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Abstract

Restriction categories provide a convenient abstract formulation of partial functions.

However, restriction categories can have a variety of structures such as finite partial

products (cartesianess), joins, meets, and ranges which are of interest in computability

theory, semigroup theory, topology, and algebraic geometry. This thesis studies these

structures.

For finite partial products (cartesianess), a construction to add finite partial products

to an arbitrary restriction category freely is provided.

For joins, we introduce the notion of join restriction categories, describe a construction

for the join completion of a restriction category, and show the completeness of join

restriction categories in partial map categories using M-adhesive categories and M-

gaps. As the join completion for inverse semigroups is well-known in semigroup theory,

we show the relationships between the join completion for restriction categories and

the join completion for inverse semigroups by providing adjunctions among restriction

categories, join restriction categories, inverse categories, and join inverse categories.

For meets, we introduce the notion of meet restriction categories, show the complete-

ness of meet restriction categories in partial map categories whose M-maps include the

regular monics, and provide a meet completion for restriction categories and discuss its

connections with the meet completion for inverse semigroups.

Finally, for ranges, Schein’s representation theorem for a certain class of semigroups

(called type 3 function systems) is generalized to range categories and when a partial

map category satisfies Schein’s condition ([RR.6]) that guarantees each map is an epi-

morphism onto its range is studied.
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Chapter 1

Introduction

1.1 Background

In 1987, Di Paolo and Heller [17] introduced dominical categories as an abstract setting

in which to study recursion theory. They used zero morphisms and near products to

abstract the notion of partiality of partial functions and showed that the basic results of

recursion theory could be obtained from these simple assumptions and the presence of a

Turing object.

In 1988, Robinson and Rosolini [37] noticed that the zero structure was not necessary

for obtaining a notion of partiality and introduced the notion of P -categories (categories

with a near product structure) as the basis for a more general theory of partiality. All

P -categories are essentially the same as Cockett’s copy categories [5].

In 2002, Cockett and Lack [14] introduced restriction categories as an even more

general and more convenient framework for working with abstract categories of partial

maps. In a restriction category, the notion of partiality is captured abstractly by a single

combinator ( ) and four restriction axioms ([R.1], [R.2], [R.3], and [R.4] in Section 1.6.1

below). As claimed in [14], “the intuition for the combinator f is provided by thinking

of the maps as programs: the restriction combinator modifies a program so that, rather

than returning its output, it returns its input unchanged when it terminates.” Dominical

categories, P -categories, and copy categories are all restriction categories.

In 2006, Blute, Cockett, and Seely [1] introduced the notion of a differential category

to provide a basic axiomatization for differential operators in monoidal categories. In

2009, they [2] introduced the notion of a cartesian differential category to directly ax-
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iomatize differentiable maps and thus to move the emphasis from the linear notion to

the cartesian and classical notion. In [8], Cockett, Cruttwell, and Gallagher introduced

differential restriction categories that combined restriction categories and cartesian differ-

ential categories to axiomatize categories like the smooth maps defined on open subsets

of Rn in a way that is completely algebraic.

In [35], Moggi studied formal systems for reasoning about partial functions in the

setting of first order logic and the lambda calculus with the particular emphasis on the

partial lambda calculus. In 2005, Cockett and Hofstra [11] studied the theory of partial

combinatory algebras, models of the partial lambda calculus in restriction categories, and

proved the Scott-Koymans Theorem [27] linking reflexive objects to lambda algebras.

In [12], Cockett and Hofstra developed a convenient setting for the categorical study

of abstract notions of computability. The key concept is Turing categories: cartesian

restriction categories with a universal object, called a Turing object. They illustrated

how a Turing category is a meeting point for various other areas in logic and computation

and gave a detailed exposition of the connection between Turing categories and partial

combinatory algebras (PCA). Furthermore, Cockett and Hofstra [13] investigated the

notion of simulations between restriction functors over a fixed base restriction category

and showed that the category of Turing categories over a fixed base and simulations

between them is 2-equivalent to the category of relative PCAs in the base. A recursion

category [6] is a Turing category which has both joins and meets.

In [10], Cockett, Guo, and Hofstra introduced range categories to begin a systematic

study of partial map categories in which both the domain and the range of each map are

axiomatized. A range category is a restriction category in which, in addition, there is a

range combinator which satisfies four axioms.

Restriction categories not only provide a convenient setting for abstract computabil-

ity but also have applications in other mathematical areas, such as semigroup theory,
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topology, algebraic geometry. See, for example, [34], [1, 2], [8], [31, 32], and [24, 43].

Structures in restriction categories, such as partial (restriction) products, joins, meets,

and ranges frequently occur in these areas: this thesis is a study of these structures.

1.2 Objectives

In [16], Cockett and Lack observed that cartesian objects in the 2-category rCat of re-

striction categories, restriction functors, and restriction natural transformations are not

the right notion of partial (restriction) products for restriction categories. Instead, the

cartesian objects in the 2-category rCatl of restriction categories, restriction functors,

and lax restriction natural transformations give the appropriate notion. Cockett-Hofstra’s

Turing categories are, for example, based on cartesian restriction categories (restriction

categories that have finite partial products). Thus partial products are an important

structural feature of restriction categories. In this thesis, we start by giving a free con-

struction for adding partial products to an arbitrary restriction category.

Restriction categories are poset enriched: the natural partial order enrichment is

given by f ≤ g ⇔ f = gf (see Lemma 1.6.3 below). With the enrichment in posets one

may wonder about the least upper bound (join) and the greatest lower bound (meet)

for each pair of objects. A join restriction category is essentially a restriction category

which is enriched in sup-lattices rather than a partial order. We describe the free join

completion for restriction categories. The join completion of inverse semigroups is well

known: as each inverse semigroup can be viewed as a restriction category with one

object, we compare the two constructions by providing adjunctions between restriction

categories, join restriction categories, inverse categories, and join inverse categories.

Since the partial map category Par(C,M) of anM-category is a restriction category

(Proposition 1.6.17 below), it is natural to ask when a partial map category Par(C,M)
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is a join restriction category. We answer this question completely using M-adhesive

categories andM-gaps. It is somewhat surprising that the notion of joins in partial map

categories is related to adhesivity: Lack and Sobocińsk [28, 29] introduced adhesivity

in order to provide a general setting in which double-pushout (DPO) rewriting could be

performed. M-adhesivity is, however, weaker than the adhesivity of Lack and Sobocińsk.

After discussing joins in restriction categories, we turn to meets and define meet

restriction categories. We provide a completeness theorem for meet restriction categories

in partial map categories and a construction of the free meet completion of a restriction

category.

In [10], we examined categories of partial maps in which not only is the domain of

the partial map abstractly defined but also the image of the partial map. This occurs

frequently in practice: for example, in partial recursive functions, enumerable sets can

be described not only as the domains of partial recursive functions but also as their

images. We call restriction categories in which images are defined range categories and

they require, in addition to the restriction combinator, another combinator called the

range combinator which satisfies just four axioms: [RR.1], [RR.2], [RR.3], and [RR.4]

(see Chapter 5 below). Range categories with split restrictions are essentially partial

map categories of a category with a system of monics which are the M-maps of an M-

stable factorization system (Theorem 4.5 [10]). In [43] (see also [24]), Schein embedded

a certain class of semigroups (which he called type 3 function systems) faithfully in the

partial function category. Every type 3 function system is an example of a range category

with only one object. In Chapter 5 we generalize Schein’s representation theorem to range

categories.
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1.3 Contributions

The main contributions of this thesis include:

1. The partial product completion for restriction categories so that a partial product can

be added to a given restriction category freely.

2. The join completion for inverse categories using compatibility is described and its

relationship to the join completion for restriction categories is provided.

3. The completeness of join restriction categories in partial map categories is proved

using M-adhesive categories and M-gaps.

4. The completeness of meet restriction categories in partial map categories using equal-

izers and the meet completion for restriction categories using parallel map pairs.

5. The generalization of Schein’s representation theorem to range categories and reasons

for the condition [RR.6] to be required.

1.4 Outline

Before actually presenting the results of this thesis, we first review in Chapter 1 some

categorical notions (Section 1.5) and restriction category basics (Section 1.6) that are

used in the thesis.

