (2017)). The category Weil1 is defined to

be the full subcategory of commutative rigs, CRig, generated by the rig of dual

numbers W :=N[x ]/x 2, constructed as follows:

1. Start with finite product powers of W in CRig, and make a strict choice of

presentation:

W0 =N, Wn :=N[xi ]/(xi x j )i≤ j , 0≤ i < n .

2. Then take the closure of Wn under coproduct of commutative rigs, written ⊗.

Again, make a strict choice of presentation:

Wn (0)⊗ . . .⊗Wn (m−1) :=N[xi , j ]/(xi j xi k ) j≤k , 0< i <m , 0< j < n (i ).

Note that we will often suppress the tensor product ⊗ and simply write

U V :=U ⊗V .

Proposition 4.1.4 (Definition 3.3 Leung (2017) ).

3It should be noted that Nishimura and Osoekawa (2007) made progress applying techniques
from computer algebra to latter problem.
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(i) The category Weil1 is a symmetric strict monoidal category with unit N and

coproduct ⊗.

(ii) N is a terminal object in Weil1.

Note that there is a forgetful functor

Weil1→ (CMon/N)→CMon

that reflects connected limits. This gives the following class of limits, identified in

Leung (2017).

Definition 4.1.5. We say the following pullback diagrams in Weil1 are transverse:

W W W 2 W W 2 W W

W W W N N W

i d

i d

i d

i d
⌟ π0

π1

p

p

⌟ p◦πi

µ

0

p W

where µ(a +a1 x +a2 y ) = a +a1 x +a2 x y . The⊗-closure of these three pullbacks is

the set of transverse squares, and they are also pullback squares by Leung (2017).

To see that each transverse square in the ⊗-closure is a pullback diagram, take

the two non-identity squares and rewrite them in CMon:

N× (N×N) N×N N× (N×N) N× (N×N×N)

N×N N N N×N

N×π0

N×π1

π0

π0

⌟
π0

N×(π0,0◦!,π1)

(i d ,0◦!)

N×π1
⌟

The coproduct of Weil algebras is the tensor product of the underlying commuta-

tive monoids, which are finite-dimensional and free, so these limits are closed

under ⊗.

Proposition 4.1.6 (Leung (2017) Proposition 4.1). The category Weil1 is a tangent

category, where the tangent functor is

T :=W ⊗ (_) : Weil1→Weil1
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and the natural transformations are given by

p : W ⊗ (_)
p⊗(_)
−−→ (_), 0 : (_)

0⊗(_)
−−→W ⊗ (_), + : W2⊗ (_)

+⊗(_)
−−→W ⊗ (_),

ℓ : W ⊗ (_)
ℓ⊗(_)
−−→W ⊗W ⊗ (_), c : W ⊗W ⊗ (_)

p⊗(_)
−−→W ⊗W ⊗ (_)).

The category Weil1 is, in some sense, a finitely presented theory. It is precisely

the free tangent category on a single object:

Proposition 4.1.7 (Proposition 9.5, Leung (2017)). The category Weil1 is generated

by the maps {p ,0,+,ℓ, c } from Example 4.1.2, closed under composition, tensor,

and maps induced by transverse limits.

Corollary 4.1.8. The category Weil1 is the free tangent category over a single object:

every object C in a tangent category C determines a strict tangent functor T−.C :

Weil1→C, mapping

V =W n1⊗ . . .⊗W n (k ) 7→ Tn (1).(. . . ).Tn (k ).C = T V C

so that there is an isomorphism of categories betweenC and the category of strict

tangent functors Weil1→Cwith tangent natural transformations as morphisms.

Notation 4.1.9. Throughout this section, the notation T V C will refer to the action

of the Weil algebra V on an object C in a tangent category. In particular, we will

make use of the isomorphism T U .T V C = T U V C .

4.2 Tangent structures as monoidal actions

The presentation of Weil1 as the free tangent category situates the formal theory of

tangent categories as an instance of more general categorical machinery, namely

monoidal actions. Recall that in a symmetric monoidal category (C,⊗, I ), an

internal monoid (C ,•, i ) determines a monad:

(C ⊗ _ :C→C,µ :C⊗ (C⊗ _)
•⊗_−→C⊗ _,η : _

ρ
−→ I ⊗ _

e⊗_−−→C ⊗ _).

The category of algebras for this monad is exactly the category of C -modules,

objects with an associative and unital action by C . A morphism will be a map on
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the base object that preserves the action:

C M ⊗C M ⊗M ⊗C M ⊗C

C M ⊗C C

M ⊗C M ⊗D

C D

M⊗∝

•⊗M

∝

∝

(u ,C )

∝

f

∝C ∝D

M⊗ f

Strict actegories are the 2-categorical generalization of modules over a monoid.

The coherences for a 2-monad follow from the coherences from a strict monoidal

category in the 2-category of categories. The following proposition relies on a

few facts from enriched category theory (treating the cartesian closed category

Cat as a Cat-enriched category, per Kelly (2005)) but a more general treatment of

non-strict actegories may be found in Janelidze and Kelly (2001):

• A 2-functor and 2-natural transformations are exactly a functor and natural

transformations that satisfy extra coherences. These coherences follow for

free by constructing the monad and comonadM × _, [M , _].

• An algebra of the underlying 1-monad is exactly an algebra of the 2-monad

(the same result holds for comonads).

When working with algebras of a 2-monad, four different notions of morphisms

can come into play (Lack and Power (2009)). These arise through using the 2-

categorical data to weaken the notion of a morphism:

(i) Strict: this is exactly a morphism of the underlying algebras. Write the 2-

category of strictM -actegories.

(ii) Strong: the morphisms preserve the action to an isomorphism:

M ×C M ×D

C D

M×F

∝C ∝D

F

α
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(iii) Lax: the 2-cell is no longer an isomorphism:

M ×C M ×D

C D

M×F

∝C ∝D

F

α

(iv) Oplax: the 2-cell travels in the opposite direction (these will not figure into

this account).

2-cells between actegory morphisms must satisfy a coherence between the natural

transformation parts of the actegory morphisms.

Definition 4.2.1. In the case of strict, strong, and lax tangent functors, the same no-

tion of a 2-cell applies: a natural transformation γ : F ⇒G satisfying the following

coherences with the natural transformations α and β :

M ×C M ×D M ×C M ×D

C D C D

M×F

∝D∝C

F

α

G

M×G

M×F

∝C ∝D

G

β

γ

M×γ

=

We call these actegory natural transformations.

Note that for strict actegory morphisms, this condition holds for any natural

transformation γ : F ⇒G . Now consider the following three 2-categories.

Definition 4.2.2. Let (M ,⊗, I ) be a strict monoidal category. Define the following

three 2-categories.

1. MActstrict: the 2-category of strictM -actegories, strict actegory morphisms,

and natural transformations.

2. MActstrong: the 2-category of strict M -actegories, strong actegory mor-

phisms, and actegory natural transformations.

3. MActlax: the 2-category of strictM -actegories, lax actegory morphisms, and

actegory natural transformations.
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Note that the inclusions of these 2-categories are locally fully faithful, so only the

1-cells differ.

The case where the action preserves certain limits in the monoidal category

is of particular interest. A small category equipped with a class of chosen limits

is known as a sketch. The previous correspondence restricts to the class of limit-

preserving actions in this case.

Definition 4.2.3. A sketch is a small category with a class of chosen limits, and

a sketch morphism is a functor sending chosen limits to the chosen limits in the

domain (up to isomorphism). The category of models of a sketchC in a categoryC,

Mod(C ,C), is the full subcategory [C ,C]whose functors preserve the chosen limits.

A monoidal sketch, then, is a sketch (C ,L ) equipped with a symmetric monoidal

category structure onC so that _⊗ _ preserves limits in each argument.

Now use the fact that the category Weil1 is a monoidal sketch, since it is a

small, strict monoidal category equipped with a class of limits stable under the

tensor product.

Theorem 4.2.4 (Theorem 14.1, Leung (2017)). LetC be a category. The following

are equivalent:

(i) A tangent structure on C,

(ii) A sketch action∝: Weil1×C→C.

Observation 4.2.5. There is a coalgebraic perspective on tangent categories, coming

from the equivalence between algebras of the 2-monad (Weil1× (_),⊗, I : 1→Weil1)
and the 2-comonad ([Weil1, _], [⊗, _], [I , _]). For any categoryC, there is a free tangent

category given by

Weil1×C

and this agrees with the free Weil1-actegory. However, for the cofree tangent cate-

gory, take

Mod(Weil1,C),

the category of transverse-limit-preserving functors Weil1→C.
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We can use Leung’s theorem to induce a monoidal functor Weil1→Cwhen a

tangent structure is induced by a single object.

Corollary 4.2.6. Let (C,⊗, I ) be a strict monoidal category. If an additive bundle

(p : A→ I ,+ : A2→ A, 0 : I → A) equipped with morphisms

A⊗A
c−→ A⊗A A

ℓ−→ A⊗A

determines a tangent structure on C using the endofunctor A⊗ (−), then A deter-

mines a strict, transverse-limit-preserving, monoidal functor

A(−) : Weil1→C; Wn [1]⊗ . . .⊗Wn [k ] 7→ An [1]⊗ . . .⊗An [k ] = Tn [1] . . . Tn [k ].I

Note that this allows for a more conceptual description of representable tan-

gent structure.

Proposition 4.2.7. In a symmetric monoidal closed category, an infinitesimal

object is exactly a strict symmetric monoidal functor D : Weil1→C.

This presentation of an infinitesimal object makes it tautological thatCo p has

a tangent structure.

Corollary 4.2.8. Given a strict symmetric monoidal functor

D : Weil1→Co p

there is a strict action of Weil1 on Co p given by

Weil1×Co p D o p⊗C−−−−→Co p ×Co p ⊗−→Co p .

There is a clear correspondence between the notions of a (strict, strong, lax)

tangent functor and a (strict, strong, lax) actegory morphism. This proposition

extends to the following equivalence of 2-categories.

Corollary 4.2.9 (Theorem 14.1 Leung (2017)). The following pairs of 2-categories

are equivalent.

(i) The 2-category of tangent categories and strict tangent functors is the full

sub-2-category of Weil1ActStrict spanned by sketch actions.
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(ii) The 2-category of tangent categories and strong tangent functors is the full

sub-2-category of Weil1Actstrong spanned by sketch actions.

(iii) The 2-category of tangent categories and lax tangent functors is the full sub-

2-category of Weil1ActLax spanned by sketch actions.

4.3 The Weil nerve of an involution algebroid

The construction in this section is analagous to the nerve of an internal category—

hence the “Weil nerve” construction—and deals with similar technical issues. In

particular, the construction in this section will mimic the nerve construction for

internal categories by replacing the tensor product of Weil1 with span composition

in the domain category. Recall that every anchored bundle or internal category

has a canonical span associated with it:

A C

M T M M M

π ϱ s t

In any categoryC, there is a category of spans in C as well as span composition.

Definition 4.3.1. A span from A to B in a category C is a diagram of the form

X

A B

l r

There is a notion of span composition, so given a span X : A→ B and Y : B →C ,

then the composition of X and Y is the pullback (if it exists):

Z

X Y

A B C

l r l ′ r ′

⌟
l ′′ r ′′
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A morphism of spans is a commuting diagram of the form

A X B

C Y D

l r

l ′

fl fr

r ′

fc

Note that if f and g are span morphisms with fr = g l , then the horizontal compo-

sition may be formed if each respective span composition exists:

•

X W

A B E

C D F

Y Z

•

l r

l ′

fl fr=g l

r ′

fc g rgc

⌟

⌟

When discussing span composition in a tangent category, it is assumed that the

pullback is a T -pullback.

Observation 4.3.2. Note that the category of spans in C is a functor category, so

that limits are computed pointwise in C. This also means that the horizontal

composition operation, when it exists, preserves limits in either argument.

These span constructions can be helpful in constructing functors from a

monoidal category into a non-monoidal category C, by forming a monoidal cate-

gory from C using spans. In the case of an internal category over M , one takes

the slice category C/(M ×M )where the tensor product is span composition. An

internal category s , t : C →M is a monoid in this category of spans over M , so

that it determines a monoidal functor

C :∆o p →C/(M ×M ),
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remembering that ∆o p is the monoidal theory for monoid (every monoid in a

monoidal categoryC determines a monoidal functor∆→C). The construction of

the corresponding monoidal category for spans is more nuanced, as the category

Weil1 is notN-indexed. Observe that the prolongation of an anchored bundle is

constructed as a span composition:

L (A)

A T A

M T M T 2M

π ϱ Tπ Tϱ

π0 π1

⌟

The third prolongation is given by span composition as well:

L 2(A)

A T .L (A)

M T M T 2M

π ϱ T .π◦π0 T .ϱ◦π1

π0 π1

⌟

This horizontal composition will play the same role as the tensor product in

C/(M ×M ).

Definition 4.3.3. In a tangent category C, consider a pair of spans

X : M → T U M , Y : M → T V M .

Define X ⊠Y to be the horizontal composition (when it exists):

Z

X T U Y

M T U M T U V M

lX
rY T U .lY T U .r

⌟

(recall that we will often suppress the ⊗ in Weil1 to save space). So the span compo-

sition is

M
X−→ T U M

T U .Y−−−→ T U .T V M
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M X T U M

M Y T U M

M A T V

M B T V ′

lX

lY

θ .M

rX

rY

f

rA

rB

ψ.Mg

lB

lA

(4.1)

The horizontal composition f ⊠ g is defined as f ×θ .M θ .g :

Z

X Y

M T U M T U .T V M

M T U ′
M T U ′

.T V ′M

A T U ′
B

C

lX

lA

θ .M

rX

rA

f

T U .rY

T U ′ .rB

θ .ψ.Mθ .g

T U .lY

T U ′ .lB

⌟

⌟

In any tangent category with a tangent display system (Definition 1.5.3), the

category of spans on M whose maps are of the form given by Equation 4.1 with

l ∈D is a monoidal category. Any anchored bundle in a tangent category gives

rise to a monoidal category after a strict choice of T -pullbacks (assuming those

T -pullbacks exist).

Definition 4.3.4. Let (π : A → M ,ξ,λ,ϱ) be an anchored bundle in a tangent

category C. Write the span

bA.Wn := (M
π◦πi←−− An

ϱn

−→ Tn M ), bA.N := (M =M =M ).
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A choice of prolongations for (π,ξ,λ,ϱ) is a strict choice of horizontal composition

for each V ∈Weil1:

bA.V = bA.(Wn [1] . . . Wn [k ]) := bA.Wn [1]⊠ · · ·⊠ bA.Wn [k ].

We will write the span as follows:

A.V

M T V .M

πV ϱV

(notice that the apex is not hatted). Given a choice of prolongations for an anchored

bundle (π,ξ,λ,ϱ), the category Span(π,ξ,λ,ϱ) is defined as follows:

• Objects are bA.V for V ∈Weil1.

• Morphisms are given by pairs

( f ,φ) : bA.V → bA.U

where f : A.V → A.U and φ : V →U determine a span morphism of the

form

M A.V T V .M

M A.U T U .M

πV ϱV

φ.M

πV ϱU

f

as discussed in Definition 4.3.1.

