
UNIVERSITY OF CALGARY

Implementation of Message Passing Language

by

Prashant Kumar

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN COMPUTER SCIENCE

CALGARY, ALBERTA

February, 2018

© Prashant Kumar 2018

Abstract

Message Passage Language (MPL) is a programming language based on the work of Cockett

and Pastro. MPL is a statically typed concurrent programming language with message pass-

ing as the concurrency primitive. It brings communication safety to interacting processes

using a type system. MPL consists of two languages, concurrent MPL and sequential MPL,

which can interact with each other. Concurrent MPL programs are written using concur-

rency constructs built into the language and protocols, which are concurrent data types.

These concurrency constructs allow intuitive modelling of real world concurrency scenar-

ios. Sequential MPL is a functional programming language. In addition to data definitions,

sequential MPL allows codata definitions, which can model infinite structures. Sequential

MPL allows for disciplined recursion using folds and unfolds in addition to normal recursion.

In this thesis, we develop the first prototype of a compiler for MPL. We reformulate MPL’s

design to allow normal recursion in addition to primitive recursion, the only form of recursion

allowed in previous designs. In light of the changes made to MPL, we describe MPL’s type

system. Then we develop an algorithm for type inferencing MPL programs, and implement

it. In addition, we develop and implement an abstract machine to run MPL programs.

We also develop the intermediate languages through which MPL programs compile to the

abstract machine. We describe and implement the algorithms used in the compilation of

MPL programs to the abstract machines, namely lambda lifting and compilation of pattern-

matching.

ii

Acknowledgements

I am grateful to my supervisor Dr. Robin Cockett for his support over the years. Needless to

say, this thesis would not be possible without him. I would like to thank Jonathan Gallagher

for his technical insights to the project and being a mentor to me. I would also like to

thank my group members and friends Dr. Cristine Bauer, Jonathan Gallagher, Mathhew

Burke, Chad Nester, Ben McAdam, JS Lemay, Cole Comfort, and Daniel Satanove for the

wonderful conversations, both technical and non technical, we have had over many a lunches

and dinners. I am also thankful to them for sharing their valuable suggestions on the various

chapters of my thesis. I would like to thank Dr. Robin Cockett, Dr. Richard Zach, and Dr.

Mea Wang for serving on my thesis committee.

I would like to thank my wife Anju for her patience and moral support all these years,

and for proofreading my thesis. I am indebted to my parents whose indefatigable enthusiasm

for my education has made this moment possible.

iii

Dedicated to my loving parents and my wonderful wife Anju

iv

Table of Contents

Abstract ii

Acknowledgements iii

Dedication iv

Table of Contents v

List of Tables ix

1 Introduction 1
1.1 Structure of an MPL Program . 1
1.2 An Example of an MPL Program . 2
1.3 Stages of Interpretation of an MPL Program 3
1.4 Contributions of this Thesis . 5
1.5 Structure of the Thesis . 5
1.6 Related Work . 6

1.6.1 π-Calculus . 6
1.6.2 Session Types . 8

2 Sequential MPL 11
2.1 Data Types and Constructs for Data Types 11

2.1.1 Examples of Data Types . 12
2.1.2 Mutually Recursive Data Types . 14
2.1.3 Examples of Mutually Recursive Data Types 14
2.1.4 Constructs for Data Types . 16

2.2 Codata Type and Constructs for Codata Type 18
2.2.1 Examples of Codata Types . 19
2.2.2 Mutually Recursive Codata Types . 20
2.2.3 Constructs for Codata Types . 21

2.3 Other Sequential MPL Constructs . 24
2.3.1 If-Then-Else . 24
2.3.2 Where . 24
2.3.3 Switch . 24
2.3.4 Function Calls . 25
2.3.5 Variables . 26

v

2.3.6 Constants . 26
2.4 Pattern Matching . 26

3 Concurrent MPL 28
3.1 Channels . 28
3.2 Processes . 29
3.3 Channel Types . 30

3.3.1 Achieving Type Safety Using Channel Types 30
3.3.2 Built-in Channel Types . 31
3.3.3 Defining (Co)Protocols in MPL . 32

3.4 Concurrent MPL constructs . 33
3.4.1 Process Call . 33
3.4.2 The plug Construct . 34
3.4.3 The get and the put Constructs . 35
3.4.4 The id and the neg Constructs . 37
3.4.5 The hput and the hcase Constructs 37
3.4.6 The split and the fork Constructs . 40
3.4.7 The close and the halt Constructs . 43
3.4.8 Memory Cell . 43

4 Type Inference of MPL Programs 48
4.1 Type Equations . 49
4.2 Solving Type Equations . 51

4.2.1 Helper Functions Used in Solving Type Equations 54
4.3 Role of Symbol Table in Type Inference . 55

5 Type Equations for Sequential MPL 57
5.1 Data Type Constructs . 57

5.1.1 Populating the Symbol Table for Data Declaration 57
5.1.2 The Constructor . 58
5.1.3 The case . 59
5.1.4 The fold . 61

5.2 Codata Constructs . 63
5.2.1 Populating the Symbol Table for Codata Declaration 63
5.2.2 The record . 64
5.2.3 The Product . 66
5.2.4 The Destructor . 66
5.2.5 The unfold . 67
5.2.6 Other Sequential MPL Constructs . 69
5.2.7 Variables . 71
5.2.8 Constants . 71
5.2.9 Function Calls . 71
5.2.10 The if-then-else . 72
5.2.11 The switch . 73
5.2.12 The where Clause . 74

vi

5.3 Type Equations for a Pattern Phrase . 74
5.4 Type Equations for Patterns . 75

5.4.1 Don’t Care Patterns . 75
5.4.2 Variable Patterns . 77
5.4.3 Constructor Patterns . 77
5.4.4 Record Patterns . 77
5.4.5 Product Patterns . 79

5.5 Generating Type Equations for Function Definitions 79
5.5.1 Function Definitions without an Annotated Type 79
5.5.2 Function Definitions with an Annotated Type 81
5.5.3 Mutually Recursive Function Definitions 82

6 Type Equations for Concurrent MPL 84
6.1 The get and the put Constructs . 84
6.2 The split and the fork Constructs . 86
6.3 The hput and the hcase Constructs . 88

6.3.1 Populating the symbol table for (Co)Protocol Declarations 88
6.3.2 Description of the Type Equations 90

6.4 The close and the halt Constructs . 91
6.5 The id and the neg Constructs . 92
6.6 The plug Construct . 92
6.7 Process Call . 93
6.8 Generating Type Equations for a Process Phrase 94
6.9 Generating Type Equations for a Process Definition 96

6.9.1 Process Definition Without an Annotated Type 96
6.9.2 Process Definition With an Annotated Type 96
6.9.3 Mutually Recursive Process Definitions 98

7 Compilation of Pattern-Matching 100
7.1 Examples of Pattern-Matching in MPL . 100
7.2 Algorithm for Compiling Pattern-Matching 101

7.2.1 The compile Function . 103
7.2.2 Termination Condition and Output 103
7.2.3 Execution Steps of compile Function 103

8 λ-Lifting 109
8.1 Local Function Definitions in MPL . 110

8.1.1 The Defn Construct . 110
8.1.2 The Where Clause . 111

8.2 λ-Lifting for the Defn Construct . 111
8.3 λ-Lifting for the Where Clause . 113

vii

9 Abstract Machine for MPL (AMPL) 120
9.1 Introduction to Abstract Machines . 120
9.2 Introduction to AMPL . 121
9.3 Sequential Abstract Machine for MPL (SAMPL) 121

9.3.1 Compilation of Sequential MPL to SAMPL Commands 122
9.3.2 Transition Table for SAMPL . 123

9.4 Concurrent Abstract Machine for MPL (CAMPL) 126
9.4.1 The Channel Manager . 127
9.4.2 The Process Mananger . 127
9.4.3 Interaction between Process Manager and Channel Manager 127
9.4.4 Concurrent Commands . 128
9.4.5 Process Manager’s Actions . 128
9.4.6 Channel Manager’s Actions . 129

Bibliography 136

A BNFC Grammar for MPL 139
A.1 MPL Program . 139
A.2 Run Statement . 139
A.3 MPLStmt (An MPL Statement) . 139
A.4 Defn (An MPL Definition) . 140
A.5 SeqDataDefn (Sequential Data Definition) 140
A.6 ConcDataDefn (Concurrent Data Definition) 140
A.7 FunctionDefn (Function Definition) . 140
A.8 ProcessDefn (Process Definition) . 141
A.9 Data and Codata Clause . 141
A.10 ProtocolClause/CoprotocolClause . 141
A.11 DataPhrase/CodataPhrase . 142
A.12 ProtocolPhrase/CoprotocolPhrase . 142
A.13 Type (Sequential Type) . 142
A.14 ChanType (Concurrent Type) . 143
A.15 PattTermPharse (Pattern-Term Phrase) . 144
A.16 PatProcessPhr (Patterns-Channels-Process Commands Pharse) 144
A.17 Sequential Pattern . 144
A.18 Sequential Term . 145
A.19 GuardedTerm . 147
A.20 WhereDefn (Local Definitions in the Where Term) 147
A.21 FoldPattern . 148
A.22 RecordEntry . 148
A.23 Process . 148
A.24 ProcessCommand . 148
A.25 ForkPart . 149

viii

List of Tables

3.1 Example:Achieving Type Safety in MPL . 30
3.2 Concurrent MPL Constructs . 33
3.3 Example : Process Call . 34
3.4 Example : The get and the put Constructs 36
3.5 Example : The hput and the hcase constructs 39
3.6 Example : The split and the fork constructs 41
3.7 Memory Cell: The id and the neg constructs 45

5.1 Type Equations for Constructors . 59
5.2 Type Equations for case . 60
5.3 Type Equations for fold . 62
5.4 Type Equations for record . 65
5.5 Type Equations for Products . 66
5.6 Type Equations for Destructor . 67
5.7 Type Equations for unfold . 68
5.8 Type Equations for Variables and Constants 70
5.9 Type Equations for Function Call . 72
5.10 Type Equations for if-then-else, and switch 72
5.11 Type Equations for Pattern Phrase . 75
5.12 Type Equations for Don’t care, Variable, and Constructor Patterns 76
5.13 Type Equations for Record and Product Patterns 78
5.14 Type Equations for Function Definitions . 80
5.15 Type Equations for Mutually Recursive Function Definitions 83

6.1 Type Equations for the get and the put Constructs 85
6.2 Type Equations for the split and the fork Constructs 87
6.3 Type Equations for the hput and the hcase Constructs 89
6.4 Type Equations for the close and the halt Constructs 91
6.5 Type Equation for the id and the neg Constructs 92
6.6 Type Equations for the process call, and the plug 93
6.7 Type Equations for the Process Phrase . 95
6.8 Type Equations for Process Definitions . 97
6.9 Type Equations for Mutually Recursive Process Definitions 99

7.1 Examples of Pattern Matching Compilation 102

ix

8.1 Example : Local functions with defn Construct 112
8.2 Example : Local Functions with where Construct 113
8.3 Step 1 : Rename local functions of the defn construct 114
8.4 Step 2 : Lift the definitions of defn to the global scope 115
8.5 Algorithm for Solving Set Equations . 117
8.6 λ-Lifting exFun (Continued on Table 8.7) . 118
8.7 Lambda Lifting exFun (Continued from Table 8.6) 119

9.1 SAMPL Commands . 122
9.2 Machine Transitions for the SAMPL . 124
9.3 Example : Compilation of Sequential MPL to SAMPL Code 125
9.4 Executing Code on SAMPL . 125
9.5 Basic Concurrent Commands . 128
9.6 Process execution steps (α with input polarity) 130
9.7 Channel Manager’s Actions for Non-Service Channels 130
9.8 Channel Manager’s Actions for Service Channels(Output Channel β) 131
9.9 Example : Compilation of Concurrent MPL Program to CAMPL 132
9.10 Executing Code on CAMPL (Continued On Table 9.11) 134
9.11 Executing Code on CAMPL (Continued from Table 9.10) 135

x

Chapter 1

Introduction

MPL is a programming language being developed at the University of Calgary. It is a stati-

cally typed concurrent programming language which uses message passing as the concurrency

primitive as opposed to threads, or shared memory. In MPL, concurrency is achieved using

concurrency constructs built into the language. This is different from the traditional ap-

proach which adds concurrency to a language either by adding operating system primitives

to the sequential core of the language or by overloading the basic sequential constructs of

the language (e.g the use of monads to perform IO in Haskell).

MPL is based on Cockett and Pastro’s ideas [1] which provide a formal theory of message

passing as well as a categorical semantics for it. Cockett and Pastro model message passing

using a two tier logic: the first tier is a logic for messages whose proofs can be thought of

as ordinary sequential programs and the second tier is a logic for message passing which is

built on top of the logic for messages. The logic of messages deals with what we classically

view as computation while the logic of message passing deals with the exchange of messages

between the communicating processes.

Concurrent programs in MPL consist of processes, which are connected via channels.

Interprocess communication takes place by passing messages along channels. A process can

perform operations on a channel: for example, a process can send or receive messages on a

1

channel. The sequence of operations that are permitted on a channel is determined by its

channel type. If a process tries to perform an operation on a channel which is not permitted

by its channel type then a type error is reported during compile time.

The goal of the MPL project was to produce a fully featured, type safe concurrent

programming language with intuitive syntax based on Cockett and Pastro’s work on the logic

of message passing. Type safety for the concurrent programs written in MPL is obtained

using the channel types. An MPL program that passes type checking is generally a well

behaved program meaning that it will not have a run time error and, when it produces

output, will do so with the intended type.

1.1 Structure of an MPL Program

An MPL program consists of sequence of definitions for sequential programs. These defini-

tions are: data and codata definitions, protocol and coprotocol definitions, function defini-

tions, and process definitions.

A programmer can define custom data/codata types for sequential programs. A codata

type is a disciplined way to model infinite sequential structures in MPL. A function is used

to organise code in the sequential world. A (co)protocol is the analogue of (co)data type

in the concurrent world: a programmer can define protocols and coprotocols for concurrent

programs. Processes are used to organise code in the concurrent world. They model the

exchange of messages on channels. The entry point to an MPL program is the main process,

which is a process specified with the run command. MPL programs are divided into two

levels: sequential MPL program, and concurrent MPL program. An MPL program can have

the aforementioned definitions in any order with the following exceptions:

• The last definition in an MPL program is always the main process definition defined

with the run keyword.

• If an MPL definition uses another definition then the used definition should be defined

2

before the definition that is using it. Exception to this are the cases of mutually

recursive definitions which are defined using special syntax and the where clause.

There are two ways to define a block of code in a programming language. The first

approach is to enclose a block of code explicitly using curly braces and separate the elements

of a block with a semicolon. This style of block definition is used in languages like C and

Java. Another approach to define a block is to indent its elements by the same amount.

This style of organising the block known as the offside rule and is used in languages like

Haskell and Python. The offside rule obviates the need for extra syntax in the form of curly

braces and semicolon. For the aforementioned reason, we have gone for offside rule to define

a block of code in an MPL program.

MPL allows for proper documentation of programs using single line, and multi line com-

ments. The single line comments in MPL start with the symbol "--". The multi line

comments in MPL are enclosed between "{-" and "-}" symbols.

1.2 An Example of an MPL Program

An example of an MPL program is shown below. The program takes a message on a terminal,

and prints the message on another terminal. The program consists of the main process

written with the keyword run. It has a built in character terminal charTerm1. One can

interact with an MPL program, write input to or read output from, using these built in

channels which are also called services in MPL’s parlance.

run = => charTerm1

plug do hput PutString on ch

put "Hello World!" on ch

hput CloseS on ch

halt ch

putString (| ch => charTerm1)

3

In the main process, two processes are plugged together along a channel ch: the first

process consists of a block of code consisting of four MPL commands under the do keyword

and the second process is putString. ch acts as an input channel for the first process and

as an output channel for the second process.

The first process puts a handle PutString on the channel ch. The handle informs the

channel ch to expect a string input. Once the handle is put, the string "Hello World!" is

put on the channel. Once the task of sending the string on the channel is accomplished, the

first process is halted. Halting a process requires all the channels asscoiated with the process

to be closed. Channels ch is closed after putting appropriate handles on it. The handles

put on the channel ch of the first process are part of MPL’s prelude and thus can be used

directly.

The second process putString is a part of MPL’s prelude. putString receives a string

on its input channel ch and prints the string on its output channel charTerm1 thus printing

"Hello World!".

1.3 Stages of Interpretation of an MPL Program

The stages of interpretation of an MPL program are: lexing, parsing, type inference/type

checking, pattern-matching compilation, lambda lifting, and the translation of programs to

AMPL code which is finally run on the abstract machine for MPL. These stages are shown

in Figure 1.1.

The lexing, the parsing, and the type inferencing stages form the front end of the MPL’s

compiler. The MPL’s lexer takes an MPL program, in string representation, as input and

produces a list of valid MPL tokens for the program as output. An invalid symbol present

in the program results in a lexer error. Once the lexing step is successfully completed, the

list of tokens generated by the lexer are passed as input to the MPL’s parser which verifies

4

LexingLexer Error

Parsing
Syntax

Error

Type

Inferencing
Type Error

Symbol

Table

Compilation

of Pattern

Matching

λ-Lifting

Translation

to AMPL

Code &

Running

Programs

[Token]

AST

AST∗

AST∗∗

Core MPL

Front End

Intermediate Stages

Back End

Figure 1.1: Interpretation Stages of MPL

5

the syntactic correctness of the program. If the program is syntactically correct, the list

of tokens are converted to a data structure called the Abstract Syntax Tree (AST). AST

is easier to transform than the original string representation of the program and is better

suited for the subsequent stages of the compiler.

The AST is the input to the type inference stage, which uses it to verify whether the

program is well typed. If the program is well typed then the interpretation of the MPL

program is continued otherwise it is halted throwing a type error. The type inferencer

ensures that a program with type errors, which constitute a large class of programming

errors, are apprehedned in the early stages of interpretation throwing meaningful and precise

error messages. The output produced by the type inferencer is represented as AST∗, which

is a subset of the AST without the type annotations of the functions and the processes.

The compilation of pattern-matching and the λ-lifting transformation are the intermediate

stages of the MPL’s compiler. The AST∗ is fed as input to the pattern-matching compiler.

This stage converts the pattern-matching syntax present in the MPL program to explicit case

statements. The output of this stage is represented as AST∗∗ which is a subset AST∗ without

the pattern-matching syntax. The AST∗∗ is passed as input to the λ-lifting program. The λ-

lifting transformation lifts all the local functions to the global scope, which is the outermost

scope of an MPL progra.m The output of this stage is Core MPL, which is a data structure

used for the intermediate representation of MPL programs. Core MPL is a stripped down

version of MPL with no pattern matching or where clauses.

The abstract machine for MPL (AMPL) forms the back end of MPL. AMPL runs MPL

code. In order to run an MPL program on AMPL, it must be specified in terms of the

instruction set of the abstract machine, i.e in AMPL code.

6

1.4 Contributions of this Thesis

The main goal behind the MPL project was to produce an implementation of the language.

This goal was achieved successfully and the various aspects pertaining to the implementation

of MPL form the core of the thesis. Following are the major contributions of the thesis to

the MPL project:

• Lexer and Parser- A lexer and a parser was implemented for MPL and the syntax

of the language was solidified.

• Type System- A specification of MPL’s type system was provided (in Chapters 4,5,

and 6) and implemented.

• Abstract Machine- An abstract machine, which runs MPL programs, was designed

(in Chapter 9) and implemented.

• Intermediate Languages- The compilation of MPL programs to the abstract ma-

chine code was achieved using a sequence of intermediate languages namely Core MPL

and AMPL Code, described in Appendix E and Appendix F respectively. This results

in a modular implementation of the language where any part of the MPL’s compiler

could easily be exchanged for a more efficient version when such a version becomes

available. These intermediate languages are developed as languages in their own right

by providing a lexer and a parser for each of them. This technique has two benefits: one

can directly write programs in any of the intermediate languages, and one can inspect

the series of transformations that a program undergoes in each step of compilation.

At the beginning of each chapter, the specific contributions of that chapter are discussed

further.

7

1.5 Structure of the Thesis

This thesis is divided into two parts: chapters 2, and 3 discuss the MPL language from the

user’s viewpoint, while chapters 4-9 deal with the implementation details of the language.

Specifically:

• Chapter 2 - Sequential MPL This chapter deals with the sequential aspects of MPL

programs like functions, data types, codata types, pattern-matching, and sequential

MPL commands.

• Chapter 3 - Concurrent MPL This chapter deals with the concurrent aspects of

MPL programs like processes, channels, protocol definitions, coprotocol definitions,

and concurrent MPL commands.

• Chapters 4 to 6 - Type Inferencing These chapters deal with the type inference

process of MPL programs.

• Chapter 7 - Compilation of Pattern-Matching This chapter describes the com-

pilation of the pattern-matching syntax to explicit case statements.

• Chapter 8 - Lambda Lifting Transformation This chapter describes the λ-lifting

transformation which lifts the local MPL functions to the global scope.

• Chapter 9 - Abstract Machine for MPL This chapter provides the specification

and description of the abstract machine on which MPL programs are run.

1.6 Related Work

In this section, we look at the π-calculus and “session types”. π-calculus inspired MPL’s

choice of language primitives for concurrency and is an important theoretical tool in under-

standing the modelling of concurrency. Session types are a family of type systems which

8

provide type safety to concurrent interactions. MPL also has a novel concurrent type sys-

tem that tries to enforce type discipline in a concurrent program. Thus, an introduction

to session types will lay the ground work for the discussion of MPL and typing concurrent

programs.

1.6.1 π-Calculus

The π-calculus was introduced by Milner et al. [19, 20]. It is a mathematical model of

processes whose interconnections change as they interact. It can be used to model a network

of interconnected processes that exchange messsages and where messages can contain links

to the active processes.

Syntax of the π-Calculus

Let X be a set of objects called names. The syntax of a variant of π-calculus [19] is presented

below (where c and v are any names from X, and P and Q are processes):

P,Q ::= c(v).P Receive v on c, and then run P

c̄〈v〉 Output v on channel c, and then run P

P || Q Parallel composition of P and Q

(νc)P Name Restriction

!P Repeatedly spawn copies of P

0 Terminate the process

Reduction Rules

P → Q means that P can be transformed to Q in one step of computation. The reduction

rules are:

9

• Communication Rule - Suppose there are two parallel processes P , and Q. If value

v is output on the channel c in the process P and the process Q is expecting a value x

on the channel c, then both the input and the output operations are executed in one

step, and in the process Q the parameter x is replaced with the value v.

c̄〈v〉.P || c(x).Q → P || Q{v/x}

• Parallel Rule - If there are two processes running in parallel, one can do a one-step

reduction of one of the parallel processes without affecting the other.

P → Q

P || P ′ → Q || P ′

• Restriction Rule - This rule ensures that reduction can proceed underneath a re-

striction. Creation of a new name in a process is also called restriction.

P → Q

(νx)P → (νx)Q

• Structural Congruence Rule - Structurally congruent processes have the same re-

ductions.

P ≡ P ′ P ′ → Q′ Q′ ≡ Q
P → Q

Programming Languages Based on the π-Calculus

Some examples of concurrent programming languages based on π-calculus are:

• Pict - Pict [37] is a concurrent programming language developed by Pierce and Turner.

It is based on the π-calculus. It is a language in the ML tradition, formed by adding

a layer of convenient syntactic sugar and a static type system to a tiny core. The core

10

language - an asynchronous variant of Milner, Parrow, and Walker’s pi-calculus - has

been used as a theoretical foundation for a broad class of concurrent computations. The

core language contains two kinds of entities: processes (agents) and channels (names),

where processes use channels to communicate with other processes.The type system

of Pict integrates features like higher-order polymorphism, simple recursive types, and

subtyping.

• TyCO - TyCO (Typed Concurrenct Object) is a programming language developed by

Vasconcelos [38]. It is an implicitly typed polymorphic concurrent language based on

an extension of the asynchronous pi-calculus featuring first class objects, asynchronous

messages and process definitions. It provides a model for a concurrent object-based

language, which combines the benefits of the formal framework of process calculi with

the characteristics of Hewitt’s actor system [39].

1.6.2 Session Types

Session types were introduced by Honda et al. [22, 23]. Session types are a family of type

systems, which bring type safety to concurrent interactions, which may be concurrent pro-

grams modelled using a process algebra like π-calculus or concurrent programs written in a

programming language like Haskell. A protocol represents an agreement on how participating

systems interact with each other. In this regard, they are similar to MPL’s channel types

and protocols.

In Honda et al. [22, 23], an extension of the π-calculus with session types is proposed.

Later, Gay and Hole [24] introduced a notion of subtyping for session types for a more

conventional π-calculus. Session types were originally described in a two processes setting.

n-ary session types were introduced in [25]. Honda et al. [28, 29] presented the Scribble

framework in which one could specify protocols in concurrent programs and validate the

programs against the type checker. Scribble supports binding for various high level languages

such as ML, Java, Python, and C++.

11

Baltazar et al. combine session types with linear refinements resulting in an original

system of linearly refined session types [26]. Refinement types are a form of dependent types

which allow attaching formulae to types [27], thus specifying properties of values in programs.

The refinement type {x : T | A} represents a value v of type T that must respect formula

A. Formula A may refer to v via variable x. For example, the type {x : Integer | x ≥ 0}

describes a natural number.

Session Types in Functional Programming Languages

Some implementations of session types in functional programming languages are:

• Haskell - Neubauer and Thiemann [30] presented an implementation of session types

in Haskell. In this impementation the session types are encoded in terms of type classes

with functional dependencies using the session monad. In a similar work, Sackman and

Eisenbach [31] describe the encoding of session types in Haskell using a Domain Specific

Language (DSL), which works within an extended Monad type class. The use of DSL

allows to assign labels to session types, or fragments of session types, and to refer them

using these labels.

• Verifying Cryptographic Protocols with Session Types - Bhargavan et al. de-

scribe the design and implementation of a compiler in ML that, given high-level multi-

party session descriptions, generates custom cryptographic protocols [32]. The compiler

generates code for sending and receiving these messages, with cryptographic operations

and checks, in order to enforce these guarantees against any adversary that may control

both the network and some session participants. The code generated by the compiler is

secured by relying on the session types. Most of the proof is performed by mechanized

type checking.

Session Types in Object-Oriented Programming Languages

Some implementations of session types in object oriented languages are:

12

• Sing# - It is a type-safe, object-oriented, and garbage collected programming lan-

guage [33], which is a variant of the programming language C#. Sing# uses message

passing via shared-memory as the communication mechanism between processes. This

language was used to write the Singularity operating system [34] , ensuring process

isolation (a process cannot access or corrupt data or code of another process) and

inter-process communication (processes may exchange messages and signal events),

two important services of the operating system. In Sing#, data is exchanged over bidi-

rectional channels where each channel consists of exactly two endpoints (called Imp

and Exp). Channel endpoints can be sent in messages over channels meaning that com-

munication network can evolve dynamically. Channel communication is governed by

statically verified channel contracts that describe messages, message argument types,

and valid message interaction sequences as finite state machines similar to session types.

• SJ - Hu et al. [35] describe a session based extension of Java, called SJ. They present

the implementation and runtime for a session-based distributed programming featur-

ing asynchronous message passing, delegation, and session subtyping and interleav-

ing, combined with class downloading and failure handling. The compilation-runtime

framework of the language maps session abstraction onto underlying transports and

guarantees communication safety through static and dynamic session type checking.

• Mool - Mool is a small object-oriented language similar to Java, with support for

concurrency. It was developed by Campos and Vasconcelos [40]. Mool formalizes

protocols, called usage types, that define how and when the method of a class should

be called.

Session Types in Imperative Languages

Ng et al. [36] describe a programming tool chain for message-passing parallel algorithms,

which ensures for any typable programs, deadlock-freedom, communication safety, and global

13

progress through a static checking. The methodology is embodied as a multiparty session-

based programming environment for C and its runtime libraries, which is called Session C.

The Session C framework uses the programming language Scribble to describe communica-

tion protocols in the form of multiparty session types.

Comparing MPL with Session Types

As seen in Section 1.6.2, session types are not a specific type system rather they are a family

of type systems for modelling concurrent communications between processes. One can thus

choose a programming language or a process algebra like Haskell, Java, or π-calculus, and

then add a session type to them in order to type check the concurrent communications in the

system. MPL has typed communication between the processes and thus in principle its type

system is an example of a session type. In this section we compare MPL as a programming

language with its type system to the programming languages with session types as a type

system for concurrent communication, the ease of development of concurrent programs being

the evaluation criterion.

In Section 1, we noted that adding operating system primitives to the sequential core

of the language or overloading the sequential constructs of the language are traditionally

the mechanisms of achieving concurrency in an already existing programming language.

Most of the programming languages with session types achieve concurrency using these

two mechanisms. We are of the opinion that this might not be the best approach, often

vindicated by the fact that concurrent programs are difficult to design, implement, and most

importantly get right. Even the added assurances of the session types are not enough to tackle

these inherent difficulties. MPL was designed with concurrency in mind which manifests

itself through the selection of message passing as the concurrency primitive, and having

abstract language primitives suitable for concurrent program development. These design

choices result in a natural modelling of concurrent configurations easing the development of

concurrent programs.

14

MPL is a full-fledged language, and, unlike many implementations of session types, not

an optional extension to a language. This results in a cleaner syntax for the concurrent

aspects of the program. MPL also has a sequential part, which is a sophisticated strongly

typed functional programming language. The sequential computations are separated from

concurrent computations. At the same time, it is easy to call these sequential computations

in the form of functions inside concurrent processes. Thus, MPL provides the support

of a functional programming language, assists in modular development of the concurrent

and sequential aspects of a program, and provides for a convenient interplay of the two

aforementioned aspects of the program.

Thus, MPL provides other benfits as well to the programmers in addition to the type

safety guarantees of the session types.

15

Chapter 2

Sequential MPL

In the first chapter we saw that MPL programs are divided into two levels: concurrent MPL

programs and sequential MPL programs. In this chapter, the various aspects of sequential

MPL programs are discussed.

Sequential MPL programs consist of functions which use data type and codata type

definitions. Function definitions use pattern-matching and the various sequential MPL con-

structs in their body. Sequential MPL constructs, therefore, can be divided into three parts:

constructs that deal with data types, constructs that deal with codata types, and constructs

which are general to all sequential programs. Data types and related constructs are de-

scribed in Section 2.1. Codata types and related constructs are described in Section 2.2.

Section 2.3 describes the remaining sequential MPL constructs. Section 2.4 introduces the

pattern-matching syntax of MPL.

The syntax for sequential MPL follows the syntax of functional languages fairly closely.

However, it also uses conductive data types, and thus is influenced by the syntax for Charity

[4]. Charity doesn’t have mutually recursive data types which MPL does, both on the

inductive and coinductive side. This meant that the syntax for inductive and coinductive

data types and their associated constructs had to be designed.

16

2.1 Data Types and Constructs for Data Types

MPL allows the programmers to define data types. The syntax of a data definition is:

data D(A1, . . . , Ak) → Z = C1 :: T1,1, . . . , T1,n1 → Z

...
...

...

Cm :: Tm,1, . . . , Tm,nm → Z

The type constructor of the data type is D and C1, . . . , Cm are the constructors of the

data type. The data type D(A1, . . . , Ak) is polymorphic in type variables {A1, . . . , Ak}. The

type variable Z is the state variable. The union of all the type variables used in the different

constructors of the data type is {Z,A1, . . . , Ak}. Thus, for any valid type expression Tp,q

used in the data definition:

TypeVar (Tp,q) ⊆ {Z,A1, . . . , Ak}.

The type of the phrase of a fold function corresponding to the constructor Ci is directly

given by the type expression corresponding to that constructor in the data definition:

Ti,1, . . . , Ti,ni
→ Z.

The type of a constructor Ci of the data type D is given by substituting the state variable

by the data type name inside the type expression corresponding to that constructor in the

data definition:

(Ti,1, . . . , Ti,ni
→ Z) [D(A1, . . . , Ak)/Z].

17

2.1.1 Examples of Data Types

In this section, we look at syntax of data type definitions through some examples. The data

definitions can use the base types likes Char (characters), Int (integers), and Float (floating

point numbers).

Boolean Data Type

The Boolean data type is defined in MPL as:

data Bool -> C = True,False :: -> C

where True and False are the two constructors of the data type Bool. Bool doesn’t have

any type variables. The types of the constructors True and False are obtained by replacing

the state variable C with Bool so that:

True :: -> Bool

False :: -> Bool

Natural Number Data Type

The natural number data type is defined in MPL as:

data Nat -> C = Zero :: -> C

Succ :: C -> C

The Nat data type is made up of two constructors, Zero and Succ. The types of the

constructors are:

Zero :: -> Nat

Succ :: Nat -> Nat

Natural numbers can be generated using the constructors Zero and Succ of the Nat data

type:

18

Zero, Succ(Zero), Succ(Succ(Zero)),...

where Zero represents 0, Succ(Zero) represents 1, Succ(Succ(Zero)) represents 2 and so

on.

List Data Type

The List data type is defined as:

data List(A) -> C = Nil :: -> C

Cons :: A,C -> C

The List data type is polymorphic in the type variable A meaning that it can be used to

store elements of any type A in a list. List has two constructors, Nil and Cons whose types

are:

Nil :: -> List(A)

Cons :: A,List(A) -> List(A)

Since lists are very commonly used in MPL, a convenient syntax is provided for its two

constructors: [] for the Nil constructor and : for the Cons constructor. Some examples of

lists using the constructors Nil and Cons are:

Nil,Cons(1,Nil),Cons(1,Cons(2,Nil)),Cons(1,Cons(2,Cons(3,Nil))),...

The above list can equivalently be written in the convenient syntax of List as:

[], 1:[], 1:2:[], 1:2:3:[],...

where Nil or [] represents an empty list, Cons(1,Nil) or 1:[] represents a singleton list

containing integer 1 etc.

19

Either Data Type

The Either data type is defined as:

data Either(A,B) -> C = Left :: A -> C

Right :: B -> C

where Left and Right are the two constructors of the data type. The types of the construc-

tors are:

Left :: A -> Either(A,B)

Right :: B -> Either(A,B)

The Either data type can be used as the output type of a function that can return two

different types as output, say A and B. When the function returns the value of type A, the

Left constructor is used and when the function returns the value of type B, the Right

constructor is used. This data type is often used as the output type of a function that can

fail for some inputs. The function returns an error message in the Left constructor and the

normal output in the Right constructor.

2.1.2 Mutually Recursive Data Types

In addition to normal data types, MPL allows the programmers to define mutually recursive

data types using the following syntax:

data

D1(A11, . . . , A1k) → Z1 =

C11 :: T11,1, . . . , T11,n11 → Z1

...
...

...

C1m :: T1m,1, . . . , T1m,n1m → Z1

and

20

...

and

Dq(Aq1, . . . , Aql) → Zq =

Cq1 :: Tq1,1, . . . , Tq1,nq1 → Zq

...
...

...

Cqr :: Tqr,1, . . . , Tqr,nqr → Zq

where data definitions D1, . . . , Dq, separated by the keyword and, are mutually recursive

with each other meaning that a call graph of the state variables of the corresponding data

types will be connected. Corresponding to a mutually recursive data definition there is a call

graph, which indicates which state variable are used by other state variables. It is defined

as:

• Nodes: State variables of the data types

• Edges: There is a from node Zi to node Zj when there is a constructor Cir such that

Zj ∈ Tir,k for some r and k.

Casing on a mutually recursive data type means casing on just the constructors of one

of the types. However, folding on a mutually recursive data type means that all the types

which are reachable from that data type in the call graph need to have phrases corresponding

to their constructors. In the data definition above, the data types D2, . . . , Dq should be

reachable from the first data type D1 otherwise a warning is issued saying that some data is

not reachable.