In Chapter 2, we first observe some basic properties of cartesian objects in restriction

categories (Section 2.1). Then we construct a free cartesian restriction category over a

given restriction category (Section 2.2).

We start Chapter 3 by introducing the notions of ^-compatibility and join restric-

tion categories and showing the basic relation to partial map categories by describing the

very elegant construction of the free join restriction category of a restriction category,
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called the join completion for restriction categories (Section 3.1). The join completion

for inverse semigroups is well known, where ^̂-compatibility (that is ∼-compatibility

in semigroup theory) is used. We show relationships between the join completion for

restriction categories and the join completion for inverse semigroups by providing ad-

junctions among restriction categories, join restriction categories, inverse categories, and

join inverse categories.

Next we discuss, starting with Van Kampen squares, some general properties of Van

Kampen colimits. This facilitates the definition of an M-adhesive category and M-

gaps and allows us to establish the completeness theorem for join restriction categories

(Section 3.2).

Then, for the completeness of join restriction categories, we show the main result of

this chapter that states Par(C,M) is a join restriction category if and only if C is an

M-adhesive category and Mgap ⊆M (Subsection 3.3.1).

In any M-adhesive category the M-gaps themselves form a stable system of monics

which, furthermore, always contains its gaps. Thus, with respect to these monics the

partial map category is a join restriction category. This suggests an alternative technique

for forming a join completion of a restriction category: namely, use the gap completion

of the standard sheaf embedding of the restriction category. We show that the two

constructions coincide, a fact that underlies the construction of schemes in algebraic

geometry (Subsection 3.3.2).

We begin Chapter 4 by defining meet restriction categories and showing some basic

properties (Section 4.1). Then we characterize when a partial map category is a meet

restriction category. The completeness of meet restriction categories in partial map cat-

egories using equalizers follows by showing that a category is a meet restriction category

if and only if it is a full subcategory of Par(X,M) for someM-category (X,M) in which

X has equalizers and every regular monic of X is in M (Section 4.2). We close Chapter
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4 by providing a free meet structure over a given restriction category, called a meet com-

pletion, and discuss the relationship of this construction to the meet completion already

known for inverse semigroups.

In Chapter 5, we first review basic properties of range categories and their com-

pleteness in the partial map categories with M-stable factorization systems (Section

5.1). Then we generalize Schein’s representation theorem for certain class of semigroups

(type 3 function systems) to range categories (Section 5.2). Finally, we study when cer-

tain range categories, specially partial map categories, satisfy Schein’s condition [RR.6]

which guarantees each map is an epimorphism onto its range (Section 5.3).

We end this thesis by listing the main results and discussing some possible directions

for further work in Chapter 6.

1.5 Category Preliminaries

In this section, we review some basic notions that we shall use from category theory.

1.5.1 Categories and Some Special Maps

A category is a directed graph with composition. More precisely, a category C consists

of the following data:

• A class of objects, , whose members are called C-objects;

• For each pair (A,B) of C-objects, a set mapC(A,B), whose members are called C-

maps from A to B. We also write mapC(A,B) by C(A,B). The class of all C-maps

(denoted by) map(C) is defined to be the union of all the sets mapC(A,B);

• Two operations assigning to each map f ∈ map(C) its domain dom(f) which is an

object of C and its codomain cod(f) also an object of C. We indicate that f has

domain A and codomain B by writing f : A→ B;
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• Maps f and g are composable if cod(f) = dom(g). There is an operation assigning

to each pair of composable maps f and g their composition which is a map denoted

by gf such that dom(gf) = dom(f) and cod(gf) = cod(g). There is also an

operation assigning to each object A ∈ ob(C) an identity map 1A : A→ A. These

operations are required to satisfy the following axioms:

[C.1] (identity law) if f : A→ B is a map in C then f1A = f = 1Bf ,

[C.2] (association law) if f : A → B, g : B → C, and h : C → D are maps in C

then (hg)f = h(gf).

In a category C, a map f : A → B is monic if fg1 = fg2 implies g1 = g2 and a

map f : A → B is a section if there is a map g in C such that gf = 1A. Dually, a map

f : A → B is epic if g1f = g2f implies g1 = g2 and a map f : A → B is a retraction if

there is a map g in C such that fg = 1B. A map is called an isomorphism if it is both a

section and a retraction. The collection of special maps, for instance, monics, in C, can

be denoted by the following notation:

MonicsC = {monics in C}.

A subcategory C′ of a category C is given by any subcollections of the objects and

maps of C which is a category under the domain, codomain, composition, and identity

operations of C.

Given a category C, if we flip the directions of all maps in C then we obtain its dual

category, denoted by Cop. Clearly, (Cop)op = C.

A category C is said to be small if tts class of objects, ob(C), is a set.

1.5.2 Functors, Natural Transformations, and Adjunctions

A functor F from a category C to a category D, written as F : C→ D, is specified by
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• an operation taking each object A in C to an object F (A) in D,

• an operation sending each map f : A→ B in C to a map F (f) : F (A)→ F (B) in

D,

such that

F (1A) = 1F (A) and F (gf) = F (g)F (f)

for any maps f : A→ B and g : B → C in C. So, functors are structure preserving maps

between categories.

Let F,G : C→ D be two functors. A natural transformation α from F to G, written

as α : F → G, is specified by an operation which assigns each object C of C a map

αC : F (C)→ G(C), called a component of α, such that for each map f : A→ B in C

F (A)

F (f)

��

αA // G(A)

G(f)

��
F (B)

αB // G(B)

commutes in D, which means that G(f)αA = αBF (f). Natural transformations are maps

between functors. A natural transformation α is called a natural isomorphism, denoted

by α : F ∼= G, if each component αC is an isomorphism.

An equivalence between categories C and D is defined to be a pair of functors S :

C → D and T : D → C together with natural isomorphisms 1C
∼= TS and 1D

∼= ST .

Two categories C, D are equivalent, written C ≈ D, if there is an equivalence between

them.

An adjunction from C to D is a triple 〈F,G, ϕ〉 : C→ D, where F and G are functors:

C
F //D
G
oo
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and ϕ is a function which assigns to each pair of objects C ∈ C, D ∈ D a bijection of

sets

ϕ = ϕC,D : D(F (C), D) ∼= C(C,G(D))

which is natural in C and D:
F (C)→ D

C → G(D)
.

If F : C → D is a functor and D ∈ ob(D), a universal arrow from D to F is a

pair (C, u) with C ∈ ob(C) and u : D → F (C) being in map(D) such that for each

pair (C ′, f) with C ′ ∈ ob(C) and f : D → F (C ′) ∈ map(D) there is a unique C-map

f ∗ : C → C ′ such that

D

f ""DDDDDDDDD
u // F (C)

F (f∗)
��

C

f∗

��
F (C ′) C ′

commutes. Equivalently, u : D → F (D) is universal from D to F provided that the pair

(C, u) is an initial object (see Subsection 1.5.3 below) in the comma category (D ↓ F )

that has maps D → F (C) as its objects.

If G : D→ C is a functor and C ∈ ob(C), dually, a universal arrow from G to C is a

pair (D, v) with D ∈ ob(D) and v : G(D)→ C ∈ map(C) such that for each pair (D′, f)

with D′ ∈ ob(D) and f : G(D′) → C ∈ map(C) there is a unique D-map f ] : D′ → D

making

D′

f]

��

G(D′)

G(f])
��

f

""DDDDDDDDD

D G(D) v // C

commute.

By [[33], p.83, Theorem 2], each adjunction 〈F,G, ϕ〉 : C → D is completely deter-

mined by one of five conditions. Here we only record some of them, which we shall use

in this thesis:
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(ii) The functor G : D→ C and for each C ∈ ob(C) a F0(C) ∈ ob(C) and a universal

arrow ηC : C → GF0(C) from C to G. Then the functor F has object function F0

and is given by sending f : C → C ′ to GF (f)ηC = ηC′f .

(iv) The functor F : C→ D and for each D ∈ ob(D) a G0(D) ∈ ob(C) and a universal

arrow εD : FG0(D)→ D from F to D.

(v) Functors F, G and natural transformations η : 1C → GF and ε : FG → 1D such

that Gε · ηG = 1G and εF · Fη = 1F .