• Tensor structure: The tensor product is defined using the horizontal compo-

sition ⊠ as defined in Definition 4.3.1.

The idea is to show that an involution algebroid structure on an anchored

bundle induces a tangent structure on the monoidal category of prolongations,

and then to apply Leung’s theorem. The following two lemmas will simplify this

proof.

Lemma 4.3.5. Let (π : A→M ,ξ,λ,ϱ) be an anchored bundle with chosen prolon-

gations in a tangent categoryC, and identify the monoidal category Span(π,ξ,λ,ϱ).
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(i) There is a functor

U ϱ : Span(π,ξ,λ,ϱ)→C

constructed by sending a span morphism to the morphism between the objects

at its apex:

M A.V T V .M A.V

M A.U T U .M A.U

πV ϱV

φ.M

πV ϱU

f f

(ii) Suppose we have a square

bA.U bA.Y

bA.X bA.Z
( f ,φ)

(g ,ψ)(l ,α)

(r,β )

whose image under U ϱ is a T -pullback inC, and so that the square in Weil1
is a transverse T -pullback:

A.U A.Y U Y

A.X A.Z X Z
f

gl

r

φ

ψ

β

α
⌟ ⌟

Then U ϱ reflects the limit; that is, the original square in Span(π,ξ,λ,ϱ) is a

T -pullback.

(iii) T -pullbacks of the form described in (ii) are closed under ⊠.

Proof. The functor in in (i) is straightforward to construct, as it simply forgets the

left and right legs of the spans. For (ii), note that because the Weil1 part of the

diagram is a transverse T -pullback, then given a pair of maps

bA.V

bA.U bA.Y

bA.X bA.Z
( f ,φ)

(g ,ψ)(l ,α)

(r,β )

(x ,ω)

(y ,γ)
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a unique span morphism bA.V → bA.U may be induced using the apex map from

C, and the unique map induced in Weil1 by the universality of transverse squares

(this square is also universal inC), so the span morphism diagram will commute

by universality.

For (iii), T -pullback squares of the form in (ii) are closed under⊠ as transverse

squares in Weil1 are closed under ⊗, so the result follows by the commutativity of

limits and by applying part (ii) of this lemma.

Observation 4.3.6. It will be useful to have a “flat” presentation of the prolongation

A.Wn (1) . . . Wn (k ). The higher prolongations of an anchored bundle may be concretely

described as the T -pullback of the zig-zag below:

Â.Wn (1) . . . Wn (k )

Â.Wn (1) Tn [1].Â.Wn (2) Tn (1)...n (k−1)Â.Wn (k )

Tn (1)M . . .
Tn (1).ϱn (2) Tn (1)...n (k ).(π◦π0)

ϱn (1) Tn [1].(π◦π0)

so that the prolongation A.W n [1] . . . W n [k ] may be written concretely as

(u1, . . . , uk ) : An [1]ϱ′×T .π′Tn [1].An [2]T .ϱ×T 2.π . . .ϱ′×T .π′Tn [1]...n [k−1]An [k ].

Furthermore, the choice of prolongation identifies the following limits:

Â.U V T U .Â.V

Â.U T U M
ϱU

T U .πV
⌟

Â.U V T U Â.V

T U M T U M

Â.U T U M

⌟

ϱU

T U .πV

so that

A.U V = A.U ⊠A.V = A.U ⊠ i dM ⊠A.V

where i dM is the span M =M =M .
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Note that a ϱ sends the involution algebroid structure map to its correspond-

ing tangent structure map. Each of the structure maps, then, gives a span mor-

phism where ⊠ is well defined:

Definition 4.3.7. Let (π : A →M ,ξ,+q ,λ,ϱ,σ) be an involution algebroid in C
with chosen prolongations. Then define the following maps in Span(π,ξ,λ,ϱ):

• The projection p : Â.W → Â.N,

M A T M

M M M

ϱπ

pπ

• The zero map 0 : Â.N→ Â.W ,

M M M

M A T M

0

π ϱ

ξ

• The addition map + : Â.W2→ Â.W ,

M A2 T2M

M A T M

ϱ2π◦πi

+.M

π ϱ

+

• The lift map ℓ : Â.W → Â.W W ,

M A T M

M Aϱ×TπT A T 2M

π ϱ

ℓ.M

π◦π0 T .ϱ◦π1

(ξπ,λ)

• The flip map c : Â.W W → Â.W W ,

M Aϱ×TπT A T 2M

M Aϱ×TπT A T 2M

c .M

π◦π0 ϱ◦π1

π◦π0 ϱ◦π1

σ
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The idea is to show that the monoidal category of chosen prolongations

Span(π,ξ,λ,ϱ) for an involution algebroid has a tangent structure generated

by the structure maps in Definition 4.3.7 and the endofunctor bA.W ⊠ (−). Using

the flat presentation, we can then show that U ϱ will determine a tangent functor

in C. The following lemma about ϱ will be useful in constructing the natural

transformation part of a tangent functor.

Definition 4.3.8. Let (π : A → M ,ξ,λ,ϱ) be an anchored bundle with chosen

prolongations. Recall that by Definition 4.3.4, the right leg of A.U is written ϱ, so

it induces a span map:

M A.U T U M

M T U M T U M

ϱU

ϱU

πU

pU

This map has a flat presentation as

A.U V A.U ϱU ×T U .πV T U .A.V

T U .A.V T U M i d×T U .πV T U .A.V

ϱU⊠A.V πU×T U .A.V

We write the map

ϱU .V :=ϱU ⊠ ( bA.V )

which corresponds to the following span morphism:

A.U V

A.U T U .A.V

M T U M T U V M

T U M T U .A.V

T U .A.V

ϱU

T U .ϱVT U .πVϱU
πU

⌟

pU .M T U .πV
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Theorem 4.3.9 (The Weil Nerve). There is a fully faithful functor

NWeil : Inv(C)→ [Weil1,C]

that sends an involution algebroid to the transverse-limit-preserving tangent func-

tor:

( bA,α) : Weil1→C

Proof. For the first step of this proof, we show that an involution algebroid struc-

ture on an anchored bundle (π : A→M ,ξ,λ,ϱ) determines a tangent category

structure on the monoidal category Span(π : A→M ,ξ,λ,ϱ).

We check that the endofunctor Â⊠ (−) determines a tangent structure, with

the structure maps given by Definition 4.3.7:

[TC.1] Additive bundle axioms:

(i) Use Lemma 4.3.5 to see that

Â.W2 = Â.W p×p Â.W Aπ×πA;

this is preserved by Â.V ⊠ (−).

(ii) The triple (Â.+, Â.p , Â.0) = (+q ,π,ξ) is an additive bundle induced by

Proposition 2.4.4, and ⊠ preserves pullbacks (and therefore additive

bundles), so the additive bundle axioms hold.

[TC.2] Symmetry axioms:

(i) Â.c ◦ Â.c = i d follows from the involution axiomσ ◦σ= i d .

(ii) For Yang–Baxter, note that

(Â⊠ c ) ◦ (c ⊠ Â) ◦ (Â⊠ c ) = (c ⊠ Â) ◦ (Â⊠ c ) ◦ (c ⊠ Â)

follows from the Yang–Baxter equation on an involution algebroid

(σ× c ) ◦ (i d ×T .σ) ◦ (σ× c ) = (i d ×T .σ) ◦ (σ× c ) ◦ (i d ×T .σ),

since

σ× c .A = (Â.c )⊠ (Â.W ) and i d ×T .σ= (Â.W )⊠ c .

135



(iii) For the naturality conditions:

(a) The interchanges of +, 0, p all follow from the fact that

σ : (A.W W ,λ× ℓ)→ (A.W W , i d × c ◦T .λ)

is linear, and so is an additive bundle morphism.

(b) The axiom

ℓ.T ◦ c = T .c ◦ c .T ◦T .ℓ

is equivalent to the equation

(σ× c ) ◦ (1×T .σ) ◦ (λ̂× ℓ) = (1×T λ̂) ◦σ

which is equivalent to the double linearity axiom onσ by Propo-

sition 3.3.4.

[TC.3] The lift axioms:

(i) The additive bundle equations are a consequence of λ being a lift

and + being the addition induced by the non-singularity of λ.

(ii) The coassociativity axiom

ℓ.T ◦ ℓ= T .ℓ ◦ ℓ

is equivalent to

(λ̂× ℓ) ◦ λ̂= (i d ×T .λ̂) ◦ λ̂

proved in (i) of Proposition 3.2.6.

(iii) The symmetry of comultiplication, c ◦ ℓ= ℓ, is given by the unique

equation for an involution algebroid, so thatσ ◦ (ξ ◦π,λ) = (ξ ◦π,λ).

(iv) The universality of the lift follows from part (ii) of Proposition 3.2.6;

Lemma 4.3.5 ensures that for any V ∈Weil1, bA.V ⊠µ and µ⊠ bA.V are

universal.

This lemma puts a tangent structure on Span(π,ξ,λ,ϱ). Now consider the functor

sending spans to the apex map,

U ϱ : Span(π,ξ,λ,ϱ)→C.
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The family of maps

{ϱU .V :ϱU ⊠ bA.V |U , V ∈Weil1}

gives a family of natural transformations

ϱU : A.T U ⇒ T U .A,

so that the following pair constitute a tangent functor

(U ϱ ,ϱ) : Span(π,ξ,λ,ϱ)→C.

Because the universality conditions on Span(π,ξ,λ,ϱ) followed by reflecting limits

in C using Lemma 4.3.5, it follows that (U ϱ ,ϱ)will preserve the tangent-natural

limits in Span(π,ξ,λ,ϱ) corresponding to transverse limits in Weil1.

By Leung’s Theorem 4.1.7 (by way of Corollary 4.2.6), the tangent structure on

Span(π,ξ,λ,ϱ) induces a strict, monoidal, transverse-limit-preserving functor

Ā : Weil1→ Span(π,ξ,λ,ϱ)

that sends the tensor product ⊗ to the span composition ⊠. By composing

the strict tangent functor (Ā, i d ) and (U ϱ ,ϱ), we have a lax, transverse-limit-

preserving, tangent functor:

(A,ϱ) : Weil1→C; V 7→ A.V

Now, check the bijection on morphisms. Starting with an involution algebroid

morphism ( f , m ) : A→ B , note that this gives a span morphism f̂ :

M A T M

N B T N

T .mm f

This gives a natural definition of f̂ .V using the horizontal composition of span

morphism, so that

f̂ .(U V ) = f̂ .U ⊠ f̂ .V and f̂ .N=m , (4.2)

giving a family of maps { f̂U : U ∈ objects(Weil1)}. Because f will commute with

the structure maps {π,ξ,+, (ξ ◦π,λ),σ}, it follow immediately that f̂ is a natural
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transformation, because the following calculation holds for each θ : X → Y ∈
{p , 0,+,ℓ, c }:

f̂ .U Y V ◦ (Â.U ⊠θ ⊠ Â.V )

= ( f̂ .U ⊠ f̂ .Y ⊠ f̂ .V ) ◦ (Â.U ⊠θ ⊠ Â.V )

= f̂ .U ⊠ ( f̂ .Y ◦θ )⊠ f̂ .V

= f̂ .U ⊠ (θ ◦ f̂ .X )⊠ f̂ .V

= (Â.U ⊠θ ⊠ Â.V ) ◦ f̂ .U X V

Tangent naturality will follow by the preservation of the anchor map by f . The

equality, for any Weil algebra U , of the diagrams

M A.U T U M M A.U T U M

N B .U T U N M T U M T U M

N T U N T U N N T V N T V N

T U .mm

πU ϱU

ϱU

f̂ .U

ϱU

pU

πU

pU

ϱU

pU

T U .mT U .mm

ϱU

=

is precisely the tangent-naturality condition from Definitions 1.3.12, 4.2.1.

For the inverse of this mapping, consider a tangent natural transformation

(Definition 1.3.12)

γ : (A,α)→ (B ,β ),
A ◦T (A) B ◦T (A)

T ◦A(A) T ◦B (A)

γT A

αA βT A

T γA

where (A,α) and (B ,β ) are tangent functors Weil1 → C built out of involution

algebroids with chosen prolongations. For any U , V , the map γ.U V decomposes
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as γ.U ⊠γ.V :

bA.T .T T . bA.T

bB .T .T T . bB .T

bA.T T . bA

bB .T T . bB

bA.p .T=π0

α.T=π1

bA.p

T . bA.p

bB .p

T . bB .p

bB .p .T=π0

β .T=π1

γ.T T .γ

T .γ.T
γ.T T

Applying this relationship inductively, it is clear that the base maps γ.W and γ.N
determine the entire morphism γ.V :

M A.U T U M

N B .U T U N

M An [1] Tn [1].M . . . Tn [1] . . . Tn [k ].M

N Bn [1] Tn [1].M . . . Tn [1] . . . Tn [k ].N

Tn [1]...Tn [k ].γ.Nγ.N

ϱn [1]π◦πi

π◦πi ϱn [1]

γ.Wn [1] Tn [1].γ.N

Tn [1].(π◦πi )

Tn [1].(π◦πi )

...

T U .γ.N

πU

πU ϱU

ϱU

γ.N γ.U

=

Thus, every tangent-natural transformation is constructed out of a pair

(γ.N : M →N ,γ.W : A→ B )

using the ⊠ construction from Equation 4.2. All that remains to show is that this

pair is an involution algebroid morphism.

Tangent naturality gives the following two coherences:

ϱB ◦γ.W = T .γ.N ◦ϱA andσB ◦γ.W W = γ.W W ◦σA

since ϱB =β .W ,ϱA =α.W ,σB = B .c , andσA = A.c by construction. The follow-

ing diagram proves that γ.W preserves the lifts, so that (γ.W ,γ.N) is an involution
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algebroid morphism:

T .A.T T .A.T T .A.T T .B .T T .B .T T .B .T

A.T .T A.T .T B .T .T B .T .T

A.T A.T A.T B .T B .T B .T

A.ℓ

α.T

(ξπ,λA )

π1

T .γ

γ.T

m

B .ℓ

β .T

(ξπ,λB )

β .T

λA λB

Thus, a tangent natural transformation ( bA,α)→ ( bB ,β ) is exactly a morphism of

involution algebroids A→ B , proving the theorem.

Now, the projection for a Lie algebroid is a submersion, as we may make a

choice of prolongations for each U ∈Weil1. These prolongations lead to a new

observation about Lie algebroids: they embed into a category of functors into

smooth manifolds.

Corollary 4.3.10. Using the Weil nerve construction, the category of Lie algebroids

embeds into the tangent-functor category:

LieAlgd ,→ [Weil1,SMan].