21

C D

Figure 2.1: Call Graph of the Data Types of Tree and Forest and of Zig and Zag

2.1.3 Examples of Mutually Recursive Data Types

Tree and Forest

Mutually recursive data types Tree and Forest [2] are defined as:

datatype

Tree(A) -> C = Empty:: -> C

Node :: A,D -> C

and

Forest(A) -> D = Nil :: -> D

Cons :: C,D -> D

A tree which can have mutiple number of children is called a variadic tree [2]. The

mutually recursive data definitions above defines a variadic tree to be either empty, or a

node collecting together a forest to form a tree, and a forest to be either empty or a variadic

tree together with another forest. A call graph of the state variables of the data types Tree

and Forest is shown in Figure 2.1. Note that the nodes C and D of the call graph are

connected so that the data types Tree and Forest are mutually recursive. The types of

the constructors are obtained by replacing the state variables C and D with Tree(A) and

Forest(A) respectively in the type expressions corresponding to the constructors:

Empty :: -> Tree(A)

Node :: A,Forest(A) -> Tree(A)

Nil :: -> Forest (A)

Cons :: Tree(A),Forest(A) -> Forest(A)

22

Mutually Recursive Data Types Zig and Zag

Mutually recursive data types Zig and Zag [3] can be used to define a list with elements of

the alternating types. They are defined as:

datatype

Zig(A,B) -> C = Nil :: -> C

Cins :: A,D -> C

and

Zag(A,B) -> D = Nal :: -> D

Cans :: B,C -> D

The call graph for Zig and Zag data types will have the same structure, shown in Figure

2.1, as the call graph of Tree and Forest data types. The types of the constructors are

obtained by replacing the state variables C and D with Zig(A,B) and Zag(A,B) respectively

in the type expressions corresponding to the constructors:

Nil :: -> Zig(A,B)

Cins :: A,Zag(A,B) -> Zig(A,B)

Nal :: -> Zag(A,B)

Cans :: B,Zig(A,B) -> Zag(A,B)

2.1.4 Constructs for Data Types

The basic sequential MPL programming constructs for the data types are: the case, and the

fold. These constructs are described in this section.

23

The case Construct

The case construct is the basic MPL construct used with data types. The syntax of a case

construct for a data type D defined in Section 2.1 is:

case t of

C1 (v1,1, . . . , v1,n1) → t1

...

Cm (vm,1, . . . , vm,nm) → tm

The type of the sequential term t is the data type D. C1, . . . , Cm are the constructors of a

data type D. All the constructors of the data type D must be present in the case construct

(or the case construct must have a default term). The case construct branches on the

constructors of the data type D and based on what t evaluates to, it selects a branch. Once

a particular branch, say Ck, is selected, the corresponding term tk is executed.

Three examples that use the case construct, namely on the data types Nat, List, and

the mutually recursive data types Forest and Tree, are discussed next. In the first example

below, nat2Int function is defined which translates the unary representation of a number

into its integer representation:

-- convert Nat to Integer

nat2Int :: Nat -> Int =

nat -> case nat of

Zero -> 0

Succ(n) -> 1 + nat2Int(n)

nat2Int is a recursive function which returns the integer zero for the Zero constructor and

for the Succ(n) branch, the function adds one for every Succ constructor.

24

The function append takes two lists as inputs and produces the appended list as output,

is defined as:

-- append two lists

append :: List(A),List(A) -> List(A) =

t1,t2 -> case t1 of

[] -> t2

x:xs -> x:(append(xs,t2))

The function sizeTree cases on the data type Tree(A). Casing on a mutually recursive

data type results in mutually recursive functions as shown below:

defn

-- size of a tree

sizeTree :: Tree(A) -> Int =

t -> case t of

Empty -> 0

Node(t’,f) -> 1 + sizeForest(f)

-- size of a forest

sizeForest :: Forest(A) -> Int =

f -> case f of

Nil -> 0

Cons(t,f’) -> size_tree(t) + size_forest(f’)

The defn construct of MPL allows the definition of mutually recursive functions besides being

used to provide a module system in MPL.

25

The fold Construct

The fold construct is a sequential MPL construct that allows programmers to use recur-

sion in a disciplined manner. Functions written using fold construct belong to a set of

functions called higher-order primitive recursive functions which always terminate (provided

their phrases do). All the functions written using folds can also be implemented using normal

recursion.

The syntax of the fold construct for the data type D defined in Section 2.1 is:

fold t of

C1 : v1,1, . . . , v1,n1 → t1

...

Cm : vm,1, . . . , v1,nm → tm

The term t is being folded over: t evaluates to an element of the data type D. C1, . . . , Cm

are the constructors associated with the data type D. All the constructors of D must be

present in a fold construct. For constructor Ci, vi,1, . . . , vi,ni
is the corresponding sequence of

argument bound in ti giving the ith phrase of the fold. The fold selects the phrase determined

by the current constructor and executes the term corresponding to the constructor in the

phrase. The types of the phrases of the fold are given by the type annotations for the

constructor in the data definition.

We illustrate the fold construct with three functions. Note that the same functions were

written using the case construct in Section 2.1.4.

The first example is convNat2Int function. The fold types for the constructors Zero and

Succ when a term of type Nat is folded are:

26

Zero :: -> C

Succ :: C -> C

These types are directly obtained from the MPL data definition of the Nat data type.

The convNat2Int function written using the fold construct is:

-- convert Nat representation to Integer

nat2Int:: Nat -> Int =

nat -> fold nat of

Zero : -> 0

Succ : n -> 1 + n

where, for the Zero constructor, the integer zero is returned and, for the Succ constructor,

its argument incremented by one.

The append written using the fold is:

-- append two lists

append :: List(A),List(A) -> List(A) =

t1,t2 -> fold t1 of

Nil : -> t2

Cons :x,r -> x:r

The sizeTree function written using the fold construct is:

-- size of tree

sizeTree :: Tree(A) -> Int =

t -> fold t of

Empty : -> 0

Node :n,f -> 1 + f

Nil : -> 0

Cons :t’,f -> t’ + f

27

In the above example, the data type Tree is the subject of the fold. Therefore, all the

constructors for Tree, as well as the data type Forest - which Tree is mutually recursive

with- must have phrases in the fold.

2.2 Codata Type and Constructs for Codata Type

MPL allows the programmers to define codata types: this is a facility lacking in most

functional languages. A language which has codata types is Charity [4]. Codata types

provide the means to represent potentially infinite structures that are evaluated lazily.

Consider a codata type C(A1, . . . , Ak) having destructors D1, . . . , Dm defined below:

codata Z → C(A1, . . . , Ak) = D1 :: Z, T1,1, . . . , T1,n1 → P1

...
...

...

Dm :: Z, Tm,1, . . . , T1,nm → Pm

The name of the codata type is C and D1, . . . , Dm are the m destructors of the codata

type C. The codata type C(A1, . . . , Ak) is polymorphic in type variables {A1, . . . , Ak}. Z

is the state variable. The union of all the type variables used in the different destructors of

the codata type is {Z,A1, . . . , Ak}

Consider destructor Di: its first argument must be the state variable and the next ni

arguments, whose types are represented by Ti,1, . . . , Ti,ni
, represent the higher-order argu-

ments. If there are no higher-order arguments, then C is a first-order data type. Each Ti,j,

for 1 ≤ j ≤ ni, is a type expression such that:

TypeVar (Ti,j) ⊆ {A1, . . . , Ak}

28

The type expression Pi is the output type of destructor Di and is:

TypeVar (Pi) ⊆ {Z,A1, . . . , Ak}

For the destructor Di, the type of the phrase in the unfold function definition of the codata

type C is:

Ti,1, . . . , Ti,ni
→ Pi

For the destructor Di of the codata type C, the type of the destructor is given by substituting

the state variable Z with C(A1, . . . , Ak) in the body of the type expression corresponding to

that destructor in the codata definition.

The record of a codata type contains all the destructors of the codata type. The unfold

of a codata type contains phrases corresponding to all the destructors of the codata type.

2.2.1 Examples of Codata Types

InfList Codata Type

InfList codata type is defined as:

codata C -> InfList(A) = Head :: C -> A

Tail :: C -> C

As the name suggests InfList(A) codata type can be used to store an infinite list of things

of type A. InfList(A) has two destructors, Head and Tail. Head and Tail are functions,

the types of which can be obtained by substituting C with InfList(A) in the corresponding

type expressions of the destructors. The types of the Head and Tail destructors are:

Head :: InfList(A) -> A

Tail :: InfList(A) -> InfList(A)

29

Lazy Triple Codata Type

Triples can be defined in MPL using codata types as:

codata C -> Triple(D,E,F) = P0 :: C -> D

P1 :: C -> E

P2 :: C -> F

Triple has three destructors, P0, P1, P2 which act as the three projections of the triple.

Thus, these destructors can respectively be used to get the first, second and the third elements

of the triple. The types of the three destructors are:

P0 :: Triple(D,E,F) -> D

P1 :: Triple(D,E,F) -> E

P2 :: Triple(D,E,F) -> F

By using codata types, tuples of any length can be used in an MPL program. Since

tuples/products are useful programming constructs to have in a language, MPL allows the

programmers to use a n-tuple without defining the corresponding codata type for it. #i can

used to project the ith element (for 1 ≤ i ≤ n) from the n-tuple. For example, a pair of a

integer and a float can be represented as (1,2.0) using the built-in syntax for tuples. 1 can

be projected out of the pair using #i operator using the syntax: #1 (1,2.0).

Exponential Codata Type

Higher-order functions can be defined in MPL using a simple higher order codata type called

Exp (exponential) defined as:

codata C -> Exp(A,B) = App :: C,A -> B

30

Exp(A,B) is the type of total functions from type A to type B and is also written as A ⇒

B in literature. The type of the destructor App is:

App :: Exp(A,B),A -> B

Section 2.2.3) shows an example using the Exp data type to implement a higher order

function.

2.2.2 Mutually Recursive Codata Types

As for data types, one can also define mutually recursive codata types. For a list of data

types to be mutually recursive, the call graph of the state variables of the codata types

should be reachable from the initial state variable.

The record of a codata type C, which is mutually recursive with other codata types, will

only contain the destructors of C. However, the unfold for C will contain phrases consisting

of the destructors of all the codata types which are mutually recursive with C.

Mutually Recursive InfZig and InfZag Codata Types

The mutually recursive codata types InfZig(A,B) and InfZag(A,B) can be used to generate

an infinite list with elements of alternating types. They are defined as:

codata

C -> InfZig(A,B) = HeadA :: C -> A

TailA :: C -> D

and

D -> InfZag(A,B) = HeadB :: D -> B

TailB :: D -> C

2.2.3 Constructs for Codata Types

The basic codata type constructs are: record, destructor and unfold.

31

The Record and the Destructor Constructs

The record construct is used to hold the value of a codata type. The syntax of a record for

the codata type C, defined in 2.2, is:

(D1 := v1,1, . . . , v1,n1 → t1, . . . , Dm := vm,1, . . . , vm,nm → tm)

where Di is the ith destructor of the codata type. If the destructor Di doesn’t take any

argument, then the phrase corresponding to the destructor in record can be represented as:

Di = ti

For example, the following syntax creates a record of the Triple codata type:

(P0 := 1 , P1 := 2.3 , P2 := ‘c’)

Destructors retrieve value from a codata type. The destructor has the form:

Di (r)

where r is a record term and 1 ≤ i ≤ n. Suppose the record is internally of the form:

r := (D1 := u1 → t1, . . . , Dn := un → tn)

Then, the destructor term Di (r, ui) evaluates to ti. Thus, in the below term if r is (P0 :=

1 , P1 := 2.3 , P2 := ‘c’), then P2 (r) = ‘c’.

The function firstN defined below takes a number n and generates a list of n integers

starting from 0. It generates the integer list by creating an infinite list of numbers and then

taking n integers from that infinite list. Function firstN uses two functions genInfNats

and getNumList.

32

-- create a record of infinite list of numbers

genInfNats :: Int -> InfList(Int) =

n -> (Head := n , Tail := genInfNats(n+1))

-- get specified number of integers from the infinite list

-- and put the integers in a list

getNumList :: Int, InfList(Int) -> [Int] =

n,infL -> case (n == 0) of

True -> []

False -> Head(infL) : getNumList (n-1,Tail(infL))

-- generate a list of first n numbers starting from 0.

firstN :: Int -> [Int] =

n -> getNumList(n,genInfNats(0))

getInfNats creates a record of InfList codata type. getNumList uses the destructors

Head and Tail to extract a specified number of integers from the record. Finally, function

firstN calls getNumList with the number of integers needed and a record of infinite list of

integers starting from 0.

The function mapSquare defined below takes a list of integers and returns a list of integers

where every element of the list has been squared. The example illustrates the use of the Exp

codata type in implementing higher-order functions in MPL:

-- apply a function from A -> B over every element of a list of

-- type A and give back a list of type B.

mapFun :: [A],Exp(A,B) -> [B] =

33

[],_ -> []

(x:xs),f -> App(f,x):(mapFun(f,xs,))

-- map the square function over every element of the list

squareFun :: [Int] -> [Int] =

list -> mapFun (list,(App := n -> n*n))

mapFun takes in a list and the function to be applied to the every element of the list,

which in this case is λx.x ∗ x.

The unfold Construct

The codata types are built using the unfold construct. The syntax of an unfold for the codata

type C, defined in Section 2.2, is:

unfold t of

s ⇒

D1 : u1,1, . . . , u1,n1 → t1

...

Dm : um,1, . . . , um,nm → tm

t is the initial value of the state which is to be unfolded. D1, . . . , Dm are the destructors

of the codata type C. ui,1, . . . , ui,ni
is the sequence of ni arguments corresponding to the

destructor Di and ti is the corresponding term which produces the new state. The set of

phrases corresponding to the different destructors are also known as the threads of the unfold.

s is a state which is accessible to all destructors D1, . . . , Dm in the unfold.

34

The genInfNats function defined below generates a list of infinite numbers starting from

num using the unfold construct. Note that genInfNats was implemented in the Section 2.2.3

using records.

-- infinite list of numbers starting from 0

genInfNats :: Int -> InfList(Int) =

num -> unfold of num

n =>

Head : n

Tail : n + 1

Function natIntInfL, defined below, is used to create an infinite list of alternating nat-

ural numbers and their corresponding integer representation:

Zero,0,Succ(Zero),1,Succ(Succ(Zero)),2,...

natIntInfL illustrates the use of the unfold construct over mutually recursive codata types.

-- infinite list of alternating Nats and Integers starting from

-- Zero and 0 respectively

natIntInfL :: -> InfZig(Nat,Int) =

-> unfold (Zero,0) of

(n,i) =>

HeadA : n

TailA : (i,Succ(n))

(i,n) =>

HeadB : i

TailB : (n,i+1)

Function natIntInfL outputs a record of type InfZig(Nat,Int). The initial values

unfolded, which correspond to the codata types InfZig and InfZag, are Zero and 0 respec-

tively. Destructor HeadA of the InfZig codata type stores the Nat part of its corresponding

35

state in the record. Destructor TailA updates the Nat part of its corresponding state by a

successor, thereby updating the state passed to the InfZag codata type. Similarly, destruc-

tor HeadB of the codata type InfZag stores the integer part of its state in the record and the

destructor TailB increases the integer part of its corresponding state by a value one, thereby

updating the state passed to the InfZig codata type.

2.3 Other Sequential MPL Constructs

Apart from the MPL constructs used with the data and the codata types, there are some

other sequential MPL constructs as well. They are the where clause, the if-then-else construct,

the switch construct, function calls, variables, and constants.

2.3.1 If-Then-Else

The if-then-else is a sequential construct that takes three arguments. It syntax is:

if b then t1 else t2

where the first argument b is a sequential MPL term that evaluates to a boolean value. If

the boolean value evaluates to true then t1 is executed else t2 is executed.

2.3.2 Where

In MPL, the where clause is used to define local functions attached to a term.

Function fah2Kel, defined below, shows an example of an MPL function that uses the

where clause. The function takes a temperature in degree Fahrenheit and converts it to the

corresponding temperature in Kelvin. This conversion is achieved by first converting degree

Fahrenheit to degree Celsius and then converting degree Celsius to Kelvin.

-- convert degree Fahrenheit to Kelvin

36

fah2Kel :: Double -> Double =

fah -> kel()

where

kel =

-> fah2Cel(fah) + 273.15

fah2Cel =

fah -> (5*fah - 160)/9

Function kel and fah2Cel are local function defined using the where clause, which is

attached to the function call. The scope of the functions defined using the where clause is

the other functions defined in the where clause and the term to which the where clause is

attached.

2.3.3 Switch

The switch term, sometimes known as guards in the vocabulary of functional programming,

is of the form:

switch

p1 → t1

...

pn → tn

default → tdef

switch consists of a list of pairs of terms. Each pair (pi, ti) corresponds to a line in the body

of the switch construct. All the first elements of the list of pairs must return a boolean value.

The first term from p1, . . . , pn to returns a True will have its corresponding term executed.

37

If none of p1, . . . , pn return a true then the term tdef corresponding to the default case is

executed.

Function dayName, defined below, shows an example where the switch construct is used.

It takes an integer representing the number of a day in a week as the input. If the integer

is between one and seven, the function returns the corresponding constructor from the the

Day data type along with the SS (succeess) constructor of the SF (success or fail) data type.

If the day number is greater than seven, the FF (fail) constructor is returned. Note that in

the definition of the Day type, the constructors are grouped together: MPL’s syntax allows

for the grouping of constructors having the same types.

-- Success or Fail Constructor

data SF(A) -> C = SS :: A -> C -- Success constructor

FF :: -> C -- Fail constructor

-- data type representing week days

data Day -> C = Mon , Tue , Wed, Thu , Fri , Sat , Sun :: -> C

-- convert day numbers of a week to their day names

dayName :: Int -> SF(Day) =

day -> switch

day == 1 -> SS(Mon)

day == 2 -> SS(Tue)

day == 3 -> SS(Wed)

day == 4 -> SS(Thu)

day == 5 -> SS(Fri)

day == 6 -> SS(Sat)

day == 7 -> SS(Sun)

default -> FF

38

2.3.4 Function Calls

MPL allows the programmer to define their own functions. It also has built-in functions

such as addition, subtraction, multiplication, divison, equality testing etc. Both the classes

of functions can be called in MPL functions or processes. Syntax of a function call is:

f (a1, . . . , an)

where f is the function (defined/built-in) which is called with n arguments a1, . . . , an. The

function should be called with the right number of parameters otherwise a semantic error is

raised.

2.3.5 Variables

Variables allow MPL programs to use variable names in the body of an MPL program. The

variable names used in the program should be introduced through a variable pattern. A

variable name used inside an MPL program without having being introduced results in a

semantic error.

2.3.6 Constants

Constants which can be integers, floats, characters, or strings can be used in the body of an

MPL program. An example each of integer, float, character and string are 1, 3.14, ‘c’

and "hello" respectively.

39

2.4 Pattern Matching

Like most functional programming languages sequential MPL supports pattern-matching.

The syntax

v1, . . . , vn → t

generalizes to

p1,1, . . . , p1,n → t1

...

pm,1, . . . , pm,n → tm

which is a list of pattern phrases. A pattern phrase consists of a list of patterns and the

corresponding sequential term. When using pattern matching, term ti is executed only if

pi,1, . . . , pi,n is the first pattern which matches the input.

Variables, constructors, records, and products can be used as patterns giving variable

patterns, constructor patterns, record patterns, and product patterns respectively. Some-

times, elements of a pattern aren’t used in the corresponding term of the pattern phrase. A

special kind of pattern called the don’t care pattern, represented by an underscore (" "), is

used in such a case.

The remainder of this section gives a few examples of function definitions which use

different kinds of patterns in their body. Function isZero, defined below, takes an input

of type Nat and returns True if the input is Zero and False otherwise. isZero uses a

constructor pattern in the first pattern phrase and a don’t care pattern in the second pattern

phrase.

40

-- check if the natural number is zero

isZero :: Nat -> Bool =

Zero -> True

_ -> False

The or function, defined below, takes two boolean values as inputs and returns True if

either of the two inputs is True and False otherwise. The first pattern matching phrase

consists of True constructor pattern. The second pattern matching phrase consists of two

don’t care patterns.

-- boolean or function

or :: Bool,Bool -> Bool =

False,False -> False

, -> True

or2 function, defined below, rewrites the above defined or function with a product pattern

of two elements rather than two patterns as was the case in the or function definition. Note

that a constructor and a don’t care patterns have been used inside of a product pattern. A

pattern that contains other patterns is called a nested pattern. Also note that in the second

pattern matching phrase of the or2 definition one don’t care pattern suffices in comparison

to two don’t care patterns which are required in the second pattern phrase of the previous

or function definition.

-- boolean or function

or2 :: (Bool,Bool) -> Bool =

41

(False,False) -> False

_ -> True

thirdProj function, defined below, takes a record pattern of type Triple(D,E,F) and

returns the element corresponding to the third destructor from the pattern.

-- third projection function

thirdProj :: Triple(D,E,F) -> F =

(Proj0 := x, Proj1 := y, Proj2 := z) -> z

42

Chapter 3

Concurrent MPL

In this chapter, concurrent MPL programs are described. Concurrent MPL programs are

processes, which use protocols and coprotocols. Protocols and coprotocols are the concur-

rent analogues of sequential MPL’s data types and codata types respectively. Processes

communicate with each other by sending messages over typed channels.

The syntax for concurrent MPL is essentially new although it follows the ideas of [1].

Protocol and coprotcol declarations are an innovation and refine the syntax ideas in the theses

of Subashis [11] and Masuka [10]. The syntax for concurrent MPL evolved significantly during

the project. It was decided to allow unconstrained recursive calling of processes rather than

just the more disciplined “drives” of earlier conception of the language.

3.1 Channels

In the message passing view of concurrency, channels are important: they act as the conduit

for the exchange of messages between processes. An MPL channel connects two processes

and messages can be passed in both directions along a channel. A channel connecting

two processes must be an output (positive) polarity channel for one process and an input

(negative) polarity channel for the other process. Every channel has a channel type which

governs the legal interactions on that channel. Channel types are dicussed in Section 3.3.

43

P1

P2

P3

O1

Service

O2

Service

(+)

ch
1

(-) (+
)

ch
2

(-
)

(
+
)

s
1

(
+
)

s
2

Figure 3.1: Processes Connected by Channels

MPL has some special channels called service channels. They are the built-in MPL

channels which the programmer can use to interact with the outside world. For example,

MPL programs can read user inputs and can display outputs on a terminal using the built-in

positive polarity service channels. The console is a special service channel which has negative

polarity. Usually, console is the last channel to be closed in a process.

Figure 3.1 illustrates a concurrent MPL program with three processes P1, P2 and P3

represented as circles. A channel ch1 connects process P1 with process P2 and is drawn as a

solid line between the two processes. The “+” sign on channel ch1 towards P1 and “-” sign

towards P2 indicates that ch1 acts as an output polarity channel for process P1 and an input

polarity channel for process P2. Similarly, ch2 connects processes P2 and P3. P1 also has a

positive polarity service channel s1 which connects it to the outside world.

3.2 Processes

Concurrent MPL programs are organised using processes. An example of an MPL process

definition is shown below:

proc someProc :: Int | Console (Int) => IntTerm (Int) =

val | co => s1

44

do

hput PutInt on s1

put val on s1

hput Close on s1

close s1

hput CloseC on co

halt co

An MPL process is defined with the keyword proc followed by the process name, which

in the example above is someProc. MPL allows the programmer to optionally annotate the

processes with a process type. In the example, the type annotation of someProc is present

in the first line and follows the “::” symbol. The process type is Int | Console(Int)

=> IntTerm(Int). The types on the left side of “|” represent the types of the sequential

parameters of the process and the right side contains the channel types of the input and the

output channels, which are the concurrent parameters of the process. The types on the left

side of “=>” represent the channel types of the input polarity channels and that on the right

side represent the channel types of the output polarity channels. Thus, the process someProc

has one sequential parameter of the type Int, one input polarity channel of channel type

Console(Int) and one output polarity channel of channel type IntTerm(Int). The actual

parameters of someProc are given in the second line of the process definition: val | co =>

s1. val is the sequential parameter, co is the name of the input polarity channel and s1 is

the name of the output polarity channel. The process body is comprised of a sequence of

concurrent MPL constructs arranged in a layout format with respect to the keyword do.

45

proc p1 :: | Console(Int) => Get(A|TopBot) =

| co => ch

do get val on ch

close ch

hput CloseC on co

halt co

proc p2 :: | Put(A|TopBot) => IntTerm(Int) =

| ch => i1

do get val on ch

hput Close on i1

close i1

halt ch

run :: Console(Int) => IntTerm(Int) =

console => intTerm1

do plug

p1 (| console => ch)

p2 (| ch => intTerm1)

Table 3.1: Example:Achieving Type Safety in MPL

3.3 Channel Types

MPL brings a notion of type safety to the concurrent world. Channel types are central to

this notion of type safety. A channel type describes the permissible actions on a channel.

MPL allows the programmers to define complex user defined channel types called protocols

or coprotocols constructed from the basic built-in channel types.

Section 3.3.1 discusses how channel types bring type safety to the concurrent world, Sec-

tion 3.3.2 discusses the built-in channel types in concurrent MPL and Section 3.3.3 describes

protocol and coprotocol definitions.

3.3.1 Achieving Type Safety Using Channel Types

Consider the example of the program in Table 3.1 consisting of processes p1, p2, and the

main process. Process p1 and p2 are connected via a channel ch using plug construct in the

main process. Both p1 and p2 try to read a value from the channel ch. The diagrammatic

46

P1 P2

Get(A|TopBot) Put(A|TopBot)

(+) ch (-)

Figure 3.2: Protocol Error in MPL Processes

representation of the program is shown in Figure 3.2 where circles P1 and P2 represent

processes p1 and p2 respectively. In the program, both the processes try to get a value on

the channel ch. get and put are MPL constructs that fetch a value from a channel and put

a value on a channel respectively. The close construct closes a channel.

Intutitively, the configuration in Figure 3.2 seems wrong because both the processes can’t

simulatenously get a value on a channel. If one process puts a value on a channel then the

other process must read that value. Thus, a configuration like the one in Figure 3.2 should

result in a type error.

MPL infers the channel type of ch from the two processes it is connecting and checks if

the two channel types match. If the channels types don’t match then a type error is reported.

In order to infer the channel type of channel ch, the built-in channel types Get, Put and

TopBot are used. This is not an exhaustive set of base protocols: the set of all the built-in

channel types are provided in section 3.3.2.

On an output polarity channel, the get construct results in a Get channel type and the

put construct results in a Put channel type. However, on an input polarity channel, get

results in a Put channel type and put results in a Get. This swap is done so that the channel

types obtained from the processes on the opposite polarities of a channel match. Closing

a channel of any polarity results in the protocol TopBot. On inferring the channel type of

ch from processes P1 and P2, Get(A|TopBot) and Put(A|TopBot) are obtained respectively.

Since, the two channel types don’t agree, a type error results.

47

3.3.2 Built-in Channel Types

All the channel types in MPL are constructed using the following built-in channel types.

Get(A|P) - Get channel type takes a sequential type A and a channel type P.

Put(A|P) - Put channel type takes a sequential type A and a channel type P.

P1 (*) P2 - The symbol “(*)” represents the built-in channel type tensor. Tensor is

normally represented by the symbol ⊗ in Mathematics. Tensor channel type takes two

channel types P1 and P2.

P1 (+) P2 - The symbol “(+)” represents the built-in channel type par. Par is normally

represented by the symbol ⊕ or ` in Mathematics. Par channel type takes two channel

types P1 and P2.

TopBot - TopBot, which is an acronym for Top and Bottom types, is a built-in channel type

and it doesn’t take any arguments.

Neg(A) - Neg, standing for negation, takes one argument. Table 3.7 shows an example of a

program that uses the Neg protocol.

3.3.3 Defining (Co)Protocols in MPL

Concurrent MPL allows the programmer to define complex channel types called protocols

or coprotocols using the built-in channel types.

Protocols

An example of a protocol definition, which is also the channel type of the service channels

intTerm1,intTerm2,...with A = Int, is:

protocol IntTerm (A) => P =

GetInt :: Get (A|P) => P

48

PutInt :: Put (A|P) => P

Close :: TopBot => P

A protocol is defined using the keyword protocol. The name of the defined protocol is

IntTerm which is polymorphic in type A. P is the state variable. The syntax IntTerm(A)

=> P follows the syntax of a sequential data type and is used to indicate that a protocol is

an initial algebra of the concurrent world. The protocol IntTerm has three handles, GetInt,

PutInt and Close: handles are the analogues of constructors in the sequential world. The

type of a handle is obtained by substituting the state variable P with the protocol name

IntTerm(A) in the type expression corresponding to that handle in the protocol definition.

For example, the type of the handle GetInt is given by:

(Get(A|P) => P) [IntTerm(A)/P]

If the type of a channel is IntTerm then it means that any of the three handles of IntTerm

can be put on the channel. Once a handle has been put on a channel, the only actions allowed

on the channel are the actions permitted by the channel type of that handle. Note that the

handles GetInt and PutInt are recursive.

Coprotocols

An example of a coprotocol definition is:

coprotocol CP => Console (A) =

GetIntC :: CP => Put (A|CP)

PutIntC :: CP => Get (A|CP)

CloseC :: CP => TopBot

A coprotocol is defined using the keyword coprotocol. The name of the defined coproto-

col is console, which is polymorphic in the type variable A. Coprotocols are the codata types

49

of the concurrent world. The coprotocol Console has three cohandles GetIntC, PutIntC and

CloseC. The type of a cohandle is given by subtituting the state variable with the coprotocol

name. The type of the cohandle GetIntC is given by:

(CP => Put (A|CP)) [Console(A)/CP]

Notice that the difference between protocols and coprotocols is less dramatic than that

between data and codata as the concurrent world is more symmetric.

3.4 Concurrent MPL constructs

The body of MPL’s processes are written using concurrent MPL constructs. These are plug,

id, neg, get and put, hput and hcase, split and fork and close and halt.

Most concurrent MPL constructs perform an action on a channel. In MPL concurrency is

modeled using message passing between processes, so it is only logical that most concurrent

constructs should deal with channels.

With the exception of process call, id, neg, and plug, all concurrent MPL constructs come

in pairs. The constructs of a pair are dual to each other, i.e they work on the opposite

polarities of a channel. This is because in the message passing view of concurrency, for a

process to respond to an action over a channel, another process has to drive that action on

the other end of the channel and vice versa. Thus, in each pair of constructs mentioned above

one is a driver construct and the other is a reaction construct. For example, for a process to

get a value on a channel, some other process should have put a value on the channel. Thus,

get is a reaction construct driven by the put construct.

A brief description of all the concurrent MPL constructs is provided in Table 3.2. In

the next few sections (Section 3.4.1 to Section 3.4.7), the concurrent MPL constructs are

described in details.

50

process call calls a defined process

id equates two channels

neg negates a channel

plug connects two processes by a channel

get gets a value on a channel

put puts a value on a channel

hput puts a handle on a channel

hcase cases on the handles obtained on channel

split splits a channel into two channels

fork forks two new processes

close closes a channel

halt closes a channel. Usually the last channel is halted.

Table 3.2: Concurrent MPL Constructs

proc p1 :: Int | Console(Int) => IntTerm(Int) =

val | co => s1

do hput PutInt on s1

put val on s1

hput Close on s1

close s1

hput CloseC on co

halt co

run :: Console(Int) => IntTerm(Int) =

console => intTerm2

do p1 (5 | console => intTerm1)

Table 3.3: Example : Process Call

3.4.1 Process Call

In MPL, a process which has been defined can be called inside another process as the last

command in the process or as part of a plug command.

Table 3.3 shows an example of an MPL program which uses a process call. The output

of the program is the integer five printed on the output polarity service channel, intTerm1.

Program uses the protocol IntTerm and the coprotocol Console for the output and

input service channels respectively. IntTerm and Console were defined in Section 3.3.3.

Main process calls process p1 with 3 arguments: one sequential argument (integer five) and

51

two channels (console and intTerm1) which are the concurrent arguments.

3.4.2 The plug Construct

The plug construct allows one to connect two or more processes via channels. A plug com-

mand can only occur as the last command in a process block. Once the two processes are

plugged together, they can exchange messages.

The syntax of the plug construct is illustrated by:

plug

p1 (| ich => ch)

p2 (| ch => och)

where the keyword plug is followed by the processes being plugged. Here processes p1 and

p2 are plugged together on channel ch, which acts as an output polarity channel for p1 and

an input polarity channel for p2. For the plug construct to type check, the channel types of

the plugged channel inferred from the two processes it connects must unify.

One can also plug multiple processes using the plug construct as can be seen in the

example below where channel ch1 is plugged between processes p1 and p2 and channel ch2

is plugged between processes p2 and p3.

plug

p1 (| ich => ch1)

p2 (| ch1 => ch2)

p3 (| ch2 => och)

52

P2 P1

O3O2O1

P3

(+)

ch2

(-) (+
)

ch
1

(-
)

(
+
)

s2

(
+
)

s1

co

(-
)

Figure 3.3: The get and put Example

3.4.3 The get and the put Constructs

The get and the put are basic MPL constructs. The get construct reads a value on a channel.

Its syntax is:

get v on α

where v is a variable and α is a channel name. The value read from the channel α is bound

to the variable v. The get construct adds the variable v to sequential context of the process

in which it is used. Thus, v is visible to the subsequent MPL commands. The put construct

puts a sequential term on a channel. Its syntax is:

put t on α

where t is a sequential term which is put on a channel α. The typing of the get and the put

constructs was discussed at the end of Section 3.1.

Table 3.4 shows an example of an MPL program that uses the get and the put constructs.

Figure 3.3 shows a diagrammatic representation of the program which is used to give a

53

proc p2 :: | Console(Int) => IntTerm(Int), Put(Int|TopBot) =

| co => s1,ch2

do hput GetInt on s1

get x on s1

put x on ch2

hput Close on s1

close s1

close ch2

hput CloseC co

halt co

proc p3 :: | Put(Int|TopBot) => Put(Int|TopBot) =

| ch2 => ch1

do get x on ch2

put x on ch1

close ch2

halt ch1

proc p1 :: | Put(Int|TopBot) => IntTerm(Int) =

| ch1 => s2

do get x on ch1

hput PutInt on s2

put x on s2

hput Close on s2

close s2

halt ch1

run :: Console(Int) => IntTerm(Int),IntTerm(Int) =

console => intTerm1,intTerm2

do plug

p2 (|console => intTerm1,ch2)

p3 (| ch2 => ch1)

p1 (| ch1 => intTerm2)

Table 3.4: Example : The get and the put Constructs

54

description of the program.

In the example program in Table 3.4 there are three processes, p1, p2, and p3 apart from

the main process. In the main process, the three processes mentioned above are plugged

together. In the Figure 3.3, the three processes p1, p2, and p3 are represented as three

circles named P1, P2, and P3 respectively.

When the program is executed, a terminal (output polarity service channel intTerm1)

pops up asking for a number to be entered. Once the user has entered a number, another

terminal (output polarity service channel intTerm2) pops up displaying this number.

Process P2 asks for a value on its service channel s1. P2 then puts this value on the

channel ch2 from where P3 reads it. P3 then puts the value it has read on the channel ch1

from where P1 reads it. P1 then puts the value it has read on its service channel s2. This

value is now visible to the outside world.

Executing the get Before the put

The program in Table 3.4 is simple to understand if one considers that the processes are

scheduled in the order P2, P3, and P1 which means that the process P2 gets a value and

passes it to the process P3 which in turn passes to the process P1. However, the concurrent

semantics for MPL allows the processes to be scheduled in any order. For example, the order

P1, P2, and P3 is also a valid schedule of the above processes. In the second schedule the

process P1 tries to get a value on the channel ch1 before the process P3 puts a value on that

channel. Similarly, process P3 tries to get a value on the channel ch2 before the process P2

puts a value on the channel.

MPL handles the situation described above, where a process is trying to get a value from

a channel before that value has been put on the channel, by putting the process requesting

the get operation to sleep and removing it from the set of active processes. Once a value

is put on the channel, the process requesting get is woken up and put in the set of active

processes again, from where it can be scheduled. This mechanism is used not only with the

55

get and the put constructs but also with other concurrent constructs which come in pairs

like the split and the fork, and the hput and the hcase in the situations where the process

containing the reaction construct happens before the process containing the driver construct.