Hence we often denote the adjunction 〈F,G, ϕ〉 : C → D by (η, ε) : F a G : C → D or

by 〈F,G, η, ε〉 : C→ D. In this case, we say that F is a left adjoint to G or G is a right

adjoint to F and that F has a right adjoint G and G has a left adjoint F . We also say

that F a G is an adjoint pair.

1.5.3 Limits and Colimits

Limits and colimits are an example of universals. Given a category C, an I-indexed

diagram in C is a functor D : I→ C, where the category I is thought of as index category.

A D-cone is a natural transformation φ : L→ D, where L : I→ C is a constant functor

that sends each I-map f : I → J to a constant C-map 1L : L→ L. Each D-cone can be

specified by a C-object L together with a family of C-maps (φI : L→ D(I))I∈ob(I) such

that D(f)φI = φJ :

L
φI

}}{{{{{{{{
φJ

!!DDDDDDDD

D(I)
D(f) // D(J)

for each I-map f : I → J . A limit of the diagram D : I→ C is a D-cone (L, φ) such that

for each other D-cone (J, ψ) there is a unique C-map u : J → L making the following
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diagram

J
ψI

!!DDDDDDDD

u

��

D(I)

L
φI

=={{{{{{{{

commute for each I-object I. If I is specified by the following graphs

•

��
•, • //// •, • // •

then the limit of D : I → C is called a terminal object, an equalizer, a pullback (square)

in C, respectively.

Explicitly, a C-object 1 is a terminal object provided for each C-object X there is a

unique C-map !X : X → 1.

A commutative square

P

p1

��

p2 // Y

g
��

X
f
// Z

in C is called a pullback (square) provided given any C-maps w1 : W → X and w2 :

W → Y with fw1 = gw2 there is a unique C-map w : W → P such that

p1w = w1 and p2w = w2 :

W

w1

��

w2

##
w

  
P

p1

��

p2 // Y

g
��

X
f
// Z

For two parallel C-maps f, g : X → Y , the equalizer of f and g is a C-map e : E → X

such that fe = ge and e is unique with this property: if a C-map z : Z → X is such that
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fz = gz then there is a unique C-map d : Z → E such that ed = z:

Z

d
��

z

  @@@@@@@@

E e // X
f //
g
// Y

If maps between D-cones are defined properly, then limits can be characterized as

terminal objects in the category of all D-cones.

The dual notions of cone, limit, terminal object, pullback (square), equalizer are

cocone, colimit, initial object, pushout (square), and coequalizer, respectively.

An initial object 0 is call strict provided any map X → 0 must be an isomorphism.

1.5.4 2-Categories, 2-Functors, and 2-Natural Transformations

A 2-category K consists of

• A class of objects or 0-cells: A,B, · · ·

• A class of maps or 1-cells: f : A→ B, · · ·

• A class of 2-cells: α : f ⇒ g, · · ·

• The objects and maps form a category K0, called the underlying category of K.

• For any objects A and B, the maps f : A→ B and the 2-cells between them form a

map-category K(A,B) under vertical composition, denoted by β ◦ α. The identity

2-cell on f : A→ B is denoted by 1f .

• There is an operation of horizontal composition of 2-cells:

(β ? α : uf → vg) = (β : u→ v) ? (α : f → g)

as displayed by

A

f

⇓α
//

g
// B

u

⇓β
//

v
// C = A

uf

⇓β?α
//

vg
// C
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Under this operation the 2-cells form a category with identities:

A

1A

⇓11A

//

1A
// A.

• In the situation:

A

f

⇓α
//

g

⇓β //

// B

u

⇓γ
//

v

⇓δ //

// C,

the interchange law

(δ ? γ) ◦ (β ? α) = (δ ◦ β) ? (γ ◦ α)

holds true and for any pair of composable 1-cells f and g,

1g ? 1f = 1gf .

A basic example of a 2-category is Cat, whose objects are small categories, 1-cells are

functors and 2-cells are natural transformations. Also, for any small category C, the slice

category Cat/C is again a 2-category.

A 2-functor F : K→ L between 2-categories K and L is a triple of functions sending

objects, 1-cells, and 2-cells of K to items of the same types in L preserving domains,

codomains, compositions, and identities.

A 2-natural transformation α : F ⇒ G between 2-functors F,G : K → L assigns to

each object A of K a map αA : F (A)→ G(A) in L such that for each map f : A→ B in

K,

αBF (f) = G(f)αA

and for each 2-cell θ : f ⇒ g in K,

F (A)

F (f)

⇓F (θ)
//

F (g)
// F (B)

αB // G(B) = F (A)
αA // G(A)

G(f)

⇓G(θ)
//

G(g)
// G(B).
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In a 2-category, transposing the classical definitions for adjoints in Cat one has the

notion of adjoint pairs in a 2-category using 2-cells. Clearly, each 2-functor preserves

such adjoint pairs.

Many categorical notions/constructions are defined up to isomorphism. A pseudo-

functor is defined in such a way: if we require that those equalities in the definition of a

functor hold only up to isomorphism, then we get a pseudo-functor.

1.5.5 Factorization Systems and Fibrations

In Set, each function f : X → Y can be factored through its image, i.e.,

X
f→ Y = X

e→ f(X)
m→ Y,

where e : X → f(X) is the codomain restriction of f and m : f(X) ↪→ Y is the inclusion.

This says that Set admits an (EpicsSet,MonicsSet)-factorization system. We shall use

factorization systems in range categories.

A factorization system on a category C consists of two classes E ,M of maps in C

such that

(i) every isomorphism is both in E and in M;

(ii) E and M are closed under composition;

(iii) every map f of C factors as f = mfef with ef ∈ E and mf ∈M;

(iv) for each commutative square where e ∈ E and m ∈ M, there exists a unique

diagonal map making both triangles commutative:

•

��

e // •

����~
~

~
~

• m
// •
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Given a category C, if (E ,M) is a factorization system on C, then there is a special

codomain functor ∂ :M→ C, called a fibration. Formally, we have:

Definition 1.5.1 Let P : E → C be a functor and p : E → B a map of C. The fibre

of P at B is the non-full subcategory E(B) of E whose objects are in P−1(B) (i.e., those

objects A of E with P (A) = B) and whose maps f : A → A′ are E-maps such that

P (f) = 1B. If X ∈ E(B), then a map ϑpX : p∗X → X of C is a cartesian lifting over p

at X if

[F.1] P (ϑpX) = p;

[F.2] For any map v : Y → X of E and any map h : P (Y ) → E in C satisfying

ph = P (v), there is a unique w : Y → p∗X in E such that

ϑpX · w = v and P (w) = h.

Y
w

{{v
v

v
v

v
v

""EEEEEEEEE

p∗X
ϑpX // X in E

P

��

P (Y )
h

{{wwwwwwwww P (v)

""EEEEEEEE

E
p // B in C

A functor P : E→ C is called a fibration if for any map p : E → B in C and every object

X in E(B) there is a cartesian lifting (p∗X, ϑpX) over p at X. A functor P : E → C

is called an opfibration if P op is a fibration. A functor P is a bifibration if both P and

P op are fibrations.
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1.6 Restriction Category Basics

In this section, we review the fundamentals of Cockett-Lack’s restriction theory.

1.6.1 Definitions and Basic Properties of Cockett-Lack’s Restrictions

First, we recall the definition of Cockett-Lack’s restriction.

A restriction structure on a category C is an assignment of a map f : X → X to each

map f : X → Y such that the following four restriction axioms are satisfied:

[R.1] ff = f for each map f ,

[R.2] fg = gf whenever dom(f) = dom(g),

[R.3] gf = gf whenever dom(f) = dom(g),

[R.4] gf = fgf whenever cod(f) = dom(g),

A category with a restriction structure is called a restriction category. A category X

is called a co-restriction category if Xop is a restriction category.

Now, we record some basic properties of restriction categories in Lemmas 1.6.1, 1.6.2,

and 1.6.4, which are Lemmas 2.1, 2.2, and 2.3 in [14], respectively.