4.4 Identifying involution algebroids

This section identifies those tangent functors

(A,α) : Weil1→C

that are involution algebroids as precisely those where A preserves transverse

limits and α is a T -cartesian natural transformation (Definition 4.4.1). These con-

ditions will force each A.V to be the V -prolongation of the underlying anchored

pre-differential bundle:

(A.p : A.T → A, A.0 : A→ A.T , A.T
A.ℓ−→ A.T .T

α.T−→ T .A.T , α : A.T → T .A)

(these conditions also ensure that this tuple is an anchored differential bundle).
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Initially, it is only clear thatα is T -cartesian for the projection p . Indeed, recall

that the prolongation A.U V is defined to be the T -pullback of the cospan:

bA.U
αU

−→ T U .A.N
T U .A.p V

←−−−−− T U . bA.V

Then consider the following diagram:

bA.U W V T U . bA.T .T V

bA.U .V T U . bA.V

bA.T U T U . bA.N

T U .Â.p .VbA.T U .p .T V

bA.T U .p V T U . bA.p V
⌟

⌟

This means that every naturality square ofα for p is a T -pullback; natural transfor-

mations satisfying this property for every map in the domain category are called

T -cartesian.

Definition 4.4.1. A natural transformation γ : F ⇒G is cartesian whenever each

naturality square

F C G C

F D G D

F. f

γ

γ

G . f
⌟

is a pullback. A natural transformation between functors into a tangent category is

T -cartesian whenever each component square is a T -pullback (we will generally

suppress the T when the context is clear).

Now, recall that the Weil complex determined by an involution algebroid has

A.U .V determined by the following T -pullback squares:

bA.U .V T U . bA.V

bA.T U T U . bA.N

bA.T U .p V T U . bA.p V
⌟⌟

Then it is not difficult to show that the T -cartesian condition on a Weil complex

forces it to be an involution algebroid. We first need:

141



Definition 4.4.2. A T -cartesian Weil complex in C is a tangent functor

(A,α) : Weil1→C

for which A sends transverse limits to T -limits and α is a T -cartesian natural

transformation.

The first condition to check is that a T -cartesian Weil complex gives a natural

anchored bundle Â whose Weil prolongations coincide with the functor assign-

ments on objects.

Proposition 4.4.3. Let (A,α) be a T -cartesian Weil complex. Then we have an

anchored bundle

(M := A.N, Â := A.W , π := A.π, ξ := A.ξ, λ :=α.T ◦A.ℓ).

Furthermore,

L (Â) = A.W W , L 2(Â) = A.W W W .

Proof. Suppose we have a tangent functor (F,α) :C→D and a differential bundle

(π,ξ,λ) in C. If F preserves T -pullbacks of π, it preserves the additive bundle

structure on (π,ξ,+), so to show (F.π, F.ξ,α ◦ F.λ) is universal it suffices to show

that the following diagram is a T -pullback in D:

F.A2 T .F.A

F.M T .F.M

F.π2

µα◦F.λ

F.0

F.T .π

Expand this to

F.A2 F.T .A T .F.A

F.M F.T .M T .F.M

F.π2

F.µλ

F.0

T .F.πF.T .π

α.A

α.M

In this case, it restricts to the diagram

A.T2 A.T 2 T .A.T

A A.T T .A

A.µ α.T

A.T .p

α

T .A.p

A.0

⌟
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Each square is a T -pullback by hypothesis, so the universality of the lift follows

by the T -pullback lemma. Because the complex is T -cartesian, the assignment

A.V gives a coherent choice of prolongations by the T -pullback

A.U .V T U .A.V

A.U T U .A

A.U .p V

αU

T U .A.p V

αU

There is, of course, a natural candidate for the involution map.

Corollary 4.4.4. Let (π : A → M ,ξ,λ,ϱ) be the anchored bundle induced by a

T -cartesian Weil complex in a tangent category C. Then we have an involution

map

σ :L (A) A.c−→L (A).

The equations for an involution algebroid should follow immediately by func-

toriality; one need only ensure that the maps take the correct form.

Lemma 4.4.5. Let A be a T -cartesian Weil complex in a tangent categoryC, with

(π : A→M ,ξ,λ,σ) its underlying anchored bundle. Then we have:

(i) A.c .T =σ× c ,

(ii) A.T .c = 1×T .σ,

(iii) A.ℓ.T = λ̂× ℓ.A,

(iv) A.T .ℓ= i d ×T .λ̂.

Proof.
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(i) Consider the diagram

A.T .T .T A.T .T .T

T .T .A.T T .T .A.T

T .T .A T .T .A

A.T .T A.T .T

A.T .T .p

αT T

αT T

T .T .A.p A.T .T .pT .T .A.p

c .A.T

c .A

A.c

A.c .T

⌟ ⌟

Observe that this forces A.c .T = A.c × c .A.T =σ× c .

(ii) Likewise, the diagram

A.T .T .T A.T .T .T

T .T .A.T T .T .A.T

T .A T .T .A

A.T A.T

A.T .p .p

α.T T

αT

T .T .A.p A.T .p .p

αT

T .T .A.p

α.T T

T .A.c

A.T .c

⌟ ⌟

forces A.T .c = i d ×T .A.c = i d ×T .σ.

(iii) The diagram

A.T .T A.T .T .T

T .A.T T .T .A.T

T .A T .T .A

A.T A.T .T

A.ℓ.T

α.T αT T .T

ℓ.A.T

A.T .p T .A.p T .T .A.p

ℓ.A
α

A.ℓ

A.T .T .p

αT T

⌟ ⌟

⌟

⌟

forces A.ℓ.T = A.ℓ× ℓ.A = λ̂× ℓ.
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(iv) As α is T -cartesian, the following diagram is a T -pullback:

A.T .T A.T .T .T

T .A.T T .A.T .T

α.T

A.T .ℓ

α.T .T

T .A.ℓ

⌟

Using previous results, this means that A.ℓ.T is the unique map making the

following diagram commute:

Aϱ×T .πT A Aϱ×T .πT AT .ϱ×T 2.πT 2A

T A T AT .ϱ×T 2.πT 2A

(π1,π2)

T .λ̂

π1

which we can see is i d × λ̂.

Pulling together this lemma and the previous proposition, the following is

now clear:

Proposition 4.4.6. A T -cartesian Weil complex determines an involution alge-

broid.

However, we have not yet exhibited an isomorphism of categories between the

image of the Weil nerve functor and T -cartesian Weil complexes. At first glance,

the Weil nerve construction only gives a Weil complex that is T -cartesian for

the tangent projection p ∈Weil1. Being T -cartesian for p is, however, sufficient:

a Weil complex that is T -cartesian for tangent projections will be T -cartesian

for every map in Weil1 (a similar result appears in the context of differentiable

programming languages; see Cruttwell et al. (2019)).

Proposition 4.4.7. A lax tranverse-limit-preserving tangent functor (F,α) : Weil1→
C for which F preserves pullback powers of each T U .p is T -cartesian if and only if

each

F.T .T T .F.T

F.T T .F

F.T .p

αA

T .F.p

αB
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is a T -pullback.

Proof. We only check the converse since the forward implication is trivial. We

make use of the T -pullback lemma.

(i) c is an isomorphism, so its naturality square is a T -pullback.

(ii) For projections T2→ T , the retract of a T -pullback diagram is a T -pullback,

so the following diagram is universal:

F.T .T2 F.T .T2

F.T .T2 F.T .T

T .F.T2 T .F.T

F.T .T2 F.T .T2

α α

F.T .πiF.T .πi

α α

T .F.πi

F.T .πi

(iii) For 0, observe that the following two diagrams are equal:

F.T F.T .T F.T F.T F.T

T .F T .F.T T .F T .F T .F

α

F.T .p

T .F.p

F.T .0

T .F.0

α α αα
⌟ ⌟

The right diagram is a T -pullback, and the right square of the left diagram

is a T -pullback by hypothesis. By the T -pullback lemma, the left square of

the left diagram is a T -pullback.

(iv) For ℓ, observe that

F.T .T F.T .T .T F.T .T F.T .T F.T F.T .T

T .F.T T .F.T .T T .F.T T .F.T T .F T .F.T

F.T .ℓ

α.T

T .F.ℓ

α.T .T

F.T .p .T

T .F.p .T

α.T
⌟

F.T .p

T .F.p

α.T α
⌟

F.T .0

T .F.0

α.T
⌟
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The outer perimeter of the right diagram is a T -pullback (left square by

hypothesis, right square by (ii)), as is the right square of the left diagram (by

hypothesis). By the T -pullback lemma, the left square of the left diagram is

a T -pullback.

(v) For +, observe that

F.T .T2 F.T .T F.T .T F.T .T2 F.T .T F.T

T .F.T2 T .F.T T .F.T T .F.T2 T .F.T T .F

F.T .+

α.T

T .F.+

α.T

F.T .p

T .F.p

α.T
⌟

F.T .πi

T .F.πi

α.T2 α.T
⌟

F.T .p

T .F.p

α
⌟

The outer diagram on the right is a T -pullback by composition, and the

right square on the left diagram is a T -pullback by hypothesis, so the result

follows.

To check that the naturality square is a T -pullback for every map in Weil1, we

once again use Leung’s characterization of maps in Weil1 from Proposition 4.1.7.

Inductively, the set of maps generated by {p , 0,+,ℓ, c } closed under⊗ and ◦ follows

as T -pullback squares are closed to composition. For maps induced by a tranverse

limit in Weil1, F preserves transverse limits so this follows by the commutativity

of limits.

Theorem 4.4.8. For any tangent category C, the replete image of the Weil nerve

functor

Inv(C) ,→ [Weil1,C]

is precisely the category of T -cartesian Weil complexes.

Corollary 4.4.9. That α : A.T ⇒ T .A is T -cartesian is equivalent to requiring that

the tangent functor

(A,α) : Weil1→C

restricts to an anchored bundle

(π : A.T
A.p
−→ A.N, ξ : A

A.0−→ A.T , λ : A.T
A.ℓ−→ A.T T

α.T−→ T .A.T , ϱ : A.T
α−→ T .A)

and each A.T V is the V -prolongation of this anchor bundle.
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Remark 4.4.10. The condition in Corollary 4.4.9 is analogous to the Segal condi-

tions identifying those simplicial complexes

∆→C

that are internal categories. Note that every simplicial object has an underlying

reflexive graph

tr1(X ) := (s , t : X ([1])→ X ([0]), i : X ([0])→ X ([1]))

where X ([n ]) is isomorphic to the object of n-composable arrows for the underlying

reflexive graph.

Remark 4.4.11. Notably, being T -cartesian for p is enough to force that a natural

transformation is T -cartesian for the other tangent-structural natural transforma-

tions. This has consequences when one uses partial maps to combine topological

notions with tangent categories. In this context, a partial map N → X with domain

M ,→N is a span

M

N X

fm

whose right leg is monic. The intuition is that the map f is defined on the subobject

M of N , which introduces a new problem: what is the proper notion of a subobject

in a tangent category? Such a notion should give rise to a stable class of monics:

one that is closed under horizontal span composition. One answer is the notion

of etale monics: a morphism is etale whenever the naturality square for p is a

T -pullbacks:

T M T N

M T N

T . f

T . f

p p
⌟

Geometrically, this means that the morphism is a local diffeomorphism; for exam-

ple, an etale subobject ofRn in the Dubuc topos is precisely an open subset in the

usual sense. An endofunctor lifts to the partial map category whenever it preserves

the class of monics. A natural transformation lifts to endofunctors on the partial
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map category whenever it is T -cartesian for the class of monics, and the same proof

will show that this property holds for etale monics Cruttwell et al. (2019).

4.5 The prolongation tangent structure

One of the most important consequences of the Weil Nerve Theorem 4.3.9 is

that the category of involution algebroids (with chosen prolongations) may be

equipped with two tangent structures. The first tangent structure is the pointwise

tangent structure described in Proposition 3.3.6. The tangent functor sends

(A,α) 7→ (T .A : Weil1→C, c .A ◦T .α : T .A.T ⇒ T .T .A)

(recall the composition of tangent functors given in Example 1.3.11 (ii)). The struc-

ture morphisms will be given by whiskering, so in this case θ .A,θ ∈ {p , 0,+,ℓ, c }.
The restriction to tangent functors that preserve transverse limits along with the

fact that the natural part α is T -cartesian, however, ensures that precomposition

with the tangent functor

(A,α) 7→ (A.T : Weil1→C, T .α ◦A.c : A.T .T ⇒ T .A.T )

returns an involution algebroid. The structure maps are once again given by

whiskering, with the pre-composition tangent structure A.θ ,θ ∈ {p ,0,+,ℓ, c }.
Preservation of transverse limits guarantees that this tangent structure will satisfy

the necessary universality conditions.

Proposition 4.5.1 (Proposition 3.3.10). The category of involution algebroids with

chosen prolongations in a tangent categoryC has a second tangent structure, where

the action by Weil1 is given by

(A,α) 7→ (A.T : Weil1→C,α.T ◦ Â.c : Â.T .T ⇒ T .Â.T ).

Proof. The proposition statement means that the structure morphisms for this
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new involution algebroid are given by

(A.T ,α.T ◦A.c )∼=







































α.T ◦A.c =ϱ′ : L (A)
π1−→ T A

A.T .p =π′ : L (A)
p◦π1−−→ A

A.T .0= ξ′ : A
(ξ◦π,0)
−−−→L (A)

ϱ′ ◦A.T .ℓ=λ′ : L (A) λ×ℓ−−→ T .L (A)

A.T .c =σ′ : L 2(A)
σ×c−−→L 2(A)

Similarly, we can see that

(A.T .T ,α.T .T ◦A.c .T ◦A.T .c )

=







































α.T .T ◦A.c .T ◦A.T .c =ϱ′′ : L 2(A)
(π1,π2)−−−→ T .L (A)

A.T .p =π′′ : L 2(A)
(p◦π1,p◦π2):−−−−−−−→L (A)

A.T .0= ξ′′ : L (A)
(ξ◦π◦π0,0◦π1,0◦π2)−−−−−−−−−−−→L 2(A)

ϱ′′ ◦A.T .ℓ=λ′′ : L 2(A)
(λ×ℓ×ℓ)
−−−−→ T .L 2(A)

A.T .T .c =σ′′ : L 3(A)
(σ×c×c )
−−−−−→L 3(A)

These coincide with the involution algebroids L ′(A),L ′.L ′(A) in Proposition

3.3.10: the second tangent structure follows from the fact that the natural trans-

formations for the tangent structure there are given by

A.φ : A.U ⇒ A.V ,φ : U →V ∈ {p , 0,+,ℓ, c }.

The result follows as a corollary of Theorem 4.3.9.

The Jacobi identity for involution algebroids

Classically, the theory of Lie algebroids uses the algebra of sections Γ (π). One key

observation is that when using the Lie tangent structure (Inv(C),L ), sections of π

are in bijective correspondence with χL (A). This observation allows for different

statements about Lie algebroids to be translated into formal statements about

the tangent bundle in (Inv(C),L ).

Proposition 4.5.2. Let A be an involution algebroid in C. There is a bijection

between the sections of π in C and the vector fields on A in Inv(C):

X ∈ Γ (π) 7→ ((i d , T X ◦ϱ), X ) : A→ TL (A); X̂ ∈χL (A) 7→ X̂R : A.R → A.T .
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Proof. Recall the coherence for tangent natural transformations γ : (H ,φ) ⇒
(G ,ψ):

H .T K .T

T .H T .K

γ.T

φ ψ

T .γ

We specify this to a morphism X̂ : (A,α)⇒ TL (A,α) = (A.T ,α.T ) at N, W :

A Aϱ×TπT A

T M T A

X .T

ϱ π1

T .X

and so infer that, if we set X := XR , we have π1 ◦X .T = T (X )◦ϱ. Furthermore, the

condition that pL ◦X = i d forces i d =π0◦X .T ; thus, we can see that every section

X of pL is given by a morphism of the form ((i d , T X ◦ϱ), X )) on the underlying

involution algebroids, where π ◦X = i d .