3.4.4 The id and the neg Constructs

The id construct equates two channels. The syntax ch2 |=| ch1 means that the channel

ch1 is equated with the channel ch2 which means the following:

• The messages written on the channel ch1 are now available on the channel ch2, i.e one

can access the messages available on the channel ch1 from the channel ch2.

• The messages to be sent via ch1 can now be sent via ch2, i.e. one can write a message

on ch2 and have it available on ch1.

When equating two channels of the same polarity, the neg construct is used to change the

polarity of one of the channels (“bending” the wire). For example, if both ch1 and ch2 are

of the same polarity then they can be equated by ch2 |=| neg(ch1). If the type of the

channel ch1 is A, then the type of the channel ch2 must be Neg(A). A significant example

of the id and neg constructs is provided in Section 3.4.8.

3.4.5 The hput and the hcase Constructs

The hput construct puts a (co)handle of a (co)protocol on a channel. Its syntax is:

hput H on α

where H is the handle or the cohandle being put on the channel α. The hcase construct can

be thought of as the concurrent counterpart of the case construct from the sequential MPL.

The case construct branches on the constructors of a data type and executes a sequential

construct corresponding to the data constructor selected from the branch. Similarly, the

56

hcase construct branches on the handles of a protocol and runs a sequence of concurrent

commands corresponding to the selected handle from the branch. Its syntax is:

hcase α of

H1 → c11; . . . ; c1a

...
...

Hm → cm1; . . . ; cmn

where H1, . . . , Hn are the (co)handles of a (co)protocol, α is the channel being hcased on, and

ci1, . . . , cij represent the j concurrent MPL commands which are executed if the (co)handle

Hi is selected.

The hput and the hcase are dual to each other: a handle is hput on one end of a channel -

the driver - and reacted to by an hcase at the other end. For a protocol, one hputs a handle

on an output polarity channel and hcases on the handles on an input polarity channel.

Dually, for a coprotocol, one hputs a cohandle on an input polarity channel and hcases on

the cohandles on an output polarity channel.

Table 3.5 shows an example of a program that uses the hput and the hcase constructs. The

processes of the program along with their channels are shown in Figure 3.4. The program

consists of two processes P1 and P2 which are plugged along a channel ch. Process P1 reads

an integer value on the channel i1 and checks if that value is greater than ten. If the integer

value is greater than ten then P1 hputs the handle PutInt on the channel ch, puts the value

on the channel ch, hputs a handle GetInt on the channel, receives an integer value on the

channel ch, prints this received integer value on the channel intTerm1, and calls itself again.

If the value is less than ten, then P1 terminates. Process P2 hcases on the handles obtained

on the channel ch and performs the following actions for the various handles:

GetInt: The process reads a value from its service channel intTerm2 and puts it on the

57

proc p1 :: |Console(Int) => IntTerm(Int),IntTerm(Int)=

| co => i1,ch

do hput GetInt on i1

get x on i1

case x > 10 of

True

do hput PutInt on ch

put x on ch

hput GetInt on ch

get y on ch

hput PutInt on i1

put y on i1

p1(|co => i1,ch)

False

do hput Close on i1

close i1

hput Close on ch

close ch

hput CloseC on co

halt co

proc p2 :: | IntTerm(Int) => IntTerm(Int)=

| ch => i2

do hcase ch of

GetInt

do hput GetInt on i2

get x on i2

put x on ch

p2 (| ch => i2)

PutInt do

do get x on ch

hput PutInt on i2

put x on i2

p2 (| ch => i2)

Close

do hput Close on i2

close i2

halt ch

run :: Console(Int) => IntTerm(Int),IntTerm(Int) =

console => intTerm1,intTerm2

do plug

p1 (| console => ch,intTerm1)

p2 (| ch => intTerm2)

Table 3.5: Example : The hput and the hcase constructs

58

P1 P2

O3
O2O1

(+) ch (-)

(
+
)

in
tT

erm
2

(
+
)

in
tT

erm
1

co
nso

le

(-
)

Figure 3.4: The hput and hcase Example

channel ch.

PutInt: The process reads a value from the channel ch and puts it on the channel intTerm2.

Close: The channels are closed and the process is terminated.

3.4.6 The split and the fork Constructs

Creating/forking new processes is a requirement in many concurrent programs. In MPL,

creation of the new processes is achieved using the fork construct which divides a process

into two new processes. Consider a scenario where two processes are connected via a channel

and one of these two processes forks into two new processes. In such a case, the channel that

connects the two process also needs to be split. The split construct splits a channel into two

channels. The split and the fork constructs are dual to each other. The syntax of the fork

construct is:

fork α of

59

α1 → p1

α2 → p2

where α indicates the channel that should be split into α1 and α2 so that the processes can

successfully be forked. p1 and p2 are the two forked processes. Channel α1 is associated

with the first forked process. The channel α2 is associated with the second forked process.

When a process is forked, the set of channels of the process are distributed between the two

processes such that the two sets of channels for the processes are disjoint and their union

results in the original set of channels.

Once a channel is forked, the reaction should be a split. The syntax of the split construct

is:

split α into α1, α2

where channel α represents the channel which is split into two new channels α1 and α2.

Once a channel is split, it is no longer visible to the subsequent concurrent MPL constructs

in the process block. However, the newly created channels are visible and can be used by

the subsequent constructs.

Splitting an input polarity channel or forking on an output polarity channel results in

the channel type (*) (tensor). Splitting an output polarity channel or forking on an input

polarity channel results in the channel type (+)(par).

Table 3.6 shows an example of a program that uses the split and the fork constructs. The

configurations of the processes before and after the split and the fork constructs are executed

are shown through the two diagrams in Figure 3.5. The first diagram represents the processes

and channels in the program before the split and the fork constructs are executed and the

second diagram represents the processes and the channels once the constructs are executed.

The main process plugs the channel ch between the processes P1 and P2. P1 gets a value

60

proc p1 :: |Console(Int) =>

Put(Int|TopBot)(+)Put(Int|TopBot)

,IntTerm(Int) =

| console => ch,intTerm1

do hput GetInt on intTerm1

get x on intTerm1

split ch into ch1,ch2

put x on ch1

put x on ch2

close ch1

close ch2

hput Close on intTerm1

close intTerm1

hput CloseC on console

halt console

proc p21 ::| Put (Int|TopBot) =>

IntTerm(Int) =

| ch1 => intTerm2

do get x on ch1

hput PutInt on intTerm2

put x*x on intTerm2

hput Close on intTerm2

close intTerm2

halt ch1

proc p22 :: | Put(Int|TopBot) =>

IntTerm(Int) =

| ch2 => intTerm3

do get x on ch2

hput PutInt on intTerm3

put x*x*x on intTerm3

hput Close on intTerm3

close intTerm3

halt ch2

proc p2::|Put(Int|TopBot)(+)Put(Int|TopBot)=>

IntTerm(Int),IntTerm(Int) =

| ch => intTerm2,intTerm3

do fork ch as

ch1 do

p21 (| ch1 => intTerm2)

ch2 do

p22 (| ch2 => intTerm3)

run :: Console(Int) =>

IntTerm(Int),IntTerm(Int),IntTerm(Int) =

console => intTerm1,intTerm2,intTerm3

do plug

p1 (| console => ch,intTerm1)

p2 (| ch => intTerm2,intTerm3)

Table 3.6: Example : The split and the fork constructs

61

P1

split ch

O21

O21

O22

O22

O11P2

fork on ch

P1

P21 P22

O11

(-
)

ch
1:
:T

1

(+
) (+)

ch2::T
2

(-)

(
+
)

c
h
:
:
T

(
-
)

intTerm3 (+)

intTerm
2

(+)

(+)

intTerm
1

(
+
)

in
tT

erm
1

(
+
)

in
tT

er
m

2

(
+
)

in
tT

er
m

3

Figure 3.5: The split and fork Example (T = T1 (+) T2)

62

on its service channel intTerm1, splits its output polarity channel ch into two channels ch1

and ch2, and puts the obtained value from the service channel on ch1 and ch2. The process

P2 forks two new processes P21 and P22 on the channels ch1 and ch2 respectively. The

process P21 gets the value that was put on the channel ch1, squares it and puts the squared

value on its service channel intTerm2. Similarly, the process P22 gets the value that was put

on the channel ch2, cubes it and puts the cubed value on its service channel intTerm3.

3.4.7 The close and the halt Constructs

The close and the halt constructs are used to close a channel. All the channels except the

last channel of a process are closed: the last channel is halted signifying the halting of the

process.

3.4.8 Memory Cell

This section gives an example of an MPL program that uses most of the concurrent MPL

constructs along with the Neg protocol. The example illustrates how the topology of the

communicating processes in MPL can be changed dynamically. To illustrate mobility, we

shall show how a mutable memory cell can be passed between two processes. The MPL

program for the memory cell is shown in Table 3.7 and the corresponding configurations of

processes are shown in Figure 3.6 and 3.7.

The program consists of three processes: p1, p2, and memory. These processes are rep-

resented by the circles P1, P2 and Memory in Figure 3.6. The memory cell, represented by

the process memory, can remember a value that is passed to it, can provide, on demand,

the value it is remembering, or can be closed. A memory cell communicates to the outside

world through an input polarity single channel: through which it receives values and outputs

remembered values. To program these actions, the protocol MEM, with handles PUT, GET, and

CLS, is defined which acts an interface to the memory cell. For the handle GET, the memory

cell receives a value on its channel ch and remembers it. For the handle PUT, the memory

63

cell puts the remembered value on the channel ch and still remembers the same value. For

the handle CLS memory cell halts.

The program mobilizes the memory cell, Memory, between the two processes P1 and P2 and

the memory cell communicates alternately with the two processes P1 and P2. The transfer

of the memory cell between the two processes is acheived using the protocol Passer. The

Passer protocol is put on the output channel p of the process P1. The process P1 then gets

the value y from the memory cell, displays this value on its output polarity service channel

io, receives a value x on io, and changes the value stored in the memory cell to x.

The process P2 has p as its input channel and it hcases on the handle of the Passer

protocol. It gets a value y from the memory cell and displays it on its output polarity

service channel in. P2 then receives a value x on in and updates the memory cell with that

value.

To begin with, the memory cell is attached to the process P2 on the channel mem and

process P2 is connected to process P1 on the channel p as shown by the first diagram in

Figure 3.6.

In order to transfer the memory cell to the process P1, the channel p is divided into three

channels: mm, nm, and pp as shown in the second diagram of Figure 3.6. Then the channel

mem, the interface channel of the memory cell, is equated with the channel mm and the channel

pp is negated and supplied as the input channel in the recursive call for process P2. In this

configuration, shown by the third diagram in Figure 3.6, memory cell is attached to process

P1 via channel mm.

In the recursive call for process P1, mm is negated and equated with the nm and pp is used

in the recursive process call as an output channel. Equating the two channels reattaches the

process Memory to the process P2. This is shown in Figure 3.7. In this way, the memory cell

is passed between the two processes.

64

protocol MEM (A) => P =

PUT :: Put (A|P) => P

GET :: Get (A|P) => P

CLS :: TopBot => P

protocol Passer(A) => P =

Pass :: A (+) (Neg(A) (*) P) => P

proc memory :: Int | MEM(Int) => =

x | ch => -> do

hcase ch of

PUT

do get y on ch

memory(y|ch =>)

GET

do put x on ch

memory(x|ch =>)

CLS

do halt ch

proc p2 :: | Passer(MEM(Int)) =>

IntTerm(Int),MEM(Int) =

| p => in, mem -> do

hcase p of

Pass

do

hput GET on mem

get y on mem

hput PutInt on in

put y on in

hput GetInt on in

get x on in

hput PUT on mem

put x on mem

fork p as

mm

do mm |=| mem

nmpp

do split nmpp into nm,pp

plug

p2 (| pp => in,z)

z |=| neg nm

proc p1 :: | => Passer(MEM(Int)),

IntTerm(Int) =

| => p,io

do

hput Pass on p

split p into mm,nmpp

hput GET on mm

get y on mm

hput PutInt on io

put y on io

hput GetInt on io

get x on io

hput PUT on mm

put x on mm

fork nmpp as

nm

do nm |=| neg mm

pp

do p1(| => pp,io)

run :: =>IntTerm(Int),IntTerm(Int)=

=> intTerm1,intTerm2

do plug

p1(| => p,intTerm1)

p2(| p => intTerm2,mem)

memory(10 |mem =>)

Table 3.7: Memory Cell: The id and the neg constructs

65

P2 P1

Memory

p::Passer

m
em

intTerm
2 in

tT
er

m
1

P2 P1

Memory

nm::Neg(MEM)

mm::MEM

pp::Passer

m
em

intTerm
2 in

tT
er

m
1

P2 P1

Memory

nm

pp

mm

intTerm
2 in

tT
er

m
1

Figure 3.6: Memory Cell: The id and neg Example

66

P2 P1

Memory

nm

pp

mm

intTerm
2 in

tT
er

m
1

Figure 3.7: Memory Cell: The id and neg Example

67

Chapter 4

Type Inference of MPL Programs

Once an MPL program is lexed and parsed, an abstract syntax tree (AST) is generated for

the program. An AST is a faithful representation of the original MPL program in that all

the important information present in the original program is present in the AST. The next

stage in the interpretation of the MPL program is type inferencing. This step ensures that

only type safe programs continue the process of interpretation. This chapter deals with the

type inference process of the various elements of an MPL programs like functions, terms,

patterns, pattern phrases, processes, process phrases, and process commands.

Lexing Parsing
Type

Inferencing

Compiling

Pattern

Matching

Lambda

Lifting

Translation

to AMPL

& Running

Programs

Figure 4.1: Interpretation Stages of MPL

The type inference process described in this chapter follows the mechanism outlined in [5].

68

The type inference process of MPL programs involves two main steps:

• Generating Type Equations - Type Equations represent the constraint between the

different parts of the construct being type inferred. Using the typing rules described

in this chapter, the proof tree of a term is annotated with type equations in the proof

search direction. The formal definitions of the type equations and their Haskell data

type representation are discussed in Section 4.1 and the generation of type equations for

the sequential and concurrent structures of MPL programs are discussed in Chapter 5

and Chapter 6 respectively. Type equation generation step uses a data structure called

Symbol Table which acts as a storage of the symbols used in a programs. A description

of the role of the symbol table in the type inference process in Section 4.3.

• Solving Type Equations - The type equations are solved in order to get the most

general type of the functions, and processes in an MPL program. The solution of the

type equations generated for MPL programs is discussed in the Section 4.2.

Not only does the general type solving algorithm allows for better location of type errors

but it also allows for universal and existential qunatification to be handled. The universal

quantification is used to ensure matching to user specified types. The generation of type

equations (described in Chapter 5 and 6), which had to be defined for MPL, followed the

ideas in the course notes [5]. The type inference for mutually recursive functions, the fold,

and unfold were amongst the more challenging aspects of the thesis.

4.1 Type Equations

In our type inference algorithm, a type equation is inductively defined as:

Type Equation :=

(Type Variable = Type Expression)

∃ v1, . . . , vn . {Type Equation}

∀ u1, . . . , um . {Type Equation}

69

A type equation is either a type variable assigned to a type expression, a set of type equations

having existential type binders, or a set of type equations having universal type binders. The

existential type binders are the set of variables v1, . . . , vn, which are associated with the ∃

symbol. The universal type binders are the set of variables u1, . . . , um, which are associated

with the ∀ symbol. The notations ∀, and ∃ should just be viewed as the syntax for type

binders and not as the universal and existential quantification of predicate logic.

The above definiton of type equation can be expressed by the Haskell data type TypeEqn

shown in the Figure 4.2. A description of the TypeEqn data type is:

• The constructor TSimp is the non-recursive phrase of the definition. The recursive

branch contains the existential and universal type binders is represented by the con-

structor TQuant.

• The TSimp constructor has as argument a pair of type expressions which are to be

made equal. The type expression are represented by the Haskell data type Type, which

is a data type defining the valid MPL types, both concurrent and sequential.

• The first argument of the constructor TExist, [ExistVar], is a list of existentially

bound variables. ExistVar is type synonymous to an integer. The second argument

of TExist is a list of type equations to be satisfied. Thus, TypeEqn is a recursive type.

• The first argument of the constructor TUniv, [ExistVar], is a list of universally bound

variables. UnivVar is type synonymous to an integer. The second argument of TUniv

is a list of type equations to be satisfied.

4.2 Solving Type Equations

Type inference generates a list of type equations with the universal and existential variable

bindings and when one solves the equations generated by a type inference algorithm it

is worth using the extra information inherent in the variable bindings: this information

70

type Name = String

-- Haskell data type for Type expression in MPL

data Type = Unit

| DataType (Name,[Type])

| CodataType (Name,[Type])

| Prod [Type]

| Const ConstType

| TVar Int

| Fun ([Type],Type) -- function type

| Get (String,Type)

| Put (TypeExpr,Type)

| Neg Type

| TopBot

| Protocol (Name,[Type])

| Coprotocol(Name,[Type])

| Tensor(Type,Type)

| Par (Type,Type)

| Proc ([Type],[Type],[Type]) -- process type

-- constant types in MPL

data ConstType = ConstInt

| ConstChar

| ConstDouble

| ConstString

type Var = Int -- variables are represented as integers

type UnivVar = Var -- universally bound variables

type ExistVars = Var -- existentially bound variables

-- Haskell data type for type equations

data TypeEqn = TSimp (Type,Type)

| TExist [ExistVar] [TypeEqn]

| TUniv [UnivVar] [TypeEqn]

Figure 4.2: Haskell Data Type for Type Equation and MPL Type Expressions

71

not only simplifies the problem but in a real implementation can help one to locate where

the typing went wrong (if it did). The modified type inference algorithm described here

works inductively by trying to eliminate the universally and existentially bound variables;

by associating with each universally and existentially bound variable the line number (and

term) at which the equation collection introduced the variable, that area of the code can be

identified as the source of failure. Note that, in general, the cause of a type error is hard

to determine as it may not even be a local problem: this makes error reporting difficult.

The above approach has the merit of localising the problem as far as possible and is straight

forward to implement. Type inference produces either a type failure or the most general

type of the MPL constructs. The objective of the type inference process is to return either

a type failure or a package of type equations.

We may express what must be done to solve these equations in various ways: one method

is to give a set of rules for simplifying type equations. These rules listed below are described

with the help of the functions check, match, and coalesce, which are defined in the Table 4.3

and described in section 4.2.1:

1. Any occurrence of an equation of the form x ≡ t where x ∈ t and x 6= t causes failure

(occurs check failure). This is implemented by the function check.

2. An occurence of an equation of the form

F (t1, . . . , tn) ≡ G(t′1, . . . , t
′
m)

where F and G are either function names, data names, codata names, protocol names,

or coprotocol names, and F 6= G or n 6= m results in match failure. An occurence of

an equation of the form

F (t1, . . . , tn) ≡ F (t′1, . . . , t
′
n)

72

can be replaced by the equations t1 ≡ t′1, . . . , tn ≡ t′n (matching). Match failure and

matching are achieved using the match function.

3. Universally and existentially quantified empty lists of equations, ∀x.() and ∃x.(), can

be removed.

4. Existentially bound variables, for which there is a substitution, can be eliminated by

substituting: ∃x.(x ≡ t, E) can be rewritten as E[t/x].

5. Universally bound variables in an equation, ∀x.E, can be removed if there is either

a trivial equation of the form x ≡ x in E, or if x doesn’t occur in E. If there is an

equation of the form x ≡ t and x 6= t then a type error results.

6. Scope manipulations for the existentially bound variables:

∃x.∃y.E = ∃y.∃x.E E1,∃y.E2 = ∃y.E1, E2 y 6∈ E1

7. Scope manipulations for the universally bound variables:

∀x.∀y.E = ∀y.∀x.E E1,∀y.E2 = ∀y.E1, E2 y 6∈ E1

The above rules can be translated into an equation solving algorithm: it starts at the

leaves of the tree of type equations and works down towards the root, (i.e. it is a fold).

The most general type of MPL constructs are obtained via an intermediate data structure

called a package. The type equations corresponding to an MPL construct is converted into a

package which is then continuosly reduced till its normal form is reached. The normal form

of the package gives the most general type of the MPL construct. A package is a four tuple

with type:

([Var],[UnivVar],[ExistVar],[(Var,Type)])

73

where:

• The first element of the tuple, Vars, is a list of free variables whose substitutions one

is trying to determine.

• The second and the third element of the tuple are lists of universal and exisential bound

variables respectively which could not be eliminated.

• The fourth argument is a list of substitution for the free variables. The variables not

mentioned are assumed to be substituted by the identity substitution x/x.

A description of the algorithm for solving type equations is given below:

1. Given a basic type equation without quantified variables t1 ≡ t2, the type expressions

t1 and t2 must be matched to obtain a list of substitutions together with the list of

free variables, and empty universally, and existentially bound variable lists.

2. Given an existentially or universally bound empty list of type equations, the package

([],[],[],[]) is returned, i.e. the free variable list, the universally, and existentially

bound variable list, and the substitution list are all empty.

3. For an existential quantification, the algorithm tries to go through all the existentially

bound variables and tries to eliminate them. To do this the coalesce step is performed

for all the existentially bound variables as shown below:

E1 ∃x .(x ≡ t , E2) → E1 E2[x/t] (4.1)

E1 ∃x .E2 → ∃x .E1 E2 x ≡ t 6∈ E2 (4.2)

(a) One locates a substitution of an existentially bound variable and uses it to elimi-

nate that variable from the list shown above in (4.1). This is done by substituting

it into the terms of all equations which then must be simplified by matching and

occurs checking.

74

(b) If a substitution doesn’t exist for the existential variable, then the type equation

on the immediately upper level in pulled inside the existential equation. This is

shown above in (4.2).

(c) One keeps doing (a) until there are no more assignments associated with the

existentially bound variables. The new free variables are the old free variables

less all the variables in the new binding.

4. The algorithm tries to eliminate all the universally bound variables. If the variable x

is not present in E then x is removed. If there exists a non trivial substitution for x,

then an error is reported.

∀x.E →

 E x 6∈ E

error Otherwise

5. To add a type equation E1 to an already processed type equation list E2(which either

fails or returns a package), one evalautes E1 (by matching) to a package as well. The

two packages can then be combined to get a resultant package as shown below:

E1 E2 → E1 (f2, u2, e2, s2)→ (f1, u1, e1, s1) (f2, u2, e2, s2)→

(f1 ++f2, u1 ++u2, e1 ++e2, s1 ++s2)

The elements in the final package are obtained by concatenating the corresponding

elements of the two packages.

6. The final result of this may have a substitution list which still contains repeated as-

signments to variables (the free ones) and so it must be substituted or matched with

respect to the free variables and then substituted out to get the final substitution of the

free variables. The final package will not have any universally bound variables but may

75

still have some existentially bound variables left and the solution is now parametric in

these existentially bound variables.

Example

Consider a type equation shown below:

∃X1, X2.

(
X0 ≡ List(X1), X1 ≡ X2,

∃X3, X4.X3 ≡ List(X4), X2 ≡ X3

)

where X0 is the type variable corresponding to the construct being type inferred.

1. Look at the inner most level and create a package. Create packages corresponding to

the equation X3 ≡ List (X4) and X2 ≡ X3 and combine them.

Package for the equation X3 ≡ List (X4) is ([X3, X4], [], [], [X3 ≡ List (X4)])

Package for the equation X2 ≡ X3 is ([X2, X3], [], [], [X2 ≡ X3])

Combined package is ([X2, X3, X4], [], [], [X3 ≡ List (X4), X2 ≡ X3])

2. For the inner existentially qunatified equation containing the existential type variables

X3 and X4, try eliminating the existential type variables using the combined package

from the previous step. The type variable X3 can be removed by substitution but

type variable X4 can not be removed. The package generated is [X2], [], [X4], [X2 ≡

List(X4)].

3. The package generated in the previous step is combined with the package generated

for the type equations X0 ≡ List(X1) and X1 ≡ X2).

Package generated for the equation X0 ≡ List(X1)) is ([X0, X1], [], [], [X0 ≡ List(X1)])

76

Package generated for the equation X1 ≡ X2 is:

([X1, X2], [], [], [X1 ≡ X2)])

The combined package of the three packages is:

(
[X0, X1, X2], [], [], [

X2 ≡ List(4),

X0 ≡ List(1),

X1 ≡ X2

]

)

4. Try eliminating the existentially quantified variable of the outer existentially quantified

equation using the combined package obtained in the previous step. The package

obtained is ([X4], [], [], [X0 ≡ List(List(X4))]). The type of the construct is given by:

∀X4.List(List(X4))

4.2.1 Helper Functions Used in Solving Type Equations

The helper functions used in the type equation solution algorithm are check, match, and

coalesce. These functions are shown in Figure 4.3 and described below:

The check function peforms the occurs check. The function takes as input a pair, repre-

sented by T/X, consisting of a type expression T and a type variable X. If the type variable

X is present in the type expression T then the a singleton list is returned with the pair

T/X otherwise fails occurs check error is reported. In the special case when the input pair

is X/X, an empty list is returned.

The match function produces a list of substitutions by matching the two type expressions

of its input pair. A description of the functions is:

77

check(X/X) = []

check(T/X) =

{
[T/X] if X does not occur in T
fail otherwise

match(X,T) = check(T/X)
match(T ,X) = check(T/X)

match(F (~T),G(~S)) =

{
flatten(map match (zip (~T ,~S))) if F ≡ G
fail otherwise

coalesce(T/X,[]) = []

coalesce(T/X,S/Y :Rest) =

{
append(match(T ,S),coalesce(T/A,Rest)) if X ≡ Y
append(check(S[T/X]/Y),coalesce(T/A,Rest)) otherwise

Figure 4.3: Helper Functions Used in the Solution of Type Equations

• If one of the type expression of the input pair is a type variable, then occurs check is

performed for the pair getting a substitution.

• If the two type expressions of the input pair are made up of type constructors, say

F and G which can be data types, codata types, protocols, coprotocols, functions, or

processes, then these steps are performed: Check if the type constructors are the same.

If the type constructors are not same, then an error is reported. If the type constructors

are the same, then the match functions are applied to the corresponding elements of F

and G resulting in a list of list of substitutions which are then concatenated.

The coalesce function takes as input a substitution, and list of substitutions. For a

substitution T/X, the function goes through the list of substituions. If the head of the

substitution list is a substitution of the variable X, the term T and the term corresponding

to the new substitution of X are matched to get a list of susbtitutions which are then

appended to the output obtained by applying the coalesce function on T/X and the tail of

the substitution list. If the head of the substitution list of the coalesce function contains the

variable X in the term, then T can be substituted for X in the term.

78

4.3 Role of Symbol Table in Type Inference

Symbol table acts a repository of symbols during the type inference process. The types of

the various constituents of an MPL program, constructors of data definitions, destructors of

codata definitions, (co)handle of a (co)protocol definitions, function definitions, and process

definitions, are inserted in the symbol table. When these constituents are used later in the

program, their types can be looked up from the symbol table in order to generate type

equations. For example, consider the List data type defined below:

data List(A) -> C = Nil :: -> C

Cons :: A,C -> C

In the symbol table, the constructors Nil, and Cons are inserted along with their fold

types, constructor types, and the data type they belong to. So, for instance, if one is trying

to type infer the term Cons(1,Nil) then type of 1 which is Int is unified with A generating

the type equation A = Int. Once can then replace the variable A with Int in the data

type of the constructor, List(A), producing List(Int), which is the inferred type of the

aforementioned constructor term.

79

Chapter 5

Type Equations for Sequential MPL

In this chapter, the rules for generating type equations for the sequential MPL constructs

are described. The type equation generation rules are term formation rules annotated with

the typing information for terms.

5.1 Data Type Constructs

The case, the constructor, and the fold are the sequential MPL constructs that work on the

data types. This section describes a data type declaration in MPL followed by a description

of the type equations for the various data type constructs.

5.1.1 Populating the Symbol Table for Data Declaration

Consider a pair of mutually recursive data types: D1(A1, . . . , Ak) and D2(A1, . . . , Ak) defined

below:

data

D1(A1, . . . , Ak) → Z1 =

C11 : T11,1, . . . , T11,n11 → Z1

80

...
...

...

C1m : T1m,1, . . . , T1m,n1m → Z1

and

D2(A1, . . . , Ak) → Z2 =

C21 : T21,1, . . . , T21,n21 → Z2

...
...

...

C2r : T2r,1, . . . , T2r,n2r → Z2

In the data type definitions D1 and D2, the variables in which the data types are polymorphic

are the same. In general this might not to be true and the “recursion graph” between the

various data types, defined with the syntax of mutually recursive data type definitions, must

be constructed in order to find out the variable containment for each data type.

The properties of a data type definition have been discussed in Section 2.1. Here we only

focus on those aspects of a data type definition which are important for type inference. For

the ithconstructor C1i of the data type D1:

• The type of the phrase of a fold function corresponding to the constructor is given by

the type expression for that constructor in the data definition. The type of the fold for

constructor C1i, held in the symbol table, is:

∀ Z1, A1, . . . , Ak . Ti1,1, . . . , Ti1,ni1
→ Z1 (5.1)

where Z1, A1, . . . , Ak represents all the type variables present in the data definition D1.

The type of the fold phrase stored in the symbol table is used in the generation of type

equations for the fold construct. When the type equations are generated, the type of

81

the fold phrase is α-renamed to avoid any naming conflicts with the variables already

present in the type equation. The type of the fold phrase for the constructor C1i with

fresh variables Z ′1, A
′
1, . . . , A

′
k substituted for Z1, A1, . . . , Ak is:

(∀ Z1, A1, . . . , Ak . Ti1,1, . . . , Ti1,ni1
→ Z1) Z ′1 A

′
1 . . . A

′
k

which can be β-reduced to:

(T1i,1, . . . , T1i,n1i
→ Z1) [Z ′1/Z1, A

′
1/A1, . . . , A

′
k/Ak].

The above notation is used in the type equations for the various data type constructs.

• The type of the constructor C1i is given by substituting the state variable Z1 with the

data name D1(A′1, . . . , A
′
k), where A′1, . . . , A

′
k are fresh variables used for A1, . . . , Ak re-

spectively, in the body of the type expression for the constructor in the data definition.

The type of C1i, held in the symbol table, is:

(∀ A′1, . . . , A′K (∀ Z1, A1, . . . , AK . T1i,1, . . . , T1i,ni1
→ Z1) D1(A′1, . . . , A

′
k)) A′1 . . . A

′
K

which can be β-reduced to

(T1i,1, . . . , T1i,n1i
→ Z1)[D1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak]

5.1.2 The Constructor

A data type has a set of constructors. The constructors of a data type are used to gener-

ate instances of that data type. Table 5.1 shows the type equations for the constructors.

The constructor C1i, for 1 ≤ i ≤ m, used in the Table 5.1 is a constructor of the data

type D1(A1, . . . , Ak) defined in Section 5.1.1, takes j arguments. A description of the type

82

Γ ` t1 : T1 〈E1〉 . . . Γ ` tn1i : T(n1i) 〈En1i〉
Γ ` cons (C1i, (t1, . . . , tn1i)) : T

〈
∃ T1, . . . , Tn1i ,
A′1, . . . , A

′
k.

T = D1(A′1, . . . , A
′
k),

T1 = T1i,1

[
D1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

...

Tn1i = T1i,n1i

[
D1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

E1, E2, . . . , En1i

〉

cons

Table 5.1: Type Equations for Constructors

equations for the constructor is:

• The output type T of the constructor Ci1 is the data type of which it is a constructor.

The equation generated is:

T = D1(A′1, . . . , A
′
k)

where A′1, . . . , A
′
k are fresh variables.

• The type of the kth argument tk of the constructor C1i is equated with the type of the

corresponding element of the input type of constructor function of Ci obtained from

the symbol table. The equation generated is:

Tk = T1i,k

[
D1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
{1 ≤ k ≤ n1i}

where Tk is the type of tk, and T1i,k

[
D1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
represents

the α-renamed kth element of the input type of the constructor C1i.

• E1, . . ., En1i
represent the set of type equations generated for the terms t1, . . ., tn1i

respectively.

83

Γ ` t : T0 〈E0〉

Γ, x11,1 : F11,1, . . . , x1m,n1m : F1m,n1m ` t1 : T1 〈E1〉,
...

Γ, x1m,1 : F1m,1, . . . , x1m,n1m : F1m,n1m ` tm : Tm 〈Em〉

Γ `

case t

of

∣∣∣∣∣∣∣
C11 x11,1, . . . , x11,n11 → t1
...

...
...

C1m x1m,1, . . . , x1m,n1m → tm

: T

〈
∃

T0, T1, . . . , Tm,
F11,1, . . . , F11,n11 ,

... .
F1m,1, . . . , F1m,n1m ,
A′1, . . . , A

′
k

T0 = D1(A′1, . . . , A
′
k),

T1 = T, . . . , Tm = T

F11,1 = T11,1

[
D1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

...

F11,n11 = T11,n11

[
D1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

...

F1m,1 = T1m,1

[
D1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

...

F1m,n1m = T1m,n1m

[
D1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

E0, E1, E2, . . . , Em

〉

case

Table 5.2: Type Equations for case

5.1.3 The case

The case construct branches on the different constructors of a data type. Table 5.2 shows

the type equations for a case construct over the data type D1, which was defined in Section

5.1.1. A description of these equations is:

• The type T0 of the term t0, which is the term being cased on, should be a data type D1

of which C11, . . . , C1m are constructors. The data type of these constructors is looked

up from the symbol table. The type equation generated is:

T0 = D1(A′1, . . . , A
′
k)

where A′1, . . . , A
′
k are fresh variables.

84

• E0 represents the set of type equations generated for the term t.

• The output type T of the case term is the type of the terms t1, . . . , tm. Thus, in a well

formed case expression the types of all the terms t1, . . . , tm should be the same. The

type equation generated is:

T1 = T, . . . , Tm = T

• The type F1i,j of the term x1i,j, which is the jth argument of the constructor C1i,

is equated with the type of the jth element of the input type of the constructor Ci,

obtained from the symbol table. The type equation generated is:

F1i,j = T1i,j

[
D1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
{1 ≤ i ≤ m, 1 ≤ j ≤ nj}

• Ei, for 1 ≤ i ≤ m, is the set of type equations generated for the term ti, which is the

term associated with the constructor C1i in the case branch, in the context expanded

by the n1i variables, x1i,1, . . . , x1i,ni1
of types F1i,1, . . . , F1i,n1i

respectively.

5.1.4 The fold

The fold construct is used to implement recursion in a disciplined manner. Recall, from the

first chapter on sequential MPL, that folding over mutually recursive data types requires the

constructors of each reachable mutually recursive data type to be listed.

The fold construct over the data type D1, which is mutually recursive with the data type

D2 (defined in Section 5.1.1), requires the constructors of both the data types D1 and D2

to be listed. Table 5.3 describes the type equations for a fold construct for the D1 mutually

recursive with D2. A description of the type equations is:

• The type T0 of the term t which is the subject of the fold should be a data type. This

should be the same data type to which the first constructors C1, . . . , Cm belongs. The

85

t : T0 〈E0〉

x11,1 : F11,1, . . . , x11,n11 : F11,n11 ` t1 : T1 〈E1〉
...

...
...

x1m,1 : F1m,1, . . . , x1m,n1m : F1m,n1m ` tm : Tm 〈Em〉

y21,1 : G21,1, . . . , y21,n21 : G21,n21 ` u1 : U1 〈E′1〉
...

...
...

y2r,1 : G2r,1, . . . , y2r,n2r : G2r,n2r ` ur : Ur 〈E′r〉

Γ `

fold t

of

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C11 : x11,1, . . . , x11,n11 → t1
...

...
...

C1m : x1m,1, . . . , x1m,n1m → tm
C21 : y21,1, . . . , y21,n21 → u1
...

...
...