Lemma 1.6.1 In a restriction category,

(i) f is an idempotent for each map f ;

(ii) f gf = gf if codom(f) = dom(g);

(iii) gf = gf if codom(f) = dom(g);

(iv) f = f for each map f ;

(v) gf = gf if dom(f) = dom(g);
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(vi) if f : A→ B is monic then f = 1A;

(vii) fg = f implies f = fg.

In a given restriction category, a map f such that f = f is called a restriction idempotent.

Restriction idempotents are precisely the maps of the form f by Lemma 1.6.1 (iv). A

map f : A→ B is called total if f = 1A.

Lemma 1.6.2 In a restriction category,

(i) if f is monic, then f is total;

(ii) if f and g are total and codom(f) = dom(g) then so is gf ;

(iii) if gf is total then so is f ;

(iv) the total maps form a subcategory.

The subcategory of total maps of a restriction category C is denoted by Total(C).

A restriction category is a partial order enriched category as shown in the following

Lemma.

Lemma 1.6.3 Let C be a restriction category. For any A,B ∈ ob(C),

(i) mapC(A,B) is a poset with the order given by

f ≤ g ⇔ f = gf ;

(ii) f ≤ g in mapC(A,B) implies f ≤ g in mapC(A,A).

Proof: Lemma 3.2 [9]. �

A restriction idempotent f is called split if f = mr for some maps m and r with

rm = 1. In such a case, m and r are called the monic part and the epic part of the split

restriction idempotent f , respectively. The monic part of a split restriction idempotent
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is also called a restriction monic. Note that if f splits by m and r then f = r as

f = mr = mr = r since m is monic. A restriction structure on a category is said

to be split if all of its restriction idempotents split. Split idempotents are determined

completely by their monic parts or epic parts as shown by the following lemma:

Lemma 1.6.4 In any restriction category:

(i) if rm = 1 and sm = 1 with mr = r and ms = s then r = s;

(ii) if rm = 1 and rn = 1 with mr = r and nr = r then m = n.

In a given restriction category, a map f is a restricted isomorphism (or partial iso-

morphism) if there is a map g such that gf = f and fg = g. A restriction category is

called an inverse category provided each map is a restricted isomorphism. As shown in

Theorem 2.20 of [14], for a given category X, X is an inverse category if and only if each

X-map f has a unique map g, denoted by f (−1), such that fgf = f and gfg = g in X.

The opposite category of an inverse category is also an inverse category.

Lemma 1.6.5 If I is an inverse category, then so is Iop.

Proof: Each Iop-map f : X → Y is an I-map f : Y → X so that there is an I-map

f (−1) such that

ff (−1)f = f and f (−1)ff (−1) = f (−1),

that is

f ·op f (−1) ·op f = f and f (−1) ·op f ·op f (−1) = f (−1).

Hence Iop is an inverse category. �

1.6.2 Examples of Restriction Categories

Some examples of restriction categories are as follows:
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Example 1.6.6 1. Par(Set,MonicsSet) is a restriction category if for any partial map

f : X → Y , one defines the partial map f : X → X given by

f(x) =

 x whenever f(x) is defined,

undefined otherwise.

to be the restriction of f .

2. Every category is a restriction category with the restriction given by f = 1X for any

map f : X → Y . The restriction is called the trivial restriction structure. So a

restriction structure is not a property of a category but an extra structure.

3. If C is an object of a given restriction category C, then the slice category C/C

with objects all pairs (f,X), where f : X → C is a map of C, and with maps

h : (f,X)→ (g, Y ) those maps h : X → Y of C for which gh = f , is also a restriction

category with the same restriction as C.

4. Every inverse category is a restriction and co-restriction category with f = f (−1)f and

f
op

= ff (−1). Every inverse semigroup with an identity can be regarded as the one

object restriction and co-restriction category with x = x(−1)x and xop = xx(−1) (See

Proposition 1.6.8 below).

We recall some definitions and properties of inverse semigroups. A semigroup (S, ·)

is a nonempty set S with an associative binary operation ·. An identity 1 is an element

1 ∈ S such that 1 · s = s · 1 = s for all s ∈ S. Let S be a semigroup. An element a ∈ S

is called regular if there is x ∈ S, called a regular-inverse of a, such that axa = a. A

semigroup S is called regular if all of its elements are regular. An inverse of an element

a is x ∈ S such that axa = a and xax = x. A regular semigroup can be characterized by

the inverse defined above: a semigroup S is regular if and only if each a ∈ S has at least

one inverse x.
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An inverse semigroup is a semigroup in which each element a has a unique inverse,

denoted by a(−1). Let x, y, z be elements of an inverse semigroup S. Then one has the

following equalities:

x(yz) = (xy)z,

(x(−1))(−1) = x,

(xy)(−1) = y(−1)x(−1),

xx(−1)yy(−1) = yy(−1)xx(−1).

For example, any group is an inverse semigroup. But the inverse semigroup {0, a, b, 1},

defined by

ab = ba = 0, a2 = a, and b2 = b,

is not a group.

The following can be used to test when a semigroup is an inverse semigroup.

Proposition 1.6.7 A semigroup is an inverse semigroup if and only if it is regular and

any two idempotents commute.

Proof: See [36], p.78. �

Clearly, a one-object inverse category is precisely an inverse semigroup with identity.

Each inverse category can be viewed as a restriction and co-restriction category that as

shown in the following proposition.

Proposition 1.6.8 Every inverse category is a restriction and co-restriction category

with the restriction and the co-restriction category given by f = f (−1)f and f
op

= ff (−1).

Proof: By the definition of inverse categories, each inverse category is a restriction

category with f = f (−1)f . It suffices to check the four co-restriction axioms.

[R.1]op f
op
f = ff (−1)f = f .
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[R.2]op f
op
yop = ff (−1)gg(−1) = gg(−1)ff (−1) = gopf

op
.

[R.3]op

gopf
op

= (gg(−1)f)(gg(−1)f)(−1)

= (gg(−1)f)(f (−1)gg(−1))

= gg(−1)ff (−1)

= gopf
op
.

[R.4]op

gf
op
g = (gf)(gf)(−1)g

= gff (−1)g(−1)g

= gg(−1)gff (−1)

= gf
op
.

�

1.6.3 Category of Restriction Categories

A functor F : C→ D between two restriction categories is said to be a restriction functor

if F (f) = F (f) for any map f in C. Restriction categories and restriction functors form

a category, denoted by rCat0. Clearly, there is a forgetful functor Ur : rCat0 → Cat0

which forgets restriction structures by sending any restriction functor F : C→ D to the

functor F : C→ D.

A natural transformation between restriction functors is called a restriction natural

transformation if all of its components are total. Restriction categories, restriction func-

tors, and restriction transformations form a 2-category, called rCat. The category rCat
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has an important full 2-subcategory, comprising those objects with split restriction struc-

tures, denoted by rCats. The category rCat has also an important full sub-2-category

invCat consisting of the inverse categories. As observed in [14], any functor between

inverse categories is a restriction functor, since the structure of a restricted inverse is

algebraic. Cockett and Lack proved:

Proposition 1.6.9 ([14], Proposition 2.24) The 2-category invCat is a full coreflec-

tive sub-2-category of rCat with the right adjoint inv sending each restriction category to

the subcategory of restricted isomorphisms.

Given two restriction functors F,G : X→ Y, a lax restriction natural transformation

from F to G consists of a total map αX : F (X) → G(X) in Y for each X ∈ map(X)

such that for each map f : X → Y in X

F (X)
F (f) //

F (f)

��

F (X)
αX // G(X)

G(f)

��
F (Y )

αY // G(Y )

commutes. The commutativity of the last diagram is equivalent to inequality of

F (X)
αX //

F (f)

��
≤

G(X)

G(f)

��
F (Y )

αY // G(Y )

That is: αY F (f) ≤ G(f)αX . The 2-category rCatl has the same objects and maps as

rCat but with lax restriction natural transformations as the larger class of 2-cells.