We now show that every X ∈ Γ (π) gives rise to a section of πL . Observe that

the following is a morphism of involution algebroids:

A Aϱ×TπT A

M A

π

(i d ,T X ◦ϱ)

p◦π1

X

Note that it is well typed, as T .π ◦ T .X ◦ϱ = ϱ ◦ i d . Check that it is a bundle

morphism:

p ◦π1 ◦ (i d , T .X ◦ϱ) = p ◦T .X ◦ϱ = X ◦p ◦ϱ = X ◦π

and that it is linear:

(λ ◦π0,ℓ ◦π1) ◦ (i d , T .X ◦ϱ) = (λ,ℓ ◦T .X ◦ϱ)

= (λ, T 2.X ◦ ℓ ◦ϱ) = (λ, T 2.X ◦λ) = T (i d , T X ) ◦λ.

Then check that it preserves the anchor:

π1 ◦ (i d , T X ◦ϱ) = T X ◦ϱ
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and the involution:

(π0,π1, T 2X ◦Tϱπ1) ◦σ= (σ, T 2X ◦Tϱ ◦π1σ)

= (σ, T 2X ◦ c Tϱ ◦π1) = (σ(π0,π1), cπ3) ◦ (i d , T 2X ◦Tϱ ◦π1).

Thus we have that (i d , T X ◦ϱπ1) is a morphism of involution algebroids,

inducing a morphism of T -cartesian Weil complexes. Lastly, we check that it is a

section of p L
A , but this is clear, since

π0 ◦ (i d , T X ◦ϱ) = i d ;

thus we have the desired bijection.

Recall that given an involution on an anchored bundle, there is a bracket on its

set of sections (see the explicit construction in Section 3.4). Given an X , Y ∈ Γ (π),
there is a bracket defined as follows:

λ̂ ◦ [X , Y ]A +1 (ξπ, 0) ◦Y = ((σ ◦ (i d , T Y ◦ϱ) ◦X −2 (i d , T X ◦ϱ) ◦Y )).

A direct proof of the Jacobi identity is a detailed calculation (see the original

preprint on involution algebroids Burke and MacAdam (2019)) and still relies on

Cockett and Cruttwell’s result for an arbitrary tangent category with negatives.

As a result of Proposition 4.5.2, we can instead use Cockett and Cruttwell’s result

directly:

Corollary 4.5.3. Let A be a complete involution algebroid in a tangent category C
with negatives. There is a Lie bracket defined on Γ (π), [−,−] induced by

λ̂ ◦ [X , Y ]A +1 (ξπ, 0) ◦Y = ((σ ◦ (i d , T Y ◦ϱ) ◦X −2 (i d , T X ◦ϱ) ◦Y )).

Proof. The bracket is induced by Rosicky’s universality diagram, as

0= p ◦ ((σ ◦ (i d , T Y ◦ϱ) ◦X − (i d , T X ◦ϱ) ◦Y ))−0Y

= T p ◦ ((σ ◦ (i d , T Y ◦ϱ) ◦X − (i d , T X ◦ϱ) ◦Y ))−0Y .

We look at the Lie tangent structure for Inv∗(A); this is precisely the vector field

induced by

e vR ([X̂ , Ŷ ]).
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We complete the proof by using the result that for any A in a tangent category

with negatives, the bracket on χ(A) that is defined by

ℓ ◦ [X , Y ] = (c ◦T .X ◦Y −T .Y ◦X )−0X

satisfies the Jacobi identity.

Identifying categories of involution algebroids

Section 4.4 identified whenever a functor Weil1→C is an involution algebroid,

whereas this section identifies tangent categoriesC that embed into the category

of involution algebroids in some tangent category C. We call this structure an

abstract category of involution algebroids. This notion involves some 2-category

theory, using a modified notion of codescent (see Bourke (2010) for a development

of codescent).

Recall that for any tangent category C, the category of involution algebroids

has C as a reflective subcategory. Furthermore, because limits of involution

algebroids are computed pointwise, this reflector is left-exact. This left-exact

reflection is the main structure we axiomatize.

Definition 4.5.4. An abstract category of involution algebroids is a tangent cate-

goryCwith a left-exact T -cartesian tangent localization (Z ,ϱ) :C→D, where L

satisfies a codescent condition:

TangCatStrict(Weil1,C) ,→TangCatLax(Weil1,C)
L∗−→TangCatLax(Weil1,D)

(where L∗ denotes post-composition by L) is fully faithful.

Example 4.5.5. The category of involution algebroids in any tangent categoryC is

an abstract category of involution algebroids using (Inv(C ),L ). The reflector is the

functor sending an involution algebroid to its base space; the T -cartesian natural

transformation is the anchor map. Any tangent subcategory of Inv(C) that contains

C as a full subcategory will give rise to an abstract category of involution algebroids.

Proposition 4.5.6. Let Z ,→ C be an abstract category of involution algebroids.

Then there is an embedding C ,→ Inv(Z).
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Proof. The proof follows by treating objects inC as strict tangent functors Weil1→
C and morphisms as tangent natural transformations.

Weil1 C ZZ

L (−,A)

L (−,B )

L (−, f )

The natural part of Z is T -cartesian, and the functor part preserves limits, so

Z .L (−, A) =: Z [A] determines an involution algebroid in Z, and f a morphism of

involution algebroids. The embedding is guaranteed by the codescent condition

so that the post-composition functor is fully faithful.

Corollary 4.5.7. An abstract category of involution algebroids Z ,→C is exactly a

full subcategory Z ,→C ,→ Inv(Z).
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Chapter 5

The infinitesimal nerve and its

realization

The main thrust of Chapters 2, 3, and 4 has been that the tangent categories

framework allows for Lie algebroids to be regarded as tangent functors

Weil1→ SMan

which satisfy certain universality conditions. This chapter, which is more exper-

imental than the previous four chapters and represents work still in progress,

puts Lie algebroids into the framework of enriched functorial semantics. This

new perspective on algebroids uses Garner’s enriched perspective on tangent

categories (Garner (2018)) and the enriched theories paradigm from Bourke and

Garner (2019). The functorial-semantics presentation of the Lie functor will gen-

eralize the Cartan–Lie theorem (that the category of Lie algebras is a coreflective

subcategory of Lie groups) into a statement within the general theory of functorial

semantics.

The goal is to show that the infinitesimal approximation of a groupoid, as

discussed in Example 3.1.2, may be constructed as a nerve, just like Kan’s original

simplical approximation of a topological space. The nerve of a functor K :A →C
approximates objects and morphisms inC byA -presheaves, so it sends an object

in C to theA -presheaf

NK :A →C; C 7→C(K −, C ).
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Thus there will be an infinitesimal object,

∂ : Weilo p
1 →Gpd(W )

where Gpd(W ) denotes groupoids in the category W of Weil spaces (formally

defined in Section 5.1). The nerve of ∂ has a left adjoint, the Lie realization, given

by the left Kan extension (just as Kan’s geometric approximation of a simplicial

set is, in Kan (1958)):

Weilo p
1 Gpd(W )

[Weil1,W ]

Y

∂

L a nY ∂
(5.1)

Theorem 5.5.13 (The Lie Realization). There is a tangent adjunction between the

category of involution algebroids and groupoids inW , where each functor preserves

products and the base spaces.

Gpd(W ) Inv(W )

N∂

|−|∂

⊣

Note, however, that the left Kan extension in Equation 5.1 does not immedi-

ately give the desired adjunction of Theorem 5.5.13, as there is no guarantee that

the nerve functor N∂ lands in the category of algebroids. To prove this we must

revisit the work in Section 4.3 presenting involution algebroids as those functors

A : Weil1→C for which each A(V ) is the prolongation of its underlying anchored

bundle; this leads naturally to the formalism for enriched theories developed in

Bourke and Garner (2019).

The presentation of algebroids as models of an enriched theory requires situat-

ing the categories of differential bundles, anchored bundles, and involution alge-

broids inW as full subcategories ofW -presheaf categories on smallW -categories.

Section 5.1 reviews the work in Garner (2018) characterizing tangent categories as

categories enriched inW =Mod(Weil1,Set) (the cofree tangent category on Set,

by Observation 4.2.5).

Section 5.2 reconfigures the content of Chapter 2 using the enriched perspec-

tive, so that lifts are W -functors from the W -monoid D + 1, while differential

156



bundles are a reflective subcategory of functors from its idempotent splitting.

Similarly, the category of anchored bundles are a reflective subcategory of the

category [Weil11,C], where Weil11 is the category of 1-truncated Weil algebras (Defi-

nition 5.2.8).

Section 5.3 reviews the basic idea of an enriched nerve/approximation. A

particularly important example is the linear approximation of a reflexive graph,

the functor introduced in Example 3.2.7, which is the nerve of a functor

∂ : (Weil11)
o p →Gph(W ).

Section 5.4 applies the enriched theories framework introduced in Bourke

and Garner (2019), where a dense subcategory of a locally presentableA ,→ C
forms the “arities”, and a bijective-on-objects functorA →T is the theory. The

category of models is the pullback of (enriched) categories:

CT [T ,V ]

C [A o p ,V ]

The first step is to freely complete theW -category Weil11 of truncated Weil algebras

(Definition 5.2.8) so that its base anchored bundle has all prolongations; call this

W -categoryL . Then, in every tangent categoryC, the category of anchored bun-

dles with chosen prolongations (Definition 4.3.4) in C embeds fully and faithfully

into the functor category:

AncL (C) ,→ [L ,C]

(here, AncL (C) denotes the category of anchored bundles with chosen prolonga-

tions). In particular, the tangent bundle on N in Weil1 determines a bijective-on-

objects functor

L →Weil1

so that the category of involution algebroids in any tangent category C is the

pullback inWCat:

Inv∗(C) [Weil1,C]

Anc∗(C) [L o p ,C]

⌟
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This means that the category of involution algebroids inW is monadic over the

category of anchored bundles in W using the monad-theory correspondence

from Bourke and Garner (2019).

The final section looks at the category ofW -groupoids. Essentially, the free

groupoid over the linear approximation of a graph will now give an infinitesimal

object Weil1 → Gpd(W ). The nerve of ∂ : Weilo p
1 → Gpd(W )—the infinitesimal

approximation—has a right adjoint via the realization of the nerve functor from

Definition 5.3.5. This is used to prove the culminating Theorem 5.5.13.

The individual pieces of categorical machinery used in this chapter are not

new (the enriched perspective on tangent categories, enriched nerve construc-

tions, enriched theories). However, all of the results dealing with the application

of enriched nerve constructions and enriched theories to tangent categories is

original work of the author.

5.1 Tangent categories via enrichment

This section gives a quick introduction to Garner’s enriched perspective on tan-

gent categories. The enriched approach to tangent categories first appeared in

Garner (2018) and builds on the category perspective on tangent categories in-

troduced in Leung (2017). Garner was able to exhibit some of the major results

from synthetic differential geometry as pieces of enriched category theory; for

example, the Yoneda lemma implies the existence of a well-adapted model of

synthetic differential geometry.

The category of Weil spaces is the site of enrichment for tangent categories

and is closely related to Dubuc’s Weil topos from his original work on models of

synthetic differential geometry Dubuc (1981); a deeper study of this topos may

be found in Bertram (2014). Recall that the category Weil1 is the free tangent

category over a single object. The category of Weil spaces is the cofree tangent

category over Set, which is the category of transverse-limit-preserving functors

Weil1→ Set by Observation 4.2.5. Call this the category of Weil spaces, and write

itW . Just as a simplicial set S :∆→ Set is a gadget recording homotopical data, a

Weil space records infinitesimal data.
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Definition 5.1.1. A Weil space is a functor Weil1→ Set that preserves transverse

limits (Definition 4.1.5): that is, the ⊗-closure of the set of limits
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A morphism of Weil spaces is a natural transformation. Write the category of Weil

spaces asW .

Example 5.1.2.

(i) Every commutative monoid may be regarded as a Weil space canonically.

Observe that for every V ∈Weil1 and commutative monoid M , one has the

free V -module structure on M given by |V |⊗CMonM (here |V | is the underlying

commutative monoid of V ). The commutative monoid |V | is exactly NdimV,

so that

|V | ⊗CMon M ∼=⊕dim V M .

This agrees with the usual tangent structure on a category with biproducts.

(ii) Following (i), any tangent category C that is concrete—that is, admitting a

faithful functor U : C→ Set—will have a natural functor into Weil spaces

(copresheaves on Weil1). Every object A will have an underlying Weil space

V 7→USet(T V (A)), and whenever U preserves connected limits (such as the

forgetful functor from commutative monoids to sets), each of the underlying

copresheaves will be a Weil space.

(iii) Consider a symmetric monoidal category with an infinitesimal object, which

by Proposition 4.2.7 is a transverse-colimit-preserving symmetric monoidal

functor D : Weil1→C. Then for every object X , the nerve (Definition 5.3.1)

ND (X ) :C(D−, X ) : Weil1→ Set is a Weil space.

(iv) For any pair of objects A, B in a tangent category, C(A, T (−)B ) : Weil1→ Set is

a Weil space by the continuity of C(B ,−) :C→ Set.
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Unlike the category of simplicial sets, the category of Weil spaces is not a topos.

The category of Weil spaces does, however, inherit some nice properties from

the topos of copresheaves on Weil1 by applying results from Section 5.3, as it is

locally presentable. The basics of locally presentable categories can be found in

the Appendix 6.2. Roughly speaking, a cocomplete categoryC has a subcategory

of finitely presentable objects C f p , those C so that

C(C ,−) :C→ Set

preserves filtered colimits (i.e. those colimit diagrams that commute with all finite

limits in Set). C is locally finitely presentable whenever every object is given by

the coend

C ∼=
∫ X ∈C f p

C(X , C ) ·X

where S · X is the (possibly infinite) product X |S | with |S | the cardinality of the

set S . This means thatC= Lex(Co p
f p ,Set), where Lex means the category of finite-

limit-preserving functors.

The third point of Corollary 5.1.4 below, thatW is locally finitely presentable

as a cartesian monoidal category, means that the categoryW f p is closed under

products. This implies thatW is locally presentable as aW -category (this ends up

being an important technical condition whereby locally presentableW -categories

make sense). Whenever we discuss an arbitrary V -category, we will assume that

V is locally presentable as a monoidal category.

Proposition 5.1.3 (Garner (2018)). The category of Weil spaces is a cartesian-

monoidal reflective subcategory of [Weil1,Set].

Corollary 5.1.4. The category of Weil spaces is

(i) a cartesian closed category;

(ii) a representable tangent category, where the infinitesimal object is given by

the restricted Yoneda embeddingY : Weilo p
1 →W ;

(iii) Locally finitely presentable as a cartesian monoidal category.
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The cofree tangent structure onW is given by precomposition, that is:

T U .M .(V ) =M .(U ⊗V ) =M .T U .V .