C2r : y2r,1, . . . , y2r,n2r → ur

: T

〈
∃

T0, T1, . . . , Tm,
F11,1, . . . , F11,n11 ,

... .
F1m,1, . . . , F1m,n1m ,
G21,1, . . . , G21,n21 ,

... .
G2r,1, . . . , G2r,n2r ,
A′1, . . . , A

′
k

T0 = D1(A′1, . . . , A
′
k),

T1 = T, . . . , Tm = T

F11,1 = T11,1

[
Z ′1/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

...

F11,n11 = T11,n11

[
Z ′1/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

...

F1m,1 = T1m,1

[
Z ′1/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

...

F1m,n1m = T1m,n1m

[
Z ′1/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

G21,1 = T21,1

[
Z ′2/Z2, A

′
1/A1, . . . , A

′
k/Ak

]
,

...

G21,n21 = T21,n21

[
Z ′2/Z2, A

′
1/A1, . . . , A

′
k/Ak

]
,

...

G2r,1 = T2r,1

[
Z ′2/Z2, A

′
1/A1, . . . , A

′
k/Ak

]
,

...

G2r,n2r = T2r,n2r

[
Z ′2/Z2, A

′
1/A1, . . . , A

′
k/Ak

]
,

E0, E1, . . . , Em,
E′1, . . . , E

′
r

〉

fold

Table 5.3: Type Equations for fold

86

data type of these constructors is obtained by looking in the symbol table. The type

equation generated is:

T0 = D1(A′1, . . . , A
′
k)

where A′1, . . . , A
′
k are fresh variables.

• E0 represents the set of type equations generated for the term t.

• The output type T of the fold construct is the type of the terms t1. Thus, in a well

formed fold expression the types of t1, . . . , tm should be the same. The type equations

generated are:

T1 = T, . . . , Tm = T

where T1, . . . , Tm are the types of t1, . . . , tm respectively.

• The type F1i,j of the term x1i,j, which is the jth argument of the constructor C1i, is

equated with the type of the jth element of the input type of the fold phrase of the

constructor C1i obtained from the symbol table. The type equation generated is:

F1i,j = T1i,j

[
Z ′1/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
{1 ≤ i ≤ m , 1 ≤ j ≤ n1i}

• The type G2p,q of the term y2p,q, which is the qth argument of the constructor C2p, is

equated with the type of the qth element of the input type of the fold phrase of the

constructor C2p obtained from the symbol table. The type equation generated is:

G2p,q = T2p,q

[
Z ′2/Z2, A

′
1/A1, . . . , A

′
k/Ak

]
{1 ≤ p ≤ r, 1 ≤ q ≤ n2p}

• Ei, for 1 ≤ i ≤ m, represents the set of type equations generated for the term ti

87

in the context expanded by the n1i variables, x1i,1, . . . , x1i,n1i
of types F1i,1, . . . , F1i,n1i

respectively, associated with the constructor Ci in the body of the fold construct.

• E ′p, for 1 ≤ p ≤ r, represents the set of type equations generated for the term up in

the context expanded by the n2p variables, y2p,1, . . . , y2p,n2p of types G2p,1, . . . , G2p,n2p

respectively, associated with the constructor C2p in the body of the fold construct.

5.2 Codata Constructs

The record, the product, the destructor, and the unfold are the sequential MPL constructs that

work on codata types. In this section, the type equations for these constructs are discussed.

5.2.1 Populating the Symbol Table for Codata Declaration

Consider a pair of mutually recursive codata type definitions C1 and C2 having destructors

D1, . . . , Dm and Q1, . . . , Qr respectively:

codata

Z1 → C1(A1, . . . , Ak) =

D11 : Z1, T11,1, . . . , T11,n11 → P1

...
...

...

D1m : Z1, T1m,1, . . . , T1m,n1m , → Pm

and

Z2 → C2(A1, . . . , Ak) =

D21 : Z2, T21,1, . . . , T21,n21 → S1

...
...

...

D2r : Z2, T2r,1, . . . , T2r,n2r → Sr

88

For the codata type C1:

• The type of the phrase of a unfold function for the destructor D1i is given by the type

expression corresponding to the destructor in the codata definition. The type of the

unfold for the destructor D1i, which is held in the symbol table, is:

∀ Z1, A1, . . . , Ak.Z1, T1i,1, . . . , T1i,n1i
→ Pi {1 ≤ i ≤ m} (5.2)

where A1, . . . , Ak represents the set of the type variables present in the type expression.

The type of the unfold phrase stored in the symbol table is used in the generation

of type equations for the unfold construct. The unfold type of the destructors are

α-renamed with fresh variables to avoid variable name collision in a type equation.

The α-renamed unfold type of the destructor D1i with fresh variables Z ′1, A
′
1, . . . , A

′
k

substituted for Z1, A1, . . . , Ak is:

(∀Z1, A1, . . . , Ak.Z1, T1i,1, . . . , T1i,n1i
→ Pi) Z

′
1, A

′
1, . . . , A

′
k

which can be β-reduced to:

(Z1, T1i,1, . . . , T1i,n1i
→ Pi) [Z ′1/Z1, A

′
1/A1, . . . , A

′
k/Ak]

• The type of the destructor D1i is given by substituting the state variable Z1 with the

codata name C1(A′1, . . . , A
′
k), where A′1, . . . , A

′
k are fresh variables used for A1, . . . , Ak

respectively, in the type expression for the destructor given in the codata definition.

The type of the destructor D1i, held in the symbol table, is:

(∀ A′1, . . . , A′k(∀ Z1, A1, . . . , Ak . Z1, Ti1, . . . , Tij → Pi) C1(A′1, . . . , A
′
k)) A′1 . . . A

′
k

89

x11,1 : F11,1, . . . , x11,n11 : F11,n11 ` t1 : T1 〈E1〉
...

...
x1m,1 : F1m,1, . . . , x1m,n1m : F1m,n1m ` tm : Tm 〈Em〉

Γ `

rec

of

∣∣∣∣∣∣∣
D11 : x11,1, . . . , x11,n11 → t1
...

...
...

D1m : x1m,1, . . . , x1m,n1m → tm

: T

〈
∃

T1, . . . , Tm,
F11,1, . . . , F11,n11 ,

... .
F1m,1, . . . , F1m,n1m ,
A′1, . . . , A

′
k

T = C1(A′1, . . . , A
′
k)

T1 = P1

[
C1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

...

Tm = Pm

[
C1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

F11,1 = T11,1

[
C1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
...

F11,n11 = T11,n11

[
C1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
...

F1m,1 = T1m,1

[
C1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
...

F1m,n1m = T1m,n1m

[
C1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
E1, E2, . . . , Em

〉

rec

Table 5.4: Type Equations for record

which can be β-reduced to:

(Z1, Ti1, . . . , Tij → Pi) [C1(A′1, . . . , A
′
k)/Z1, A

′
1/A1, . . . A

′
k/Ak]

5.2.2 The record

The record construct forms a record of a codata type. The products allow the programmers

to use products in MPL without specifying the corresponding codata definitions with the

90

various projections as destructors. A description of the type equations generated for the

record construct, shown in the first row of the Table 5.4, is:

• The type T of the record is the codata type of the destructors D1, . . . , Dm used in the

body of the record construct. The type equation generated is:

T = C1(A′1, . . . , A
′
k)

where A′1, . . . , A
′
k are fresh variables.

• The type T1i of the term ti, which is the term corresponding to the destructor D1i in

the record, is equated with the output type of destructor function type for D1i obtained

from the symbol table. The type equation generated is:

Ti = Pi

[
C1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
{1 ≤ i ≤ m}

• The type F1i,j of x1i,j, which is the jth argument of the ith destructor D1i of the codata

type C1, is given by the equation:

F1i,j = T1i,j

[
C1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
{1 ≤ i ≤ m , 1 ≤ j ≤ n1i}

• Ei, for 1 ≤ i ≤ m, is the set of the type equations generated for the term ti. Ei

is generated in a context formed by the variables x1i,1, . . . , x1i,n1i
with their types

F1i,1, . . . , F1i,n1i
respectively.

5.2.3 The Product

Table 5.5 shows the type equations for the products. A description of these equations is:

• The type T of the product of n terms, t1, . . . , tn, is a product type comprised of the

91

Γ ` t1 : T1 〈E1〉 . . . Γ ` tn : Tn 〈En〉

Γ ` (t1, . . . , tn) : T

〈
∃ T1, . . . , Tn.

T = (T1, . . . , Tn)
, E1, . . . , En

〉 prod

Table 5.5: Type Equations for Products

Γ ` a1 : T1 〈E1〉
...

Γ ` aj : Tj 〈Ej〉 r : R 〈Er〉

Γ ` dest (Di, [r, a1, . . . , aj]) : T

〈
∃ T0, T1, . . . , Tj ,
A′1, . . . , A

′
k .

R = C1(A′1, . . . , A
′
k),

T = Pi

[
C1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

T1 = T1i,1

[
C1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

...

Tj = T1i,n1i

[
C1(A′1, . . . , A

′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

, E1, . . . , Ej , Er

〉

dest

Table 5.6: Type Equations for Destructor

types of the individual terms. The type equation generated is:

T = (T1, . . . , Tn)

where T1, . . . , Tn represents the types of the terms t1, . . . , tn respectively.

• E1, . . . , En represent the set of type equations generated for the terms t1, . . . , tn respec-

tively.

5.2.4 The Destructor

One can destruct a record of a codata type and extract a value using the destructors of that

codata type. A description of the type equations for a destructor, shown in Table 5.6, is:

92

• The destructor D1i of the codata type C1 takes j arguments, a1, . . . , aj, in addition to

the first term r which is the value being destructed. The type R of the term r is the

codata type to which the destructor Di belongs. The type equation generated is:

R = C1(A′1, . . . , A
′
k)

where A′1, . . . , A
′
k are fresh variables.

• The output type T of the destructor term D1i is equated with the output type of the

destructor D1i, obtained from the symbol table. The type equation generated is:

T = Pi[C1(A′1, . . . , A
′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak]

• The type Tk of the argument ak, which is the (k + 1)th input to the destructor D1i, is

equated with the corresponding input type of the destructor D1i. The type equation

generated is:

Tk = T1i,k+1[C1(A′1, . . . , A
′
k)/Z1, A

′
1/A1, . . . , A

′
k/Ak] {1 ≤ k ≤ j}

• E1, . . . , Ej represent the set of equations generated for the arguments a1, . . . , aj respec-

tively.

5.2.5 The unfold

The unfold is a operation used to produce codata by unfolding over an initial value.

Suppose, the codata defined in Section 5.2.1 is not a mutually recursive data type. The

type equations for the unfold construct over the codata C1 is shown in Table 5.7. A description

of type equations for the unfold construct is:

• The output type T of an unfold construct is the type T0 of the term t which is being

93

t : T0 〈E0〉

x11,1 : F11,1, . . . , x11,n11 : F11,n11 , s : S1 ` t1 : T1 〈E1〉,
...

...
...

x1m,1 : F1m,1, . . . , x1m,n1m : F1m,n1m , s : Sm ` tm : Tm, 〈Em〉

Γ `

unfold t of

s ⇒

∣∣∣∣∣∣∣
D11 : x11,1, . . . , x11,n11 → t1
...

...
... : T

D1m : x1m,1, . . . , x1m,n1m → tm

〈
∃

T0, T1, . . . , Tm,
F11,1, . . . , F11,n11 ,

... .
F1m,1, . . . , F1m,n1m ,
A′1, . . . , A

′
k,

T = T0,
T0 = C1(A′1, . . . , A

′
k),

S1 = T0, . . . , Sm = T0,

T1 = P1

[
Z ′1/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

...

Tm = Pm

[
Z ′1/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

F11,1 = T11,1

[
Z ′1/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

...

F11,n11 = T11,n11

[
Z ′1/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

...

F1m,1 = T1m,1

[
Z ′1/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

...

F1m,n1m = T1m,n1m

[
Z ′1/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

E0, E1, . . . , Em

〉

Table 5.7: Type Equations for unfold

94

unfolded. The type equation generated is:

T = T0

• The types of the term t is the codata type to which the destructors belong to. The

type equations generated are:

T0 = C1(A′1, . . . , A
′
k)

where T0 is the type of t, and A′1, . . . , A
′
k are fresh variables.

• E0 is the set of type equations generated for the term t.

• Ei, for 1 ≤ i ≤ m, represents the set of type equations generated for the term ti.

Ei is generated in the context expanded by the n1i variables, x1i,1, . . . , x1i,n1i
of types

Fi1,1, . . . , F1i,n1i
respectively, associated with the destructor Di in addition to the state

variable s of type Si. The variables s represents the state for the codata types C1.

• The type equations generated for the types associated with the state s are:

S1 = T0, . . . , Sm = T0,

where S1, . . . , Sm are the types of the state s1 in the unfold branch corresponding to

the terms t1, . . . , tm respectively.

• The type Ti of term ti is equated with the output type of the unfold function for the

95

destructor Di, obtained from the symbol table. The type equation generated is:

Ti = Pi

[
Z ′1/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
{1 ≤ i ≤ m}

• The type F1i,j of x1i,j, which is the jth argument of the ith destructor (D1i) phrase, is

equated with the corresponding input type of the unfold function of the destructor D1i

looked up from the symbol table. The type equation generated is:

F1i,j = T1i,j

[
Z ′1/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
{1 ≤ i ≤ m , 1 ≤ j ≤ n1i}

5.2.6 Other Sequential MPL Constructs

These are the remaining sequential MPL constructs which are neither the the data or the

codata constructs. These include variables, constants, function call, if-then-else, switch and

where. This section describes the type equations for these constructs.

5.2.7 Variables

The first rule in the Table 5.8 shows the type equation for variables. The variable x for which

the type equation is being generated should be present in the context Γ otherwise an error

is reported. The type T of the variable x is equated with the type P , which is the type of

the variable x looked up from the context. The type equation generated is:

T = P

5.2.8 Constants

The type equations for the various kinds of constants are the second through the fourth rules

in the Table 5.8. The constants are particularly easy to type infer as different constants are

96

x : P,Γ ` x : T

〈
T = P

〉 variable

Γ ` n : Int

Γ ` n : T

〈
T = Int

〉 int

Γ ` n : Double

Γ ` n : T

〈
T = Double

〉 double

Γ ` n : Char

Γ ` n : T

〈
T = Char

〉 char

Table 5.8: Type Equations for Variables and Constants

97

Γ ` t1 : T1 〈E1〉 . . . Γ ` tm : Tm 〈Em〉

Γ ` f (t1, . . . , tm) : T

〈
∃ A′1, . . . , A

′
k,

T1, . . . , Tm.

T = S
[
A′1/A1, . . . , A

′
k/Ak

]
,

T1 = S1

[
A′1/A1, . . . , A

′
k/Ak

]
,

...,
Tm = Sm

[
A′1/A1, . . . , A

′
k/Ak

]
,

E1, . . . , Em

〉 call

Table 5.9: Type Equations for Function Call

represented with different data constructors in the abstract syntax tree of MPL.

5.2.9 Function Calls

An already defined function can be called with some arguments. Consider a function f which

takes m inputs of types S1, . . . , Sm. The output type of the function is S. The type of the

function f, held in the symbol table, is:

f : ∀A1, . . . , Ak.S1, . . . , Sm → S

where A1, . . . , Ak represents the type variables present in the input and the output types.

The type of the function being called is looked up from the symbol table which is then used

in the generation of type equations for the function call. The output and input types of

the function extracted from the symbol table are α-renamed before using them in the type

equation. The α-renamed input and output types are:

Si

[
A′1/A1, . . . , A

′
k/Ak

]
{ 1 ≤ i ≤ m} (input type)

S
[
A′1/A1, . . . , A

′
k/Ak

]
(output type)

where A′1, . . . , A
′
k are fresh variables and

[
A′1/A1, . . . , A

′
k/Ak

]
represents a list of substitutions

in the type expressions Si and S.

A description of the type equations for a function call, shown in Table 5.9, is:

98

Γ ` t1 : T1 〈E1〉 Γ ` t2 : T2 〈E2〉 Γ ` t3 : T3 〈E3〉

Γ ` if t1 then t2 else t3 : T

〈
∃ T1, T2, T3.

T1 = Bool,
T2 = T, T3 = T,
E1, E2, E3

〉 if

Γ ` p1 : P1 〈Ep,1〉
...

Γ ` pm : Pm 〈Ep,m〉

Γ ` t1 : T1 〈E1〉
...

Γ ` tm : Tm 〈Em〉

Γ `

switch∣∣∣∣∣∣∣
p1 = t1
...

...
...

pm = tm

: T

〈
∃ T1, . . . , Tm,
P1, . . . , Pm.

P1 = Bool, . . . , Pm = Bool
T1 = T, . . . , Tm = T,
E1, . . . , Em,
Ep,1, . . . , Ep,m

〉 switch

Table 5.10: Type Equations for if-then-else, and switch

• The type T of a function call for function f is the output type of the function. The

type equation generated is:

T = S
[
A′1/A1, . . . , A

′
k/Ak

]
where S is the output type of f and A′1, A

′
k are fresh variables.

• The type Si of the ith argument of the function call is equated with Ti, which is the

type of the ith element of the input type of the function type of f looked up from the

symbol table. The type equation generated is:

Ti = Si

[
A′1/A1, . . . , A

′
k/Ak

]
{1 ≤ i ≤ m}

where A′1, . . . , A
′
k are fresh variables.

99

5.2.10 The if-then-else

The if-then-else term takes three terms as arguments: the first argument evaluates to a

boolean value and of the remaining two arguments, one is associated with the then clause

and the other is associated with the else clause. Depending on the boolean value being True

or False, first or the second term is executed. A description of the type equations for the

if-then-else term, shown as the first rule in Table 5.10, is:

• The type T1 of the first term t1 is boolean. The type equation generated is:

T1 = Bool

• The type T of the if-then-else term is the type of the terms t2 and t3, which are the

terms corresponding to the then clause and the else clause respectively. Thus, in a well

formed if-then-else term, the types of both t2 and t3 should be the same. The type

equation generated is:

T2 = T , T3 = T

where T2 and T3 are the types of the terms t2 and t3 respectively.

5.2.11 The switch

The switch term, also known as boolean guards, consists of a list of a pair of terms. The first

term of each pair evaluates to a boolean value. The second term of the pair, the first term

of which evaluates to True, is executed. In case the first terms of multiple pairs of terma

evaluate to true, the first such pair is selected.

A description of the type equations for switch term, shown as the second rule in the Table

5.10 are:

100

• The type of each of the first elements of the m pairs is Bool. The type equation

generated is:

P1 = Bool, . . . , Pm = Bool.

where P1, . . . , Pm are the types of the first elements of the m pairs of the switch term

respectively.

• The output type T of the switch term is the type of the second elements of the pairs.

Thus, in a well formed switch term, the types of all the second elements of the pairs

should be the same. The type equation generated is:

T1 = T, . . . , Tm = T

where T1, . . . , Tm represent the types of the terms t1, . . . , tm respectively.

• Ep,1, . . . , Ep,m represent the set of type equations generated for the first terms of the

m pairs.

• E1, . . . , Em represent the set of type equations generated for the second terms of m

pairs.

101

5.2.12 The where Clause

The where clause allows programmers to define local constants and local functions. A de-

scription of the type equations for the where clause, which are shown below, is:

Γ ` t : T0 〈E0〉

Γ `

t

where∣∣∣∣∣∣∣∣∣∣
fdefn1,

...

fdefnn

: T

〈
∃ T0. T = T0, E0

〉
where

• The local function definitions represented by fdefn1, . . . , fdefnn in the type equations

are type inferred first. The inferred types of these local function definitions are then

added to the symbol table. These functions are visible just inside the body of the

where term, i.e once outside the where term, the function definitions fdefn1, . . . , fdefnn

must be removed from the symbol table with their types.

• The output type T of the where term is the type of the term t. The type equation

generated is:

T = T0

where T0 is the type of t.

• E0 is the set of type equations generated for the term t.

5.3 Type Equations for a Pattern Phrase

A function body is made up of a list of pattern phrases. Recall that a pattern phrase is a list

of patterns and the corresponding term in a function definition. The Table 5.11 shows the

102

type equations for a pattern phrase. The symbol |= represents an empty sequential pattern.

A description of the rules is:

• (p1, . . . , pn → t) represents a pattern phrase with n patterns p1, . . . , pn and the

corresponding term t.

• A Pattern extends the context in addition to generating the type equations. Every

pattern pi generates a new context Γi and a set of type equations Ei represented as〈
Γi, Ei

〉
. The pair

〈
Γi, Ei

〉
is generated in an empty context.

• E represents the set of the type equations generated for the term t of the pattern

phrase. The type equations are generated in the context formed by the union of the

original context Γ with the contexts Γ1, . . . ,Γn generated by the the patterns p1, . . . , pn

respectively.

• if T1, . . . , Tn are the types of the patterns p1, . . . , pn respectively and T0 is the type of

the term t, then the type T of the pattern phrase is given by the equation:

T = T1, . . . , Tn → T0

where the symbol → in the type expression shows that the type of a pattern phrase is

a function type.

The type equations for a pattern phrase use the type equations of the patterns in the pattern

phrase. The type inference rules for various patterns were discussed in the Section 5.4.

5.4 Type Equations for Patterns

MPL provides following kinds of patterns:

• Don’t Care Pattern

103

|= p1 : T1

〈
Γ1, E1

〉
...

|= pn : Tn

〈
Γn, En

〉
Γ ∪ Γ1 ∪ . . . ∪ Γn ` t : T0

〈
E
〉

Γ ` (p1, . . . , pn → t) : T

〈
∃ T0, . . . , Tn.

T = T1, . . . , Tn → T0,
E,E1, . . . , En

〉 pattPhr

Table 5.11: Type Equations for Pattern Phrase

|= : T

〈
{}, {}

〉 don′t care

|= VPatt x : T

〈
{x : T}, {}

〉 variable

|= p1 : T1

〈
Γ1, E1

〉
...

|= pj : Tj

〈
Γj , Ej

〉
|= CPatt (Ci, (p1, . . . , pj)) : T

〈
Γ1 ∪ . . . ∪ Γj ,

{
∃ A1, . . . , Ak.
T1, . . . , Tj

T = D(A′1, . . . , A
′
k),

T1 = Ti1

[
D(A1, . . . , Ak/Z) , A′1/A1, A

′
k/Ak

]
,

...

Tj = Tij

[
D(A1, . . . , Ak/Z) , A′1/A1, A

′
k/Ak

]
,

E1, . . . , Ej

} 〉

constructor

Table 5.12: Type Equations for Don’t care, Variable, and Constructor Patterns

104

• Variable Pattern

• Constructor Pattern

• Record Pattern

• Product Pattern

In the following sections, the type equations for the various patterns are discussed. Table

5.12 and 5.13 list out the type equations for various patterns. The type equation generation

process for the various patterns yields a context in addition to the type equations.

5.4.1 Don’t Care Patterns

A don’t care pattern is used in a pattern phrase when a particular input is not relevant for

the term of that pattern phrase. The first rule in the Table 5.12 shows the type equations

for the don’t care pattern. As the rule suggests, the don’t care patterns don’t contribute

anything to either the context or to the set of type equations.

5.4.2 Variable Patterns

In a pattern phrase, the variables introduced by the variable patterns can be used inside the

body of the term of that pattern phrase. As can be seen in the second rule in the Table 5.12,

a variable pattern extends the context by adding the variable of the pattern with its type

variable in the context. However, a variable pattern doesn’t add anything to the set of the

type equations.

5.4.3 Constructor Patterns

A constructor patterns can be used to pattern match on the constructors of a data type. The

third rule in the Table 5.12 shows the type equations for a constructor pattern. The construc-

tor Ci used in the constructor pattern in the rule belongs to the data type D1(A1, . . . , Ak)

105

defined in the Section 5.1.1. A description of the type equations for the constructor pattern

of constructor Ci, which takes j arguments, is:

• Γ1, . . . ,Γj are the contexts and E1, . . . , En are the set of the type equations generated

for the arguments p1, . . . , pj of the constructor Cirespectively. The arguments of the

constructors are patterns themselves.

• The output type T of a constructor pattern is the data type of which it is a constructor.

The type equation generated is:

T = D1(A′1, . . . , A
′
k)

where A′1, . . . , A
′
k are fresh variables.

• The type Tk of the argument pk is equated with the kth element of the input type

of the constructor function of Ci obtained from the symbol table. The type equation

generated is:

Tk = Tik
[
D1(A1, . . . , Ak)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
{1 ≤ k ≤ j}

where Tik
[
D1(A1, . . . , Ak)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
represents the α-renamed kth ele-

ment of the input type of the constructor function of Ci.

5.4.4 Record Patterns

One can pattern match on the records of a codata type in MPL. Such patterns are called

record patterns. The first rule in the Table 5.13 shows the type equations for the record pat-

terns. The codata type, the record of which is used in the type equations, is C1(A1, . . . , Ak),

which was defined in the Section 5.2.1 of the chapter. A description of the type equations

for the record patterns is:

106

|= p1 : T1

〈
Γ1, E1

〉
...

|= pm : Tm

〈
Γm, Em

〉

|=

RPatt∣∣∣∣∣∣∣
D1 : p1
...

...
Dm : pm

: T

〈
Γ1 ∪ . . . ∪ Γm, Erec

〉 record

where:

Erec =

〈
∃ A1, . . . , Ak,
T1, . . . , Tm.

T = C1(A′1, . . . , A
′
k),

T1 = (T11, . . . , T1a, Z1 → P1)
[
C1(A1, . . . , Ak)/Z1, A

′
1/A1, . . . , A

′
1/Ak

]
,

...

Tm = (Tm1, . . . , Tmn, Z1 → Pm)
[
C1(A1, . . . , Ak)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]
,

E1, . . . , Em

〉

|= p1 : T1

〈
Γ1, E1

〉
...

|= pj : Tj

〈
Γj , Ej

〉
|= PPatt (p1, . . . , pj) : T〈

Γ1 ∪ . . . ∪ Γm,

{
∃ A1, . . . , Ak,

T1, . . . , Tj .
T = (T1, . . . , Tj),
E1, . . . , Ej

} 〉
product

Table 5.13: Type Equations for Record and Product Patterns

107

• The output type T of a record pattern is the codata type of the which the given pattern

is a record. The type equation generated is:

T = C1(A′1, . . . , A
′
k)

where A′1, . . . , A
′
k are fresh variables.

• Γ1, . . . ,Γm are the contexts, and E1, . . . , Em are the type equations generated for the

patterns p1, . . . , pm respectively. The patterns p1, . . . , pm are the patterns associated

with the destructors D1, . . . , Dm in the body of the record pattern.

• Type Ti of the pattern pi corresponding to the destructor Di in the record is given by

the equation:

Ti = (Ti1, . . . , Tij, Z1 → Pi)
[
C1(A1, . . . , Ak)/Z1, A

′
1/A1, . . . , A

′
k/Ak

]

where Ti1, . . . , Tij, Z1 → Pi represents the α-renamed type of the destructor function

of Di.

5.4.5 Product Patterns

A product pattern consists of a tuple of patterns. A description of the type equations for

product patterns, which is the second rule in the Table 5.13, is:

• Γ1, . . . ,Γj are the contexts and the E1, . . . , Ej are the set of the type equations gener-

ated for the patterns p1, . . . , pj respectively.

• The output type T of a product pattern is the product of the types of the individual

elements of the product pattern. This relationship is represented by the equation:

T = (T1, . . . , Tn)

108

where () represents the product type which is a built in type in MPL and T1, . . . , Tn

are the types of p1, . . . , pj respectively.

5.5 Generating Type Equations for Function Defini-

tions

Function definitions consist of a list of pattern phrases. Type equations for a pattern phrase

are described in the Section 5.3. In Section 5.5.1, the type equations for the function defin-

tions, which consist of a list of pattern phrases, is discussed. MPL allows the programmers

to annotate a function with its expected type. Section 5.5.2 deals with the type checking of

functions with an annotated type. Section 5.5.3 describes the type equations for mutually

recursive function definitions.

5.5.1 Function Definitions without an Annotated Type

The first rule in the Table 5.14 provides the type equations for functions which don’t have

an annotated type. A description of the type equations for such function definitons is:

• The types of the different pattern phrases in the function definition should be the same.

This type is also the type of the function f . The type equation generated is:

T1 = T, . . . , Tm = T

where T1, . . . , Tm are the types of the m pattern phrases and T is the type of the

function f .

• E1, . . . , Em represent the set of type equations generated for the m pattern phrases

respectively.

109

|= (p1,1, . . . , p1,n → t1) : T1

〈
E1

〉
...

|= (pm,1, . . . , pm,n → tm) : Tm

〈
Em

〉
|= fun f =

(p1,1, . . . , p1,n → t1)
... : T

(pm,1, . . . , pm,n → tm)

〈
∃ T1, . . . , Tm.

T1 = T, . . . , Tm = T,
E1, . . . , Em

〉
fun

|= fun f =
(p1,1, . . . , p1,n → t1)

... : T

〈
Efun

〉
(pm,1, . . . , pm,n → tm)

|= fun f : ∀ A1, . . . , Ak . F =
(p1,1, . . . , p1,n → t1)

... : T
(pm,1, . . . , pm,n → tm)

〈
∀ A′1, . . . , A′k,
∃ T .

T = F [A′1/A1, . . . , A
′
k/Ak],

Efun

〉

annot. fun

Table 5.14: Type Equations for Function Definitions

110

Once the most general type of a function definition is inferred, the symbol table is updated

with the function name and its most general type.

5.5.2 Function Definitions with an Annotated Type

The first rule of the Table 5.14 shows the type equations for a function definition f annotated

with a type. The strategy used to type check the function f is: Infer the most general type

of the function f without its annotated type and try to unify the inferred type with the

annotated type. If the unification is successful then the annotated type of the function is

right otherwise there is a discrepancy between the annotated type and the inferred type,

which should result in a type error. Note that type inference yields the most general type of

a function whereas the annotated type may be a specific instance of the most general type of

the function. A description of the type equations for the type annotated function definitions

is:

• The annotated type of the function f is:

∀ A1, . . . , Ak . F

where F is the type of the function f and ∀ A1, . . . , Ak represents the type variables

in the body of F .

• The type T of the function f is equated with the type F . the annotated type of the

function. The type equation generated is:

T = F [A′1/A1, . . . , A
′
k/Ak]

where A′1, A
′
k are fresh variables.

• Efun is the set of functions generated for the function f without its annotated type.

111

if the annotated function type checks then the symbol table is updated with the function

name and its annotated type.

5.5.3 Mutually Recursive Function Definitions

Table 5.15 provides the type equations for mutually recursive functions. The basic idea

behind the rule is that the set of the mutually recursive functions are considered one function

definition for the type inference process. The type equations for mutually recursive functions

are generated together, which are then solved. A description of the type equations for a set

of mutually recursive functions f1, . . . , fk, shown in the Table 5.15, is:

• The functions f1, . . . , fk are assigned dummy types and the symbol table is expanded

with the function names and the dummy types assigned to them. In this way the

problem of calling a function before it is defined, as is the case in mutually recursive

functions, is addressed.

• The equations for individual functions are generated and combined to get the final

equation for the set of mutually recursive functions. For the function f1 of type T

having m pattern phrases of types T1, . . . , Tm respectively, the type equations generated

are:

T1 = T, . . . , Tm = T

meaning that the types of all the pattern phrases should be the same which is also

the type of the function. F1, . . . , Fm are the set of type equations generated for the

m pattern phrases of f1. Similarly to f1, the type equations are generated for all the

functions in the set of mutually recursive functions.

112

Mutually recursive functions

|= (p1,1, . . . , p1,n → t1) : T1

〈
F1

〉
...

|= (pm,1, . . . , pm,n → tm) : Tm

〈
Fm

〉
. . .

|= (q1,1, . . . , q1,y → t1) : S1

〈
G1

〉
...

|= (qx,1, . . . , qx,y → tx) : Sx

〈
Gx

〉
|= defn

fun f1 =
(p1,1, . . . , p1,n → t1)

... : T
(pm,1, . . . , pm,n → tm)

...

fun fk =

(q1,1, . . . , q1,y → t1)
... : S

(qx,1, . . . , px,y → tx)

〈
∃

T1, . . . , Tm
...

S1, . . . , Sx .

T1 = T, . . . , Tm = T,
...

S1 = S, . . . , Sm = S,
F1, . . . , Fm,

...
G1, . . . , Gx

〉

Table 5.15: Type Equations for Mutually Recursive Function Definitions

113

Chapter 6

Type Equations for Concurrent MPL

This chapter deals with the generation of the type equations for Concurrent MPL. Recall

that the types in the concurrent world are known as channel types. The channel types are

formed inductively using the built-in channel types which are listed below:

• Get

• Put

• Tensor

• Par

• Neg

• TopBot

A detailed description of the built-in channel types has been provided in the Section 3.3.2 of

the third chapter. In the following sections, we will see the generation of type equations for

various Concurrent MPL Constructs, process phrases, processes with and without annotated

types, and mutually recursive processes. The type equation generation rules for the get and

the put constructs, the split and the fork constructs, and the close and the halt constructs

are motivated from [1].

114

s :: x : X,Φ | Γ, α : S ∆ 〈E〉

get x α .s :: Φ | Γ, α : T ∆

〈
∃X,S. T = Put(X,S), E

〉 get

s :: x : X,Φ | Γ α : S,∆ 〈E〉

get x α .s :: Φ | Γ α : T,∆

〈
∃X,S. T = Get(X,S), E

〉 get

Φ ` x : X 〈E1〉 s :: Φ | Γ, α : S ∆ 〈E2〉

put x α .s :: Φ | Γ, α : T ∆

〈
∃X,S. T = Get(X,S), E1, E2

〉 put

Φ ` x : X 〈E1〉 s :: Φ | Γ α : S,∆ 〈E2〉

put x α .s :: Φ | Γ α : T,∆

〈
∃X,S. T = Put(X,S), E1, E2

〉 put

Table 6.1: Type Equations for the get and the put Constructs

Type equations for the various concurrent MPL constructs are generated in the process

context. A process context consists of a sequential context Φ, a input channel context Γ and

an output channel context ∆ and is represented as:

Φ | Γ ∆

The sequential context contains the list of pairs of variables and their associated types. The

channel contexts are a list of pair of channels with their associated channel types.

6.1 The get and the put Constructs

The get construct gets a value from a channel and the put construct puts a value on a

channel. The first two rules in Table 6.1 show the type equation rule for the get construct.

A description of the equations is:

• The channel type T of the get construct in get x α is the channel type of α, which can

115

be looked up from the channel contexts. The polarity of the channel α depends on the

channel context, input or output, in which the channel name is present.

• The channel type T of get x α for an input polarity channel α is given by the equation:

T = Put(X,S)

where X is the type of the variable x, and S is the channel type corresponding to those

concurrent MPL constructs in s which operate on the channel α and are below the

current get construct in the process block.

• The channel type T of get x α for an output polarity channel α is given by the equation:

T = Get(X,S)

• The set of type equations for the concurrent MPL commands which are below the

current get construct in the process body are represent by E. These equations are

generated in a modified process context: the sequential context is extended by adding

the variable x with its type X and the input or the output channel context is modified

by associating the channel α with the type S instead of the type T .

A description of the type equations for the put construct, shown by the last two rules in

the Table 6.1, is:

• The channel type T of the put construct in put x α is the channel type of α which can

be looked up from the channel contexts.

• The channel type T of put x α for an input polarity channel α is given by the equation:

T = Get(X,S)

116

where X is the type of the term x, and S is the channel type corresponding to those

concurrent MPL constructs in s which operate on the channel α and are below the

current put construct in the process block.

• The channel type T of put x α for an output polarity channel α is given by the equa-

tion:

T = Put(X,S)

• The set of type equations for the concurrent MPL commands below the current put

construct in the process block are represent by E. These type equations are generated

in a modified process context where one of the channel contexts, input or output, has

α associated with S instead of T .

• E1 is the set of type equations generated for the sequential term t in the sequential

context Φ.

6.2 The split and the fork Constructs

The split and the fork constructs come in a pair. The split construct splits a channel into two

channels and the fork construct creates two processes by forking the current process on the

channel which is split.