Given a restriction category X, one has a category Total(X) and conversely each

category X can be viewed as a restriction category with the trivial restriction, denoted

by Triv(X). This leads to a 2-adjunction ([14], Proposition 2.17): Triv a Total : Cat →

rCat.
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Let Total : rCatl → Cat be given by sending each restriction functor F : X → Y

to its restriction to Total(X), Total(F ) : Total(X) → Total(Y), where Total(F )(f) =

F (f), and sending each lax restriction natural transformation α : F → G to Total(α) :

Total(F ) → Total(G) with Total(α)X = αX for each X ∈ ob(Total(X)). Since Total(X)

has only total maps, the last lax commutative square turns to a usual commutative

square. Hence Total : rCatl→ Cat is a 2-functor.

1.6.4 Splitting Restriction Idempotents

Given a restriction category C, Split(C) is defined as follows:

objects: restriction idempotents of C;

maps: a map f from (e1 : A→ A) to (e2 : B → B) is given by a map f : A→ B in C

such that both triangles in the diagram

A
f //

e1
��

f
@@@@

��@@@

B

e2
��

A
f
// B

are commutative;

composition: as in C;

identities: 1e = e for any object e of Split(C).

If f : e1 → e2 and g : e2 → e3 are maps in Split(C), then

e3(gf) = (e3g)f = gf and (gf)e1 = g(fe1) = gf,

and so gf is a map from e1 to e3 in Split(C). Hence the composition is well-defined.

Obviously, the composition is associative. Since ee = e = ee, clearly e is a map from e
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to e so that identities are well-defined. For any map f : e1 → e2 in Split(C), since all

triangles of the diagram

A

e1
��

e1 //

e1
@@@@

��@@@

A
f //

e1
��

f
@@@@

��@@@

B

e2
��

e2 //

e2
@@@@

  @@@

B

e2
��

A e1
// A

f
// B e2

// B

are commutative,

f1e1 = fe1 = f = e2f = 1e2f.

Therefore, Split(C) is indeed a category. Furthermore, Split(C) is a restriction category

when we define its restriction structure by the restriction structure in C. To show this,

it suffices to show that f : e1 → e1 is a map of Split(C).

Lemma 1.6.10 If f : e1 → e2 is a map of Split(C), then so is f : e1 → e1.

Proof: Since

fe1 = fe1 = fe1 = fe1 = f

and

e1f = fe1 = f,

all triangles in

A
f //

e1
��

f
@@@@

��@@@

A

e1
��

A
f

// A

are commutative. Hence f : e1 → e1 is a map in Split(C), as desired. �

Proposition 1.6.11 If C is a restriction category, then so is Split(C) with a split re-

striction structure given by the restriction in the category C, and there is a restriction

preserving inclusion C→ Split(C) sending f : X → Y to f : 1X → 1Y .
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Proof: It remains to prove that the restriction structure of Split(C) is split. For any

restriction idempotent f given by C-map f : (e1 : A → A) → (e2 : B → B), since all

triangles in

A
f //

e1
��

f
@@@@

��@@@

A

f
��

f //

f
@@@@

��@@@

A

e1
��

A
f

// A
f

// A

are commutative, f : e1 → f and f : f → e1 are maps of Split(C). Note that

f f = f = 1f

is in Split(C). Hence f is a split restriction.

Obviously, C → Split(C) sending f : X → Y to f : 1X → 1Y is a full and faithful

restriction functor so that Split(C) contains C as a full sub-restriction category. �

Specially, each inverse category I is a restriction category so that one can form Split(I)

which is an inverse category too, as proved in the following lemma.

Lemma 1.6.12 If I is an inverse category, then so is Split(I) with a full and faithful

functor ηI : I→ Split(I) given by sending f : X → Y to f : 1X → 1Y .

Proof: Each Split(I)-map s : (f (−1)f : X → X) → (g(−1)g : Y → Y ) is given by an

I-map s : X → Y such that

X

f (−1)f
��

s //

s
AAAA

  AAA

Y

g(−1)g
��

X
s // Y

commutes. Then

sf (−1)f = s, g(−1)gs = s

and so

s(−1)sf (−1)fs(−1) = s(−1)ss(−1), s(−1)g(−1)gss(−1) = s(−1)ss(−1).
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That is, f (−1)fs(−1) = s(−1) and s(−1)g(−1)g = s(−1). Hence s(−1) : (g(−1)g : Y → Y ) →

(f (−1)f : X → X) is a Split(I)-map and therefore Split(I) is an inverse category too.

Now, it is routine to verify that ηI : I→ Split(I) is a full and faithful functor between

inverse categories. �

Proposition 1.6.13 There is an adjunction with a full and faithful unit ηC : C →

E(Split(C)) given by sending f : X → Y to f : 1X → 1Y :

rCats0 ��
E

⊥ // rCat0
Splitoo

where E is the inclusion.

Proof: For each restriction category C and each split restriction category D, clearly

ηC is a full and faithful restriction functor and each restriction functor F : Split(C)→ D

gives rise to a restriction functor FηC : C → D. Conversely, each restriction functor

G : C → E(D) leads to a restriction functor Split(C) → D that is given by sending

f : e1 → e2 to f : dom(e1)→ dom(e2). Clearly, we have

Split(C)→ D

C→ E(D)
.

�

Clearly, Split : rCat → rCat, given by sending each restriction functor F : X → Y

to Split(F ) : Split(X) → Split(Y) with Split(F )(f : e1 → e2) = (F (f) : F (e1) → F (e2)),

and sending each restriction natural transformation α : F → G to Split(α) : Split(F ) →

Split(G), where Split(α)e1 = αdom(e1), is a 2-functor since the naturality of α implies that

of Split(α) clearly.

Similarly, there is a 2-functor Split : rCatl → rCatl, having the same assignments

on 0-cells, 1-cells, and 2-cells as Split : rCat→ rCat since the lax naturality of Split(α)

follows from the lax naturality of α immediately.
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Remark 1.6.14 Given a category C and a set E of idempotents in C, one may formally

split E to form SplitE(C). The restriction category Split(C) defined above is the special

case, where C is a restriction category and E = {restriction idempotents in C}. See [14]

or [6] for details.

1.6.5 Partial Map Categories

We first recall the notions of system of monics, M-categories, the category Par(C,M)

given in [14].

System of Monics and M-Categories

In a category, a collection M of monics that includes all isomorphisms and is closed

under composition is called a system of monics. A system of monics M is said to be

stable if for any m : C → B ∈ M and any f : A → B the pullback m′ of m along f

exists and belongs to M.

A stable system of monics M has the following useful property:

Lemma 1.6.15 (Left-cancellable) For a stable system of monics M, if mn ∈M and

m is a monic, then n ∈M.

Proof: If m is a monic, then

•
1
��

n // •
m

��
• mn // •

is a pullback diagram. So n ∈M. �

AnM-category is a pair (C,M), where C is a category andM is a stable system of

monics in C.

Example 1.6.16 Let Setffib be the subcategory of Set with functions f : A → B such
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that |f−1(b)| < +∞ for each b ∈ B as maps. Consider

M = {injections i : A ↪→ B | |B \ i(A)| < +∞}.

Then (Setffib,M) is an M-category.

AnM-functor F : (C,M)→ (D,N ) between twoM-categories (C,M) and (D,N )

is defined to be a functor F : C→ D such that F (M) ⊆ N and F preservesM-pullbacks.

A natural transformation α : F → G between two M-functors F,G : (C,M)→ (D,N )

is M-cartesian if for each m : A→ B in M the naturality square

F (A)
F (m) //

αA
��

F (B)

αB
��

F (A)
G(m) // G(B)

is a pullback diagram in D. M-categories, M-functors, and M-cartesian natural trans-

formations form a 2-category MCat. The 2-category MCatl has the same 0-cells and

1-cells as MCat but has natural transformations as its 2-cells.

Category Par(C,M)

Given anM-category (C,M), one may form the category of partial maps Par(C,M) as

in [14] with:

objects: A ∈ C;

maps: a map from A to B is a pair (m, f), where m : A′ → A is inM and f : A′ → B

is a map in C:

A′

m

~~~~~~~~~~
f

&&NNNNNNNNNNNNN

A B

factored out by the equivalence relation: (m, f) ≈ (m′, f ′) whenever there exists

an isomorphism α in C such that m′α = m and f ′α = f ;
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identities: (1A, 1A) : A→ A;

composition: (m′, g)(m, f) = (mm′′, gf ′), where f ′ and m′′ are given by the pullback

diagram (∗):

A′′

(∗)

m′′

~~||||||||
f ′

''PPPPPPPPPPPPPPP

A′

m

~~~~~~~~~~

f
((PPPPPPPPPPPPPPPP B′

m′~~}}}}}}}}
g

&&NNNNNNNNNNNNN

A B C

The original maps in C can be embedded into Par(C,M) by f 7→ (1, f) and are called

total partial maps. In [14], Cockett and Lack proved that each partial map category

Par(C,M) is a restriction category with a split restriction and Par is not only a 2-functor

but also a part of 2-equivalence by Proposition 1.6.17 and Theorem 1.6.22 below.