This tangent coincides with the representable tangent structure induced by the

Yoneda embedding. The proof is an application of the Yoneda lemma. Observe

that

[D , M ](V )∼= [Weil1,Set](D ×Y (V ), M )∼= [Weil1,Set](Y (W V ), M )∼=M (W V )

where D ×Y (V ) =Y (W V ) follows because the tensor product in Weil1 is cocarte-

sian and the reflector is cartesian monoidal.

Notation 5.1.5. The tangent categoryW is a representable tangent category, where

D =YW (Definition 1.3.7). We will write the Yoneda functorY : Weilo p
1 →W as

D (−), so it is closer to the usual notation used in representable tangent categories

or synthetic differential geometry (a single D may be used as shorthand for D (W ),

D (n ) for D (Wn ), etc.). Note that

D (V ) =D (⊗k Wn (i )) =
K
∏

D (ni )

and that D (ℓ) =⊗, D (c ) = (π1,π0), D (+) =δ, and so on.

At this point, we are ready to move to the enriched perspective on tangent

categories. The basics of enriched category theory may be found in the Appendix

6.2, but one definition in particular is important to include here.

Definition 5.1.6. Let C be a V -category for V a closed symmetric monoidal cat-

egory. For J ∈ V , the power by J of an object C ∈ C is an object C J so that the

following is an isomorphism:

∀D :V (J ,C(D , C ))∼=C(D , C J )

whereas the copower is given by

∀D :V (J ,C(C , D ))∼=C(J •C , D ).
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LetJ ←-V be a full monoidal subcategory of V . A V -category C has coherently

chosen powers byJ if there is a choice ofJ -powers (−)J so that

(C J )K =C J⊗K .

Likewise, coherently chosen copowers are a choice ofJ -copowers so that

K • (J •C ) = (K ⊗ J ) •C .

The sub-2-categories of V -categories equipped with coherently chosen powers and

copowers are V CatJ and V CatJ , respectively.

Wood (1978) proved that the 2-category of actegories over a monoidal C is

equivalent to the 2-category of [C,Set]-enriched categories with powers by rep-

resentable functors (Definition 5.1.6), using the monoidal structure on [C,Set]
induced by Day convolution1. Moreover, Garner (2018) showed that a monoidal

reflective subcategory V ,→ Â exhibits the 2-category of V -categories as a re-

flective sub-2-category ofA -categories; this proves that tangent categories are

equivalent to a particular class of enriched category.

Proposition 5.1.7 (Garner (2018)). A tangent category is exactly aW -category with

powers by representables.

Proof. For every A, B ∈C0, the Weil space is defined as

C(A, B ) :=U 7→C(A, T U B ).

The functor C(A,−) is continuous and T −B is an infinitesimally linear functor, so

this is a Weil space. The following diagram gives the composition map :

C(B , C )×C(A, B ) C(A, C )

C(B , T U C )×C(A, T V B ) C(A, T V U C )

C(T V B , T V .T U C )×C(A, T V B )
T V ×i d m

1The Day convolution tensor product of presheaves X , Y : Co p → Set is given by X b⊗Y :=
Lan⊗(X ⊠Y ), where (X ×Y )(V ) = X (V )×Y (V ) (Day (1970)).
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Note that it is natural in U and V .

By the Yoneda lemma (as the internal hom inW is the internal hom of co-

presheaves on Weil1),

C(A, T V B ) = (U 7→C(A, B )(V ⊗U )) = [D (V ),C(A, B )]

so this category has coherently chosen powers by representable functors.

Now the original notions of (lax, strong, strict) tangent functors can be shown

to correspond to power-preservation properties ofW -functors betweenW -categories

with coherently chosen powers:

Theorem 5.1.8 (Garner (2018)). We have the following equivalences of 2-categories:

(i) the 2-category ofW -categories with coherently chosen powers and TangCatLax;

(ii) the 2-category of W -categories with coherently chosen powers and power-

preservingW functors and TangCatStrong;

(iii) The 2-category ofW -categories with coherently chosen powers and chosen-

power-preservingW functors and TangCatStrict.

Note that for a lax tangent functor (F,α) :C→D, the map

α.X : F.T .X → T .F.X

can be seen as the unique morphism induced by universality. Conversely, for a

strong tangent functor, the natural isomorphism α is the isomorphism from a

power F.T .X to the coherently chosen power T .F.X . In contrast, a strict tangent

functor preserves the coherent choice of powers.

The ability to work withW -categories that do not have powers by representa-

bles allows for significant flexibility. It is useful to observe that there are W -

categories which are not tangent categories.

Example 5.1.9.

(i) Every monoid (M , m , e ) in W gives rise to a one-object W -category whose

hom-object is M , composition is m, and unit is e .
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(ii) Given a tangent category C, it is possible to take the full W -category over some

set of objects D, even though D may not be closed under iterated applications

of the tangent functor.

(iii) The dual of a W -category is a W category, where

Co p (A, B ) =C(B , A) : Weil1→ Set.

Dually, in the case that C is a tangent category,Co p will have coherent copow-

ers by representables.

(iv) If a cartesian category Chas an infinitesimal object D (Definition 1.3.7), it has

a naturalW -category structure (with coherent copowers by representables)

C(A, B ) : Weil1→ Set :=C(A×D (−), B ).

Using the dual tangent structure onCo p from Proposition 1.3.8, the enrich-

ment on C is exactly the enrichment found by regarding C as the dualW -

category of the tangent category Co p .

As a final remark, note that the Yoneda lemma applies toW -categories, so

there is an embedding

C ,→ [Co p ,Set].

The powers and copowers by representables are computed pointwise in a presheaf

category, so they inherit the coherent choice. Thus the following holds:

Corollary 5.1.10 (Garner (2018)). Every tangent category embeds into aW -cocomplete

representable tangent category.

(In fact, showing that the Yoneda embedding applies to tangent categories is

the main theorem of Garner (2018).)

5.2 Differential and anchored bundles as enriched

structures

This section gives an enriched-categorical reinterpretation of the work in Chapter

2 regarding differential bundles and Chapters 3 and 4 regarding anchored bundles.
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Differential bundles as enriched structures

As a first case study using the enriched perspective for tangent categories, con-

sider differential bundles. Most of the work in Chapter 2 uses the intuition that

differential bundles are some sort of tangent-categorical algebraic theory; this

section will make that intuition concrete. Recall that a lift (Definition 2.2.3) is

a map λ : E → T E . Using the enriched perspective and treating T E as a power

(recall Definition 5.1.6), this gives the following correspondence:

λ : 1→C(E , E D )

λ̂ : D →C(E , E )

The commutativity condition for λ̂, then, is translated as follows:

E T E D ×D C(E , E )×C(E , E )

T E T 2E D C(E , E )

⊙ mE ,E ,E

λ̂×λ̂

λ̂

λ

λ T .λ

ℓ

That is, λ̂ is a semigroup morphism D →C(E , E ). In any cartesian closed category

with coproducts, a semigroup may be freely lifted to a monoid using the "exception

monad" (−) +1 from functional programming (see, for example, Seal (2013)).

Definition 5.2.1. Regard the following monoid as the one-objectW -category Λ:

D ×D +D +D +1
(ιL ◦m |ιL |ιL |ιR )−−−−−−−−→D +1

m : (D +1)× (D +1)→D +1

Thus, a lift λ is exactly a functor λ̂ : Λ→ C. Now check that morphisms are

tangent natural transformations. Note that the semigroup D is commutative,

so Λ = Λo p ; the choice of using Λo p in the next lemma is to be consistent with

conventions used in Section 5.3.

Lemma 5.2.2. The category of lifts in a tangent category C is isomorphic to the

category ofW -functors andW -natural transformations Λo p →C.
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Proof. Check that aW -natural transformation is exactly a morphism of lifts f :

λ→λ′. Start with theW -naturality square:

D +1 C(A, A)×C(A, B )

C(A, B )×C(B , B ) C(A, B )

(λ, f ◦!)

( f ◦!,l )

mAB B

mAAB

Now, rewriting D +1→C(A, B ) as a semigroup map D →C(A, B ), we have:

D
(λ, f ◦!)
−−−→C(A, A)×C(A, B )

mAAB−−−→C(A, B )

1
(λ′, f )
−−→C(A, T A)×C(A, B )

1×T−−→C(A, T A)×C(T A, T B )
mA,T A,T B−−−−−→C(A, T B )

1
T f ◦λ′
−−−→C(A, T B )

Similarly, the other path is exactly λ′ ◦ f . Thus, aW -natural transformation is

exactly a morphism of lifts.

It is a classical result in synthetic differential geometry that the object D has

only one point. In the case ofW , this follows from the Yoneda lemma (regarding

W as a Set-category):

W (1, D ) =Weil1(N[x ]/x 2,N) = {! :N[x ]/x 2→N}

Note that the natural idempotent e : i d ⇒ i d from Proposition 2.2.8, then, must

be the point 0 : 1→D . Note that this idempotent is an absorbing element of the

monoid D +1, so for any f : X →D +1, it follows that m ( f ,0◦!) =m (0◦!, f ) = 0◦!.
A pre-differential bundle is exactly a lift with a chosen splitting of the natural

idempotent p ◦λ.

Lemma 5.2.3. For every lift λ̄ :Λo p →C, the natural idempotent e = p ◦λ is exactly

1
0−→D

ιL−→D +1→C(E , E ).

Now that the natural idempotent is understood as a map inΛ, that idempotent

splits to give the theory of a pre-differential object.

Definition 5.2.4. TheW -category Λ+ is given by the set of objects {0, 1}with hom-

Weil-spaces. Specifically,
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• The hom-spaces are Λ+(1, 1) =D +1, otherwise Λ+(i , j ) = 1.

• Composition (writing the original composition from Λ as m) is given by

m111 : (D +1)× (D +1)
m−→ (D +1)

m101 : 1×1
ιR−→ (D +1)

otherwise: mi j k =!

Idempotent splittings are absolute (co)limits, and are preserved by all functors;

as this is a limit completion, we have the following.

Lemma 5.2.5. The category of pre-differential bundles is exactly the category of

W -functors Λ+→C (that is, C-valued presheaves).

It is straightforward to exhibit the category of differential bundles as a reflective

subcategory of pre-differential bundles in [Λ+,C] (so long as C has equalizers).

Proposition 5.2.6. The category of differential bundles in a tangent category C
with T -equalizers and T -pullbacks is a reflective subcategory of [Λ+,C].

Proof. The category of pre-differential bundles in C is isomorphic to [Λ+,C]. By

Corollary 2.4.8, the category of differential bundles is the category of algebras

for an idempotent monad on the category of pre-differential bundles inC. The

reflector sends a pre-differential bundle to the T -equalizer:

A T E T E
e .E

T .e

This equalizer will always exist ifC has equalizers, and pullbacks of the projection

will exist ifC has pullbacks, so the pullback is a differential bundle. This reflection

gives a left-exact idempotent monad on [Λ+,C] whose algebras are differential

bundles.

Now, in the case that C is a locally presentable tangent category (such asW ),

[Λ+,C] is locally presentable and so is the reflective subcategory of differential

bundles; thus the following holds.

Corollary 5.2.7. If C is locally presentable, then DBun(C) is a locally presentable

category.
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Anchored bundles

There are two ways to think about anchored bundles:

(i) an anchored bundle is a differential bundle with an anchor A→ T M , or

(ii) an anchored bundle is an involution algebroid without an involution.

These two perspectives can be unified by regarding A as a cylinder for the weighted

limit T M , so that the anchor is induced by the unique map A.T .0→ T .A.0:

Λ+ C
A

T M

ϱ

That is, the syntactic category for anchored bundles is constructed as a fullW -

category of Weil1 that doesn’t include the map c . This may be found by taking the

full subcategory of Weil1 whose objects are constructed out of Wn , n ∈N.

Definition 5.2.8. A Weil algebra has width k ∈N if it can be written

V =⊗0≤i<k Wn (i ), n (i ) ∈N

The category of k -truncated Weil algebras, written Weilk1 , is the fullW -subcategory

of Weil1 of Weil algebras of width k or less.

The full subcategory whose objects are {N, W }will be given the special notation

Weil∗1.

Note that for each V in Weilk1 , the enrichment is given by

Weilk1 (U , V ) := (X 7→Weil1(U , X ⊗V )).

The maps in Weil11—that is, the full subcategory of Weil1 whose objects are

{Wn |n ∈N}

—have the useful property that they may be written without the flip c . This makes

Weil11 a natural candidate for the syntactic category of anchored bundles.
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Lemma 5.2.9. Every morphism

Wn →V ∈Weil1

may be written without c ; that is, it is generated by the set of maps {p ,+, 0,ℓ} closed

under tensor, composition, and maps induced by transverse limits.

Proof. Every map Wn →V in Weil1 is the finite sum

v 7→
∑

x

(Ax v ) • x

where x ∈ var(V ), and Ax ∈Nn so that An v is the ordinary dot product. Each term

can be written without c , and the whole term is then constructed by adding each

component using the appropriate U .+ .V -symbols. 2

It is possible, then, to show that the category of anchored bundles in C is a

full sub-tangent-category of functors Weil11→C; note that W acts as a cone for

(−)D , so this induces a map

ϱ : F (W )→ T .F (N).

Proposition 5.2.10. Every anchored differential bundle inC determines a functor

Weil11→C; an anchored bundle morphism is exactly an enriched natural transfor-

mation.

Proof. Start with an anchored bundle (q : E →M ,ξ,λ,ϱ); then for hom-objects

with domain N,

Weil11(N,N) = 1 7→ i dM , Weil11(N, T ) = 1 7→ ξ.

For the hom-objects with domain T , the problem is slightly more difficult, as

Weil11(T ,N)(T V ) =Weil1(T , T V ) and Weil11(T , T )(T ) =Weil1(T , T .T V ). This part of

the proof amounts to constructing maps

Weil1(T , T V )→C(E , T V .M ), Weil1(T , T V .T )→C(E , T V .E )/
2This may also be regarded as a consequence of the graphical notation for maps in Weil1 in

Table 1 on page 308 of Leung (2017).
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The first mapping is straightforward: send θ to θ .M ◦ϱ. For the second map,

observe that the following diagrams commute:

T A T 2M A T M A T M A2 T2M

A T M M M M M A T Mϱ

T .ϱ

λ ℓ ξ 0

ϱ ϱ

π p +q

ϱ2

+.M

ϱ

The idea is to take an anchored bundle morphism f and rewrite it as a string of

compositions that does not include c , switching out every occurrence of

T V .θ .M ,θ ∈ {p , 0,+,ℓ}

and replacing it with T V .(θ ′), where θ ′ is the corresponding map in {q ,ξ,+q ,λ}.
This induces a map

Weil11(W , W )→C(E , E ) ∈W

and the ϱ is exactly the unique α : F.W → T .F induced by universality.

For morphisms, the inclusion (Λ+)o p →Weil1 ensures that any tangent natural

transformation will be a linear morphism on the underlying differential bundle,

and the tangent natural transformations coherences ensure that a tangent natural

transformation will preserve the anchor. Conversely, an anchored bundle mor-

phism will preserve each of the constructed morphisms E → T V .E , E → T V .M

(as it preserves each of {q ,+q ,ξ,λ}), giving a natural tangent transformation. Thus

there is a faithful embedding Anc(C) ,→ [Weil11,C].