A description of the type equation for the split construct, shown in the first two rules in

the Table 6.2, is:

• If α is an input polarity channel of channel type T which splits to produce two input

polarity channels α1, and α2 of channel types T1, and T2 respectively, then the channel

type of α is the tensor of the channel types of α1 and α2 represented by the equation:

T = T1 (∗) T2

117

s :: Φ | Γ, α1 : T1, α2 : T2 ∆ 〈E〉

split α (α1, α2).s :: Φ | Γ, α : T ∆

〈
∃T1, T2. T = T1 (∗) T2, E

〉 split

s :: Φ | Γ α1 : T1, α2 : T2,∆ 〈E〉

split α (α1, α2).s :: Φ | Γ α : T,∆

〈
∃T1, T2. T = T1 (+) T2, E

〉 split

s1 :: Φ | Γ1, α1 : T1 ∆1 〈E1〉 s2 :: Φ | α2 : T2,Γ2 ∆2 〈E2〉
fork α

as

∣∣∣∣ α1 → s1

α2 → s2

:: Φ | Γ1, α : T,Γ2 ∆1,∆2

〈
∃T1, T2. T = T1 (+) T2, E1, E2

〉 fork

s1 :: Φ | Γ1 ∆1, α1 : T1 〈E1〉 s2 :: Φ | Γ2 α2 : T2,∆2 〈E2〉
fork α

as

∣∣∣∣ α1 → s1

α2 → s2

:: Φ | Γ1,Γ2 ∆1, α : T,∆2

〈
∃T1, T2. T = T1 (∗) T2, E1, E2

〉 fork

Table 6.2: Type Equations for the split and the fork Constructs

• Similarly, splitting an output polarity channel results in the par channel type. The

type equation generated is:

T = T1 (+) T2

• The channel context is extended with the newly created channel names α1 and α2 along

with their respective channel types. If the original channel α was an input polarity

channel then the input channel context is enhanced else the output channel context is

extended. E represents the set of type equations generated for the process commands s

in the extended channel context. s represents the process commands which are working

on the channel α, and are below the split construct in the process block.

A description of the type equations for the fork construct, shown in the last two rules of

Table 6.2, is:

118

• Forking on an input polarity channel α of channel type T , which expects the channel

α to split and produce two new input polarity channels α1 and α2 of channel types T1

and T2 repsectively, results in the built-in channel type par. This generates the type

equation:

T = T1 (+) T2

• Similarly, forking on an output polarity channel results in the channel type par. The

type equation generated is:

T = T1 (∗) T2

• The channel names α1 and α2 along with their respective channel types separately

extend the output or the input channel context generating two new contexts depending

on the polarity of α. The channel context extended with α1 is used to generate the type

equations for the process commands s1, the process corresponding to the α1 branch. E1

represents the set of type equations generated for s1 in the channel context extended by

α1 and its channel type T1. Similarly, E2 represents the set of type equations generated

for s2 in the channel context extended by α2 and its channel type T2.

6.3 The hput and the hcase Constructs

The hput construct puts a handle/cohandle H on a channel α. The (co)protocol of the

(co)handleH becomes the channel type of α. The hcase construct branches on the (co)handles

of a protocol. One hputs a handle on an output polarity channel and hcases on the handles

of a protocol on an input polarity channel. Alternatively, one hputs a cohandle on an input

polarity channel and hcases on cohandles on an output polarity channel.

119

s :: Φ | Γ α : S,∆ 〈E〉
hput Hi on α .s :: Φ | Γ α : T,∆

〈
∃S,A′1, . . . , A′k .

T = P (A′1, . . . , A
′
k),

S = Ti
[
P (A′1, . . . , A

′
k)/C,A′1/A1, . . . , A

′
k/Ak

]
,

E

〉
hput

s :: Φ | Γ, α : S ∆ 〈E〉
hput Hi on α .s :: Φ | Γ, α : T ∆

〈
∃S,A′1, . . . , A′k .

T = P ′(A′1, . . . , A
′
k),

S = Ti
[
P (A′1, . . . , A

′
k)/C,A′1/A1, . . . , A

′
k/Ak

]
,

E

〉
hput

c1 :: Φ | Γ, α : S1 ∆ 〈E1〉, . . . , cn :: Φ | Γ, α : Sn ∆ 〈En〉
hcase α

of

∣∣∣∣∣∣∣
H1 → c1
...

...
... :: Φ | Γ, α : T ∆

Hn → cn

〈
∃ A′1, . . . , A

′
k,

S1, . . . , Sn .

T = P
(
A′1, . . . , A

′
k

)
,

S1 = T1

[
P (A′1, . . . , A

′
k)/C,A′1/A1, . . . , A

′
k/Ak

]
,

...
Sn = Tn

[
P (A′1, . . . , A

′
k)/C,A′1/A1, . . . , A

′
k/Ak

]
,

E1, . . . , En

〉

hcase

c1 :: Φ | Γ α : S1,∆ 〈E1〉, . . . , cn :: Φ | Γ, α : Sn,∆ 〈En〉
hcase α

of

∣∣∣∣∣∣∣
H1 → c1
...

...
... :: Φ | Γ α : T,∆

Hn → cn

〈
∃ A′1, . . . , A

′
k,

S1, . . . , Sn .

T = P ′
(
A′1/A

1
1, . . . , A

′
k/A

1
k

)
,

S1 = T1

[
P (A′1, . . . , A

′
k)/C,A′1/A1, . . . , A

′
k/Ak

]
,

...
Sn = Tn

[
P (A′1, . . . , A

′
k)/C,A′1/A1, . . . , A

′
k/Ak

]
,

E1, . . . , En

〉

hcase

Table 6.3: Type Equations for the hput and the hcase Constructs

120

6.3.1 Populating the symbol table for (Co)Protocol Declarations

Consider a protocol P with handles H1, . . . , Hn defined below:

protocol P (A1, . . . , Ak) ⇒ C =

H1 : T1 ⇒ C

...
...

...

Hn : Tn ⇒ C

where the protocol P is polymorphic in type variables A1, . . . , Ak. The channel type of a

handle is obtained by replacing the state variable C with the protocol name P (A′1, . . . , A
′
k),

where A′1, . . . , A
′
k are fresh variables used for A1, . . . , Ak respectively. The channel type of

the handle Hi, held in symbol table, is:

(∀ A′1, . . . , A′k (∀ C,A1, . . . , Ak . Ti ⇒ C) (P (A′1, . . . , A
′
k)) A′1, . . . , A

′
k

which can be β-reduced to

(Ti ⇒ C)
[
P (A′1, . . . , A

′
k)/C,A′1/A1, . . . , A

′
k/Ak

]
Consider a coprotocol P ′ with cohandles H1 . . . Hn defined as:

coprotocol P ′(A1, . . . , Ak) ⇒ C =

H1 : C ⇒ T1

...
...

...

Hn : C ⇒ Tn

Like with handles, the types of the cohandles are held in the symbol table. The β-reduced

121

type of a cohandle Hi is given by:

(Ti ⇒ C)
[
P ′(A′1, . . . , A

′
k)/C,A′1/A1, . . . , A

′
k/Ak

]

6.3.2 Description of the Type Equations

A description of the type equations for the hput construct in the case where a handle is hput

on an output channel, which is the first rule in the Table 6.3, is:

• The type T of the channel α is the protocol of which Hi is a handle of. The type

equation generated is:

T = P (A′1, . . . , A
′
k)

where A′1, . . . , A
′
k are fresh variables.

• The channel type S of the constructs in s which work on α, is given by the type

equation:

S = Ti
[
P ′(A′1, . . . , A

′
k)/C,A′1/A1, . . . , A

′
k/Ak

]
where Ti is the input type of the handle Hi.

• E is the set of type equations generated in a process context where the output channel

context is modified to have S instead of T as the channel type associated with the

channel α.

The type equation for the case when a cohandle is hput on an input polarity channel is

symmetric to the case when a handle is hput on an output polarity channel.

A description of the type equations for the case when the handles of a protocol are cased

on an input polarity channel, which is the third rule in the Table 6.3, is:

122

• The type T of the channel α is the protocol of the handles which are hcased on. The

type equation generated is:

T = P (A′1, . . . , A
′
k)

• The channel type Si for α corresponding to the concurrent MPL constructs in Ci is

given by:

Si = Ti[P
′(A′1, . . . , A

′
k)/C,A′1/A1, . . . , A

′
k/Ak

]

• E1, . . . , En represent the set of type equations for the concurrent MPL commands

c1, . . . , cn, which are the set of commands corresponding to the handles H1, . . . , Hn

respectively. Ei, for 1 ≤ i ≤ n, is generated in the process context where the output

channel context is modified such that the type Si is associated with the channel α

instead of the type T .

Handling the cohandles of a coprotocol on an output polarity channel is symmetric to

the above case.

6.4 The close and the halt Constructs

The close and the halt constructs are used to close the channels used in an MPL process.

All the channels must be closed before halting an MPL process. The halt construct occurs

as the last command, however the close construct has other concurrent commands below it

in the process block. A description of the type equations for the close constructs, shown in

the first two rows of the Table 6.4 , is:

• Closing an input or an output channel α of type T results in the built-in channel type

123

s :: Φ | Γ ∆ 〈E〉

close α .s :: Φ | Γ, α : T ∆

〈
T = TopBot, E

〉 close

s :: Φ | Γ ∆ 〈E〉

close α .s :: Φ | Γ α : T,∆

〈
T = TopBot, E

〉 close

φ :: Φ | φ φ

halt α :: Φ | α : T φ

〈
T = TopBot

〉 halt

φ :: Φ | φ φ

halt α :: Φ | φ α : T

〈
T = TopBot

〉 halt

Table 6.4: Type Equations for the close and the halt Constructs

TopBot. The type equation generated is:

T = TopBot

• E is the set of type equations generated for the subsequent process commands s in the

process block.

The type equations for the halt construct are shown in the last two rows of the Table

6.4. Halting an input or an output channel α of type T results in the built-in channel type

TopBot. The type equation generated is:

T = TopBot

124

α | = | β :: Φ | α : T1 β : T2 〈T1 = T2〉
id

α | = | β :: Φ | β : T2 α : T1 〈T1 = T2〉
id

α | = | neg(β) :: Φ | α : T1, β : T2 φ 〈T1 = Neg(T2)〉
neg

α | = | neg(β) :: Φ | φ α : T1, β : T2 〈T1 = Neg(T2)〉
neg

Table 6.5: Type Equation for the id and the neg Constructs

6.5 The id and the neg Constructs

The type equations generated for the id and the neg constructs are shown in Table 6.5. The

id command is used to equate two channels of opposite polarities. The type equation is:

T1 = T2

The neg construct equates two channels having the same polarity. The type equation is:

T1 = Neg(T2)

6.6 The plug Construct

The plug construct connects two processes along a channel. A description of the type equa-

tions for the plug construct, shown in the first row of the Table 6.6 is:

• Channel α is plugged between two processes s1 and s2. α works as an output channel

for s1 and an input channel for s2.

• E1 is the set of type equations generated for s1. The output channel context in which

125

s1 :: Φ | Γ α : T,∆1 〈E1〉 s2 :: Φ | Γ, α : S ∆2 〈E2〉

plug α (s1, s2) :: Φ | Γ ∆

〈
∃T, S . T = S,E1, E2

〉 plug

Φ ` x1 : T1 〈E1〉,
...

Φ ` xn : Tn 〈En〉
p (x1, . . . xn|α1, . . . , αp → β1 . . . βq) :: Φ | Γ, α1 : A1 . . . αp : Ap β1 : B1, . . . , βq : Bq,∆

〈
∃

X1, . . . , Xn,
Y1, . . . , Yp .
Z1, . . . , Zq,
V ′1 , . . . , V

′
k

X1 = T1

[
V ′1/V1, . . . , V

′
k/Vk

]
, . . . , Xn = Tn

[
V ′1/V1, . . . , V

′
k/Vk

]
,

Y1 = A1

[
V ′1/V1, . . . , V

′
k/Vk

]
, . . . , Yp = Ap

[
V ′1/V1, . . . , V

′
k/Vk

]
,

Z1 = B1

[
V ′1/V1, . . . , V

′
k/Vk

]
, . . . , Zq = Bq

[
V ′1/V1, . . . , V

′
k/Vk

]
,

E1, . . . , En

〉
pcall

Table 6.6: Type Equations for the process call, and the plug

E1 is generated is extended with the channel α with its type S. The other two contexts,

namely the sequential context and the input channel contexts remain unchanged.

• E2 is the set of type equations generated for s2. The output channel context in which

E2 is generated is extended with the channel α with its type T . The other two contexts,

namely the sequential context and the input channel contexts remain unchanged.

• The type of the channel α used in s1 and s2 should unify. The type equation generated

is:

T = S

126

6.7 Process Call

The process call construct is used to call an already defined process with arguments. When

a process call is made, the type inference algorithm uses the symbol table for the following:

• Lookup the process name in the symbol table to verify if a valid process is being

called. If the process name is not present in the symbol table, then an error message

is reported.

• If the process name is found in the symbol table, then its corresponding type is found

and used in the generation of type equations for the process call.

Consider a process defintion p which has n sequential paramaters of types T1, . . . , Tn, p

input polarity channels of channel types A1, . . . , Ap and q output polarity channels of channel

types B1, . . . , Bq. The type of the process is represented as:

p : ∀V1, . . . , Vk. T1, . . . , Tn | A1, . . . , Ap ⇒ B1, . . . , Bq

where V1, . . . , Vk represent the union of all the type variables present in the process type.

The sequential types and the channel types are α-renamed before using them in a type

equation in order to avoid name clash between the variables used in the type expressions

and the variables already used in the type equation. The α-renamed sequential types, input

channel types, and output channel types are:

Ti

[
V ′1/V1, . . . , V

′
k/Vk

] {
1 ≤ i ≤ n

}
(sequential type)

Aj

[
V ′1/V1, . . . , V

′
k/Vk

] {
1 ≤ j ≤ p

}
(input channel type)

Bl

[
V ′1/V1, . . . , V

′
k/Vk

] {
1 ≤ l ≤ q

}
(output channel type)

where
[
V ′1/V1, . . . , V

′
k/Vk

]
represents a list of substitutions to be made inside the type ex-

pressions Ti, Aj, and Bl. A description of the type equations for the process call construct,

127

shown in the last rule in the Table 6.6, is:

• A process call is the last command in a process block.

• The type Xi of xi, which is ith sequential argument, is equated with the corresponding

element of the process type of p obtained from the symbol table. The type equation

generated is:

Xi = Ti

[
V ′1/V1, . . . , V

′
k/Vk

] {
1 ≤ i ≤ n

}
where Ti

[
V ′1/V1, . . . , V

′
k/Vk

]
represents the α-renamed ith sequential type of the process

type of p.

• The type Yj of αj, which is the name of the jth input polarity channel, is given by the

equation:

Yj = Aj

[
V ′1/V1, . . . , V

′
k/Vk

] {
1 ≤ j ≤ p

}

• The type Zl of βl, which is the name of the lth output polarity channel, is given by the

equation:

Zl = Bl

[
V ′1/V1, . . . , V

′
k/Vk

] {
1 ≤ j ≤ p

}

6.8 Generating Type Equations for a Process Phrase

A process body consists of a sequence of proces phrases. Recall that a process phrase consists

of sequential patterns, input channel names and output channel names. A description of the

type equations for the process phrase, shown in the Table 6.7, is:

• (x1, . . . , xn | i1, . . . , ip ⇒ o1, . . . , oq → c) represents a process phrase of type T .

x1, . . . , xn represent the n patterns of the process phrase of types T1, . . . , Tn respectively,

128

i1, . . . , ip represent the p input channels of channel types A1, . . . , Ap respectively, and

o1, . . . , oq represent the q output channels of channel types B1, . . . , Bq respectively. The

type T of the process phrase is:

T = T1, . . . , Tn | A1, . . . , Ap ⇒ B1, . . . , Bq

where | separates the sequential types from the input channel types and ⇒ separates

the input channel types from the output channel types.

• The type equation generation process for the process phrase starts with with a sequen-

tial context Φ and empty input and output channel contexts.

• Every sequential pattern xi, for 1 ≤ i ≤ n, generates a sequential context Φi and a set

of type equations Ei in an empty sequential context represented by the symbol |=.

• The set of type equations E are generated for the process commands c, in a process

context generated as follows:

– The sequential context is obtained by the union of the original sequential context

Φ with the n sequential contexts, Φ1, . . . ,Φn, generated for the n patterns in the

process phrase.

– The input channel context is obtained by adding the input channels i1, . . . , ip and

their respective types A1, . . . , Ap to the empty input channel context.

– The output channel context is obtained by adding the output channels o1, . . . , oq

and their respective types B1, . . . , Bq to the empty output channel context.

129

|= x1 : T1

〈
Φ1, E1

〉
...

|= xn : Tn

〈
Φn, En

〉
c :: Φ ∪ Φ1 ∪, . . . ,∪ Φn | Γ ∆

〈
E
〉

Φ | φ φ ` (x1, . . . , xn | i1, . . . , ip ⇒ o1, . . . , oq → c) : T

〈
∃

T1, . . . , Tn
A1, . . . , Ap .
B1, . . . , Bq

T = T1, . . . , Tn | A1, . . . , Ap ⇒ B1, . . . , Bq,
E,E1, . . . , En

〉
procPhr

where Γ, and ∆ used above are defined as:

Γ = i1 : A1, . . . ip : Ap

∆ = o1 : B1, . . . , oq : Bq

Table 6.7: Type Equations for the Process Phrase

6.9 Generating Type Equations for a Process Defini-

tion

This section discusses the type equations for process definitions with and without annotated

types and mutually recursive process definitions. The generation of type equations for a

process starts in an empty process context comprising of empty sequential context, empty

input channel context, and empty output channel context represented as:

φ | φ φ.

In the generation of type equations for processes, an empty process context is represented

as |=.

130

6.9.1 Process Definition Without an Annotated Type

The first row of the Table 6.8 represents the type equations generated for a process p not

annotated with a process type. A description of these rules is:

• The type T of the process is the type of the individual pattern phrases. In a well

typed process, the types of all the process phrases, T1, . . . , Tm, are the same. The type

equations generated are: T1 = T, . . . , Tm = T .

• E1, . . . , Em represent the set of the type equations generated for the m process phrases.

Once the most general type of a process is inferred, the process name and its most general

type is inserted into the symbol table from where it can be looked up.

6.9.2 Process Definition With an Annotated Type

The second row of the Table 6.8 represents the type equations generated for a process p with

an annotated type. The strategy used to type check p is: Infer the most general type of p

without its annotated type and try to unify the inferred type with the annotated type. If

the unification is possible then the annotated type of the process is right otherwise there is

a type error. Note that type inference yields the most general type of a process whereas the

annotated type may be a specific instance of the most general type. A description of the

type equations is:

• The annotated type for the process p is shown as ∀ A1, . . . , Ak .P where P is the type

of the process p and A1, . . . , Ak represents the set of type variables present in the body

of P .

• The type T of the process is equated to the annotated type P . The type equation

generated is:

T = P [A′1/A1, . . . , A
′
k/Ak]

131

|= (x1,1, . . . , x1,n | i1,1, . . . , i1,p ⇒ o1,1, . . . , o1,q → c1) : T1

〈
E1

〉
...

...
...

|= (xm,1, . . . , xm,n | im,1, . . . , im,p ⇒ om,1, . . . , om,q → cm) : Tm

〈
Em

〉
|=

{
proc p =

(x1,1, . . . , x1,n | i1,1, . . . , i1,p ⇒ o1,1, . . . , o1,q → c1)
...

...
...

(xm,1, . . . , xm,n | im,1, . . . , im,p ⇒ om,1, . . . , om,q → cm)

}
: T

proc

〈
∃ T1, . . . , Tm.

T1 = T, . . . , Tm = T,
E1, . . . , Em

〉

|=

{
proc p =

(x1,1, . . . , x1,n | i1,1, . . . , i1,p ⇒ o1,1, . . . , o1,q → c1)
...

...
...

(xm,1, . . . , xm,n | im,1, . . . , im,p ⇒ om,1, . . . , om,q → cm)

}
: T

〈
Eproc

〉
|=

{
proc p : ∀ A1, . . . , Ak . P =

(x1,1, . . . , x1,n | i1,1, . . . , i1,p ⇒ o1,1, . . . , o1,q → c1)
...

...
...

(xm,1, . . . , xm,n | im,1, . . . , im,p ⇒ om,1, . . . , om,q → cm)

}
: T

annot. proc

〈
∀ A′1, . . . , A′k,
∃ T .

T = P [A′1/A1, . . . , A
′
k/Ak],

Eproc

〉

Table 6.8: Type Equations for Process Definitions

132

where A′1, . . . , A
′
k are fresh variables.

• Eproc represents the set of type equations generated for the process p without its an-

notated type.

6.9.3 Mutually Recursive Process Definitions

Table 6.9 shows the type equations for mutually recursive process definitions. The idea is

that the set of mutually recursive processes are considered one process for the purpose of

type inference, i.e. the type equations for mutually recursive processes are generated and

solved together. A description of the type equations for a set of mutually recursive processes

p1, . . . , pk is:

• The processes p1, . . . , pk are assigned dummy types which are then inserted in the

symbol table. In this way the problem of calling a process before it is defined, as is

the case with mutually recursive processes, is addressed.

• The equations for individual processes are generated and combined to get the final

equations for the set of mutually recursive processes.

133

|= (x1,1,1, . . . , x1,1,n | i1,1,1, . . . , i1,1,a ⇒ o1,1,1, . . . , o1,1,b → c1,1) : T1

〈
F1

〉
...

...
...

|= (x1,m,1, . . . , x1,m,n | i1,m,1, . . . , i1,m,a ⇒ o1,m,1, . . . , o1,m,b → c1,m) : Tm

〈
Fm

〉
...

...
...

|= (xk,1,1, . . . , xk,1,v | ik,1,1, . . . , ik,1,w ⇒ ok,1,1, . . . , ok,1,y → ck,1) : S1

〈
G1

〉
...

...
...

|= (xk,u,1, . . . , xk,u,v | ik,u,1, . . . , ik,u,w ⇒ ok,u,1, . . . , ok,u,w → ck,u) : Su

〈
Gu

〉
|= defn {

proc p1 =

(x1,1,1, . . . , x1,1,n | i1,1,1, . . . , i1,1,a ⇒ o1,1,1, . . . , o1,1,b → c1,1)
...

...
...

(x1,m,1, . . . , x1,m,n | i1,m,1, . . . , i1,m,a ⇒ o1,m,1, . . . , o1,m,b → c1,m)

}
: T

...{
proc pk =

(xk,1,1, . . . , xk,1,v | ik,1,1, . . . , ik,1,w ⇒ ok,1,1, . . . , ok,1,y → ck,1)
...

...
...

(xk,u,1, . . . , xk,u,v | ik,u,1, . . . , ik,u,w ⇒ ok,u,1, . . . , ok,u,w → ck,u)

}
: S

〈
∃

T1, . . . , Tm
...

S1, . . . , Su .

T1 = T, . . . , Tm = T,
...

S1 = S, . . . , Sm = S,
F1, . . . , Fm,

...
G1, . . . , Gu

〉

Table 6.9: Type Equations for Mutually Recursive Process Definitions

134

Chapter 7

Compilation of Pattern-Matching

Once an MPL program type checks, the next step in the compilation of the program is the

conversion of its AST to Core MPL. The compilation of the AST to the Core MPL happens

in 2 steps:

• Compilation of Pattern-Matching - This step translates the pattern-matching

syntax to MPL without patterns. This is the first step towards the conversion of the

AST of MPL programs to core MPL.

• Lambda Lifting Tranformation - MPL allows local function definitions. However,

Core MPL programs can not have local function defintions. Lambda Lifting transfor-

mation gets rid of the local function defintions in MPL programs by lifting the local

function to the global scope. The lambda lifting transformation is dicussed in the next

chapter.

In this chapter, the algorithm for compilation of pattern-matching is discussed. A pattern-

matching compiler algorithm was given by Lennart Augustsson [14]. The version of the

algorithm described in the thesis and used in MPL’s implementation is due to Geoff Barrett

and Philip Wadler [15]. However, the algorithm in its original form did not handle the record

or the product patterns. The algorithm, therefore was modified to work with record and

product patterns.

135

Lexing Parsing
Type

Inferencing

Compilation

of Pattern

Matching

Lambda

Lifting

Translation

to AMPL

& Running

Programs

Figure 7.1: Compilation Stages : Compilation of Pattern Matching

7.1 Examples of Pattern-Matching in MPL

A function f defined with m pattern phrases can be represented as:

f =

p1,1, . . . , p1,n → t1

. . .

pm,1, . . . , pm,n → tm

Recall that a pattern phrase consists of a list of patterns and the corresponding term. In

the above function definition a pattern pi,j can be one of the following:

• Don’t Care Pattern

• Variable Pattern

• Record Pattern

• Product Pattern

136

• Constructor Pattern

A function can have a mixture of these patterns in any given pattern phrase. The

constructor, record and product patterns may have other patterns in their body. Don’t

care patterns can be thought as a special case of variable patterns in which the variables in

the patterns of the pattern phrase are not used in the term of the pattern phrase. In the

further discussion of the pattern-matching compilation algorithm, don’t care patterns are not

explicitly discussed as their compilation scheme is the same as that of variable patterns.

The pattern-matching compilation algorithm gets rid of the constructor, product and

record patterns, including the nested patterns, in a function body. The final result of the

algorithm is a function body that contains only one pattern phrase consisting of just variable

patterns and the corresponding term.

Table 7.1 provides examples of functions defined with various patterns: the functions

are append, pairFun, and fstOfHead. It also shows the pattern matching compiled form of

these example functions.

7.2 Algorithm for Compiling Pattern-Matching

In this section, an algorithm for compiling the pattern-matching syntax of MPL is presented

using the compile function.

7.2.1 The compile Function

compile function takes 3 arguments: a list of sequential terms [u1, . . . , un], a singleton list of

list of pattern phrases formed from the body of the function being compiled, and a default

term tdefault, which is initially set to giving an error message. The compile function for the

function f , of Section 7.1, is:

137

Function defintion with pattern matching Function definition with compiled patterns

append :: [A],[A] -> [A] =

[], ys -> ys

x:xs, ys -> x:append(xs,ys)

append :: [A],[A] -> [A] =

xl,yl ->

case xl of

Nil -> yl

Cons(x,xs) -> Cons(x,append(xs,yl))

pairFun::([Int],[Int]),(Int,Int) ->

(Int,Int) =

([] ,[]),(p,q) -> (p,q)

(x:xs,[]),(p,q) -> (x,q)

([],y:ys),(p,q) -> (p,y)

(x:xs,y:ys),(p,q) -> (x,y)

pairFun::([Int],[Int]),(Int,Int) ->

(Int,Int) =

u,v ->

case Pi_0(u) of

Nil ->

case Pi_1(u) of

Nil -> (Pi_0(v),Pi1(v))

Cons(y,ys) -> (Pi_0(v),y)

Cons(x,xs) ->

case yls of

Nil -> (x,Pi_1(v))

Cons(y,ys) -> (x,y)

codata C -> InfList(A)

= Head :: C -> A

Tail :: C -> C

data SF(A) -> C = FF :: -> C

SS :: A -> C

fstOfHead::InfList([A]) -> SF(A) =

(Head := [] ,Tail := t) -> FF

(Head := a:as,Tail := t) -> SS(a)

codata C -> InfList(A)

= Head :: C -> A

Tail :: C -> C

data SF(A) -> C = FF :: -> C

SS :: A -> C

fstOfHead :: InfList([A]) -> SF(A) =

u -> case Head(u) of

Nil -> FF

Cons(x,xs) -> SF(x)

Table 7.1: Examples of Pattern Matching Compilation

138

compile [u1, . . . , un]

[[p1,1, . . . , p1,n → t1

. . .

pm,1, . . . , pm,n → tm

]]
tdefault

where the first argument is a list of terms, which are variables to begin with. Note that the

number of these variables is the same as the number of patterns in any pattern phrase from

the singleton list of list of pattern phrases.

7.2.2 Termination Condition and Output

The termination configuration for the compile function and the corresponding outputs are:

• Every pattern list in the singleton list of list of pattern phrases is empty, represented

as:

compile []
[[

[] → t1, . . . , [] → tm
]]

tdefault := t1

• The list of list of pattern phrases is empty, represented as:

compile [] [[]] tdefault := tdefault

7.2.3 Execution Steps of compile Function

To execute the compile function shown below:

compile [u1, . . . , un]

139

[[p1,1, . . . , p1,n → t1

. . .

pm,1, . . . , pm,n → tm

]]
tdefault

the algorithm proceeds by looking at the first patterns of every pattern phrase of a singleton

list of list of pattern phrases, represented above as p1,1, . . . , pm,1. The algorithm recur-

sively examines the first patterns till a termination condition is achieved. The first patterns

p1,1, . . . , pm,1 can either be all variable patterns, all record patterns, all product patterns, all

constructor patterns, or a mixture of various patterns. The execution steps for the various

cases are described below.

Variable Patterns

If every pattern, p1,1, . . . , pm,1, is a variable pattern, say v1, . . . , vn respectively, then the new

configuration of the compile function becomes:

compile [u2, . . . , un]

[[p1,2, . . . , p1,n → t1 [u1/v1]

...

pm,2, . . . , pm,n → tm [u1/vm]

]]
tdefault

where ti [u1/vi], for 1 ≤ i ≤ m, means that in the body of the term ti, the variable term vi

is “substituted” by the term u1. In general, this is a straight substitution but when ui is a

higher-order destructor, as we shall discuss below, the substitution is more complex.

140

Record Patterns

If every first pattern, p1,1, . . . , pm,1, is a record pattern of say k destructors D1, . . . , Dk, where

any pi,1, for 1 ≤ i ≤ m, is of the form:

(D1 := pi,1,1, . . . , Dk := pi,1,k)

then the new configuration of the compile function can be represented as:

compile ([D1(u1), . . . , Dk(u1)] ++ [u2, . . . , un])

[[p1,1,1, . . . , p1,1,k, p1,2, . . . , p1,n → t1
...

pm,11 , . . . , pm,1,k, pm,2, . . . , pm,n → tm

]]
tdefault

where Dj(u1), for 1 ≤ j ≤ k, represents the destruction of the term u1 with the jth destructor.

Let us look at an example of compilation of a higher-order record pattern using the above

rule. Consider the function someFun shown below:

codata C -> Exp(A,B) = App :: C,A -> B

someFun :: Exp(A,B),A -> B =

(App := f),x -> f(x)

When pattern-matching on a higher order record, the pattern assigned to a higher-order

destructor can only be a variable: trying to look under the variable will result in an error.

The compile function for someFun is:

compile [u1,u2][[
[(App := f),x]→ f(x)

]]
tdefault

141

Applying the rule for record patterns, one gets:

compile [App(u1),u2)][[
[f,x]→ f(x)

]]
tdefault

Applying the rule for variable patterns one gets:

compile [u2][[
[x]→ App(u1,x)

]]
tdefault

Note that substitution [App(u1)/f] in the body of the term f(x) results in the term App(u1,x)

because App is a higher-order destructor. Finally, applying the rule for variable pattern one

gets:

compile [][[
[] → App(u1,u2)

]]
tdefault

which outputs the term App(u1,u2). The pattern-matching compiled version of function

someFun is:

someFun :: Exp(A,B),A -> B =

u1,u2 -> App(u1,u2)

142

Product Patterns

If every first pattern, p1,1, . . . , pm,1, is a product pattern of say k patterns where any pi,1, for

1 ≤ i ≤ m, is of the form:

(pi,1,1, . . . , pi,1,k)

then the new configuration of the compile function can be represented as:

compile ([π0(u1), . . . , πk−1(u1)] ++ [u2, . . . , un])

[[p1,1,1, . . . , p1,1,k, p1,2, . . . , p1,n → t1
...

pm,11 , . . . , pm,1k , pm,2, . . . , pm,n → tm

]]
tdefault

where πj−1(u1), for 1 ≤ j ≤ k, represents the jth projection of the term u1.

Constructor Patterns

If every first pattern, p1,1, . . . , pm,1, is a constructor pattern of constructors of a data type D

then this execution step is performed.

Suppose D has k constructors such that the ith constructor Ci, for 1 ≤ i ≤ k, take

si number of arguments. Suppose the constructor Ci appears as a constructor pattern xi

number of times in p1,1, . . . , pm,1. These xi pattern phrases, which start with the constructor

Ci as their first pattern phrase, are grouped together in a list. These lists of pattern phrases

are then rearranged based on their first constructor patterns such that they appear in the

same order in which their corresponding constructors appear in the data definition D. Note

that while rearranging the pattern phrases, the relative ordering of pattern phrases having

the same first constructors should not be changed. For a constructor which is not present in

the list of patterns p1,1, . . . , pm,1, a singleton list is formed with the pattern phrase consisting

of that constructor and the default term which is then inserted at the appropriate place

143

based on its constructor.

The qth pattern in the rth pattern phrase for the group of pattern phrases corresponding

to constructor Ci as the first pattern is represented as:

pr,i,q {1 ≤ r ≤ xi , 1 ≤ i ≤ k , 1 ≤ q ≤ n}

The term corresponding to the rth pattern phrase for the group of pattern phrases cor-

responding to constructor Ci is represented as:

tr,i {1 ≤ r ≤ xi , 1 ≤ i}

The first pattern for the jth pattern phrase, selected from the list of pattern phrases

corresponding to the constructor Ci as the first pattern, is represented as:

Ci (pj,i,1,1, . . . , pj,i,si,1) {1 ≤ j ≤ xi , 1 ≤ i ≤ k}

As a result of the above steps, the compile function for f will internally look like:

compile [u1, . . . , un]

[[C1(p1,1,1,1, . . . , p1,1,s1,1), . . . , p1,1,n → t1,1
...

C1(px1,1,1,1, . . . , px1,1,s1,1), . . . , px1,1,n → tx1,1

]
,

...

[Ck(p1,k,1,1, . . . , p1,k,sk,1), . . . , p1,k,n → t1,k
...

Ck(pxk,k,1,1, . . . , pxk,k,sk,1), . . . , pxk,k,n → txk,k

]]
tdefault

144

which executes to:

case u1 of

C1(v1, . . . , vs1) →

compile
(
[v1, . . . , vs1] ++ [u2, . . . , un]

)
[[p1,1,1,1, . . . , p1,1,s1,1, p1,1,2 . . . , p1,1,n → t1,1

...

px1,1,1,1, . . . , px1,1,s1,1, px1,1,2 . . . , px1,1,n → tx1,1

]]
tdefault

...
...

...

Ck(v1, . . . , vsk) →

compile
(
[v1, . . . , vsk] ++ [u2, . . . , un]

)
[[p1,k,1,1, . . . , p1,k,sk,1, p1,k,2 . . . , p1,k,n → t1,k

...

pxk,k,1,1, . . . , pxk,k,sk,1, pxk,k,2 . . . , pxk,k,n → txk,k

]]
tdefault

Mixed Patterns

If the first patterns, p1,1, . . . , pm,1, are a mixture of various kinds of patterns then this step

is performed. In this step, the similar patterns are grouped together. For example, consider

the below singleton list of list of pattern phrases in a compile function where the first pattern

phrase has a variable pattern as its first pattern, next two phrases have constructor patterns

Nil and Cons as their first pattern, and the last phrase again has a variable pattern as its

first pattern.

compile [u1]

145

[[[w] → 1

[Nil] → 0

[Cons(p,q)] → 2

[x] → 1

]]
tdefault

The similar kinds of patterns are grouped together as shown below:

compile [u1]

[
[

[w] → 1

]
,

[[Nil] → 0

[Cons(p,q)] → 2

]
,

[
[x] → 1

]
]
tdefault

One starts with the compilation of the lower most partition of pattern phrases, which

then becomes the default term for the second last partition. One then compiles the second

last partition which becomes the default term for the partition above it. One continues this

process till they reach the first partition.