Proposition 1.6.17 ([14], Proposition 3.1) Let (C,M) be anM-category. Then the

category Par(C,M) has a split restriction given by (m, f) = (m,m). Furthermore, a map

is total in Par(C,M) with respect to this restriction if and only if it is total as a partial

map.

Proposition 1.6.18 ([14], Proposition 3.2) There is a 2-functor Par : MCat →

rCats taking F : (C,M)→ (C′,M′) to Par(F ) : Par(C,M)→ Par(C′,M′).

To provide the “inverse” of Par : MCat → rCats, let D be a restriction category

with split restriction. Consider

MD = {m : X → Y inTotal(D) | ∃ r : Y → X in D, rm = 1X and r = mr}

and

MTotal(D) = (Total(D),MD).

Cockett and Lack proved:
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Proposition 1.6.19 ([14], Proposition 3.3) If D is a split restriction category, then

MTotal(D) is an M-category.

As Par(C,M) is a restriction category, it is poset-enriched. Now, let us look at the

partial order ≤ in a partial map category.

Lemma 1.6.20 In a partial map category Par(C,M), let (m, f), (n, g) : X → Y be two

partial maps and let (πm, πn) be the pullback of (m,n):

•
πn

��

πm // •
n

��
• m // •.

Then the following are equivalent:

(a) (m, f) ≤ (n, g);

(b) πn is an isomorphism and gπmπ
−1
n = f ;

(c) πn is an isomorphism and (m, f)(n, g) = (n, g)(m, f).

Proof: Note that

(m, f) ≤ (n, g) ⇔ (n, g)(m, f) = (m, f)

⇔ (n, g)(m,m) = (m, f)

⇔ (mπn, gπm) = (m, f)

⇔ ∃ isomorphism α such that mπnα = m and gπmα = f.

But mπnα = m gives πnα = 1. Hence πn = α−1 and therefore (m, f) ≤ (n, g) if and only

if πn is an isomorphism and gπmπ
−1
n = f . Hence (a)⇔ (b). By (a), (b)⇔ (c) is obvious.

�

A crucial observation is that the pullback of a total map along a restriction monic in

a split restriction category can be characterized as follows:
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Lemma 1.6.21 In a split restriction category X, a commutative diagram

A m′ //

f ′

��

B

f
��

C
m // D

in which m and m′ are restriction monics and f is total, is a pullback diagram in Total(X)

if and only if emf = em′, where em = mr and rm = 1.

Proof: “⇐” Suppose that rm = 1 and r′m′ = 1 and suppose that x : X → C and

y : X → B are total maps such that mx = fy. Note that

m′r′y = em′y = emfy = mrfy = ymrfy = ymrmx = ymx = yfy = fy = y

and

mf ′r′y = fm′r′y = fy = mx.

Then there is a unique map r′y : X → A such that m′r′y = y and f ′r′y = x:

X
y

##
r′y
  

x

��

A
m′
//

f ′

��

B

f
��

C m // D

and so

A
m′ //

f ′

��

B

f
��

C
m // D

is a pullback diagram in Total(X).

“⇒” For each restriction monic m : C → D and each total map f : B → D,

A
m′ //

g
��

B

f
��

C
m // D
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is a pullback diagram, where r : D → C is a map such that rm = 1 and mr = mr,

mrf = m′r′ with r′m′ = 1, and g = rfm′. Then, by the uniqueness of the pullback of m

and f , emf = mrf = m′r′ = em′ , as desired. �

A partial map category can be characterized as a restriction category with a split

restriction by the following theorem proved by Cockett and Lack.

Theorem 1.6.22 ([14], Theorem 3.4) The 2-functors MTotal and Par give an equiv-

alence of 2-categories between rCats and MCat.

By Proposition 1.6.13 and Theorem 1.6.22, immediately one has:

Theorem 1.6.23 (Completeness of Restriction Categories [14]) Each restriction

category embeds via a full and faithful restriction preserving functor into a restriction

category of the form Par(C,M).

As another corollary of Theorem 1.6.22, we can see when two partial map categories

Par(C,M) and Par(D,N ), as restriction categories, are equivalent.

Corollary 1.6.24 For given M-categories (C,M) and (D,N ), the following are equiv-

alent:

(i) Par(C,M) ≈ Par(D,N ) in rCat;

(ii) (C,M) ≈ (D,N ) in MCat;

(iii) there are category equivalences F : C→ D and G : D→ C such that F (M) ⊆ N

and G(N ) ⊆M.

Proof: “(i) ⇔ (ii):” As Par and MTotal are part of equivalences between rCats and

MCat, it is clear.
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“(ii) ⇒ (iii):” Assume that F : (C,M) → (D,N ) and G : (D,N ) → (C,M) are

such that GF ≈ 1(C,M) and FG ≈ 1(D,N ). Then, obviously, GF ≈ 1C and FG ≈ 1D and

F (M) ⊆ N and G(N ) ⊆M as F and G are also M-functors

“(iii)⇒ (ii):” Clearly, F and G give rise to M-functors such that GF ≈ 1(C,M) and

FG ≈ 1(D,N ) as each equivalence of categories preserves pullbacks. �

By the same process used in Proposition 1.6.18 and paying attention to the 2-cells,

we have:

Proposition 1.6.25 There is a 2-functor Par : MCatl → rCatls taking F
α→ G :

(C,M) → (C′,M′) to Par(F )
Par(α)→ : Par(C,M) → Par(C′,M′), where Par(F )(m, f) =

(F (m), F (f)) and Par(α)X = (1F (X), αX).

Proof: Given a 2-cell F
α→ G : (C,M) → (C′,M′), since F (M) ⊆ M′, Par(F ) is

well-defined. Since F preserves pullbacks along M-maps, it is easy to see that Par(F ) :

Par(C,M)→ Par(C′,M′) is a restriction functor.

We must check the lax naturality of Par(α), that is, for each Par(C,M)-map (m, f) :

X → Y ,

F (X)

(F (m),F (f))

��

(1F (X),αX)
//

≤

G(Y )

(G(m),G(f))

��
F (Y )

(1F (Y ),αY )
// G(Y ).

But it is clear as the following composites of partial maps are the same:

F (X ′)
1F (X′)

zzuuuuuuuuu
F (f)

$$IIIIIIIII

F (X ′)
F (m)

zzuuuuuuuuu
F (f)

$$IIIIIIIII
F (Y )

1F (Y )

zzuuuuuuuuu
αY

##HHHHHHHHH

F (X) F (Y ) G(Y )
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F (X ′)
1F (X′)

zzuuuuuuuuu

αX′

$$IIIIIIIIIIIIIIIIIIIIIII

F (X ′)
1F (X′)

zzuuuuuuuuu
F (m)

$$IIIIIIIII

F (X ′)
F (m)

zzuuuuuuuuu
F (m)

$$IIIIIIIII
F (X)

1F (X)

zzuuuuuuuuu
αX

$$IIIIIIIII
G(X ′)

G(m)

zzuuuuuuuuu
G(f)

$$IIIIIIIII

F (X) F (X) G(Y ) G(Y )

as

F (X ′)

1F (X′)
��

αX′ // G(X ′)

G(m)
��

F (X ′)
F (m) // F (X)

αX // G(X)

is a pullback diagram.

Now, it is straightforward to verify the functoriality conditions for Par to be a 2-

functor. �

Define MTotal : rCatls → MCatl by sending each restriction functor F : X → Y

between restriction categories with split restrictions to MTotal(F ) : (Total(X),MX) →

Total(Y,MY), where MTotal(F ) = F |Total(X). By Lemma 1.6.21, pullbacks along MX-

maps in Total(X) is completely determined algebraically,MTotal(F ) preserves such pull-

backs. Hence MTotal(F ) is an M-functor.