The converse, identifying those functors Weil11→C that determine anchored

bundles, is immediate.

Corollary 5.2.11. The category of anchored bundles comprises precisely theW -

functors andW -natural transformations A : Weil∗1→C (Definition 5.2.8) so that

the precomposition Λ+→Weil∗1→C determines a differential bundle. That is to

say, the category of anchored bundles in C is the following pullback inWCat:

Anc(C) [Weil11,C]

DBun(C) [Λ+,C]

⌟
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5.3 Enriched nerve constructions

Nerve constructions present a powerful generalization of the Yoneda functor that

sends an object C ∈ C to the representable presheaf C(−, C ) ∈ [Co p ,V ] (for a

general reference on nerve constructions and their realizations, see Chapter 3

of Loregian (2021)). The Yoneda lemma states that this functor is an embedding

(that is, it is fully faithful), so no information is lost when embedding a category

into its category of presheaves. Nerve constructions, then, move this towards an

approximation of the original category C by some subcategory D ,→C, or more

generally by some functor K :A →C. In Section 5.5, the “infinitesimal” approxi-

mation of a Lie groupoid as a Lie algebroid will be exhibited as approximation by

aW -functor ∂ : Weilo p
1 →Gpd(W ).

We work with a V that is locally presentable as a monoidal category, such as

W ,Set, or the category of commutative monoids.

Definition 5.3.1. The nerve of a V -functor K :A →C is the functor

NK :C→ [A o p ,V ]; C 7→C(K −, C )

Any presheaf A :A →V that is in the image of NK is a K -nerve.

Remark 5.3.2. The “K -nerve” terminology seems to go back to Grothendieck/Segals’s

original intuition for the nerve construction of a category3 (Segal (1974)) and ap-

pears in, for example, Berger et al. (2012) and Bourke and Garner (2019). However,

the “approximation” of a category by a functor K :A →C originally used in topol-

ogy seems to be a more intuitive description of the functor NK .

Example 5.3.3.

(i) The nerve of the identity functor C=C is the usual Yoneda embedding C ,→
[Co p ,W ].

(ii) The first example of a nerve construction in the mathematical literature is

the simplicial approximation of a topological space by Kan (1958). Recall the

original construction of the simplicial nerve of a topological space X , where

3Segal published the result, but seems to have credited the theorem to Grothendieck.
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Xn =Top(∆n , X ). This is exactly the nerve of the functor∆→Top that sends

n to the n-simplex
¦

x ∈Rn |
∑

xi = 1
©

.

(iii) The following example figures into Segal’s original nerve construction for

a category, and is revisited in Section 5.4. Define a reflexive graph to be a

presheaf over the full subcategory of Cat whose objects are the two preorders

[0] = 0, [1] = 0< 1.

This is equivalent to the free category with two parallel arrows and a common

retract,

[1] [0]
t

s
e

so that a graph in a category has an object-of-vertices V and an object-of-

edges E , along with source and target maps s , t : E →V ; morphisms of graphs

are maps ( fE , fV ) that commute with the source and target maps.

By Corollary 5.4.3, any full subcategory containing the representables will

be dense. Define the category of paths, Pth, to be full subcategory of graphs

generated by

[0] [0]

[1] . . . [1]

[n ]

[t ] [s ][s ] [t ]

⌟

, n ∈N

so that Gph([n ],G ) picks out the set of paths of length n in a graph G . We

call this subcategory P : Pth → Gph, and see that NP sends a graph to its

Pth-presheaf of composable paths:

En

E . . . E

V V

t s t s

⌟

172



The pushout [n ] is precisely the graph

0−→ 1−→ . . .−→ (n −1)−→ n

where the reflexive map e at each vertex is suppressed.

Recall the functor sending reflexive graphs to anchored bundles from Example

3.2.7(iv). This may be restated as a nerve construction.

Proposition 5.3.4. There is a functor

∂ : Weil∗1→Gph(W )

so that N∂ : Gpd(W )→ [Weil∗1,W ] is the linear approximation of a reflexive graph

as described in Example 3.2.7 (iv).

Proof. Let s , t : C →M , e : M → C be a reflexive graph, and recall that the an-

chored bundle C ∂ →C is induced by the equalizer

C ∂ T .C T .C
e .T1

T .e s

The category Gph is a representable tangent category, where D is the discrete

graph D =D . By the Yoneda lemma, we have that

[Gph,W ](Y 1,G ) =G1, [Gph,W ](Y 0,G ) =G0, [Gph,W ](D ×Y (i ),G ) = T .Gi ,

so the limit diagram defining the infinitesimal approximation of a graph becomes

C ∂ Gph(D × I , C ) Gph(D × I , C ).
(e×I )∗

(D×e −)∗

Now observe that Gph(W )o p with the dual tangent structure from Proposition

1.3.8 has a reflexive graph object

s , t : 1→ I , ! : I → 1.

Construct its linear approximation as in Example 3.2.7(iv) (e.g. take the coequal-

izer ofW -graphs):

D × I D × I ∂ .
e×I

D×e s
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By Proposition 5.2.10, this determines a functor

∂ : Weil11→Gph(W )o p .

By the continuity of the hom-functor, the nerve N∂ : Gph(W )→ [Weil∗1,W ] lands

in the category of anchored bundles. The continuity of the hom-functor ensures

that this is indeed the linear approximation from Example 3.2.7 (iv).

The simplicial localization in Kan (1958) has a left adjoint, the geometric real-

ization, that constructs a topological space using the data of a simplicial set. This

realization may be constructed using a left Kan extension.

Definition 5.3.5. Let K :A →Cbe aV -functor for a cocomplete C. The realization

of K is the left Kan extension

A bA

C

K

Y

|−|:=L a nK Y |C |K :=

∫ A

C(K A, C ) •K A

A nerve/realization context is a V -functor K :A →C from a small A to a cocom-

plete C.

The adjunction between simplicial sets and topological spaces follows from

general categorical machinery as a nerve/realization context:

Lemma 5.3.6. For every nerve/realization context K :A →C, the realization of K

is left adjoint to the nerve of K .

5.4 Nervous monads and algebroids

Transposing the characterization of algebroids from Theorem 4.3.9 to the enriched

perspective introduces the challenge of finding an appropriate framework to

describe algebroids as enriched structures. Kelly’s theory of enriched sketches

(see Chapter 6 of Kelly (2005)), smallV -categories equipped with a chosen class of

limits cones, seems to be a natural candidate. However, when regarding a tangent

functor as aW -functor, the natural part

α : F.T ⇒ T .F
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is the unique morphism induced by the universality of T as a weighted limit, so

it becomes unclear how to translate the condition that α is a cartesian natural

transformation (Definition 4.4.1).

A clue for how to proceed may be found in Kapranov (2007), which proved that

Lie algebroids are monadic over anchored bundles (when allowing for infinite-

dimensional vector bundles). Recent work in Bourke and Garner (2019) and

Berger et al. (2012) has developed the appropriate notion of (enriched) theories

that correspond to monads over general locally presentable categories. A critical

insight is that for a filtered-colimit-preserving monad T on Set, the opposite

category of the Lawvere theory T is precisely the full subcategory of the Kleisli

category whose objects are [n ] =
∐

n 1, and the nerve of the inclusion

T o p ,→ SetT

is fully faithful; that is, when the functor K is dense. Formally, a functor is dense

whenever its nerve behaves like the Yoneda embedding. The theory of dense

functors is developed in Chapter 5 of Kelly (2005). We continue to assume that an

arbitrary site of enrichment V is locally presentable as a V -category.

Definition 5.4.1. A functor K :A →C is dense whenever the nerve of K is fully

faithful, and a subcategory inclusion that is dense will be called a dense subcate-

gory.

Dense functors are poorly behaved under composition, but there is a useful

cancellativity result from Section 5.2 of Kelly (2005).

Proposition 5.4.2. Consider a diagram of V -categories

X Z

Y

K

F
J

α

where α is a natural isomorphism and K is dense. If this diagram exhibits (α, J ) as

the left Kan extension of K along F , then J is also dense.

Corollary 5.4.3. If K is dense, F is fully faithful, and J .F = K , then F is a dense

subcategory.
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Generally speaking, we will often refer to dense subcategories rather than

dense functors. This is achieved by factoring the dense functor

K =A K ′−→ im(K ) ,→C

where im(K ) is the V -category whose objects are those ofA and whose hom-

objects are given by im(K )(A, B ) =C(K A, K B ), so that the inclusion of im(K ) into

C is fully faithful and therefore dense by Corollary 5.4.3.

Example 5.4.4.

(i) The category of finite cardinals Σ is the full subcategory of Set whose objects

are given by finite coproducts of the terminal object, [n ] =
∐

n 1. This is a

skeleton of the category of finite sets, and a dense subcategory of Set (see e.g.

Bourke and Garner (2019)).

(ii) Recall that the category of V -presheaves onA , [A o p ,V ] is the free colimit

completion ofA (see e.g. Kelly (2005)). If C is cocomplete, and K :A →C
is dense, then the realization | − |K exhibits C as a reflective subcategory of

[A o p ,V ], and is this a locally presentable category4. Conversely, if C is a

reflective subcategory of [A o p ,V ] that contains the representable functors,

thenA is a dense subcategory of C.

(iii) By Corollary 5.2.7, the category of differential bundles in W is a reflective

subcategory of [Λ+o p ,V ], so Y : Λ+ ,→ [Λ+o p ,V ] is a dense subcategory of

differential bundles inW following the argument in the above example.

Nervous theories (Bourke and Garner (2019)) are generalizations of Lawvere

theories that extend to arbitrary locally finitely presentable V -categories. Re-

call that a classical Lawvere theory is a bijective-on-objects, product-preserving

functor

t :Σ→T

where T is a cartesian category. Nervous theories replace Σ with a dense sub-

category of some locally presentable V -category, and the product preservation

condition with conditions on the nerve of the theory map.
4In fact, an equivalent definition of a locally presentable category is as a cocomplete category

with a dense subcategory.
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Definition 5.4.5. Let K :A → C be a dense V -subcategory of a locally finitely

presentable C. We call the replete image of NK in [A o p ,V ] the category of K -

nerves. AnA -theory is a bijective-on-objects V -functor J :A →T , where each

T (J−, a ) :A →V

is a K -nerve. The category of models for anA -theory is the pullback in V CAT:

CT ÒT

C cA

J ∗

NK

⌟

(These are called concrete models in Bourke and Garner (2019).)

Remark 5.4.6. The category of models for a theory is monadic. The core of the

argument is due to Weber’s nerve theorem, found in Weber (2007), but an exposition

on that result is beyond the scope of this thesis.

Example 5.4.7.

(i) A functor t :Σ ,→T is a Σ-theory if and only if T is a Lawvere theory, where

we use the fact that Σ (Example 5.4.4) a skeletal subcategory of finite sets. The

nerve conditions in this case identify the models of the Lawvere theory, as the

nerve of Σ ,→ Set sends a set to the strict product-preserving functor [n ] 7→ An .

(ii) As shown in Berger et al. (2012) and Bourke and Garner (2019), the original

nerve construction from Segal (1974) may be restated as saying that small

categories arise as models of a Pth-theory (Example 5.3.3). The set Gph([n ],G )

is the set of paths of through the graph G that have n non-identity elements,

as

G t ×s G ∼=G t ×i d M i d×s G ∼=G t ×s◦e ◦s G t ◦e ◦t ×s G .

Next, recall that the category∆may be regarded as follows:

• Objects: A strict order [n ] = 0 < 1 < · · · < n, for n ≥ 0, regarded as a

category.

• Maps: Functors.
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There is a bijective-on-objects functor from Pth→∆ that sends the graph [n ]

to the pre-order [n ], as every graph homomorphism between paths will be

order-preserving. Now observe that a model is precisely a simplicial set, where

X ([0]) =M , X ([1]) =C , X ([2]) =C t ×s C , X ([3]) =C t ×s C t ×s C .

Furthermore, the map

0

0

1

1

2

in∆ becomes a composition map:

X ([2])→ X ([1])
C t ×s C →C

Associativity and unitality (for the section e : M →C ) follow by functoriality.

Thus, a model of Pth→∆ is a small category, and a morphism is exactly a

functor.

Corollary 5.2.11, then, gives a monadicity result forW -anchored bundles over

W -differential bundles.

Proposition 5.4.8. W -anchored bundles are models of the theory (Λ+)o p → (Weil∗1)
o p

(see Section 5.2).

Proof. Note that the inclusion Λ+→Weil11 is a differential bundle, so it is a nerve.

Then the diagram:

Anc(W ) [Weil∗1,W ]

DBun(W ) [Λ+,W ]

⌟

exhibitsW -anchored bundles as models of a (Λ)o p -theory.

As a corollary, we see that the category of anchored bundles is locally pre-

sentable.
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Corollary 5.4.9. The category of anchored bundles is locally presentable, and

(Weil∗1)
o p ,→Anc(W ) is dense.

In Bourke and Garner (2019), the authors identify exactly those monads on a

locally presentable V -category that correspond to the models of a theory. Recall

the notation that the category of algebras for a monad isCT and the category of

free coalgebras isCT . For a dense subcategoryA ,→C, useAT for the category

of free algebras over objects inA . Recall that the Lawvere theory

K : FinSet→T

for a filtered-colimit-preserving monad T on Set may be re-derived as the full

subcategory of free algebras over finite sets, KT : FinSetT ,→ SetT ,→ SetT. Nervous

monads abstract this property.

Definition 5.4.10. Let C be a locally presentable V -category, with K :A →C a

dense sub-V -category. A V -monad T over C is K -nervous if

1. the inclusion KT :AT ,→CT is dense;

2. the following diagram is a pullback in V CAT:

CT [A o p
T ,V ]

C [A o p ,V ]

Theorem 5.4.11 (Bourke and Garner (2019)). Let K : A ,→ C be a dense sub-

V -category of a cocomplete V -category C. There is an equivalence of categories

betweenA -theories andA -nervous monads on C.

The first step in showing that algebroids are monadic over anchored bun-

dles is to construct a dense subcategory of Anc(W ) that plays the role of the V -

prolongations from Definition 4.3.4. The enriched framework makes this straight-

forward: prolongations are weighted limits, with which we may freely complete

Weil∗1.
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Definition 5.4.12. Consider the category Anc(W ) as a representable tangent cate-

gory, and take the dual tangent structure on Anc(W )o p . The categoryL is defined as

the full subcategory of Anc(W )o p whose objects are generated by the prolongations

of the Yoneda embeddingY : Weil∗1→Anc(W ).

For any small W -category C, the free completion of C is the opposite W -

category of the category of copresheaves onC.5 Thus,L is the free completion of

Weil11 with prolongations. Therefore, a choice of prolongations on an anchored

bundle A determines a unique functorL →C given by right Kan extension (see

e.g. Kelly (1982)). The continuity of

Anc(W )(−, A) : Anc(W )o p →W

ensures that Anc(W )(LV , A) is AV .