Applying the rule for mixture patterns on the compile function with four pattern phrases

shown above, one gets the following:

compile [u1]
[[

[w] → 1

]]
(
compile [u1]

[[[Nil] → 0

[Cons(p,q)] → 2

]]
(
compile [u1]

[[
[x] → 1

]]
tdefault

))

146

Chapter 8

λ-Lifting

Once pattern-matching compilation is completed, the next step in the interpretation of MPL

programs is λ-lifting. MPL allows the programmers to define local functions. However, Core

MPL doesn’t allow for local function definitions. Thus all the local MPL functions must be

put in the global scope. λ-lifting is the transformation that puts the local functions in the

global scope. The defn and where are the two MPL constructs that allow for local function

definitions.

In this chapter, the difference between the defn and where constructs, and the strategy

for λ-lifting of each contruct is discussed. An algorithm for λ-lifting was given by Thomas

Johnsson [6]. The algorithm described in this chapter is an adaptation of Johnsson’s al-

gorithm customised for MPL, in particular, bound variables had to be taken into account.

8.1 Local Function Definitions in MPL

Both defn and where can be used to define local functions, however the defn construct doesn’t

allow non-local variables in the function definitions while the where construct does. Examples

of this were described in Section 8.1.1 and Section 8.1.2.

147

Lexing Parsing
Type

Inferencing

Compiling

Pattern

Matching

λ-Lifting

Translation

to AMPL

& Running

Programs

Figure 8.1: Interpretation Stages of MPL

8.1.1 The Defn Construct

The defn construct is used to modularize programs in MPL. The defn construct has the form:

defn

definition1

...

definitionm

where

definition1

...

definitionn

The defn construct has two components:

• The Header of the Defn Construct: MPL definitions between the keywords defn

and where form the header of the defn construct. These definitions can be (co)data,

148

(co)protocol, process, or function definitions and are visible to the entire MPL program.

• The Body of the Defn Construct: The body of the defn construct consists of a

sequence of definitions. However, these definitions are visible only inside the body

and the header of the defn construct. For a (co)data type defined in the body, the

(co)data type itself can’t appear in the type of a function in the header but the con-

structors/destructors can be used in the function body.

Table 8.1 shows an example of a pattern-matching compiled MPL program that uses the defn

construct. The program defines a Tree data structure and a treeToBST function. treeToBST

takes a normal tree and returns a binary search tree (BST) corresponding to the original

binary tree. A BST is a binary tree with the following properties: the elements in the left

subtree of every node are smaller than the node, the elements in the right subtree of every

node are greater than the node element, and duplicate elements are not allowed.

The strategy used in the example in Table 8.1 to convert the binary tree to a binary

search tree (BST) makes use of a List data structure which is defined in the body of the

defn construct. Program extracts the list of integers from the original tree. This list is then

used to create a BST by inserting each element of the list into the BST.

The function treetoBST defined in the header of the defn construct takes a binary tree and

returns a BST by calling the createBST function defined in the body of the defn construct.

The constructors of the List data type are visible only to the functions in the body and

header of the defn construct. However, the functions in the header of the defn construct

can’t include the List type in their types and only the functions in the body of the defn

can. The functions append, insertBST, fromListToBST, getIntList, and createBST

are visible only to the other functions in the body or to the defintions in the header of the

defn construct.

This scoping scheme has the advantage that the function treetoBST doesn’t need to

know the underlying implementation of the createBST function which can be changed at

anytime without impacting any other aspect of the MPL program.

149

Section 8.2 discusses the λ-lifting algorithm for the defn construct.

8.1.2 The Where Clause

The where clause is a sequential MPL construct used to define local functions; where clause

are attached to terms. The functions defined are only visible to the other functions of that

where clause or within the term to which the where clause is attached.

Table 8.2 shows an example of a program that uses a where clause. The function exFun

takes two numbers and a list of numbers as input. If the list of numbers is empty, the

function outputs n1. If the list of numbers are non-empty, the function outputs a sum where

every even number in the list contributes n1 to the sum and every odd number in the list

contributes n2 to the sum.

Function exFun has three local functions ans, helpFun1 and helpFun2 defined using the

where clause. Function ans doesn’t take any arguments. An important thing to notice about

functions helpFun1 and helpFun2 is that they have free variables. The free variables of a

function are the set of variables used in the function body that are not the elements of the

set of parameters of that function rather they are defined in a higher scope. Free Variables

for helpFun1 and helpFun2 are { n1 } and { n1,n2 } respectively.

Section 8.3 deals with the λ-lifting of local function definitions defined with the where

construct. The λ-lifting algorithm for the where construct is different from that of the defn

construct because local functions defined using where can have free variables.

8.2 λ-Lifting for the Defn Construct

A naive approach to λ-lifting the local functions of defn construct would be to directly put

all the definitions in the where clause of the defn construct and the definitions in main body

of the defn construct, in the global scope. However, there is a problem with this approach

as the names of the function definitions in the where clause of the defn construct may be the

150

defn

data Tree(A) -> C = Leaf :: -> C

Node :: A,C,C -> C

TreeToBST :: Tree(Int) -> Tree(Int) =

tree -> createBST(tree)

where

data List(A) -> C = Nil :: -> C

Cons :: A,C -> C

-- append two lists

append :: List(A),List(A) -> List(A) =

t1,t2 -> fold t1 of

Nil : -> t2

Cons :x,r -> Cons(x,r)

-- take an integer and inserts it into a Binary Search Tree

insertBST :: Int,Tree(Int) -> Tree(Int) =

elem,bst ->

case bst of

Leaf ->

Node (elem,Leaf,Leaf)

Node(n,t1,t2) ->

case (n == elem) of

True -> bst

False -> case (elem < n) of

True -> Node (n,insertBST (elem,t1),t2)

False -> Node (n,t1,insertBST(elem,t2))

-- takes a list of integers and creates a binary

-- search tree out of it

fromListToBST :: List(Int) -> Tree(Int) =

list -> fold list of

Nil : -> Leaf

Cons : x,r -> insertBST(x,r)

-- get a list of integers from a tree of integers

getIntList :: Tree(Int) -> List(Int) =

tree -> fold tree of

Leaf : -> Nil

Node :x,ls1,ls2 -> append (Cons(x,ls1),ls2)

-- take a simple binary tree and return a BST

createBST :: Tree(Int) -> Tree(Int) =

tree -> fromListToBST (getIntList (tree))

Table 8.1: Example : Local functions with defn Construct

151

exFun =

n1,n2,list -> ans()

where

ans =

-> helperFun1(list)

helpFun1 =

ls -> case ls of

Nil -> n1

Cons(x,xs) -> helperFun2(ls)

helperFun2 =

ls -> case ls of

Nil ->

Cons(y,ys) ->

if mod(y,2) == 0

then (n1 + helperFun2(ys))

else (n2 + helperFun2(ys))

Table 8.2: Example : Local Functions with where Construct

same as the names of the function definitions in the global scope. Thus, before the function

definitions of the where clause of the defn construct are lifted to global scope, the functions

must be renamed to an unique new global name.

Steps in λ-lifting the local functions of defn construct are listed below:

• Rename the function names of the function definitions in the where clause to unique

new global names. Once functions are renamed, the function calls made with old names

should be altered to reflect the name change.

• The definitions in the main body and the where clause of defn can now be lifted to the

outermost scope.

The steps have been applied to function definitions in the body of the defn construct in the

program in Table 8.1. The steps of λ-lifting have been shown in Table 8.3 and 8.4. Table

8.3 shows the step where the local functions in the body of the defn construct are renamed

to unique global names. Table 8.4 shows the step where the renamed functions in the body

152

of the defn construct are lifted to the outermost scope.

8.3 λ-Lifting for the Where Clause

If one tries lifting the local functions of the where, the free variables in the local functions

will no longer be in scope. The λ-lifting algorithm for the where construct is thus more

complicated than that for the defn construct because of the presence of non-local variables

in the local function definitions.

The λ-lifting algorithm for the local functions of the where construct consists of the

following steps:

1. Rename functions and their parameters: Functions in different scopes can have

the same name, however, once the λ-lifting transformation is performed, all the func-

tions will be in the same scope and thus they need different names. Thus, the local

functions must be renamed. Care must be taken to convert the function calls made

with old function names to function calls with new function names.

The arguments of all the function definitions are also renamed with fresh variables to

ensure that every function has unique parameters. This step is required for the third

step of the algorithm.

2. The Set Equations for functions: For every local function f defined in the where

construct, a triple is computed.

(fvf , bvf , f lf)

where fvf is the set of free variables, bvf is the set of bound variables, and flf is the

set of functions called in the function f .

The pair of a function name and the triple for that function is called a Set Equation

153

defn

data Tree(A) -> C = Leaf :: -> C

Node :: A,C,C -> C

TreeToBST :: Tree(Int) -> Tree(Int) =

tree -> unqFun5(tree)

where -- this is the where part of the defn construct

data List(A) -> C = Nil :: -> C

Cons :: A,C -> C

-- append two lists

unqFun1 :: List(A),List(A) -> List(A) =

t1,t2 -> fold t1 of

Nil : -> t2

Cons :x,r -> Cons(x,r)

-- take an integer and inserts it into a Binary Search Tree

unqFun2 :: Int,Tree(Int) -> Tree(Int) =

elem,bst ->

case bst of

Leaf -> Node(elem,Leaf,Leaf)

Node(n,t1,t2) ->

case (n == elem) of

True -> bst

False -> case (elem < n) of

True -> Node(n,unqFun2 (elem,t1),t2)

False -> Node(n,t1,unqFun2 (elem,t2))

-- takes a list of integers and creates a binary

-- search tree out of it

unqFun3 :: List(Int) -> Tree(Int) =

list -> fold list of

Nil : -> Leaf

Cons : x,r -> unqFun2 (x,r)

-- get a list of integers from a tree of integers

unqFun4 :: Tree(Int) -> List(Int) =

tree -> fold tree of

Leaf : -> Nil

Node :x,ls1,ls2 -> unqFun1 (Cons(x,ls1),ls2)

-- take a simple binary tree and return a BST

unqFun5 :: Tree(Int) -> Tree(Int) =

tree -> unqFun3 (unqFun4 (tree))

Table 8.3: Step 1 : Rename local functions of the defn construct

154

data List(A) -> C = Nil :: -> C

Cons :: A,C -> C

data Tree(A) -> C = Leaf :: -> C

Node :: A,C,C -> C

-- append two lists

unqFun1 :: List(A),List(A) -> List(A) =

t1,t2 -> fold t1 of

Nil : -> t2

Cons :x,r -> Cons(x,r)

-- take an integer and inserts it into a Binary Search Tree

unqFun2 :: Int,Tree(Int) -> Tree(Int) =

elem,bst ->

case bst of

Leaf -> Node(elem,Leaf,Leaf)

Node(n,t1,t2) ->

case (n == elem) of

True -> bst

False -> case (elem < n) of

True -> Node(n,unqFun2 (elem,t1),t2)

False -> Node(n,t1,unqFun2 (elem,t2))

-- takes a list of integers and creates a binary

-- search tree out of it

unqFun3 :: List(Int) -> Tree(Int) =

list -> fold list of

Nil : -> Leaf

Cons : x,r -> unqFun2 (x,r)

-- get a list of integers from a tree of integers

unqFun4 :: Tree(Int) -> List(Int) =

tree -> fold tree of

Leaf : -> Nil

Node :x,ls1,ls2 -> unqFun1 (Cons(x,ls1),ls2)

-- take a simple binary tree and return a BST

unqFun5 :: Tree(Int) -> Tree(Int) =

tree -> unqFun3 (unqFun4 (tree))

TreeToBST :: Tree(Int) -> Tree(Int) =

tree -> unqFun5(tree)

Table 8.4: Step 2 : Lift the definitions of defn to the global scope

155

of the function:

(f, (fvf , bvf , f lf))

A set of set equations are obtained as a result of this step.

3. Solve the Set Equations using a fixed point calculation: The aim of this step

is to generate the set of all the free variables needed by a function f . This set not only

contains the free variables that are directly present in the body of the function f but

also the set of free variables present in the body of functions called inside f .

Once the set of set equations corresponding to the local functions defined in the where

clause are generated, the equations are then solved to get the all the free variables for

these functions. The set equations are solved using a fixed point calculation.

The fixed point of a function p is a value x, such that p x = x.

An algorithm for solving the set equations is shown in Table 8.5. A set equation

achieves a fixed point condition when the set of free variables does not change from

one iteration to another.

4. Add the free variables to their corresponding functions: Once all the free

variables corresponding to a function are generated, they are added to the parameters

of the function definition. This ensures that there are no free variables in the function

body. Since the arity of the function has changed, the arguments of the function call

must be expanded with the free variables of that function.

5. Lift the local functions to global scope: Since there are no free variables in the

local functions any more, they can be lifted into the global scope. This is the final step

in the λ-lifting transformation.

The stepwise λ-lifting transformation for the local function in the where construct of function

exFun defined in Table 8.2 is shown in Tables 8.6 and 8.7.

156

SolveSetEqns

input: A set of type equations es

output: A set of type equations that have achieved fixpoint

for each e ∈ es
(f, (fv, bv, fl))← e

repeat

for every g ∈ fl
(fv1, bv1, f l1) ← lookup g in (es \ e)
fv′ = (fv ∪ fv1) \ bv1

fl′ = (fl ∪ fl1) \ g
e′ = (f, (fv′ , bv1 , f l

′))

until fv == fv′ {This is the fixed point condition}
return e′

Table 8.5: Algorithm for Solving Set Equations

157

Original Program

exFun =

n1,n2,list -> ans()

where

ans =

-> helperFun1 (list)

helperFun1 =

ls -> case ls of

Nil -> n1

Cons(x,xs) -> helperFun2(ls)

helperFun2 =

ls ->

case ls of

Nil -> 0
Cons(y,ys) ->

if mod(y,2) == 0
then n1 + helperFun2(ys)

else n2 + helperFun2(ys)

Step 1 : Renamed function names and parameters
exFun =

n1,n2,list -> unq_fn1()

where

unq_fn1 =

-> unq_fn2(list)

unq_fn2 =

u1 -> case ls of

Nil -> n1

Cons(x,xs) -> unq_fn3(u1)

unq_fn3 =

u2 ->

case ls of

Nil -> 0
Cons(u3,u4) ->

if mod(u3,2) == 0
then n1 + unq_fn3(u4)

else n2 + unq_fn3(u4)

Step 2: Generate Set Equations for Local Functions
(unq_fun1,({list},{},{unq_fun2}))
(unq_fun2,({n1},{u1},{unq_fun3}))
(unq_fun3,({n1,n2},{u2},{unq_fun3}))

Table 8.6: λ-Lifting exFun (Continued on Table 8.7)

158

Step 3: Solve Set Equations
The solved set equations are as follows:

(unq_fun1,({list,n1,n2},{},{unq_fun3}))
(unq_fun2,({n1,n2},({u1},{unq_fun3}))
(unq_fun3,({n1,n2},({u2},{unq_fun3}))

Thus, the free variables for unq fun1 are {list,n1,n2 }. For functions
unq fun2 and unq fun3, the free variables are {n1,n2 }.
Step 4: Augment free variables to function parameters and call

exFun =

n1,n2,list ->

helperFun1 (list,n1,n2)

where

unq_fn1 =

u1 -> case ls of

Nil -> n1

Cons(x,xs) -> unq_fn2(u1,n1,n2)

unq_fn2 =

u2 ->

case ls of

Nil -> 0
Cons(u3,u4) ->

if mod(u3,2) == 0
then n1 + unq_fn2(u4,n1,n2)

else n2 + unq_fn2(u4,n1,n2)

Step 5: Lift Local Functions to Outermost Scope
unq_fn2 =

u2 ->

case ls of

Nil -> 0
Cons(u3,u4) ->

if mod(u3,2) == 0
then n1 + unq_fn2(u4,n1,n2)

else n2 + unq_fn2(u4,n1,n2)

unq_fn1 =

u1 -> case ls of

Nil -> n1

Cons(x,xs) -> unq_fn2(u1,n1,n2)

exFun =

n1,n2,list -> unq_fn1(list,n1,n2)

Table 8.7: Lambda Lifting exFun (Continued from Table 8.6)

159

Chapter 9

Abstract Machine for MPL (AMPL)

In the previous chapters the different stages of interpretation of MPL programs (listed in

Figure in 9.1) have been described. The last stage of interpretation deals with running MPL

programs on MPL’s abstract machine (called AMPL). However, before an MPL program can

be run on AMPL, it needs to be translated to a list of commands that AMPL can execute.

This translated code is called AMPL code.

In this chapter, the translation of MPL to AMPL code and the execution of the AMPL

code is discussed.

Lexing Parsing
Type

Inferencing

Compiling

Pattern

Matching

Lambda

Lifting

Translation

to AMPL

& Running

Programs

Figure 9.1: Interpretation Stages of MPL

160

9.1 Introduction to Abstract Machines

Abstract machines are useful conceptual tools when implementing a programming language

because they omit the many details of real machines and thus bridge the gap between the

programming language and the physical machine. An added advantage of abstract machines

is the ease of porting the language to different platforms. An abstract machine reduces

the problem of porting the programming language to the problem of porting the abstract

machine. This is an easy task as the abstract machines are simpler and smaller than the

programming language itself. This strategy was used by the programming language Java

which employed Java Virtual Machine (JVM) [17] and Prolog which employed Warren’s

Abstract Machine (WAM) [18]. Some examples of abstract machines for functional languages

are:

• Landin’s SECD Machine [7] was one of the first abstract machines for functional pro-

gramming languages specifically designed to evaluate lambda calculus expressions by

value.

• Modern-SEC Machine [8] is an improved and efficient version of the SECD machine.

• Cardelli’s Functional Abstract Machine (FAM) [9] is an extended and optimized SECD

machine. It was used in the first native-code implementation of ML.

• Cousineau, Curien and Mauny’s Categorial Abstract Machine (CAM) [12]. Its in-

structions correspond to the constructions of a Cartesian Closed Category: identity,

composition, abstraction, application, pairing, and selection. It was the basis for the

CAML programming language.

• Three Instruction Machine (TIM) [13] is a simple abstract machine for evaluation of

super-combinators.

• Spineless-Tagless G-Machine (STG-Machine) [16] is the abstract machine for Haskell.

161

9.2 Introduction to AMPL

AMPL is an abstract machine which runs MPL programs. Just as MPL is separated into

two levels, sequential MPL and concurrent MPL, so too can AMPL can be thought of as

two machine levels:

• Sequential AMPL (SAMPL) which runs sequential MPL code

• Concurrent AMPL (CAMPL) which runs concurrent MPL code

This conceptual separation means AMPL has a modular description and design. Thus, either

of the AMPL components can be modified without disturbing the other.

Sequential AMPL had to accomodate both inductive and coinductive data types. To

acheive this it used new constructs: constructor, destructor, record, and case. The design of

the concurrent AMPL was essentially entirely new. It is notable for its succinct description.

9.3 Sequential Abstract Machine for MPL (SAMPL)

Sequential MPL code compiles to Sequential AMPL or SAMPL code. SAMPL is inspired

by modern-SEC machine [8]. However, the modern-SEC machine doesn’t have explicit com-

mands to which data types and codata types can be compiled. SAMPL augments the basic

modern-SEC machine with case and constructor commands to compile data types and record

and destructor commands to compile codata types. SAMPL also adds commands for basic

functions like addition, multiplication, equality testing etc which are built-in to the lan-

guage. The SAMPL commands are evaluated by-value except for the record and destructor -

the codata type commands - which are lazily evaluated.

Table 9.1 provides a list of SAMPL commands and a brief description of each command.

162

Instruction Explanation

Store pushes the top stack element into the environment
Access(n) put nth value in the environment onto the stack.
Ret return the top stack value and jump to the continuation below
call 〈code〉 jump to the code

Built in instructions:

ConstT (k) push the constant k of basic type T on the stack
Add Pop two arguments from the top of the stack and add them
Mul Pop two arguments from the top of the stack and mlutiply them
Leq Pop two arguments from the top of the stack and compare them

etc.

Data instructions:

Cons(i, n) push the ith constructor onto the stack with arguments
the top n elements of the stack, Cons(i, s1, ..., sn) .

Case[c1, ..., cn] when Cons(i, t1, ..., tn) is on the stack remove it and
push t1,, tn into the environment and evaluate ci.

Codata instructions:

Rec[c1, ..., cn] create a record on the stack with current environment,
rec([c1, ..., cn], e)

Dest(i, n) destruct a record: choose the ith function closure (ci, e)
and run ci in environment e supplemented with the first n values on the stack.

Table 9.1: SAMPL Commands

163

9.3.1 Compilation of Sequential MPL to SAMPL Commands

The sequential MPL code is compiled to a list of SAMPL commands which are then executed

on the abstract machine described in Table 9.2. The compilation scheme is described below:

Jrecord {Di x1i , ..., xni
7→ ti}i∈[1,m] Kv = Rec[JtiKx1,...,xni ,v

Ret]i∈[1,m] (9.1)

J(Di(x, t1, ..., tn)Kv = JtnKv...Jt1Kv JxKvDest(i, n) (9.2)

JCi(t1, .., tn)Kv = JtnKv...Jt1Kv Cons(i, n) (9.3)

Jcase t {Ci x1i , ..., xni
7→ ti}i∈[1,m] Kv = JtKvCase[JtiKx1,...,xni ,v

Ret]i∈[1,m] (9.4)

JxKv = Access(n) where n = index v x (9.5)

Ja op bKv = JbKv JaKvOp (9.6)

JkKv = ConstT (k) (9.7)

J Kv signifies the compilation of a Core MPL’s sequential constructs to SAMPL commands

in context of an environment v. The environment acts as a repository of variables used in a

piece of code being compiled. It is used to replace a variable name with the relative position

in the program body. A description of these compilation steps is:

(9.1) is the compilation scheme for the record construct. Di is the ith destructor and ti is

the corresponding term for that destructor in the record.

(9.2) is the compilation scheme for a destructor represented by Di. The first argument of

Di is the record to be destructed and the subsequent arguments are the arguments of

Di.

(9.3) is the compilation of a constructor Ci. The terms t1, . . . , tn which are the arguments

of the constructors are recursively compiled and concatenated in the order opposite to

which they occur. The constructor name is replaced in the compilation process by a

pair, the constructor number and the number of arguments that the constructor takes.

164

(9.4) is the compilation of constants (integers,floats,characters).

(9.5) is the compilation of a case construct. A few things worth noting in the compilation

of case constructs are as follows:

• The term ti of the Ci phrase is compiled in the context enhanced with the argu-

ments of Ci.

• Ret (return) should be the last command in the compiled code corresponding to

any constructor.

• Before the compilation of the case construct starts, it should be ensured that the

constructors of the data type are arranged in the order in which they are defined.

(9.6) is the compilation of a variable x. The variable is looked up in the context v. the

depth of the variable in the context is the argument to the Access command.

(9.7) is the compilation of infix functions. These functions are converted to their postfix

forms with their arguments recursively compiled.

9.3.2 Transition Table for SAMPL

Once Sequential MPL is compiled to SAMPL code, the code can then be executed on the

abstract machine described in Table 9.2. The Code is represented as a list of SAMPL com-

mands. Two other structures namely the Environment and the Stack need to be introduced

in order to show how the machine works. Both Environment and Stack are Last In First Out

(LIFO) data structures. In our prototype implementation of MPL, they are implemented

using Haskell lists.

The Environment keeps track of which variables are visible in the code at a given point

and is thus a transient data structure: it changes as one traverses through the code. The

Stack acts as storage for the intermediate values and the final result during the execution of

the code.

165

Before After

Code Env Stack Code Env Stack

Store; c e v : s c v : e s

Access(n); c e s c e e(n) : s

Call(c) : c′ e s c e clos(c′, e) : s

Ret : c e v : clos(c′, e′) : s c′ e′ v : s

Cons(i, n) : c e v1 : ..., vn : s c e cons(i, [v1, .., vn]) : s

Case(c1, ..., cn) : c e Cons(i, [v1, ..., vn]) : s ci v1 : .. : vn : e clo(c, e) : s

Rec(c1, .., cn) : c e s c e rec([c1, ..., cn], e) : s

Dest(i, n) : c e rec([c1, .., cn], e′) : vn : .. : v1 : s ci v1 : .. : vn : e′ clo(c, e) : s

ConstT (k) : c e s c e constT (k) : s

Add : c e n : m : s c e (n+m) : s

Mul : c e n : m : s c e (n ∗m) : s

Leq : c e n : m : s c e (n ≤ m) : s

Table 9.2: Machine Transitions for the SAMPL

The state of SAMPL at any given time can be described as the triple of the compiled

SAMPL Code, Environment, and Stack represented as (C,E, S). Executing SAMPL code

means starting with an initial state and changing states based on the transition table for

SAMPL in Table 9.2 until a final state is reached. The final state contains the result of the

computation. The selection of transition at any step of code execution is done by pattern

matching the machine state against the transition table. Thus, the given description of the

SAMPL is easily implemented in Haskell using its pattern-matching.

The initial state of the machine is formed by putting the compiled code as the first

argument of the triple and intialising the Enviornment and Stack as empty lists.

Initial State : (C, [], [])

The final state is reached when the Code and the Environment is empty. The top of the

Stack contains the output value.

Final State : ([], [], S)

In Table 9.2, clos(c,e) denotes closure of Code c with Environment e and e(n) is the

nth-element of the environment.

166

MPL Program corresponding to (λx. x + 1) 2

fun f1 =

-> App(record(App(y) := y + 1),2)

Step wise compilation to SAMPL Code

q
App

(
record (App(y) := y + 1, 2)

)y
[]

(Dest. rule)
q
2
y

[]
++

q
record (App(y) := y + 1)

y
[]

++
[
Dest 1 1

]
(Const. & Rec rule)[

CInt 2
]

++ Rec
[q
y + 1

y
++ [Ret]

]
++

[
Dest 1 1

]
(Op (Infix) rule)[

CInt 2
]

++ Rec
[q

1
y

[y]
++

q
y
y

[y]
++ [Add] ++ [Ret]

]
++

[
Dest 1 1

]
(Const. & Var. rule)[

CInt 2
]

++ Rec
[
[CInt 1] ++ [Access 1] ++ [Add] ++ [Ret]

]
++

[
Dest 1 1

][
CInt 2,Rec

[
CInt 1,Access 1,Add,Ret

]
,Dest 1 1

]
(SAMPL code)

Table 9.3: Example : Compilation of Sequential MPL to SAMPL Code

167

Code Env Stack

CInt(2); Rec[c]; Dest 1 1 ε ε

Rec[c]; Dest 1 1 ε cint 2 : ε

Dest 1 1 ε rec([c], ε) : cint 2 : ε

CInt 1; Access 1; Add; Ret cint2 : ε clo(ε, ε) : ε

Access(1) : Add : Ret cint2 : ε cint 1 : clo(ε, ε) : ε

Add : Ret cint 2 : ε cint 2 : cint 1 : clo(ε, ε) : ε

Ret cint 2 : ε cint 3 : Clo(ε, ε) : ε

ε ε cint 3 : ε

where c := [CInt 1,Access 1,Add,Ret]

Table 9.4: Executing Code on SAMPL

Table 9.3 provides an example of the step by step compilation sequential MPL to SAMPL.

The compilation steps are labelled to identify which rules are used in each step. The Sequen-

tial MPL code being compiled is a function f1. The function f1 is equivalent to the lambda

application (λx.x + 1) 2. The function f1 demonstrates MPL’s technique of implementing

higher-order functions using codata types.

Table 9.4 shows an example of the step by step execution of the SAMPL commands

generated for function f1 in Table 9.3.

Execution of the code starts with empty Environment and Stack. In the final step Code

and the Environment are empty and the result CInt 3 is obtained on top of the Stack.

9.4 Concurrent Abstract Machine for MPL (CAMPL)

Concurrent Abstract Machine for MPL (CAMPL) is the machine on which the Concurrent

MPL code is run. Concurrent MPL code is comprised of processes. The state of a process is

represented as a four tuple of Stack, Translation, Environment, and Code (S, t, E, C). Stack,

Environment and Code are also used to represent the state of Sequential MPL programs and

have the same meaning here.

• The Stack holds the intermediate value and the final result when executing a process.

• The Translation is an additonal structure used in describing the state of a Concurrent

168

MPL program. This additonal structure is required because Concurrent MPL programs

have channels, a feature that the sequential MPL programs lack. Translation acts as a

map of the local channel names to global channel names. The channel connecting two

processes may be named differently inside each process. Processes use the Translation

to determine how local channels correspond to gobal channels.

• The Environment is used to determine which variables are visible at a given point of

the Concurrent program.

• The Code is the list of Concurrent AMPL commands corresponding to the MPL pro-

gram.

The initial state of CAMPL is formed by loading the compiled code corresponding to

Concurrent MPL program (processes) as the fourth argument of the tuple, the Translation of

channels corresponding to a process as the second argument, and intialising the Environment

and Stack which are the first and the third arguments respectively, as empty lists. The initial

state is represented as:

Initial State : ([], t, [], C)

The final state is reached when the Code, the Environment and the Translation is empty.

The top of the stack contains the output of the code. The final state is represented as:

Final State : (S, [], [], [])

CAMPL consists of two main components, the Channel Mananger C, and the Process

Manager P .

9.4.1 The Channel Manager

The Channel Manager C is a set of pairs of channels and their queues. It is represented as

C{(α, q′ | q)} which indicates that a channel α has the communication queue q′ | q associated

169

with it. A communication queue has two parts: the output queue q′ and the input queue

q. Each channel associated to a process is either an input or output polarity channel: the

process writes its communication for an input polarity channel onto the input queue of that

channel and for an output polarity channel on the output queue. We add a communication,

x, to the back of the input queue by writing q : x and we shall also use this as a pattern to

indicate that x is the last item on that queue. Similarly on the output queue we shall add a

communication item, x to the front of the queue x : q′. To access items on queues we shall

use pattern-matching: for example, to access the first-in item, x, of the input queue of a

channel which is the last item as we are writing it we shall use the pattern q : x. We shall

write the empty queue as ε. Note that it is the two first-in items x and y in a communication

queue x : q′|q : y which are subject to communication actions (described in Section 9.4.6).

9.4.2 The Process Mananger

The Process Manager is a set of processes. It is represented as P {(S, t, E, C)} signifying

that it has selected one process that will be advanced by one execution step. The Process

Manager in theory selects this process non-deterministically. In practise, it may be sensible

to execute the selected process not just by one step but for mutliple steps, or until it has a

concurrent action before interrupting it.

9.4.3 Interaction between Process Manager and Channel Manager

The interaction between the Process Manager and the Channel Manager can be understood

with the help of some examples.

Suppose there are two MPL processes P1 and P2 connected by a channel α, which acts

as an output polarity channel for process P1 and an input polarity channel for process P2.

Suppose P1 puts a value on α and P2 receives that values on α. Since MPL assumes no

fixed order of execution of processes, the process receiving the value on the channel (P2)

may be executed before the process putting the value on the channel (P1). When process

170

P2 is executed before P1, the Channel Manager suspends the process P2 and attaches it to

the input queue of the channel α. When process P1 is scheduled and executed, the value is

obtained on α and put on its output queue. Once Channel Manager sees the configuration

where a suspended process is attached to one queue of the channel and a value is present on

the other queue of the channel, it reactivates the suspended process and puts it in the set

of active processes with the value transmitted. The Process Manager can then schedule this

active process for execution.

Here the interaction between the Process Manager and Channel Manager is explained

in terms of just the get-put command pair. However, similar interaction between the two

components of CAMPL takes places for split-fork, hput-hcase and close-halt pairs.

9.4.4 Concurrent Commands

In order to understand the working of CAMPL, we start by considering the CAMPL com-

mands. Table 9.5 lists the concurrent commands with a brief description of each. The ex-

ecution of CAMPL commands are determined by the action of the Process Manager which

uses the Channel Manager. The Process Manager’s actions are described in Section 9.4.5

and the Channel Manager’s actions are described in Section 9.4.6.

9.4.5 Process Manager’s Actions

This section describes the execution step corresponding to the CAMPL commands. When a

command executes it not only changes the state of the running process shown by P{(s, t, e, c)}

but may also change the state of the queues associated with a channel. Hence, the transition

table for CAMPL (described in Table 9.6) have columns for both Process Manager and

Channel Manager in the before and the after column. An explanation of the Process

Manager’s actions corresponding to the various CAMPL commands is provided below:

Get/Put: These are the two basic communication commands. put transmits a value on a

171

get α; C get a value on channel α
put α; C put a value on channel α

split α into (α1, α2);C split channel α into two (new) channels
fork α as

α1 with Γ1.C1

α2 with Γ2.C2

forking on a channel into two distinct processes

hput α n;C put a “handle” on channel α
hcase{C1, .., Cn} the cases on receiving a “handle”

close α;C closing a channel
halt α halting process attached to a single channel

plug [α1, ..., αn]
Γ1.C1

Γ2.C2

two processes to communicate on n channels

run t 〈process〉 runs a process with local channel to caller channel translation t

id α = β identifying channels.

Table 9.5: Basic Concurrent Commands

communication channel and get receives a value on a communication channel. To put

a value on an output polarity channel, one simply places the value on the output queue

of that channel. To get a value on an output polarity channel, the process suspends

itself on the output queue of the channel with the demand for a value. Similarly, for an

input polarity channel, get and put place the suspension of the process and the value

to be put on the input queue of the channel.

Split: The split instruction splits the channel α into two channels (α1 and α2). One therefore

adds to the appropriate queue notification of the two “global” channels into which the

channels are split. This means one must choose two new channel names (here β1 and

β2), and must remember the translation from the local channel names, t[β1/α1, β2/α2].

Once split is done, the machine continues with the execution of the remaining code.

Fork: The Fork command is dual to the split command. The fork command creates two

processes which are supposed to communicate on the new channels assigned by a split

command. However, the splitting may not have happened when the fork command

is executed. Thus, on a fork command the process suspends itself and attaches itself

to the channel which is to be split. The process does not fork, however until the

172

corresponding channel action of splitting is performed (as a communication action)

and at that stage the translations for the local channel names to global names are

adjusted and the forked processes are enabled (i.e. added into the process manager).

Plug: The plug command allows two processes to communicate along certain channels. As

with a fork command, the channels of the process must be divided amongst the two

process being plugged together. In addition, new global communication channel names

must be assigned to the channels along which the processes wish to communicate. After

a plug command both processes are enabled (i.e. added into the process manager).

Handle: The hput command, which sends a “handle” – a protocol constructor – which is

matched by a listening process which will react according to which handle is received

by an hcase command. These commands behave somewhat like a “put” and “get”,

except that for the latter one chooses the code which is to be run based on the handle

received rather than simply using the value in the subsequent code.

Call: This “jumps” to some code for a predefined process. The only subtlety in the call

command is that one must start by setting up the translation of the local channels of

the predefined process into global channel names.

Close/Halt: Closing a channel, close α, causes the channel to be removed. Corresponding

to closing a channel is the halt command. Only when all other channels of a process

are closed can a process call a halt α on the one remaining channel.

Id α := β: This provides an identity map between two channels. It alters the translation

of the process by defining the translation of α to be the same as the translation of β.

This command is used, in particular, when “bending” wires to simulate the negation

of linear logic.