For each lax restriction natural transformation F
α→ G : X→ Y, define

MTotal(α)X = αX

for each X ∈ ob(Total(X)). The naturality of MTotal(α) is given by the following

commutative square

F (X)

F (f)
��

αX // G(X)

G(f)

��
F (Y )

αY // G(Y )

as F (f) = 1 in Total(X). These data form a 2-functor MTotal : rCatls →MCatl.
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Using the same proof process as in Theorem 1.6.22, we have:

Theorem 1.6.26 The 2-functors MTotal and Par give an equivalence of 2-categories

between rCatls and MCatl.

Proof: In order to prove Par ◦MTotal ∼= 1rCatls , for each restriction category with split

restriction structure D, we define ΦD : D→ Par(Total(D), ED,MD) by

A

7→f
��

A′

m

~~~~~~~~~~
fm

&&NNNNNNNNNNNNN

B A B

where m is determined by the conditions f = mr = r and rm = 1. Since

fm = fm = mrm = m = 1,

ΦD is well-defined. Clearly ΦD(1A) = (1A, 1A) for each object A. For any maps f : A→ B

and g : B → C in D, assume that f = mr = r, rm = 1 and g = ns = s, sn = 1. Write

sfm = n′s′ = s′ with s′n′ = 1 and let f ′ = sfmn′. Then, by Lemma 1.6.21, (n′, f ′) is a

pullback of (n, fm) and so ΦD(g)ΦD(f) = (mn′, f ′gn) since (∗) is a pullback:

B′′

(∗)

n′

}}||||||||
f ′

((PPPPPPPPPPPPPPP

A′

m

~~~~~~~~~~

fm
((QQQQQQQQQQQQQQQ B′

n
~~}}}}}}}}

gn

&&NNNNNNNNNNNNN

A B C.

But

mn′s′r = msfmr = mrnsfmr = f gf = gf

and (s′r)(mn′) = 1, so mn′ is the monic part of gf . Notice that gnf ′ = gnsfmn′ =

ggfmn′ = gfmn′. Then ΦD(gf) = (mn′, gfmn′) = ΦD(g)ΦD(f). Hence ΦD is a functor.

Since ΦD is the identity on objects, to prove Par ◦MTotal ∼= 1rCatls , it suffices to show

that ΦD is full and faithful. If (m, f) is a map in Par(Total(D),MD), then there exists a
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unique map r such that rm = 1 and mr = mr and so ΦD(fr) = (m, frm) = (m, f) which

means that ΦD is full. On the other hand, ΦD(g) = (m, f) yields gm = f and mr = g

so that fr = gmr = gg = g. Faithfulness of ΦD follows, as desired.

For an M-category (C,M), since the total maps in Par(C,M) are the same as C

and the monic parts of restriction idempotent in Par(C,M) are justM, we clearly have

an isomorphism MTotal ◦ Par ∼= 1MCatl. Thus, Total and Par are part of an equivalence

of 2-categories between rCatls and MCatl. �

1.6.6 Cockett-Lack’s Free Restriction Categories

Cockett and Lack [14] gave a large class of examples of restriction categories by providing

a left adjoint to the forgetful functor Ur : rCat0 → Cat0. They proved:

Proposition 1.6.27 ([14], Subsection 2.2.1) There is a left adjoint Fr to the forgetful

functor Ur : rCat0 → Cat0.

Explicitly, Cockett-Lack’s free restriction categories over categories are described as

follows.

Let C be a category, K = {fi : X → Zi | i ∈ I} a set of maps with domain X, and

g : Y → X a map. Then we write Kg for the set {fig | i ∈ I}, and ⇓ (K) for the set

{f : X → Z | uf = fi for some i ∈ I and some u : Z → Zi}. Suppose that K and L

are sets of maps with domain X. Clearly, if K ⊆ L then ⇓(K) ⊆ ⇓(L). One has the

following lemma.

Lemma 1.6.28 For any category, ⇓( ) is a Kuratowski closure operator on the maps

with domain X. Namely, if K, K1, and K2 are sets of maps with domain X, then

⇓(∅) = ∅,⇓(K1 ∪K2) = ⇓(K1) ∪ ⇓(K2), K ⊆ ⇓(K),⇓(⇓(K)) = ⇓(K).
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So, ⇓( ) endows X/C with a topology: the closed sets of this topology are the sets

⇓(K) while the open sets (the complements of the closed sets) are sieves that are sets O

such that f ∈ O implies uf ∈ O. A map f : X → Y of C induces a map ⇓(f) in the

reverse direction between these topological spaces Y/C and X/C:

⇓(f) : Y/C→ X/C;h 7→ hf.

Moreover, ⇓(f) : Y/C→ X/C is a continuous map.

Now, we can form ⇓ : Cop → Top by

Y

7→f

��

7→ Y/C

⇓(f)

��
X 7→ X/C

Now, it is routine to verify that ⇓ : Cop → Top is a functor. So we have:

Proposition 1.6.29 ⇓ : Cop → Top is a functor.

The Cockett-Lack’s free restriction category can be generated by certain free fibrations

as in [9]. Explicitly, given a category C, Cockett-Lack’s free restriction category Fr(C)

has:

• the same objects as C;

• a map from C to D being a pair of (f,⇓(K)), where f : C → D is a map of C and

K is a finite set of maps in C with domain C such that

f ∈ ⇓(K);

• the composition given by

(g,⇓(L))(f,⇓(K)) = (gf,⇓(⇓(K) ∪ (⇓f)⇓(L)))

= (gf,⇓(K ∪ Lf));
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• the identities given by

1C = (1C ,⇓{1C});

• (f,⇓(K)) = (1,⇓(K)).
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Chapter 2

Cartesian Restriction Categories

Recall that a cartesian object in a 2-category with finite products is an object X such

that both the diagonal ∆ : X→ X×X, sending f : X → Y to (f, f) : (X,X)→ (Y, Y ),

and the unique functor ! : X → 1, sending each f : X → Y to 11 : 1 → 1, have right

adjoints. In Section 4 of [16], Cockett and Lack pointed out that cartesian objects in

rCat do not give the right notion of products in restriction categories since a cartesian

object X in rCat must have a trivial restriction. To get the correct notion, Cockett

and Lack studied cartesian objects in rCatl which does give the right notion of partial

(restriction) products in restriction categories. In this chapter, we shall first investigate

cartesian objects in a number of 2-categories and then construct a free structure that can

provide finite partial products to restriction categories.

2.1 Cartesian Objects

In this section, we shall study cartesian objects in 2-categories related to restriction

categories, such as, rCat, rCatl, MCat, MCatl and when a partial map category is a

cartesian object.

2.1.1 Cartesian Objects in Cat, rCat, and rCatl

As is well-known, a cartesian object in Cat can be characterized by finite products as

explained in the following proposition.

Proposition 2.1.1 (Propositions 3.17 and 3.22 [6]) Given a category X,

(i) ! : X→ 1 has a right adjoint in Cat if and only if X has a terminal object;
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(ii) ∆ : X→ X×X has a right adjoint in Cat if and only if X has binary products;

(iii) X is a cartesian object in Cat if and only if X has finite products.

In [16], Cockett and Lack observed:

Lemma 2.1.2 Given a restriction category X,

(i) the unique restriction functor ! : X→ 1 has a right adjoint in rCat if and only if

X has a terminal object as a category and X has the trivial restriction;

(ii) the diagonal ∆ : X → X × X has a right adjoint in rCat if and only if X has

binary products as a category and X has the trivial restriction;

(iii) X is a cartesian object in rCat if and only if X is a cartesian object in Cat and

X has the trivial restriction.

Proof:

(i) If the unique restriction functor ! : X → 1 has a right adjoint U with the unit

t : 1→ U ! in rCat, then for each X-object X and any X-map f : X → U(1) there

is a unique 1-map f ∗ :!(X)→ 1 such that

X
tX //

f ##GGGGGGGGGG U(!(X))

U(f∗)
��

!(X)

∃!f∗

��
U(1) 1

commutes and so X has a terminal object U(1) and for each X-object X the unique

map tX : X → U(1), as a component of the unit t : 1→ U !, is total. Furthermore,

for each X-map f : X → Y , tY f = tX :

X

f

��

tX // U(1)

Y
tY // U(1)
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and so f = tY f = tY f = tX = 1X . Hence each X-map f must be total.