By Theorem 4.3.9, the category of involution algebroids in C is a full sub-

W -category of [Weil1,C] that has a forgetful functor down to the category of

anchored bundles. A consequence of Theorem 4.4.8 is that a functor Weil1→C is

an involution algebroid if and only if the precomposition

Weil∗1 ,→Weil1→C

restricts to an anchored bundle, with each V sent to the V -prolongation of this

anchored bundle. In other words, algebroids are models of the following enriched

theorem (as in Definition 5.4.5).

Definition 5.4.13. Define theL o p -theory of algebroids as the functor

a :L →Weil1.

This functor is bijective-on-objects by definition, and satisfies the nerve condition

because the V -prolongation of the tangent bundle is T V , so each presheaf

Weil1(a−, V ) :L →W

is anL -nerve.

5This is the dual statement of the classical theorem that the category of presheaves is the free
cocompletion of a small category C.
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The Weil nerve, then, translates to the following characterization of the cate-

gory of involution algebroids in a tangent category C.

Theorem 5.4.14. The category of involution algebroids with chosen prolongations

in a tangent category C is precisely the pullback inWCAT:

I n v ∗(C) [Weil1,C]

An c ∗(C) [L ,C]

⌟ (5.2)

Consequently, inW involution algebroids are monadic over anchored bundles.

Proof. Recall the correspondence

Ā : Weil1→C ∈WCat
(Â,α) : Weil1→C ∈TangCatl a x

If

Weil∗1→L →Weil1→C

determines an anchored bundle (π : A→M ,ξ,λ,ϱ)whose V -coprolongation is

Â.V , so that Â is the nerve of an involution algebroid by Corollary 4.4.9.

Thus, we may characterize W -involution algebroids as algebras for a L -

nervous monad on the category ofW -anchored bundles.

Corollary 5.4.15. The category of involution algebroids inW is equivalent to the

category of algebras for theL -nervous monad on Anc(W ) generated by the theory

a :L →Weil1

from Definition 5.4.13, using Theorem 19 from Bourke and Garner (2019).

Remark 5.4.16. The construction of involution algebroids as the category of models

for aL -theory is remarkably similar to the original nerve construction for categories

in Segal (1974), with the symmetric nerve construction for groupoids replacing∆

with the category of finite sets Σ (see Example 44 (iv) of Bourke and Garner (2019)).

Each construction truncates the original category to two objects and builds a new

category with a bijective set of objects by freely adding limits to the two-object

truncation.
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5.5 The infinitesimal approximation of a groupoid

This section contains the main theorem of the chapter, namely that there is an

adjunction

Gpd(W ) Inv(W )⊣

This adjunction follows by inducing a nerve/realization context on the category

of groupoids inW :

∂ : Weilo p
1 →Gpd(W ).

A simplified version of this functor appeared in Proposition 5.3.4, the linear ap-

proximation of a reflexive graph. In fact, ∂ will be exactly the free groupoid over

the graph ∂ from Proposition 5.3.4 (if we had worked in the category of reflexive

graphs equipped with an involution). Recall that groupoids and Weil spaces are

both models of a sketch (recall Section 5.1). The symmetry of the theories gives

two equivalent presentations of groupoids inW :

Definition 5.5.1. The tangent category ofW -groupoids is equivalently

(i) the tangent category of internal groupoids inW , where the tangent structure

is computed pointwise;

(ii) the tangent category of transverse-limit-preserving functors Weil1→Gpd(Set)
with the cofree tangent structure from Observation 4.2.5.

It is important to note that the tangent structure onW -groupoids is repre-

sentable, as it is a cartesian closed category with an infinitesimal object given

by Weil1 ,→ W ,→ Gpd(W ) (a proof that Gpd(C) is cartesian closed for a carte-

sian closed category C with sufficient limits a may be found in Section B2.3 of

Johnstone (2002)).

There are two classes of “trivial”W -groupoids that will be useful.

Example 5.5.2.

(i) Every small groupoid G may be regarded as a groupoid inW as the constant

functor Weil1→Gpd(Set) sending V to the groupoid G preserves transverse

limits, we may then apply the symmetry of theories to find a groupoid in the

category of Weil spaces.
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(ii) Every object M in a category has a cofree groupoid given by s , t : M =M , this

is the discrete groupoid whose only morphisms are the identity maps. Thus,

every Weil space M ∈W has a corresponding discrete groupoid (this will often

be written M =M to denote the discrete groupoid over M ).

Using the cartesian closure of W and the full subcategories of trivial and

discrete groupoids, we have the following:

Observation 5.5.3. The category ofW -groupoids is both

(i) aW -category, with powers byW . The power of aW -groupoid G = s , t : G →
M by a Weil space E is given by theW -groupoid

[E ,G ] = {[E , s ], [E , t ] : [E ,G ]→ [E , M ], [E , e ] : [E , M ]→ [E ,G ]};

(ii) a Gpd-enriched category with powers by small groupoids. The power of a

W -groupoid G : Gpd→W by a groupoidH is theW -groupoid

[H ,G ](V ) = [H ,G (V )]Gpd.

The following twoW -groupoids form the basic building block for the main

result.

Example 5.5.4.

(i) Set D :=YW inW . The discrete groupoid D =D represents the tangent func-

tor internally, and the copresheaf Gpd(D ,−) : Gpd(W )→W sends a groupoid

s , t : G →M to T M .

(ii) The arrow groupoid is the free groupoid generated by the graph:

•→ •

Write the trivialW -groupoid on this groupoid as I . Note that the power by I

will send a groupoid to its “arrow groupoid” G→, the groupoid whose objects

are arrows inG , with a map u→ v being a commuting square. It follows that

Gpd(I ,G ) is the space of arrows of the groupoid, Gpd(I × I ,G ) the space of

commuting squares, and so on.

183



The next proposition gives the necessary properties of I to construct the Lie

derivative.

Lemma 5.5.5.

(i) For every groupoid G = s , t : G →M , there is an isomorphism

G t ×t G s×t G ∼=Gpd(W )(I × I ,G );

this corresponds to the unique filler for the diagram

• •

• •
u

v

w

∃!w−1◦v ◦u

(ii) The arrow groupoid has a semigroup with a zero structure (like an infinitesi-

mal object D ), and the multiplication is the coequalizer

1× I

I × I I × I I

I ×1

!×I s×I

I×! I×s

m

The dual result of part (i i ) is somewhat more obvious to see, as the following

fork is always an equalizer inW for a groupoid G :

G G □ G □
G e [s ]×I

G I×e [s ]

G m

(where we write G as the object of arrows and Gpd(W )(I × I ,G ) as G □). Note that

G e [s ]×I and G I×e [s ] correspond to the idempotents on G □:

• • • • • •

• • • • • •
q

u

v

w

u

u

q q G I×e [s ]G e [s ]×I
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Also note that a commuting square is equalized by these two maps if and only if

u = q = i d , which forces w = v ; these commuting squares are exactly the image

of G m .

The semigroup structure on I represents the map sending

Y X Y

X X X

u

u

u

Now look at the ∂ defined in Proposition 5.3.4, and take the same colimit in

Gpd(W ). Groupoids are monadic over reflexive graphs with an involution, so this

is essentially the free groupoid over that graph (as the free functor is a left adjoint

and therefore preserves colimits).

Definition 5.5.6. Define theW -groupoid ∂ to be theW -coequalizer

D × I D × I ∂
e×I

D×e [s ]

where e = 0◦!, e [s ] = i ◦ s . Note that just as in Proposition 5.3.4, ∂ is an anchored

bundle.

The properties of the arrow groupoid make it possible to prove the following

theorem.

Theorem 5.5.7. The object ∂ determines a cartesianW -functor

∂ (−) : Weilo p
1 →Gpd(W )

that is both an infinitesimal object inW -groupoids and an involution algebroid in

Gpd(W )o p .

Proof. Write the pushout powers of ξ : 1→ ∂ as ∂ (n ), and for any Weil algebra

V =Wn (1)⊗ . . .⊗Wn (k ), write ∂ (V ) = ∂ (n1)× . . .× ∂ (nk ). Composition for internal

categories will be written in the diagramattic order, writing composition as an

infix semicolon “;” to keep it distinct from composition of morphisms inW .

The proof has two main steps:
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1. For every Weil algebra V , there is an isomorphism

∂V
∼= ∂ (V )

where ∂V is the V -prolongation of the anchored bundle in Gpd(W )o p .

2. The universal lift for the anchored bundle, given as a coequalizer

∂ × ∂ ∂ × ∂ ∂
e ∂ ×∂

e ∂ ×∂

⊡

is a semigroup.

From (1) and (2), we may infer that the object ∂ is an infinitesimal object. The

semigroup map ⊡ is commutative and has a zero by (2), and satisfies all of the

couniversality axioms by (1).

1. The proof of this step follows by induction on the width (Definition 5.2.8) of

the Weil algebra V , where the cases 0, 1 both hold by definition. In the case

n = 2, we need only check this holds for ∂ × ∂ ∼= ∂W W :

D × ∂

D L2 ∂ × ∂

∂

(i d ,0)

δ

⌟

(δ,i d )

(i d ,0)

For any G , a map X : ∂ × ∂ → G corresponds to a commuting square in

T 2G of the form

• •

• •

T .e ◦u

ve .T ◦v

u

so that T .e ◦v = i d and e .T ◦u = i d . It follows that u = (e .T ◦v )−1; (T .e ◦u ); v

(Lemma 5.5.5 (i)), and that precomposition with the uniquely induced map

determines (ū , v ) : X →G L (2), where

T .0 ◦ ū = u .
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Observe that any pair (ū , v ) : X →G L (2) determines a square

• •

• •

T .0◦ū

ve .T ◦v

where T .e ◦ v = i d and T .e ◦ ū = i d . Note that T .0 ◦T .p ◦T .0 ◦ ū = T .0 ◦ ū ,

and that the bottom horn is u = (e .T ◦ v )−1; (T .0 ◦ ū ); v ; now check

T .e ◦u = (T .e ◦ e .T ◦ v )−1; (T .e ◦T .0 ◦ ū ); (T .e ◦ v )

= i d ; T .0 ◦ ū ; T .e ◦ v = T .0 ◦ ū

and

e .T ◦u = e .T ◦ (e .T ◦ v )−1; (T .0 ◦ ū ); v

= (e .T ◦ e .T ◦ v )−1; (e .T ◦T .0 ◦ ū ); (e .T ◦ v )

= (e .T ◦ v )−1; i d ; (e .T ◦ v ) = i d

thus determining a map X →G ∂ ×∂ . The two maps are inverse to each other,

giving an isomorphism.

For the inductive case, look at the prolongations of anchored bundles and

recall that

AU V ⊠M AZ = AU V ⊠L (U ,A) AU Z

Where AU V and AU Z are treated as spans over AU , so that

AU
i d⊠πV

←−−− AU V
a n c U⊠AV−−−−−−→ T U .AV

AU
i d⊠πZ

←−−− AU Z
a n c U⊠AZ−−−−−−→ T U .AZ

and observe that their span composition is

AU V Z

AU V T V .AU Z

AU T V .AU T Z .T V .AU

ϱU⊠AV T U .(ϱU⊠AZ )

⌟
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So it now suffices to prove that the diagram

∂U ×DV ∂U × (DV × ∂Z )

∂U × ∂V ∂U × (∂V × ∂Z )

⌟

is a pushout. But by the inductive hypothesis,

DV DV × ∂Z

∂V ∂V × ∂Z

⌟

so the result follows by the cocontinuity of ∂U×(−), and Gpd(W ) is a cartesian

closed category (so X × (−) is cocontinuous).

2. Recall that the fork

I × I I × I Ime [s ]×I

I×e [s ]

is a coequalizer. Also note that e ∂ is the coequalizer of e , e [s ]. The commu-

tativity of colimits then ensures that there is a multiplication map induced

by the following diagram:

(D × I )2 (D × I )2 ∂ 2

(D × I )2 (D × I )2 ∂ 2

D × I D × I ∂

Thus the multplication is associative, is commutative, and has a zero given

by 1
0×s−→D × I .

Aan immediate corollary of Theorem 5.5.7 is that the ∂ determines a nerve/

realization where the nerve factors through the category of involution algebroids.

This puts the Lie functor into a nerve/realization context (recall Definition 5.3.5).
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Definition 5.5.8. The Lie realization is the left Kan extension

| − |∂ = L a n∂ : Inv(W )→Gpd(W ).

This functor is well behaved. First, ote that it preserved products:

Lemma 5.5.9. The realization functor preserves products.

Proof. Product preservation is a consequence of |−|∂ being the left Kan extension

of a cartesian functor along a cartesian functor (Day and Street (1995)). Note that

this implies
∫ v
∂ (v ) = 1.

Next, we see that the realization of an involution algebroid has the same base

space.

Lemma 5.5.10. The base space of the groupoid ∂ is D v .

Proof. When constructing the colimit of groupoids, the colimit’s base space is the

ordinary colimit for the diagram of the base spaces. The reflector from simplicial

objects to groupoids preserves products, so it suffices to check that the base space

of ∂ (n ) is D (n ).

The base space of I is 1+ 1, and the map e s
0 is given by δ−◦!. Since D is a

discrete cubical object, its base space is D ×1. Thus the coequalizer defining ∂ is

D +D D +D ∂0

0◦!+0◦!

i d+0◦!
.

A map γ : D +D →M is a pair of maps γ0,γ1 : D →M . We can see that γ0 and γ1

agree at 0 (they are both γ0(0)), and γ(0) is a constant tangent vector. It follows

that γ1 ◦ (i d |i d ) = γ.

Now recall the co-Yoneda lemma: for any V -presheaf A :Co p →V ,

F (C ) =

∫ C ′∈C

C(C , C ′)⊗ F (C ′).

In particular, for an involution algebroid inW (or anyW -presheaf on Weilo p
1 ),

A(U ) =

∫ V ∈Weil1
Weilo p

1 (U , V )×A(V ) =

∫ V ∈Weil1
Weil1(V ,U )×A(V ).
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Lemma 5.5.11. For any involution algebroid A,

A(R ) =

∫ V ∈Weil1
A(V )×D V .

Proof. Use the tangent structure on Weil1 to regard it as aW -enriched category:

D V =Y (V ) =Weil1(V ,−) = (U 7→Weil1(V ,U ))

= (U 7→Weil1(V ,U ⊗R )) =Weil1(V , R ).

The following computation gives the result:

A(R ) =

∫ V

Weil1(V , R )×A(V ) =

∫ V

D V ×A(V ).

We can now see that the base space of an involution algebroid is isomorphic

to the base space of its realization. That is to say, the realization sends an involu-

tion algebroid over a Weil space M to a groupoid over the Weil space M (up to

isomorphism).

Proposition 5.5.12. Let A be an involution algebroid inW . Then |A|([0]) = A(R ).

Proof. Use the Yoneda lemma, and the fact thatY [0] = 1 is a small projective so

that Gpd(1,−) isW -cocontinuous. Now apply Lemma 5.5.10 and Lemma 5.5.11:

|A|([0]) =Gpd(1, |A|)

=Gpd

�

1,

∫ v∈Weil1
A(v ) • ∂ v

�

=

∫ v

A(v )×Gpd(1,∂ v )

=

∫ v

A(v )×D v = A(R ).