173

C{(t(α), q′ | q)} P{(s, t, e, get α; c)} C{(t(α), q′ | q:g(s, t, e, c))} P{}
C{(t(α), q′ | q)} P{(v:s, t, e, put α; c)} C{(t(α), q′ | q:v)} P{(s, t, e, c)}

C{(t(α), q′ | q)} P{([], t, e, split α into
(α1, α2); c

)} C

(
t(α),
q′ | q:〈β1, β2〉

)
(β1, ε)
(β2, ε)

 P{([], t
[
β1/α1

β2/α2

]
, e, c)}

C{(t(α), q′ | q)} P{(s, t, e, close α; c)} C{t(α), q′ | q:close)} P{(s, t\α, e, c)}

C{(t(α), q′ | q)} P{([], t, e,
fork α as
α1 with Γ1.c1

α2 with Γ2.c2

, [])} C{

t(α),

q′ | q:
[
t, e,

α1/Γ1.c1

α2/Γ2.c2

]} P{}

C{} P{([], t, e, id α := γ; c, [])} C{} P {([], t[t(γ)/α], e, c)}

C{} P{([], t, e,
plug[α1, ..., αn]

Γ1.c1

Γ2.c2

, [])} C{(γi, ε | ε)i=1...n} P
{

([], t[γi/αi]Γ1 , e, c1),
([], t[γi/βi]Γ2 , e, c2)

}
C{(t(α), q′ | q)} P{([], t, e, halt α)} C{t(α), q′ | q:halt)} P{}
C{} P{(s, t, e, run t′ c)} C{} P{(s, t; t′, e′, c)}
C{(t(α), q′ | q)} P{(s, t, e, hput α n; c)} C{(t(α), q′ | q:h(n))} P{(s, t, e, c)}
C{(t(β), q′ | q)} P{(s, t, e, hcase β {ci})} C{(t(β), q′ | q:(s, t, e, hc{ci}))} P{}

Table 9.6: Process execution steps (α with input polarity)

C{(β, q:v | g(s, t, e, c))} P C{(β, q | ε)} P{(v:s, t, e, c)}
C{(t(β), q:h(i) | (s, t, e, hc {cj}))} P C{(β, q | ε)} P{(s, t, e, ci)}

C{(β, 〈β1, β2〉 |
[
t, e,

α1/Γ1.c1

α2/Γ2.c2

]
} P C{} P

{
([], tΓ1 [β1/α1], e, c1),
([], tΓ2 [β2/α2], e, c2)

}
C{(β, close | halt)} P C{} P

Table 9.7: Channel Manager’s Actions for Non-Service Channels

9.4.6 Channel Manager’s Actions

Table 9.7 describes how CAMPL deals with the dual command pairs of get-put, hput-hcase,

split-fork and close-halt when get occurs before put, hcase occurs before hput, fork occurs

before split. Note that Table 9.7 shows only half of the possible configurations of the Channel

Manager for the above mentioned commands as the table is symmetric when input and output

queues are swapped.

These commands are discussed with respect to the non-service channels. Channel Man-

ager’s actions for service channels are discussed in Section 9.4.6.

An explanation of the Channel Manager’s actions is provided below:

174

• Communication of values or a handle: When a value/handle is waiting on a

channel and there is a suspended process waiting for the value then one can transmit

the value and re-enable the process which was waiting. Row 1 of Table 9.7 shows the

communication of values. Row 2 shows the communication of a handle facilitated by

the Channel Manager.

• Split/Fork communication: When a suspended process which wishes to fork is

waiting on a channel and the corresponding split is made on the channel one assigns new

global channel names to the channels introduced by the fork and enable the processes

which are forked modifying the translations of the processes. Row 3 of Table 9.7 shows

the split− fork communication facilitated by the Channel Manager.

• Close/Halt communication: A channel can be completely removed from the channel

manger only when a close command matches a halt command. This is shown by the

row 4 of Table 9.7.

Channel Manager’s Actions for Service Channels

Service channels are built in channels in MPL that allow an MPL program to interact with

the outside world. Service channels are slightly different from non-services channels in that

a non-service channel connects MPL’s processes while a service channel connects an MPL

process to a built-in process with communication to outside world.

The standard way to use a service channel is to hput a handle on it and then do any of

the get, put, close, or halt actions. A protocol commonly used with an output service channel

is defined below:

protocol IntTerm (A) => P =

GetInt :: Get (A|P) => P

PutInt :: Put (A|P) => P

Close :: Top => P

175

C{(β, g(s, t, e, c) : ε | ε : h(1))} P C{(β, ε | ε)} P{(v:s, t, e, c)}
C{(β, v : ε | ε : h(2))} P C{(β, ε | ε)} P
C{(β, close : ε | ε : h(3))} P C \ β P
C{(β, halt : ε | ε : h(3))} P C \ β P

Table 9.8: Channel Manager’s Actions for Service Channels(Output Channel β)

where the name of the protocol is IntTerm and one can recursively get, put, and close a

service channel using the handles GetInt, PutInt, and Close respectively.

The Channel Manager’s actions for an output service channel are described in Table 9.8.

In Table 9.8, h(1), h(2) and h(3) refer to the first, second and the third handle respectively.

Example: Executing Concurrent MPL Programs

This section shows an example of compiling and executing Concurrent MPL commands on

CAMPL. In Table 9.9 a simple MPL program is compiled to CAMPL code. The MPL

program consists of just one process, the main process. The main process takes two numbers

on an output service channel named intTerm1, sums the numbers, and displays them on the

same service channel.

In Table 9.10 and 9.11, the CAMPL code from Table 9.9 is executed stepwise based on

the actions from Table 9.8 and 9.6, till the final state is reached. If the program had non-

service channels in addition to the service channels, then Table 9.7 detailing the Channel

Manager’s actions for non-service channels would be used as well.

In Table 9.10 and 9.11, the Translation is represented by Γ which is a mapping of local

channels to global channels. The translation Γ =
[(

0, 0),
(
-1, -1)

]
means that channels

known locally as 0 and -1 are known globally by the same numbers. This is because all the

channels in the given program are service channels. Service channels are global channels and

are known in every process by the same numbers. They are represented by numbers less

than or equal to zero. zero is used for a special service channel known as console.

The first row of Table 9.10 describes the initial state in the execution of the main process.

176

Before After

protocol IntTerm (A) => P =

GetInt :: Get (A|P) => P

PutInt :: Put (A|P) => P

Close :: Top => P

coprotocol CP => Console (A) =

GetIntC :: CP => Put (A|CP)

PutIntC :: CP => Get (A|CP)

CloseC :: CP => TopBot

run console => intTerm1 -> do

hput GetInt on intTerm1

get num1 on intTerm1

hput GetInt on intTerm1

get num2 on intTerm1

hput PutInt on intTerm1

put (num1+num2) on intTerm1

hput Close on intTerm1

close intTerm1

hput CloseC on console

halt console

-- put first handle on channel -1 which is a service
-- channel called intTerm1.First handle suggests
-- get action on -1
hput -1 1

get -1 -- get a value on channel -1
store -- store the value obtained from -1
-- get another value from -1 and store
hput -1 1

get -1

store

access 2 -- load the second number
access 1 -- load the first number
add -- add the two numbers

-- put second handle on channel -1. Second Handle
-- suggests a value will be put on -2
hput -1 2

put -1 -- put the sum on channel -1

-- put third handle on channel -1. Handle 3
-- suggests that channel will be closed.
hput -1 3

close -1 -- close channel -1
hput 0 3 -- put third handle on channel 0
halt 0 -- halt channel 0

Table 9.9: Example : Compilation of Concurrent MPL Program to CAMPL

177

Notice the values of different columns in the first row. The Channel Manager starts with

empty queues for all the channels in the main process. Stack and Environment are empty

and Translation is loaded with local to global mapping of channels of the main process. Code

is initialised to the compiled CAMPL code for the process generated in Table 9.9.

Last row of Table 9.11 describes the final state in the execution of the main process.

Every column is empty except Stack which contains the sum of the numbers (output) as its

top element.

178

Channel Manager Stack Trans Env Code

C
{ (

0, ε | ε
)
,(

-1, ε | ε
) }

ε Γ

[(
0, 0),(

-1, -1)

]
ε hput -1 1 : c1

C
{ (

0, ε | ε
)
,(

-1, ε | ε :h(1)
) } ε Γ

[(
0, 0),(

-1, -1)

]
ε get -1 : c2

C
{ (

0, ε | ε
)
,(

-1, g(ε,Γ, ε, c2) : ε | ε : h(1)
) } ε ε ε ε

C
{ (

0, ε | ε
)
,(

-1, ε | ε
) }

v1 : ε Γ

[(
0, 0),(

-1, -1)

]
ε store : c3

C
{ (

0, ε | ε
)
,(

-1, ε | ε
) }

ε Γ

[(
0, 0),(

-1, -1)

]
v1 : ε hput -1 1 : c4

C
{ (

0, ε | ε
)
,(

-1, ε | ε :h(1)
) } ε Γ

[(
0, 0),(

-1, -1)

]
v1 : ε get -1 : c5

C
{ (

0, ε | ε
)
,(

-1, g(ε,Γ, v1 : ε, c5) : ε | ε : h(1)
) } ε ε ε ε

C
{ (

0, ε | ε
)
,(

-1, ε | ε
) }

v2 : ε Γ

[(
0, 0),(

-1, -1)

]
v1 : ε store : c6

C
{ (

0, ε | ε
)
,(

-1, ε | ε
) }

ε Γ

[(
0, 0),(

-1, -1)

]
v2 : v1 : ε access 2 : c7

C
{ (

0, ε | ε
)
,(

-1, ε | ε
) }

v1 : ε Γ

[(
0, 0),(

-1, -1)

]
v2 : v1 : ε access 1 : c8

C
{ (

0, ε | ε
)
,(

-1, ε | ε
) }

v2 : v1 : ε Γ

[(
0, 0),(

-1, -1)

]
v2 : v1 : ε add : c9

Table 9.10: Executing Code on CAMPL (Continued On Table 9.11)

179

Channel Manager Stack Trans Env Code

C
{ (

0, ε | ε
)
,(

-1, ε | ε
) }

v1+v2 : ε Γ

[(
0, 0),(

-1, -1)

]
v2 : v1 : ε hput -1 2 : c10

C
{ (

0, ε | ε
)
,(

-1, ε | ε : h(2)
) } v1+v2 : ε Γ

[(
0, 0),(

-1, -1)

]
v2 : v1 : ε put -1 : c10

C
{ (

0, ε | ε
)
,(

-1, v1+v2 : ε | ε : h(2)
) } ε Γ

[(
0, 0),(

-1, -1)

]
v2 : v1 : ε c10

C
{ (

0, ε | ε
)
,(

-1, ε | ε
) }

ε Γ

[(
0, 0),(

-1, -1)

]
v2 : v1 : ε hput -1 3 : c11

C
{ (

0, ε | ε
)
,(

-1, ε | ε : h(3)
) } ε Γ

[(
0, 0),(

-1, -1)

]
v2 : v1 : ε close -1 : c12

C
{ (

0, ε | ε
)
,(

-1, close : ε | ε : h(3)
) } ε Γ

[(
0, 0),(

-1, -1)

]
v2 : v1 : ε c12

C
{ (

0, ε | ε
) }

ε Γ

[(
0, 0)

]
v2 : v1 : ε hput 0 3 : c13

C
{ (

0, ε | ε : h(3)
) }

ε Γ

[(
0, 0)

]
v2 : v1 : ε halt 0 : ε

C
{ (

0, halt : ε | ε : h(3)
) }

ε Γ

[(
0, 0)

]
v2 : v1 : ε ε

C
{ }

ε Γ

[]
ε ε

Table 9.11: Executing Code on CAMPL (Continued from Table 9.10)

180

Bibliography

[1] Cockett, R., Pastro, C. (2009), The logic of message passing , Science of Computer

Programming, Volume 74 Issue 8, pp. 498-533, Elsevier.

[2] Harper, R. (2000), Programming in Standard ML, Retrieved from

https://www.cs.cmu.edu/ rwh/introsml

[3] Meijer, E., and Jeuring, J. (9915). Merging Monads and Folds for Functional Program-

ming , Lecture Notes in Computer Science (LNCS), Volume 925, Springer.

[4] Cockett, R., and Fukushima T. (1992). About Charity , Yellow Series Report, No.

92/480/18.

[5] Cockett, R. (2016), The Typed Lambda Calculus with Fixed Points , Course

Notes for Foundations of Functional Programming, pp. 12-18, Retrieved from

http://pages.cpsc.ucalgary.ca/ robin/class/521/types/fixtypes.pdf

[6] Johnsson, T. (1985). Lambda Lifting: Transforming Programs to Recursive Equa-

tions ,Proc. of a conference on Functional programming languages and computer ar-

chitecture, pp. 190-203, Springer-Verlag.

[7] Landin, P.J. (1964). The Mechanical Evaluation of Expressions , The Computer Journal,

Volume 6, Issue 4, pp. 308320

181

[8] Leroy, X. (2008). Functional programming languages: Part II: abstract ma-

chines , MPRI course 2-4-2, Functional programming languages, Retrieved from

http://gallium.inria.fr/ xleroy/mpri/progfunc/

[9] Cardelli, L. (1983). The Functional Abstract Machine, Technical Report TR-107, Bell

Labs.

[10] Yasin, M. (2012), Linear Functors and their Fixed Points , Retrieved from

https://pages.cpsc.ucalgary.ca/ robin/Theses/theses.html

[11] Chakraborty, S. (2014), Linear Functors and their Fixed Points , Retrieved from

https://pages.cpsc.ucalgary.ca/ robin/Theses/theses.html

[12] Cousineau, G., Curien, P.-L., and Mauny, M. (1987). The categorical abstract machine,

Science of Computer Programming, Volume 8, Issue 2, pp. 173-202, Elsevier.

[13] Fairbairn, J., and Wray, S. (1987). TIM: A Simple, Lazy Abstract Machine to Execute

Supercombinators , Proc. Of a Conference on Functional Programming Languages and

Computer Architecture, pp. 34-45, Springer-Verlag.

[14] Augustsson, L. (1985). Compiling Pattern Matching , Proc. of a conference on Functional

Programming Languages and Computer Architecture, pp. 368-381, Springer-Verlag.

[15] Barrett, G., Wadler,P. (1986), Derivation of a Pattern-Matching Compiler , Retrieved

from http://homepages.inf.ed.ac.uk/wadler/topics/language-design.html

[16] Jones, S.P. (1983). The Functional Abstract Machine, Journal of Functional Program-

ming, Volume 2, pp. 127-202, Cambridge University Press.

[17] Tim, L., Yellin,F. (1999). Java Virtual Machine Specification, Second Edition, Addison-

Wesley Longman Publishing Co.

[18] Aı̈t-Kaci, H. (1991). Warren’s Abstract Machine: A Tutorial Reconstruction, The MIT

Press.

182

[19] Milner, R., Parrow, J., and Walker, D. (1992). A calculus of mobile processes, part I/II ,

Information and Computation, Volume 100, Issue 1, pp. 1-77, Academic Press.

[20] Milner, R. (1999). Communicating and Mobile Systems: the pi-calculus , Cambridge

University Press.

[21] Vasconcelos, V.T. (2012). Fundamentals of session types , Information and Computation,

Volume 217, pp. 52-70, Academic Press.

[22] Honda, K., Vasconcelos, V.T., and Kubo, M. (1998). Language primitives and type

disciplines for structured communication-based programming , European Symposym on

Programming, LNCS, Volume 1381, pp. 122-138, Springer-Verlag.

[23] Takeuchi, K., Honda, K., and Kubo, M. (1994). An interaction-based language and its

typing system, European Symposym on Programming, LNCS, Volume 817, pp. 398-413,

Springer-Verlag.

[24] Gay, S.J., Hole, M.J. (2005). Subtyping for session types in the pi calculus ,Acta Infor-

matica, Volume 42, Issue 2, pp. 191-225, Springer-Verlag.

[25] Honda, K., Yoshida, N., and Carbone, M. (2008). Multiparty asynchronous session

types ,POPL ’08, Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pp. 273-284.

[26] Baltazar, P., and Mostrous, D., Vasconcelos, V.T. (2012). Linearly refined session types ,

Electronic Proceedings in Theoretical Computer Science, 101, pp 38-49.

[27] Freeman, T., and Pfenning, F. (1991). Refinement types for ML, Programming Language

Design and Implementation, Volume 26, pp 268-277, ACM.

[28] Honda, K., Mukhamedov, A., Brown, G., Chen, Tzu-Chun, and Yoshida, N. (2011).

Scribbling interactions with a Formal Foundation, Distributed Computing and Internet

Technology, LNCS, pp 55-75, ACM.

183

[29] Yoshida, N., Hu, R., Neykova, R., and Ng, N. (2014). The Scribble Protocol Language,

LNCS, Volume 8358, pp 22-41, Springer.

[30] Neubauer, M., and Thiemann, P. (2004). An Implementation of Session Types , LNCS,

Volume 3057, pp 56-70, Springer.

[31] Sackman, M., and Eisenbach, S. (2004). Session Types in Haskell: Updating message

passing for the 21st century , Technical report, Imperial College, Department of Com-

puting.

[32] Bhargavan, K., Corin, R., Denielou,Pierre-Malo, Fournet, C., and Leifer, J.J. (2009).

Cryptographic protocol synthesis and verification for multipary sessions , Computer Se-

curity Foundations Symposium, pp 124-140, IEEE.

[33] Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G., Larus, J.R., Levi,

S. (2006). Language Support for Fast and Reliable Message-based Communication in

Singularity OS , Proceedings of the 1st ACM SIGOPS/EuroSys European Conference

on Computer Systems 2006, EuroSys ’06, pp 177-190, ACM.

[34] Hunt, G., Larus, J.R., Abadi, M., Aiken, M., Barham, P., Fähndrich, M., Hawblitzel,

C., Hodson, O., Levi, S., Murphy, N., Steensgaard, B., Tarditi, D., Wobber, T., and

Zill, B.D. (2005). An overview of the singularity project , Technical Report, Microsoft

Research, 2005.

[35] Hu, R., Yoshida, N., Honda, K. (2008). Session-based distributed programming in Java

, ECOOP ’08 Proceedings of the 22nd European conference on Object-Oriented Pro-

gramming, pp 516-541, Springer-Verlag.

[36] Ng, N., Yoshida, N., Honda, K. (2012). Multiparty Session C: Safe Parallel Programming

with Message Optimisation , LNCS, Volume 7304, pp 202-218, Springer-Verlag.

184

[37] Pierce, B.C., Turner, D.N. (2000). Pict: a programming language based on the Pi-

Calculus , Proof, language, and interaction, Volume 7304, pp 455-494, MIT Press.

[38] Vasconcelos, V.T. (1994). Typed concurrent objects , LNCS, Volume 821, pp 100-117,

Springer.

[39] Hewitt, C., Bishop, P., Steiger, R. (1973). A universal modular ACTOR formalism for

artificial intelligence , IJCAI’73 Proceedings of the 3rd international joint conference

on Artificial intelligence, pp 235-245, Morgan Kaufmann Publishers Inc.

[40] Vasconcelos, C. (2016). A Revision of the Mool Language , arXiv:1604.06245.

185

Appendix A

MPL Programs

This appendix consists of three MPL programs.

A.1 Ticket Server Application

In this MPL program, there is a ticket server with two booking clients attached to it via

channels. The ticket server has a certain number of tickets, input by the user, which the

clients can book. To begin with, the first client books some tickets. The number of tickets

booked by the first client is deducted from the total number of tickets that the server has.

The server updates the number of tickets which it then passes to the second client. The

second client books some tickets and updates the number of tickets that the server has.

Thus, the ticket server alternates between the two clients till the number of tickets it holds

becomes zero. The program performs some error checks as well: it doesn’t allow any of the

client to book more ticket than available and if any client tries to do so, the program discards

that entry and prompts the client to re-enter the number of tickets.

-- ---

-- -----------------------TICKET SERVER-----------------------------------

186

proc ticketServer :: Int,Int,Int,Int|

Console(Int),Console(Int) => IntTerm(Int) =

tot,i,tot1,tot2|ch1,ch2 => i3

do hput PutInt on i3

put tot on i3 -- show the status of the server

case i%2 == 1 of

True

do hput PutIntC on ch1

put tot on ch1 -- pass the number of tickets to the client1

hput GetIntC on ch1

get tick1 on ch1 -- client1 books tickets

case (tot-tick1) <= 0 of

False

do ticketServer(tot-tick1,i+1,tot1+tick1,tot2|ch1,ch2 =>i3)

True

do case (tot-tick1) == 0 of

True

do hput PutInt on i3

put (tot1+tick1) on i3

hput PutInt on i3

put tot2 on i3

hput PutIntC on ch1

put tot1 on ch1

hput Close on i3

close i3

hput CloseC on ch1

187

close ch1

hput CloseC on ch2

halt ch2

False

do ticketServer(tot,i,tot1,tot2|ch1,ch2 => i3)

False

do hput PutIntC on ch2 --pass the number of tickets to the client2

put tot on ch2

hput GetIntC on ch2

get tick2 on ch2 -- client2 books tickets

case (tot-tick2) <= 0 of

False

do ticketServer(tot-tick2,i+1,tot1,tot2+tick2|ch1,ch2 => i3)

True

do case (tot-tick2) == 0 of

True

do hput PutInt on i3

put tot1 on i3

hput PutInt on i3

put(tot2 + tick2) on i3

hput Close on i3

close i3

hput CloseC on ch1

close ch1

hput CloseC on ch2

halt ch2

False

188

do ticketServer(tot,i,tot1,tot2|ch1,ch2 => i3)

proc server_Main :: Console(Int) (*) Console(Int) => IntTerm(Int) =

| ch => i3

do split ch into ch1,ch2

hput GetInt on i3

get tot on i3

ticketServer(tot,1,0,0| ch1,ch2 => i3)

-- ---

-- -------------------------TICKET CLIENTS------------------------------

proc ticketClients :: | => IntTerm(Int),Console(Int) =

| => i1,ch

do hcase ch of

GetIntC

do hput GetInt on i1 -- get number of tickets to be booked

get bookTicks on i1

put bookTicks on ch

ticketClients(|=> i1,ch)

PutIntC

do get remTicks on ch -- get remaining tickets from the server

hput PutInt on i1 -- display the number of available tickets

put remTicks on i1

ticketClients(| => i1,ch)

CloseC

do close ch

189

hput Close on i1

halt i1

proc clientFrontEnd :: | Console(Int) => IntTerm(Int), IntTerm(Int),

Console(Int) (*) Console(Int) =

| console => i1,i2,ch

do hput CloseC on console

close console

fork ch as

ch1

do ticketClients(| => i1,ch1)

ch2

do ticketClients(| => i2,ch2)

-- ---

-- ------------------------------MAIN PROCESS-----------------------------

run :: Console(Int) => IntTerm(Int), IntTerm(Int), IntTerm(Int) =

console => intTerm1,intTerm2,intTerm3

do plug

clientFrontEnd(|console => intTerm1,intTerm2,ch)

server_Main(|ch => intTerm3)

190

A.2 Playing Tic-Tac-Toe

This program implements the game of tic-tac-toe between two players. The two players enter

their moves, between the numbers one and nine, on their respective terminals. At any point

in the game, the players can see the status of their board. Once a player makes a move, the

status of the board is updated. If a player wins as a result of the move, the winning message

along with the status of the board is printed. If the match ends in a draw, then the relevant

message is printed. The program does some error checking: one can’t repeat a move that

has already been played and one can’t enter a number less than one or greater than nine.

-- ---

-- ---------------(CO)DATA/(CO)PROTOCOL DEFINITIONS-----------------------

data Status -> C = Cont :: -> C

Draw :: -> C

Win :: -> C

data Row -> C = Triple :: String,String,String -> C

data Board -> C = Piece :: [Row] -> C

protocol ProtMoves (A) => P =

GetMove :: Get (A|P) => P

CloseM :: TopBot => P

-- ---

-- --------------------GENERAL HELPER FUNCTIONS---------------------------

-- This function checks if a given element is present in the list

191

elem :: Int,[Int] -> Bool =

v,[] -> False

v,x:xs -> case x == v of

True -> True

False -> elem(v,xs)

-- ---

-- ---------------FUNCTIONS USED IN GAME LOGIC----------------------------

--check if a move is a valid and a new move

isRightMove :: Int,[Int] -> Either(String,Bool) =

num,list -> case num <= 9 of

True -> case num <= 0 of

True -> Left("Move less than 0")

False -> case elem(num,list) of

True -> Left("Move repeated")

False -> Right(True)

False -> Left("Move greater than 9")

-- checks if the first list is a part of the second list

isPartOf :: [Int],[Int] -> Bool =

[],sList -> True

(f:fs),sList -> case elem(f,sList) of

True -> isPartOf(fs,sList)

False -> False

192

isSol :: [Int],[[Int]] -> Bool =

moves,[] -> False

moves,(s:ss) -> case isPartOf(s,moves) of

True -> True

False -> isSol(moves,ss)

getStatus :: [Int],Int -> Status =

moves,count -> case count == 9 of

True -> case vict of

True -> Win

False -> Draw

False -> case vict of

True -> Win

False -> Cont

where

vict = isSol(moves,solList)

solList = [[1,5,9],[3,5,7],[1,2,3],[4,5,6],

[7,8,9],[1,4,7],[2,5,8],[3,6,9]]

errorMsg :: Int,String -> [Char] =

num,emsg -> case num == 1 of

True -> unstring(xmsg)

False -> unstring (ymsg)

193

where

xplay = "(by player X) /Try Again.\n"

yplay = "(by player O) /Try Again.\n"

xmsg = concat(emsg,xplay)

ymsg = concat(emsg,yplay)

winDrawMsg :: Bool,String -> [Char] =

win,player -> case win of

True -> case eqS(player,"X") of

True -> helperFun("X WINS")

False -> helperFun("O WINS")

False -> helperFun("MATCH DRAWN")

where

helperFun :: String -> [Char] =

msg -> unstring (concatList([msg,"\n",stars]))

turnMsg :: String -> [Char] =

player -> switch

eqS(player,"X") = unstring(concatList([stars,"X’s Turn",stars]))

default = unstring(concatList([stars,"O’s Turn",stars]))

-- ---

-- -------------------FUNCTIONS FOR BOARD REPRESENTATION------------------

194

-- Representation of an empty Board

empBoard :: () -> Board =

-> Piece ([emptyRow,emptyRow,emptyRow])

where

emptyBox = "| |"

emptyRow = Triple(emptyBox,emptyBox,emptyBox)

-- Below function change the representation of a board based on the move made

replaceRow :: Row,Int,String -> Row =

Triple (a,b,c),colN,newP ->

case colN == 0 of

True -> Triple (newP,b,c)

False -> case colN == 1 of

True -> Triple(a,newP,c)

False -> Triple(a,b,newP)

-- modify the representation of board based on the input

newBdRep :: Board,Int,Int -> Board =

Piece (rows),move,flag ->

case flag == 0 of

True -> Piece(newB_Help(rows,quot,rem,0,box_O,[]))

False -> Piece(newB_Help(rows,quot,rem,0,box_X,[]))

where

box_X = "| X |"

box_O = "| O |"

nMove = move -1

195

quot = quotI(nMove,3)

rem = nMove % 3

newB_Help :: [Row],Int,Int,Int,String,[Row] -> [Row] =

rList,r,c,count,newP,addR ->

case rList of

[] -> []

x:xs -> case r == count of

True -> addR ++ ((replaceRow(x,c,newP)):xs)

False -> newB_Help(xs,r,c,count+1,newP,addR ++ [x])

finBdRep :: Board,Int,Int -> Board =

board,oMv,xMv -> newBdRep(newBdRep(board,oMv,0),xMv,1)

hLine :: () -> String =

-> " -------------\n"

stars :: () -> String =

-> "\n********************\n"

addNL :: String -> String =

piece -> concat(piece,"\n")

addHL :: String -> String =

piece -> concat(hLine,piece)

196

repRow :: Row -> String =

Triple (s1,s2,s3) -> concat(concat(ns1,s2),addNL(s3))

where

ns1 = addHL(s1)

drawBoardHelp :: [Row] ,String -> String =

[],list -> concatList ([list,hLine,stars])

(row:rest),list -> drawBoardHelp (rest,newList)

where

rowStr = repRow(row)

newList = concat(list,rowStr)

drawBoard :: Board -> [Char] =

Piece(rList) -> unstring (drawBoardHelp (rList,""))

-- Modify the board based on the move

drawMdfdBd :: Board,Int,Int -> [Char] =

board,move,flag -> drawBoard(newBdRep(board,move,flag))

drawFnBd :: Board,Int,Int -> [Char] =

board,mvO,mvX -> drawBoard(finBdRep(board,mvO,mvX))

-- --

-- --------------------------PROCESSES---------------------------------

proc printString :: [Char] | => IntTerm(Char) =

charList | => c1

197

do case charList of

[]

do hput Close on c1

halt c1

x:xs

do hput PutInt on c1

put x on c1

printString(xs | => c1)

proc playerShow :: String, [Char] | IntTerm([Char]) => IntTerm(Char) =

mode,cList | pch => c1

do case eqS(mode,"receive") of

True

do hcase pch of

GetInt

do put [’ ’] on pch

playerShow(mode,cList|pch => c1)

PutInt

do get board on pch

playerShow("show",board|pch => c1)

Close

do hput Close on c1

close c1

halt pch

False do

do case cList of

[]

198

do playerShow("receive",[’ ’]|pch => c1)

x:xs

do hput PutInt on c1

put x on c1

playerShow("show",xs|pch => c1)

-- ---

-- -----------------------------PLAYER 1------------------------------

proc closeP1 :: Bool, String | Console(T0) =>

IntTerm(Int),IntTerm([Char]), ProtMoves(Int) =

win,player | cco => i1,pch,ch

do hput PutInt on pch

put winDrawMsg(win,player) on pch

hput CloseM on ch

close ch

hput Close on pch

close pch

hput Close on i1

close i1

hput CloseC on cco

halt cco

proc p1Get :: [Int], [Int], Board, Bool, Int |

Console(Char) => IntTerm(Int),IntTerm([Char]),ProtMoves(Int) =

xs,os,bd,xRep,ct| cco => i1,pch,ch

199

do case xRep of

True

do hput PutInt on pch

put turnMsg("X") on pch

hput GetInt on i1

get xMv on i1

case isRightMove(xMv,append(xs,os)) of

Left(emsg)

do hput PutInt on pch

put errorMsg(1,emsg) on pch

p1Get (xs,os,bd,True,ct|cco=> i1,pch,ch)

Right(bool1)

do hput PutInt on pch

put drawMdfdBd (bd,xMv,1) on pch

case getStatus (xMv:xs,ct+1) of

Draw

do closeP1(False,"X"|cco => i1,pch,ch)

Win

do closeP1(True ,"X"|cco => i1,pch,ch)

Cont

do p1Get(xMv:xs,os,newBdRep(bd,xMv,1),False,ct+1|

cco=> i1,pch,ch)

False

do hput PutInt on pch

put turnMsg("O") on pch

hput GetMove on ch

get oMv on ch

200

case isRightMove (oMv,append(xs,os)) of

Left(emsg)

do hput PutInt on pch

put errorMsg(2,emsg) on pch

p1Get(xs,os,bd,xRep,ct| cco => i1,pch,ch)

Right(bool)

do hput PutInt on pch

put drawMdfdBd (bd,oMv,0) on pch

case getStatus (oMv:os,ct+1) of

Draw

do closeP1(False,"O" |cco => i1,pch,ch)

Win

do closeP1(True,"O" |cco => i1,pch,ch)

Cont

do hput PutInt on pch

put turnMsg("X") on pch

hput GetInt on i1

get xMv on i1

case isRightMove (xMv,append(xs,oMv:os)) of

Left(emsg)

do hput PutInt on pch

put errorMsg(1,emsg) on pch

p1Get(xs,oMv:os,newBdRep(bd,oMv,0),

True,ct+1|cco=> i1,pch,ch)

Right(bool)

do hput PutInt on pch

put drawFnBd (bd,oMv,xMv) on pch

201

case getStatus (xMv:xs,ct+2) of

Draw

do closeP1(False,"X" |cco => i1,pch,ch)

Win

do closeP1(True ,"X" |cco => i1,pch,ch)

Cont

do p1Get(xMv:xs,oMv:os,

finBdRep(bd,oMv,xMv),xRep,ct+2

|cco=> i1,pch,ch)

proc p1Init :: | Console(Char) =>

IntTerm(Int),IntTerm([Char]),ProtMoves(Int) =

| cco => i1,pch,ch

do hput GetInt on i1

get xMv on i1

case isRightMove (xMv,[]) of

Left(emsg)

do hput PutInt on pch

put errorMsg(1,emsg) on pch

p1Init(|cco=> i1,pch,ch)

Right(bool)

do hput PutInt on pch

put drawMdfdBd (empBoard,xMv,1) on pch

p1Get([xMv],[],newBdRep(empBoard,xMv,1),False,1|

cco=> i1,pch,ch)

202

proc player1 :: [Char] |

Console(Char) => IntTerm(Int),IntTerm(Char),ProtMoves(Int) =

board |cco => i1,c1,ch

do case board of

[]

do plug

p1Init(|cco => i1,pch,ch)

playerShow("receive",[’ ’] | pch => c1)

x:xs

do hput PutInt on c1

put x on c1

player1(xs |cco => i1,c1,ch)

-- ---

-- -----------------------------PLAYER 2------------------------------

proc player2 :: | ProtMoves(Int) => IntTerm(Int)=

| ch => i2

do hcase ch of

-- player1 is asking player2 to make a move and put it on ch

GetMove

do hput GetInt on i2

get move on i2

put move on ch

player2(|ch => i2)

CloseM

203

do hput Close on i2

close i2

halt ch

-- ---

-- -----------------------MAIN PROCESS------------------------------------

run :: Console(Char) => IntTerm(Char),IntTerm(Int),IntTerm(Int)=

cconsole => charTerm1,intTerm1,intTerm2

do plug

player1(drawBoard(empBoard)|cconsole => intTerm1,charTerm1,ch)

player2(| ch => intTerm2)

A.3 Chat Application

This program implements a chat application between two users. The program asks for user

names to be entered on a terminal. These two users can then communicate on using their

terminals. The first user starts the process of chatting and enters the message he wants

to transmit followed by the return key. Once the return key is pressed, the message is

transmitted and printed on the terminal of the second user. The second user can then type

the message on its terminal and press the return key to transmit it. The users alternate

between sending and receiving messages.

-- ---

-- ---------------(CO)DATA/(CO)PROTOCOL DEFINITIONS-----------------------

data Mode -> C =

204

Snd :: [Char] -> C

Rcv :: -> C

Prnt :: [Char] -> C

protocol OnlyGet (A) => P =

JustGet :: Get (A|P) => P

CloseJG :: TopBot => P

protocol JustPut (A) => P =

OnlyPut :: Get (A|P) => P

-- ---

-- -----------------------FUNCTIONS---------------------------------------

printName :: [Char] -> [Char] =

name -> append(name,unstring(" says:"))

empStr :: () -> [Char] =

-> [’ ’]

formatMsg :: [Char],[Char] -> [Char] =

msg,name -> append(printName(name),reverse(msg))

salut :: [Char] -> [Char] =

name -> append(inchs3,inchs2)

where

space = " "

205

stars = "***\n"

inStr1 = concatList([space,stars,space,space])

inStr2 = concatList(["\n",space,stars,"\n"])

inchs1 = unstring (inStr1)

inchs2 = unstring (inStr2)

inchs3 = append(inchs1,name)

-- ---

-- ------------------------FIRST USER-------------------------------------

proc chatter1 :: Mode, [Char] | Console(Char) =>

IntTerm(Char),IntTerm([Char]) =

mode,name |cco => c1,ch

do case mode of

Snd(msg)

do hput GetInt on c1

get char on c1

case eqC(char,’\n’) of

True

do hput PutInt on ch

put formatMsg(char:msg,name) on ch

chatter1(Rcv,name|cco => c1,ch)

False

do chatter1(Snd(char:msg),name | cco => c1,ch)

Rcv

do hput GetInt on ch

get prnMsg on ch

206

chatter1(Prnt(prnMsg),name | cco => c1,ch)

Prnt(msg)

do case msg of

[]

do hput PutInt on c1

put ’>’ on c1

hput PutInt on c1

put ’ ’ on c1

chatter1(Snd([’ ’]),name|cco => c1,ch)

x:xs

do hput PutInt on c1

put x on c1

chatter1(Prnt(xs),name|cco => c1,ch)

-- ---

-- -----------------------SECOND USER-------------------------------------

proc chatter2 :: Mode, [Char], Int | IntTerm([Char]) => IntTerm(Char) =

mode,name,flag | ch => c2

do case mode of

Snd(msg)

do hput GetInt on c2

get char on c2

case eqC(char,’\n’) of

True

do hcase ch of

GetInt

207

do put formatMsg(char:msg,name) on ch

chatter2(Rcv,name,flag|ch => c2)

PutInt

do get pmsg on ch

chatter2(Prnt(pmsg),name,flag| ch => c2)

Close

do hput Close on c2

close c2

halt ch

False

do chatter2(Snd(char:msg),name,flag|ch => c2)

Rcv

do hcase ch of

GetInt

do put [’ ’] on ch

chatter2(Snd([’ ’]),name,flag|ch => c2)

PutInt

do get prnMsg on ch

chatter2(Prnt(prnMsg),name,flag|ch => c2)

Close

do hput Close on c2

close c2

halt ch

Prnt(msg)

do case msg of

[]

do hput PutInt on c2

208

put ’>’ on c2

hput PutInt on c2

put ’ ’ on c2

case flag == 0 of

True

do chatter2(Rcv,name,1 | ch => c2)

False

do chatter2(Snd([’ ’]),name,flag|ch => c2)

x:xs

do hput PutInt on c2

put x on c2

chatter2(Prnt(xs),name,flag|ch => c2)

-- This process plugs chatter1 and chatter2 along a channel

proc startChat :: | Console(Char) =>

IntTerm(Char),IntTerm(Char),OnlyGet([Char]) =

| cco => c1,c2,ch

do hput JustGet on ch

get usnm1 on ch

hput JustGet on ch

get usnm2 on ch

hput CloseJG on ch

close ch

plug

chatter1(Prnt(salut(usnm1)),usnm1|cco => c1,nch)

chatter2(Prnt(salut(usnm2)),usnm2,0|nch =>c2)

209

-- This process get the user names for chatting

proc getUserName :: [Char] | OnlyGet([Char]) => IntTerm(Char) =

name | ch => c3

do hput GetInt on c3

get char on c3

case eqC(char,’\n’) of

True

do hcase ch of

JustGet

do put reverse(name) on ch

getUserName(empStr|ch => c3)

CloseJG

do hput Close on c3

close c3

halt ch

False

do getUserName(char:name|ch => c3)

-- ---

-- ------------------------------MAIN PROCESS-----------------------------

run :: Console(Char) => IntTerm(Char),IntTerm(Char),IntTerm(Char) =

cconsole => charTerm1,charTerm2,charTerm3

do plug

startChat(|cconsole => charTerm1,charTerm2,ch)

getUserName(empStr|ch => charTerm3)

210

211

Appendix B

BNFC Grammar for MPL

B.1 MPL Program

An MPL program consists of a list of MPL statements followed by a run statement.

MPL -> [MPLStmt] RunStmt .

B.2 Run Statement

RunStmt is used to define the main process definition in an MPL program. The main process

is the point of entry in an MPL program. It has syntax given by:

RunStmt -> "run" [Channel] "=>" [Channel] Process

| "run" "::" [ChType] "=>" [ChType]

[Channel] "=>" [Channel] Process.

Channel -> Ident.

The main process is defined with the keyword "run". [Channel] "=>" [Channel] is

the list of input and output channel names, which are separated by "=>". The main process

can optionally be annotated with a process type as shown in the second rule for RunStmt.

212

[ChType] "=>" [ChType] is the process type of the main process. The elements on left side

of "=>" represents the channel types for the input channels. Similarly, the ones on the right

side represent the channel types for the output channels. A channel is an identifier starting

with a lower case letter.

B.3 MPLStmt (An MPL Statement)

MPLstmt -> "defn" [Defn] "where" [MPLstmt]

| Defn .

An MPL statement can either be a list of definitions which require some local definitions

as shown in the first rule or a bare definition, Defn, as shown in the second rule. "defn",

and "where" are layout keywords.

B.4 Defn (An MPL Definition)

An MPL definition, Defn, is either a data/codata definition, a protocol/coprotocol definition,

a function definition, or a process definition.

Defn -> SeqDataDefn

| ConcDataDefn

| FunctionDefn

| ProcessDefn .

SeqDataDefn, which stands for a sequential data definition, is either a data type or

a codata type definition. Similarly, a ConcDataDefn stands for a concurrent data type

definition and is either a protocol or a coprotocol definition.

213

B.5 SeqDataDefn (Sequential Data Definition)

An MPL (co)data type is defined by the keyword "data" or "codata" followed by a list of

(co)data clauses. These elements in the list of (co)data clauses are separated by the keyword

"and" if mutually recursive (co)data types are being defined.

SeqDataDefn -> "data" [DataClause]

| "codata" [CodataClause].

B.6 ConcDataDefn (Concurrent Data Definition)

An MPL (co)protocol is defined by the keyword "protocol" or "coprotocol" followed by

a list of protocol clauses. These elements in the list of the protocol clauses are separated by

the keyword "and" if mutually recursive (co)protocols are being defined.

ConcDataDefn -> "protocol" [ProtocolClause]

| "coprotocol" [ProtocolClause].

B.7 FunctionDefn (Function Definition)

A sequential function definition has syntax given by:

FunctionDefn -> "fun" Ident "::" [Type] "->" Type "=" [PattTermPharse]

| "fun" Ident "=" [PattTermPharse].

Ident is the name of the function: an identifier starting with a lower case letter. A

FunctionDefn can also be annotated with a function type: [Type] "=>" Type. [PattTermPharse]

is a list of PattTermPharse arranged using layout syntax with respect to "=".

214

B.8 ProcessDefn (Process Definition)

A process definition has syntax given by:

ProcessDefn -> "proc" Ident "::" [Type] "|" [ChanType] "=>"

[ChanType] "=" [PatProcessPhr]

| "proc" Ident "=" [PatProcessPhr].

Ident is the name of the process: an identifier starting with a small letter. The

ProcessDefn can also be annotated with a process type: [Type] "|" [ChanType] "=>"

[ChanType]. [Type] represents the types of the sequential parameters, and [ChanType]

"=>" [ChanType] represents the channel types of the channels of the process. [PatProcessPhr]

is a list of patterns-process phrase arranged in a layout syntax with respect to the "=".

B.9 Data and Codata Clause

A data clause has syntax given by:

DataClause -> DataProtName "->" UIdent "=" [DataPhrase]

DataProtName -> UIdent "(" [UIdent] ")"

DataProtName is the name of the data type. UIdent is the name of the data definition,

and [UIdent] is the list of type variables in which the data type is parametric. UIdent

is a state variable: an identifier starting with a capital letter. [DataPhrase] is a list of

constructor definitions. These constructors are arranged in a layout syntax with respect to

"=". Similarly, a codata clause has syntax given by:

CodataClause -> UIdent "->" DataProtName "=" [CodataPhrase]

where [CodataPhrase] is a list of destructor definitions arranged in a layout syntax using

"=".

215

B.10 ProtocolClause/CoprotocolClause

The protocol clause and the coprotocol clauses are defined as:

ProtocolClause -> DataProtName "=>" UIdent "=" [ProtocolPhrase] .

CoprotocolClause -> UIdent "=>" DataProtName "=" [ProtocolPhrase] .

DataProtName is the name of the (co)protocol. UIdent is a state variable. It is an

identifier starting with a upper case character. [ProtocolPhrase] is a list of (co)handles of

the (co)protocol. These are arranged in a layout syntax with respect to "=".

B.11 DataPhrase/CodataPhrase

A data phrase in a data definition is the constructor name with its annotated type. It has

syntax given by:

DataPhrase -> [UIdent] "::" [Type] "->" UIdent.

[UIdent] is the list of constructor names. Constructor names start with a capital letter.

Note that the above rule obviates the need of repeating the types in the data definition if

there are multiple constructors with the same type. For example -

data Bool -> C = True,False :: -> C.

[Type] is the input type of a constructor. The state variable, UIdent, is on the right hand

side of ->. Similarly, a CodataPhrase in a codata defintion consists of destructor names

annotated with their type. It has syntax given by:

CodataPhrase -> [Ident] "::" [Type] "->" Type.

216

B.12 ProtocolPhrase/CoprotocolPhrase

A (co)protocol phrase defines the (co)handle of a protocol. It has syntax given by:

ProtocolPhrase -> UIdent "::" ChanType "=>" UIdent.

CoprotocolPhrase -> UIdent "::" UIdent "=>" ChanType

First UIdent is the name of the (co)handle and the second UIdent is the state variable

associated with the (co)handle. UIdent is an identifier starting with an upper case letter.

ChanType is the channel type associated with the given (co)handle.

B.13 Type (Sequential Type)

A sequential type has syntax given by :

Type -> Type1 "=>" Type

| Type1.

Type1 -> "(" ")"

| "[" Type1 "]"

| UIdent "(" [Type] ")"

| UIdent

| "(" [Type] ")".

where:

• The type Type1 "=>" Type is the special syntax for the exponential codata type.

• "(" ")" is the unit type.

• "[" Type1 "]" is the special syntax for the list data type.

217

• The syntax of a (co)data type is given by UIdent "(" [Type] ")". UIdent is the

name of the (co)data type and [Type] is the list of the type arguments that the

(co)data type takes.

• UIdent is an identifier starting with a capital letter: it can either represent a built in

constant data type or a type variable.

• "(" [Type] ")" is a bracketed sequential type if the number of elements in the type

list [Type] is one and a product type if the number of elements are greater than or

equal to two.

B.14 ChanType (Concurrent Type)

A channel type (concurrent type) has syntax given by:

ChanType -> ChanType1 "(*)" chanType

| ChanType1 "(+)" ChanType.

Protocol1 -> "Get" "(" Type "|" ChanType ")"

| "Put" "(" Type "|" ChanType ")"

| "Neg" "(" ChanType ")"

| TopBot

| UIdent "(" [Type] ")"

where:

• ChanType1 "(*)" chanType is the Tensor channel type.

• ChanType1 "(+)" ChanType is the Par channel type.

• "Get" "(" Type "|" ChanType ")" is the Get channel type.

218

• "Put" "(" Type "|" ChanType ")" is the Put channel type.

• "Neg" "(" ChanType ")" is the Negation of a channel type.

• TopBot is both the the Top and Bottom channel type.

• UIdent "(" [Type] ")" is a (co)protocol definitions. UIdent is the name of the

(co)protocol and [Type] is the list of the type arguments that the (co)protocol defini-

tion takes.

B.15 PattTermPharse (Pattern-Term Phrase)

A PattTermPharse has syntax given by:

PattTermPharse -> [Pattern] "->" Term

| [Pattern] "->" "switch" [GuardedTerm] .

Pattern is a sequential pattern. Term is a sequential term. Terms can be defined with

boolean guards with the "switch" keyword.

B.16 PatProcessPhr (Patterns-Channels-Process Com-

mands Pharse)

A PatProcessPhr has syntax given by:

PatProcessPhr -> [Pattern] "|" [Channel] "=>" [Channel] Process

[Pattern] is a list of sequential patterns. The two list of channel names separated by

"=>" symbols are the input and the output channels. Process consists of a list of process

commands.

219

B.17 Sequential Pattern

A sequential pattern has syntax given by:

Pattern -> Pattern1 ":" Pattern

| Pattern1.

Pattern1 -> UIdent "(" [Pattern] ")"

| "(" [DestPattPhr] ")"

| UIdent

| "[" [Pattern] "]"

| Ident

| "_"

| "(" Pattern ")" .

DestPattPhr -> UIdent ":=" Pattern.

where:

• Pattern1 ":" Pattern is a constructor pattern for the list data type.

• UIdent "(" [Pattern] ")" is a constructor pattern which takes a list of patterns as

arguments.

• "(" [DestPattPhr] ")" is a destructor pattern which consists of a list of destructor

pattern phrases.

• UIdent ":=" Pattern is a destructor pattern where UIdent is the destructor name

and Pattern is the corresponding patttern.

220

• The second rule of Pattern1, which is UIdent, represents a constructor/destructor

pattern which does not take any arguments.

• "[" [Pattern] "]" is a pattern for the list type.

• The fifth rule of Pattern1, which is an identifier starting with a small letter, is the

variable pattern.

• " " is the don’t care pattern.

• "(" [Pattern] ")" is a bracketed pattern if the number of elements in the pattern

list [Type] is 1 and a product pattern if the number of elements are greater than or

equal to 2.

B.18 Sequential Term

A sequential term has syntax given by:

Term -> Term1 ":" Term

| Term1 "where" [WhereDefn] .

| Term1

Term1 -> Term1 Infix0op Term2

| Term2.

Term2 -> Term2 Infix1op Term3

| Term3.

221

Term3 -> Term3 Infix2op Term4

| Term4.

Term4 -> Term4 Infix3op Term5

| Term5

Term5 -> Term5 Infix4op Term6

| Term6

Term6 -> Term6 Infix5op Term7

| Term7.

Term7 -> Term7 Infix6op Term8

| Term8

Term8 -> Term8 Infix7op Term9

| Term9

Term9 -> "[" [Term] "]"

| Ident

| ConstantType

| "if" Term "then" Term "else" "" Term ""

| "unfold" Ident "with" [FoldPattern]

| "fold" Ident "of" [FoldPattern]

| "fold" Term "of" [PattTermPharse]

| UIdent "(" [Term] ")"

| UIdent

222

| Ident "(" [Term] ")"

| "record" "of" [RecordEntry]

| "(" [RecordEntry] ")"

| "(" [Term] ")"

Infix0op -> "||".

Infix1op -> "&&".

Infix2op -> "=="| "/=" | ‘<’ |‘>’|"<="|">=".

Infix3op -> "++".

Infix4op -> ‘+’|‘-’.

Infix5op -> ‘*’| ‘/’ | ‘%’ .

Infix6op -> ‘^’.

Infix7op -> "!!".

ConstantType -> Integer

| Double

| Char

| String

where:

• Term1 ":" Term is the special syntax for a Cons constructor of the list data type.

• Term1 "where" "" [WhereDefns] "" is the syntax for the where term. WhereDefns

is a variable declaration, and the MPL declarations that can be made in the where

part of the term.

• Term(n) Infix(n− 1)op Term(n+ 1) is the infix term corresponding to the nth term.

223

• "[" [Term] "]" is a term of the list data type.

• Ident is a variable term.

• ConstantType is the constant term: integer, float, char, and strings.

• UIdent "(" [Term] ")" is the constructor terms with arguments.

• UIdent is the constructor term without arguments.

• Ident "(" [Term] ")" is function application: Ident a the name of the function

being called and [Term] is a list of arguments with which the function is called.

• Record of a codata type can be created with one of the following syntax:

– "record" "of" [RecordEntry] The list of RecordEntry is arranged in a layout

syntax with respect to the "of" keyword.

– "(" [RecordEntry] ")"

• "(" [Term] ")" is a bracketed term if the number of elements in the term list [Term]

is one and a product term if the number of elements are greater than or equal to two.

B.19 GuardedTerm

A guarded term has syntax given by:

GuardedTerm -> Term "=" Term

| "default" "=" Term

where:

• Term "=" Term is the guarded term where the term on the left side of the "=" symbol

evaluates to a boolean value.

• "default" "=" Term is the default case when the left term of any other guarded term

doesn’t return True.

224

B.20 WhereDefn (Local Definitions in the Where Term)

The local definitions in the where terms are defined as:

WhereDefn -> Defn

| Ident "=" Term.

Defn is a local MPL definition. Ident "=" Term is a local variable decalaration. Ident

is a variable name and Term is a sequential term assigned to the variable.

B.21 FoldPattern

A FoldPattern is one branch of the fold/unfold terms. It has syntax given by:

FoldPattern -> UIdent ":" [Ident] "=" Term.

UIdent is the name of a constructor/destructor of the data type for which the fold/unfold

term is being written. [Ident] is the argument corresponding to the constructor/destructor.

Term is the sequential term corresponding to the constructor/destructor branch of the fold/unfold

terms.

B.22 RecordEntry

A RecordEntry has syntax given by:

RecordEntry -> UIdent ":=" Term

| UIdent ":=" [Ident] "->" Term.

B.23 Process

A Process is a list of process commands.

225

Process -> "do" [ProcessCommand]

| ProcessCommand.

B.24 ProcessCommand

A process command has syntax given by:

ProcessCommand -> Ident "(" [Term] "|" [Channel] "=>" [Channel] ")"

| "close" Channel

| "halt" Channel

| "get" Ident "on" Channel

| "put" Term "on" Channel

| "hcase" Channel "of" [Handler]

| "hput" UIdent "on" Channel

| "split" Channel "into" [Channel]

| "fork" Channel "as" [ForkPart]

| "plug" [Process]

| Channel "|=|" PChannel

PChannel -> Channel

| "neg" Channel.

where:

• Ident "(" [Term] "|" [Channel] "=>" [Channel] ")" is the syntax for process

call. Ident is the name of the process being called. [Term] is the list of sequential

arguments, and [Channel] "=>" [Channel] represents the channels names (input and

output), separated by "=>", which are the concurrent arguments of the process call.

226

• "close" Channel is the syntax for closing channels.

• "halt" Channel is the syntax for halting channels.

• "get" Ident "on" Channel is the syntax for getting something on a channel. Ident

is a variable name to which the term received on a channel binds to.

• "put" Term "on" Channel is the syntax for putting a term on a channel.

• "hput" UIdent "on" Channel is the syntax for putting a handle on a channel. The

handle is represented by UIdent.

• "hcase" Channel "of" [Handler] represents hcasing on the (co)handles of a (co)protocol.

• "split" Channel "into" [Channel] represents splitting of a channel into two chan-

nels.

• "fork" Channel "as" [ForkPart] represents forking a process into two processes

along a channel. The two processes are represented as a list of ForkPart which are

arranged in a layout syntax with respect to the "as" keyword.

• plug [Process] represents plugging of multiple processes, represented by PlugPart,

along channels. The different processes are arranged in a layout syntax with respect

to the "plug" keyword.

• Channel "|=|" PChannel represents equating of two channels. The Pchannel is either

a normal channel or the negation of a channel.

B.25 ForkPart

ForkPart has syntax given by:

ForkPart -> Ident Process.

where Ident is a channel on which the process is forked.

227

Appendix C

Abstract Syntax Tree for MPL

The abstract syntax tree (AST) for MPL, which is a Haskell data type, is provided in this

appendix. We represent the data types of the nodes of the AST by setting up type aliases

which keep the AST readable. AST∗ is a subset of AST in which the functions and processes

are not type annotated. AST∗∗ is a subset of AST∗ in which there is no pattern-matching

syntax.

An MPL program is a list of statements. A statement can either be a definition statement

or a run statement. A definition statement can either be a normal definition or a defn

construct with a where clause. A run statement represents the main process of an MPL

program.

type PosnPair = (Int,Int)

type MPL = [Stmt]

data Stmt = DefnStmt ([Defn],[Stmt],PosnPair)

| RunStmt (FunType,[PChannel],[PChannel],Process,PosnPair)

A definition can be a (co)data definition, (co)protocol definition, function definition or a

process definition.

228

type Name = String

type NumArgs = Int

type Param = String

type PChannel = String

data DataName = DataName (Name,[Param])

type ProtName = DataName

type DataClause = (DataName,[DataPhrase])

type DataPhrase = (Nam,FunType,NumArgs)

type ProtocolClause = (ProtName,[ProtocolPhrase])

type ProtocolPhrase = (Name,FunType)

data Defn =

Data([DataClause],PosnPair)

| Codata([DataClause],PosnPair)

| ProtocolDefn([ProtocolClause],PosnPair)

| CoprotocolDefn([ProtocolClause],PosnPair)

| FunctionDefn(FuncName,FunType,[(PatternTermPhr,PosnPair)],PosnPair)

| ProcessDefn(Name,FunType,PattProcessPhr,PosnPair)

A function type and a function name is defined as:

data FunType =

NoType | StrFType([String],Type) | IntFType([Int],Type)

229

data FuncName = Custom Name | BuiltIn Func

data Func =

Add_I | Sub_I | Mul_I | DivQ_I | DivR_I | Eq_I | Neq_I |

Leq_I | Geq_I | LT_I | GT_I | Eq_C | Eq_S | Concat_S |

Unstring_S | ToStr | ToInt | Append| Or_B | And_B

A PatternTermPhr forms the body of a function definition and is defined as:

type PatternTermPhr = ([Pattern],Either Term [GuardedTerm])

type GuardedTerm = (Term,Term)

data Pattern =

ConsPattern(String,[Pattern],PosnPair)

| DestPattern(String,[Pattern],PosnPair)

| ProdPattern([Pattern],PosnPair)

| VarPattern(String,PosnPair)

| DontCarePattern PosnPair

A sequential MPL term is represented as:

data Term =

TRecord[(Pattern,Term,PosnPair)]

| TCallFun(FuncName,[Term],PosnPair)

| TLet(Term,[Defn],PosnPair)

| TVar(String,PosnPair)

| TConst(BaseVal,PosnPair)

| TIf(Term,Term,Term,PosnPair)

230

| TCase(Term,[PatternTermPhr],PosnPair)

| TFold(Term,[FoldPattern],PosnPair)

| TUnfold(Term,FoldPattern,PosnPair)

| TCons(Name,[Term],PosnPair)

| TDest(Name,[Term],PosnPair)

| TProd([Term],PosnPair)

| TDefault PosnPair

data BaseVal =

ConstInt Int | ConstChar Char |

ConstString String | ConstDouble Double

type FoldPattern = (Name,[Pattern],Term,PosnPair)

A PattProcessPhr represents the body of a process and consists of sequential pattterns,

channels, and a list of process commands. It is represented as:

type PattProcessPhr = ([Pattern],[PChannel],[PChannel],Process)

type Process = [ProcessCommand]

data ProcessCommand

= PRun(Name,[Term],[PChannel],[PChannel],PosnPair)

| PClose(PChannel,PosnPair)

| PHalt(PChannel,PosnPair)

| PGet(Pattern,PChannel,PosnPair)

| PPut(Term,PChannel,PosnPair)

| PHPut(Name,PChannel,PosnPair)

| PHCase(PChannel,[(Name,Process,PosnPair)],PosnPair)

231

| PSplit(PChannel,(PChannel,PChannel),PosnPair)

| PFork(String,[(PChannel,[PChannel],Process)],PosnPair)

| PPlug([PChannel],(([PChannel],Process),([PChannel],Process)),PosnPair)

| PCase(Term,[PattProc],PosnPair)

| PId(Channel,Channel,PosnPair)

| PNeg(Channel,Channel,PosnPair)

data Channel = PosChan PChannel

| NegChan PChannel

deriving (Eq,Show)

Types in MPL, both sequential and channel types are defined as:

type InputType = [Type]

type OutputType = Type

data Type = Unit PosnPair

|TypeDataType (String,[Type],PosnPair)

|TypeCodataType(String,[Type],PosnPair)

|TypeProd([Type],PosnPair)

|TypeConst(BaseType,PosnPair)

|TypeVar(String,PosnPair)

|TypeVarInt Int

|TypeFun([Type],Type,PosnPair)

|Get(Type,Type,PosnPair)

|Put(Type,Type,PosnPair)

|Neg(Type,PosnPair)

|TopBot PosnPair

232

|ProtNamed(String,[Type],PosnPair)

|CoProtNamed(String,[Type],PosnPair)

|ProtTensor(Type,Type,PosnPair)

|ProtPar(Type,Type,PosnPair)

|ProtProc([Type],[Type],[Type],PosnPair)

data BaseType = BaseInt

| BaseChar

| BaseDouble

| BaseString

233

Appendix D

Data Type for the Symbol Table of

MPL

A symbol table is a list of ScopeSymbols, where ScopeSymbols represent a list of SymbolDefn.

A SymbolDefn is a data type that stores the information about various MPL definitions, and

consists of one node for every MPL definition:

type SymbolTable = [ScopeSymbols]

type ScopeSymbols = [SymbolDefn]

A SymbolDefn is defined as:

type NumArgs = Int

type Name = String

type Param = String

data DataName = DataName (Name,[Param])

data FunType = NoType

| StrFType([String],Type)

| IntFType([Int],Type)

234

-- ((data Name,[constructor names]),constructor type,fold Type of

-- constructor,number of constructor args)

type ConsVal = ((DataName,[Name]),FunType,(FunType,FunType),NumArgs)

type DestVal = ((DataName,[Name]),FunType,(FunType,FunType),NumArgs)

type HandVal = ((ProtName,[Name]),FunType,NumArgs)

-- this is the data type inserted in the symbol table

data SymbolDefn =

SymData[(Name,ConsVal)]

| SymCodata[(Name,DestVal)]

| SymProt[(Name,HandVal)]

| SymCoProt[(Name,HandVal)]

| SymFun[(FuncName,(FunType,NumArgs))]

| SymProc[(Name,(FunType,(NumArgs,NumArgs,NumArgs)))]

ValLookup is the data type that can be looked up from the symbol table:

data ValLookup =

Val_Cons(Name,PosnPair)

| Val_Dest(Name,PosnPair)

| Val_Prot(Name,PosnPair)

| Val_Coprot(Name,PosnPair)

| Val_TypeSyn(Name,PosnPair)

| Val_Fun(FuncName,PosnPair)

| Val_Proc(Name,PosnPair)

ValRet is the data type returned as a result of lookup from the symbol table:

data ValRet =

235

ValRet_Cons((DataName,[Name]),FunType,(FunType,FunType),NumArgs)

| ValRet_Dest((DataName,[Name]),FunType,(FunType,FunType),NumArgs)

| ValRet_Prot(ProtName,FunType,NumArgs)

| ValRet_Coprot(ProtName,FunType,NumArgs)

| ValRet_Fun(FunType,NumArgs)

| ValRet_Proc(FunType,(NumArgs,NumArgs,NumArgs))

236

Appendix E

Data Type for Core MPL

Core MPL is an intermediate language of MPL. There is no pattern-matching syntax or local

functions in Core MPL. The Haskell data type for Core MPL is given in this appendix.

An MPL program consists of various definitions:

type Include_Defns = Defn

type Data_Defns = [Defn]

type Codata_Defns = [Defn]

type Protocol_Defns = [Defn]

type CoProtocol_Defns = [Defn]

type Function_Defns = [Defn]

type Process_Defns = [Defn]

type MainRun_Defn = Defn

data MPLProg = MPLProg Include_Defns Data_Defns Codata_Defns

Protocol_Defns CoProtocol_Defns

Function_Defns Process_Defns MainRun_Defn

237

An MPL definition is:

type Name = String

type PosnPair = (Int,Int)

type NamePnPair = (Name,PosnPair)

type Argument = (String,PosnPair)

type Channel = NamePnPair

-- data name and a list of constructors

type DataClause = (NamePnPair,[Constructor])

-- constructor name and number of argument it takes

type Constructor = (NamePnPair,(Int,PosnPair))

-- protocol name & list of handles

type ProtocolClause = (NamePnPair,[NamePnPair])

data Defn =

Includes [String]

| Data(PosnPair,[DataClause])

| Codata(PosnPair,[DataClause])

| Protocol(PosnPair,ProtocolClause)

| CoProtocol(PosnPair,ProtocolClause)

| Function(PosnPair,FuncName,[Argument],Term) |

| Process(PosnPair,NamePnPair,[Argument],

[Channel],[Channel],[ProcessCommand])

| MainRun(PosnPair,[Channel],[Channel],[ProcessCommand])

238

A sequential term is defined as:

type Struct_Name = (NamePnPair,NamePnPair)

type PatternDef = (Struct_Handle ,[Term])

type Struct_Handle = (NamePnPair,NamePnPair,[NamePnPair])

data Term =

TCall(FuncName,[Term])

| TCons(Struct_Name,[Term])

| TDest(NamePnPair,Struct_Name,[Term])

| TCase(Term,[PatternDef],PosnPair)

| TVar(String,PosnPair)

| TConstS(String,PosnPair)

| TConstC(Char,PosnPair)

| TConstI(Int,PosnPair) |

| TRec([(Struct_Handle,Term)],PosnPair)

| TProd [Term]

| TProdElem(Int,Term,PosnPair)

A function can either be a custom or built-in function. It is defined as:

data FuncName = Custom(String,PosnPair)

| Inbuilt(Func,PosnPair)

data Func =

Add_I | Sub_I | Mul_I | DivQ_I | DivR_I |

239

Eq_I | Leq_I | Eq_C | Leq_C | Eq_S | Leq_S |

Concat_S Int | Unstring_S | ToStr | ToInt |

Append | Or_B | And_B

A process command is defined as:

type Event_Handle = (NamePnPair,NamePnPair)

type Struct_Handle = (NamePnPair,NamePnPair,[NamePnPair])

type ProcessPhrase_hcase = (Event_Handle,Process)

type ProcessPhrase_pcase = (Struct_Handle,Process)

type ForkPart = (Channel,[Channel],Process)

type Process = [ProcessCommand]

data ProcessCommand =

PRun(PosnPair,NamePnPair,[Term],[Channel],[Channel])

| PClose(PosnPair,Channel)

| PHalt(PosnPair,[Channel])

| PGet(PosnPair,NamePnPair,Channel)

| PHcase(PosnPair,Channel,[ProcessPhrase_hcase])

| PPut(PosnPair,Term ,Channel)

| PHput(PosnPair,Event_Handle,Channel)

| PSplit(PosnPair,Channel,[Channel])

| PPlug(PosnPair,[Channel],([Channel],Process),([Channel],Process))

| PFork(PosnPair,Channel,[ForkPart])

| PCase(PosnPair,Term ,[ProcessPhrase_pcase])

240

| PRec(PosnPair,[(Struct_Handle,[ProcessCommand])])

| PId (PosnPair,PChannel,PChannel)

data PChannel = PosChannel String

| NegChannel String

241

Appendix F

Data Type for the Abstract Machine

of MPL

This appendix describes the Haskell data type for the abstract machine for MPL (AMPL).

AMPL code consists of a list of various AMPL definitions: (co)data, (co)protocol, func-

tion, and process. It is defined as:

type Name = String

type PosnPair = (Int,Int)

type NamePnPair = (Name,PosnPair)

type Channel = String

type Argument = String

-- (co)protocol definition

data HANDLE_SPEC = Handle_spec NamePnPair [Name]

-- (co)data definiton

data STRUCTOR_SPEC = Struct_spec NamePnPair [(Name,Int)]

242

-- process definition

data PROCESS_SPEC

= Process_specf NamePnPair [Argument] ([Channel],[Channel]) COMS

-- function definition

data FUNCTION_SPEC = Function_spec NamePnPair [Argument] COMS

data AMPLCODE

= AMPLcode [HANDLE_SPEC] [HANDLE_SPEC] [STRUCTOR_SPEC]

[STRUCTOR_SPEC] [PROCESS_SPEC] [FUNCTION_SPEC]

(PosnPair,[Channel],[Channel],COM])

An AMPL command is defined as:

type STRUCTOR_NAME = (Name,Name)

data COM =

AC_ASSIGN String COM | AC_STORE String | AC_LOAD String | AC_RET |

AC_CALL NamePnPair [Argument] | AC_STRING String | AC_EQS | AC_LEQS |

AC_CONCAT Int | AC_UNSTRING | AC_CHAR Char | AC_EQC | AC_LEQC |

AC_INT Int | AC_LEQ | AC_EQ | AC_ADD | AC_SUB | AC_MUL | AC_DIVQ |

AC_DIVR | AC_TOSTR | AC_TOINT | AC_OR | AC_AND | AC_APPEND |

AC_STRUCT STRUCTOR_NAME [NamePnPair] |

AC_CASE [(STRUCTOR_NAME,[NamePnPair],[COM])] |

AC_GET String Channel |

AC_PUT String Channel |

AC_HPUT String STRUCTOR_NAME |

AC_SPLIT Channel (Channel,Channel) |

243

AC_FORK Channel ((Channel,[Channel],[COM]),(Channel,[Channel],[COM])) |

AC_PLUG [Channel] ([Channel],[COM]) ([Channel],[COM]) |

AC_ID Channel Channel | AC_CLOSE Channel | AC_HALT [Channel] |

AC_HCASE Channel [(STRUCTOR_NAME,[COM])] |

AC_RUN NamePnPair [Argument] ([Channel],[Channel]) |

AC_RECORD [(STRUCTOR_NAME,[Name],[COMS])] | AC_PROD [Argument]

AC_PRODELEM Int String

244

	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	Introduction
	Structure of an MPL Program
	An Example of an MPL Program
	Stages of Interpretation of an MPL Program
	Contributions of this Thesis
	Structure of the Thesis
	Related Work
	Pi-Calculus
	Session Types

	Sequential MPL
	Data Types and Constructs for Data Types
	Examples of Data Types
	Mutually Recursive Data Types
	Examples of Mutually Recursive Data Types
	Constructs for Data Types

	Codata Type and Constructs for Codata Type
	Examples of Codata Types
	Mutually Recursive Codata Types
	Constructs for Codata Types

	Other Sequential MPL Constructs
	If-Then-Else
	Where
	Switch
	Function Calls
	Variables
	Constants

	Pattern Matching

	Concurrent MPL
	Channels
	Processes
	Channel Types
	Achieving Type Safety Using Channel Types
	Built-in Channel Types
	Defining (Co)Protocols in MPL

	Concurrent MPL constructs
	Process Call
	The plug Construct
	The get and the put Constructs
	The id and the neg Constructs
	The hput and the hcase Constructs
	The split and the fork Constructs
	The close and the halt Constructs
	Memory Cell

	Type Inference of MPL Programs
	Type Equations
	Solving Type Equations
	Helper Functions Used in Solving Type Equations

	Role of Symbol Table in Type Inference

	Type Equations for Sequential MPL
	Data Type Constructs
	Populating the Symbol Table for Data Declaration
	The Constructor
	The case
	The fold

	Codata Constructs
	Populating the Symbol Table for Codata Declaration
	The record
	The Product
	The Destructor
	The unfold
	Other Sequential MPL Constructs
	Variables
	Constants
	Function Calls
	The if-then-else
	The switch
	The where Clause

	Type Equations for a Pattern Phrase
	Type Equations for Patterns
	Don't Care Patterns
	Variable Patterns
	Constructor Patterns
	Record Patterns
	Product Patterns

	Generating Type Equations for Function Definitions
	Function Definitions without an Annotated Type
	Function Definitions with an Annotated Type
	Mutually Recursive Function Definitions

	Type Equations for Concurrent MPL
	The get and the put Constructs
	The split and the fork Constructs
	The hput and the hcase Constructs
	Populating the symbol table for (Co)Protocol Declarations
	Description of the Type Equations

	The close and the halt Constructs
	The id and the neg Constructs
	The plug Construct
	Process Call
	Generating Type Equations for a Process Phrase
	Generating Type Equations for a Process Definition
	Process Definition Without an Annotated Type
	Process Definition With an Annotated Type
	Mutually Recursive Process Definitions

	Compilation of Pattern-Matching
	Examples of Pattern-Matching in MPL
	Algorithm for Compiling Pattern-Matching
	The compile Function
	Termination Condition and Output
	Execution Steps of compile Function

	Lambda-Lifting
	Local Function Definitions in MPL
	The Defn Construct
	The Where Clause

	Lambda-Lifting for the Defn Construct
	Lambda-Lifting for the Where Clause

	Abstract Machine for MPL (AMPL)
	Introduction to Abstract Machines
	Introduction to AMPL
	Sequential Abstract Machine for MPL (SAMPL)
	Compilation of Sequential MPL to SAMPL Commands
	Transition Table for SAMPL

	Concurrent Abstract Machine for MPL (CAMPL)
	The Channel Manager
	The Process Mananger
	Interaction between Process Manager and Channel Manager
	Concurrent Commands
	Process Manager's Actions
	Channel Manager's Actions

	Bibliography
	BNFC Grammar for MPL
	MPL Program
	Run Statement
	MPLStmt (An MPL Statement)
	Defn (An MPL Definition)
	SeqDataDefn (Sequential Data Definition)
	ConcDataDefn (Concurrent Data Definition)
	FunctionDefn (Function Definition)
	ProcessDefn (Process Definition)
	Data and Codata Clause
	ProtocolClause/CoprotocolClause
	DataPhrase/CodataPhrase
	ProtocolPhrase/CoprotocolPhrase
	Type (Sequential Type)
	ChanType (Concurrent Type)
	PattTermPharse (Pattern-Term Phrase)
	PatProcessPhr (Patterns-Channels-Process Commands Pharse)
	Sequential Pattern
	Sequential Term
	GuardedTerm
	WhereDefn (Local Definitions in the Where Term)
	FoldPattern
	RecordEntry
	Process
	ProcessCommand
	ForkPart