Thus, as a final result, we have achieved an adjunction between the category

of involution algebroids and groupoids inW that is product-preserving and stable

over the base spaces.
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Theorem 5.5.13 (The Lie Realization). There is a tangent adjunction between the

category of involution algebroids and groupoids inW , where each functor preserves

products and the base spaces.

Gpd(W ) Inv(W )

N∂

|−|∂

⊣

Remark 5.5.14. Just as the introduction to this thesis begins with the work of

Charles Ehresmann, we should take a moment to see how the Lie realization relates

to his original research into sketch theory. Rather than sketches, we use their

closely related cousins, essentially algebraic theories, which in this case are small,

finitely completeW -categories. We may regard Gpd(W ) and Inv(W ) asW -functor

categories

Lex(TGpd,W ), Inv(TGpd,W ),

respectively (where Lex means finite-limit-preservingW -functors). The functor

∂ : Weilo p
1 →Gpd(W ) induces a left-exactW -functor

∂̂ :TInv→TGpd.

This means the functor from Lie groupoids to Lie algebroids is induced by a mor-

phisms of essentially algebraic theories, and may thus be presented as a morphism

of sketches.
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Chapter 6

Conclusions and future work

6.1 Conclusions

We now take stock of what this thesis has accomplished.

Enriched essentially algebraic presentations of geometric structures This the-

sis has been concerned with categories of vector bundles and Lie algebroids in

smooth manifolds. While these are not models of a limit sketch in the category

of smooth manifolds, classical results such as the Serre–Swann theorem or Vain-

trob’s presentation of Lie algebroids indicate that these categories do have some

algebraic description. By combining the results in Chapters 2 and 3, we can see

that vector bundles and Lie algebroids are characterized by tangent categorical

gadgets, differential bundles (Theorem 2.5.1) and involution algebroids (Theorem

3.5.1). By combining these observations with the enriched perspective on tangent

categories, the results in Section 5.2 exhibit vector bundles and Lie algebroids

as models of enriched sketches (Proposition 5.2.6 and Theorem 5.4.14), as can

also be found in Chapter 6 of Kelly (2005). Note that from this perspective, the

construction of the Weil nerve of an involution algebroid is mostly important as

an intermediate step.

New tangent structures for Lie algebroids and groupoids It is well known that

the categories of Lie algebroids and groupoids have tangent structures induced
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by post-composition with the tangent functor, yielding the tangent algebroid

and tangent groupoid, respectively. The key result in Chapter 4 exhibiting the

category of Lie algebroids as transverse-limit-preserving cartesian-tangent func-

tors Weil1→ SMan, then, gives the category of Lie algebroids a second tangent

structure that corresponds to Martinez’s prolongation Lie algebroid. Similarly,

the construction of the infinitesimal nerve of a local groupoid restricts to a new

tangent structure on the category of Lie groupoids; in this case, the base space is

the Lie algebroid of the groupoid G , and the total space is the Lie algebroid of the

arrow groupoid G 2.

While this may seem like a piece of formal category theory, it is closely related

to symmetry reduction in classical mechanics using Lie theory. This goes back to

Poincaré’s celebrated note Poincaré (1901), which introduced the Euler-Poincare

formulation of Lagrangian mechanics on a manifold equipped with a Lie group

action, where the tangent bundle is replaced with a Lie algebra action (see Marle

(2013) for a modern exposition). Poincaré’s formalism has been extended to Lie

groupoids and Lie algebroids in Weinstein (1996) and Martínez (2001), and the

thesis Fusca (2018) investigates fluid mechanics through this lens. This work may

be interpreted as using the novel tangent structures on Lie groupoids and Lie

algebroids given in Chapters 4 and 5, and warrants further investigation.

Functorial semantics of Lie theory The work in Section 5.5 puts the Lie deriva-

tive on a new formal grounding:

(i) In the enriching category W , the Lie derivative functor now arises as a

nerve/realization context. This guarantees the existence of a left adjoint—the

realization—that constructs a Lie groupoid from an algebroid. The realiza-

tion preserves products and is stable over the base space.

(ii) It is only a small extension of the work in Section 5.5 to show that the Lie

derivative of a groupoid in a tangent category may generally be regarded

as a weighted limit, where AV = {∂ (V ),G } for each Weil prolongation of the

involution algebroid of the groupoid.

These appear to be new results, although in a nerve/realization approach they

had previously appeared in Lie theory in the form of Sullivan’s construction (Sul-
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livan (1977)), which takes the differential graded algebra of a Lie algebroid and

constructs a simplicial set:

DGAo p (Ω(∆n ), A)

where Ω(∆n ) is the de Rham cohomology of the n-simplex in cartesian space.

6.2 Future work

This section outlines various lines of research that were either cut from the thesis

while writing due to time and/or space constraints, or new lines of research that

the thesis-writing process has motivated but which have not yet been pursued.

Enriched sketches and Mackenzie theory Following Voronov (2012), Mackenzie

theory refers to the body of research developed by Kirill Mackenzie and his collabo-

rators into Lie theory, particularly structures like double Lie algebroids (Mackenzie

(1992)), VB-Lie algebroids (Bursztyn et al. (2016)), double Lie groupoids and so

on. Intuitively, a double Lie algebroid is a Lie algebroid in the category of Lie

algebroids, while a VB-Lie algebroid is a vector bundle in the category of Lie al-

gebroids. These structures have an intuitive relationship with tensor products

of sketches; that is, for limit sketches A, B there is a chain of isomorphisms of

categories:

Mod(A,Mod(B ,Set))∼=Mod(A⊗B ,Set)∼=Mod(B ,Mod(A,Set)).

We have already demonstrated that the Lie algebroids and vector bundles are

W -sketchable, so the natural next step is to revisit Mackenzie theory via this lens.

Certain results such as the symmetry of partial Lie derivatives from Mackenzie

(1992) (given a double Lie groupoid, the order in which the Lie functor is applied

doesn’t matter) should be immediate.

A tangent categorical formalization of mechanics Several papers in synthetic

differential geometry have translated aspects of Lagrangian and Hamiltonian me-

chanics into the synthetic setting (Bunge and Heggie (1984); Nishimura (1997)),

and to a degree this has made it difficult to build enthusiasm for a tangent cate-

gorical presentation of mechanics. These approaches generally emphasize the
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ability to construct function spaces, or the use of a topos-theoretic internal lan-

guage. The novel tangent structures for Lie algebroids and groupoids presented

here, however, provide a new line of inquiry: to develop a unified framework for

Lagrangian or Hamiltonian mechanics in a tangent category that agrees with the

algebroid and groupoid approaches to mechanics.
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Appendix: Background on locally

presentable V -categories

Synthetic differential geometry uses a topos-theoretic framework, such as can be

found in the final chapters of Lavendhomme (1996). The internal language of a

topos is a key tool, and models of synthetic differential geometry are constructed

using sheaf constructions. Tangent categories have an analagous toolbox, drawing

from enriched locally presentable categories. We begin with locally presentable

categories; basic material on these may be found in Adámek and Rosický (1994),

and on enriched categories in Kelly (2005). The following class of colimits is

foundational in the theory of locally presentable categories.

Definition .0.1. A category is filtered whenever any finite diagram in C has a

cocone. A colimit whose diagram category is filtered is called a filtered colimit.

Note that a category D is filtered if and only if every colimit diagram D → Set
commutes with every finite limit in Set.

Example .0.2.

(i) Any finite category C with a terminal object is filtered: for any diagram

D :D→C , the natural transformation ! : i d ⇒ K1 is a cocone via whiskering.

D C CD

K1

!

(ii) Any category with finite colimits is filtered, because each diagram has a colimit

(and therefore a cocone).
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Definition .0.3. An object in a cocomplete C is finitely presentable whenever

C(C ,−) preserves filtered colimits. A cocomplete category C is locally finitely pre-

sentable whenever it has a small subcategory C f p of finitely presentable objects so

that every object in C is given by the coend

C ∼=
∫ X ∈C f p

C(X , C ) ·X .

Example .0.4. In the category Set, the subcategory of finitely presentable objects is

precisely the category of finite sets. Every set is a filtered colimit of finite sets, so that

Set is locally finitely presentable.

Intuitively, this means that every object inC is generated by gluing together

finitely presentable objects in a canonical way; hence the name locally finitely

presentable categories.

The subcategory of finitely presentable objects in a cocomplete category is

itself finitely cocomplete. This follows from the fact that C(−, X ) : Co p → Set
is a continuous functor (it sends colimits in C to limits in Set) and also that

filtered colimits commute with finite limits in Set. Thus, for any filtered colimit

of representables,

C(colD , limF )∼= limX limY C(D (X ), F (Y ))∼= limY limXC(D (X ), F (Y )).

There are several ways to characterize locally finitely presentable categories; these

may be found in Adámek and Rosický (1994).

Proposition .0.5. For a category C the following are equivalent:

(i) C is a locally finitely presentable category.

(ii) For a small cocomplete categoryC ,C= Lex(C ,Set) (where Lex means finite-

limit-preserving) andC =Co p
f p .

(iii) C is the category of models for some limit sketch (e.g. a small category C
equipped with a class of conesL , where a model is a functor into Set sending

cones to limit diagrams).
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(iv) C is a reflective subcategory of a presheaf topos for some small category C
(this holds tautologically for presheaf topoi).

(v) C is a full subcategory of a locally presentable category that is closed under

limits (this relies on a large cardinal axiom known as Vopenka’s principle).

One of the remarkable aspects of the theory of locally finitely presentable

categories is that its results translate over to enrichment in a monoidal category

V without any significant changes.

Definition .0.6. Let V be a monoidal category. A V -graph C is given by a (large)

set of objects C0, and a map

C :C0×C0→V .

Given a collection of maps

mAB C :C(B , C )×C(A, B )→C(A, C ), jA : I →C(A, A)

we say C is a V -category whenever the following associativity and unitality dia-

grams commute:

C(B , D )⊗C(A, B )

(C(C , D )⊗C(B , C ))⊗C(A, B ) C(A, D )

C(C , D )⊗ (C(B , C )⊗C(A, B )) C(C , D )⊗C(A, C )

m

m⊗i d m

α

i d⊗m

I ⊗C(B , C ) C(B , B )⊗C(B , C )

C(B , C ) C(B , C )

C(B , C )⊗ I C(B , C )⊗C(C , C )

λ

j⊗i d

m

ρ

i d⊗ j

m

Examples of enrichment abound throughout category theory.

Example .0.7.
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(i) Any category with biproducts is enriched in the category of commutative

monoids.

(ii) A symmetric monoidal closed category is self-enriched using the internal hom

[−,−].

(iii) A 2-category is a category enriched in Cat.

(iv) The unit V category is the 1-object V category whose hom-object is I .

(v) When V is symmetric monoidal, we can construct the opposite V -category of

C , where Co p (A, B ) =C(B , A). The new composition is defined by

m o p :Co p (B , C )⊗Co p (A, B )
σ−→C(B , A)⊗C(C , B )

m−→C(C , A) =Co p (A, C )

There is a 2-category of V -categories for any V .

Definition .0.8. A V -functor F :C→D is an assignment on objects F0 :C0→D0

and a collection of maps FA,B :C(A, B )→D(F0A, F0B ) so that the following diagrams

are satisfied:

C(B , C )⊗C(A, B ) D(F0B , F0C )⊗D(F0A, F0B ) I C(A, A)

C(A, C ) D(F0A, F0C ) D(F0A, F0A)

m C

F ⊗F

m D

F

F

j C
A

j D
F0 A

A V -natural transformation F ⇒G is a collection of maps γA : I →D(F0A,G0A) so

that the following diagram commutes:

D(F0B , F0C ) D(F0B , F0C )⊗ I D(F0B , F0C )⊗D(G0B , F0B )

C(B , C ) D(G0B , F0C )

D(G0B ,G0C ) I ⊗D(G0B ,G0C ) D(G0B , F0B )⊗D(G0B ,G0C )

G

F

ρ i d⊗γ.B

m

λ γ.C⊗i d

m

V Cat is the 2-category ofV -categories,V -functors andV -natural transformations.
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Enriched categories have a richer notion of (co)limit than ordinary categories.

A limit for a functor is defined as a universal cone; that is, a right Kan extension

along !:

1

D C

! KA

F

β

so that the universal property

∀C : C(C , lim F )∼= [C,Set](KC , F −)

is satisfied. Dually, a colimit is a universal cocone, and so a left Kan extension:

D C

1

F

! KA

β

where the couniversal property

∀C : [Co p ,Set](F −, KC )∼=C(colimF, C )

is satisfied. This does not translate over to V -categories, for a few reasons. An

obvious one is that V need not be cartesian monoidal, so there is no reason a

V -category should have a functorC→ 1. The notion of a weighted colimit is more

appropriate:

Definition .0.9. Let D be a V -category, and call W : D → V the weight and D :

D→C the diagram. The limit of D weighted by W , or the weighted limit {W ,D},
is an object satisfying the following universal property:

∀C : V (W , [C,V ](F −, KC ))∼=C(F, W , C ).

Dually, given a diagram P :Do p →C, the colimit of P weighted by W , W ∗P , is an

object in C satisfying the universal property

∀C : V (W , [C,V ](KC , F −))∼=C(C , F ∗W ).

Example .0.10.
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(i) A conical (co)limit is weighted by the constant functor into the unit I , KI :

D→w . This coincides with the definition of ordinary (co)limits.

(ii) The power of C by an object V ∈ V is an object C V satisfying the universal

property that

C(B , C V )∼=V (V ,C(B , C )).

Dually, the copower by V is given by

C(B •V , C )∼=V (V ,C(B , C )).

(iii) In ordinary categories, the power of an object C by V is given by the (possibly

infinitary) V -indexed coproduct:

C V ∼=
∐

v∈V

C

whereas the copower is the possibly infinitary V -index product of C :

V •C ∼=
∏

v∈V

C .

(iv) In a symmetric monoidal closed category V , the power by V is given by [V ,−]
and the copower by V ⊗ _.

Following Kelly’s work, we observe that every finite weighted limit is composed

of powers and conical limits.

Proposition .0.11. Every weighted (co)limit is the composition of conical (co)limits

and (co)powers.

Corollary .0.12. Weighted limits are exactly conical/ordinary limits in ordinary

categories.

The previous definitions relating to locally presentable categories transfer

over mostly unchanged.

Definition .0.13.
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(i) A monoidal closed V is presentable as a closed category if V f p is a monoidal

subcategory.

(ii) Given V as in (i), a weight W :D →V is filtered whenever W ⋆ (−) : ÒD →V
preserves finite limits.

(iii) An object in a cocomplete V category is finitely presentable when C(C ,−)
preserves filtered weighted colimits.

(iv) A cocomplete V -category C is locally finitely presentable whenever every

object C is the coend

C ∼=
∫ X ∈C f p

C(X , C ) ·X .

Proposition .0.14 (Freyd and Kelly (1972); Kelly (2005)). All of the previous results

about locally presentable categories lift up to locally presentable V -categories,

provided that V is presentable as a closed category.
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