Conversely, if X has a terminal object T as a category and has the trivial restriction,

then ! : X → 1 has a right adjoint in Cat by Proposition 2.1.1(i) and so Triv(!) :

Triv(X) → Triv(1) has a right adjoint in rCat applying 2-functor Triv : Cat →

rCal. But Triv(!) : Triv(X)→ Triv(1) is the same as ! : X→ 1 as X has the trivial

restriction. So ! : X→ 1 has a right adjoint in rCat.

(ii) Suppose now that ∆ : X→ X×X has a right adjoint U with the unit η : 1→ U∆

and counit ε : ∆U → 1 in rCat. Then for any X-object X, any X × X-object

(Y, Z), and any X × X-map (f, g) : ∆(X) → (Y, Z), there is a unique X-map

(f, g)] : X → U(Y, Z) such that

X

(f,g)]

��

∆(X)
(f,g)

%%LLLLLLLLLL

∆((f,g)])
��

U(Y, Z) ∆U(Y, Z) ε(Y,Z)

// (Y, Z)

commutes. Hence X has binary products U(Y, Z) as Y ×Z for all objects Y, Z and

the projections, as the components of ε, are total and f × g = f × g.

For each X-map f : X → Y , since 1X × f = 〈π1, fπ2〉, we have the following

commutative diagram:

X
1X

{{vvvvvvvvvv
1X

##HHHHHHHHHH

∆X=〈1X ,1X〉
��

X

1X
��

X ×Xπ1oo π2 //

〈π1,fπ2〉=1X×f
��

X

f
��

X X × Yπ1oo π2 // Y

Then

1X × f = π1(1X × f) = π1(1X × f) = π1 = 1X×X

and so

f = fπ2∆X = π2fπ2∆X = π2π2(1X × f)∆X = π21X × f∆X = π2∆X = 1X .
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Thus, f must be total again.

Conversely, if X has binary products as a category and has the trivial restriction

then ∆ : X → X × X has a right adjoint in Cat by Proposition 2.1.1(ii). As

we did in (i), ∆ : X → X × X has also a right adjoint in rCat by applying

Triv : Cat→ rCat.

(iii) By (i) and (ii) above and Proposition 2.1.1.

�

By the last proposition, if a restriction category X is a cartesian object in rCat, then

X must have the trivial restriction. To give a proper notion of partial (restriction) prod-

ucts in a given restriction category, Cockett and Lack [16] studied cartesian objects in the

category rCatl instead of rCat. Recall that 2-category rCatl has restriction categories

as 0-cells, restriction functors as 1-cells, and lax natural transformations between 1-cells

as 2-cells.

Cockett and Lack [16] defined a partial (restriction) terminal object in a restriction

category X to be an object T for which for each X-object X there is a unique total map

!X : X → T such that !T = 1T and !Y f =!Xf for each X-map f : X → Y :

X

f
��

!X

  @@@@@@@@

≤   @@@@@@@@

Y
!Y
// T

As well, in [16], a binary partial (restriction) product of two objects X, Y in a restric-

tion category X is a X-object X × Y equipped with two total X-maps πX : X × Y → X

and πY : X × Y → Y , called projections, such that for each pair of X-maps f : Z → X

and g : Z → Y there is a unique map 〈f, g〉 : Z → X × Y satisfying πX〈f, g〉 ≤ f ,
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πY 〈f, g〉 ≤ g, and 〈f, g〉 = fg:

Z
f

{{vvvvvvvvvv

≥{{vvvvvvvvvv
g

##GGGGGGGGGG

≤ ##GGGGGGGGGG

〈f,g〉
��

X X × YπX
oo

πY
// Y

Similarly, one can define a partial product of any finite objects X1, · · · , Xn.

A restriction category is called cartesian if it has all binary partial (restriction) prod-

ucts and a partial (restriction) terminal object.

A restriction functor F : X → Y between two cartesian restriction categories is

called cartesian if it preserves both partial (restriction) terminal objects and binary

partial (restriction) products. All cartesian restriction categories and cartesian restriction

functors between them form a category, denoted by crCat0.

For partial terminal objects, we have:

Lemma 2.1.3 For a restriction category X, the following are equivalent:

(i) X has a partial terminal object T ;

(ii) there is a X-object T such that for each X-object X, there is a unique total map

!X : X → T such that for each X-map f : X → T ,

f =!Xf ;

(iii) there is a X-object T such that for each X-object X, there is a total map !X : X → T

such that for each X-map f : X → T

f =!Xf ;

(iv) there is a X-object T such that for each X-object X, mapX(X,T ) has a top element

!X that is total;

(v) ! : X→ 1 has a right adjoint U : 1→ X in rCatl.
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Proof: (i)⇒ (ii): Consider the following diagram:

X

f
��

!X

��????????

≤ ��????????

1
!1
// 1

Then, by (i),

f = 11f =!1f =!Xf.

(ii)⇒ (i): For each X-map f : X → Y , consider the X-map !Y f : X → Y → 1. We

have

!Y f =!X !Y f =!X !Y f =!Xf.

For the X-map 11 : 1→ 1, by (ii),

11 =!111 =!1.

Hence, the unique total map !X : X → 1 satisfies !1 = 11 and !Y f =!Xf for each X-map

f : X → Y :

X

f
��

!X

��????????

≤ ��????????

Y
!Y
// 1

(i)⇒ (v): Define U : 1→ X by sending 11 : 1→ 1 to 1T : T → T .

For each X-object X, let ηX = !X : X → U !(X). Then, for each X-map f : X → Y ,

by (i), we have !Y f =!Xf and so

X

f
��

!X // T

1T
��

Y
!Y // T

commutes in rCatl. Hence η : 1 → U ! is a lax restriction natural transformation. For

each X-map f : X → U(1), by (i) ⇒ (ii), we have f =!Xf , which gives rise to the
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following commutative diagram

X

f !!DDDDDDDD
ηX // U !X

U(f∗)
��

!X

f∗=11

��
U(1) 1

in rCatl. Hence each ηX : X → U !(X) is a universal arrow from X to U and therefore

! a U in rCatl.

(v) ⇒ (iii): Suppose that ! : X → 1 has a right adjoint U : 1 → X. Let T = U(1).

Then there is a total X-map !X = ηX : X → U !(X) such that for each X-maps f : X →

U(1),

X

f !!DDDDDDDD
ηX // U !X

U(f∗)
��

!X

f∗=11

��
U(1) 1

commutes in rCatl. That is, f = 1Xf . Hence (iii) follows.

(ii)⇒ (iii): Clear.

(iii) ⇒ (ii): If tX : X → T is a total map such that for each X-map f : X → T ,

f = tXf , then

!X = tX !X = tX1X = tX

and so the uniqueness of !X follows.

(iii)⇔ (iv): Clear. �

If the diagonal ∆ : X→ X×X has a right adjoint U : X×X→ X in rCatl, then,

as Cockett and Lack did in [16], we denote U(Y, Z) by Y × Z and U(f, g) by f × g.

Since ∆ a U , for each X × X-map (f, g) : ∆(X) → (Y, Z) there is a unique X-map

(f, g)] : X → Y × Z such that

X

∃!(f,g)]
��

∆(X)

∆((f,g)])
��

(f,g)

&&LLLLLLLLLL

Y × Z ∆(Y × Z)
(πY ,πZ)

// (Y, Z)
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commutes in rCatl. Adjunction ∆ a U has some properties as proved in the following

lemma.

Lemma 2.1.4 ([16], Proposition 4.3) If the diagonal ∆ : X → X × X has a right

adjoint U : X×X→ X in rCatl, then

(i) for each X-object X, there is a total X-map ∆X : X → X ×X such that

X
1X

{{vvvvvvvvvv
1X

##HHHHHHHHHH

∆X

��
X X ×XpX
oo

qX
// X

commutes in X;

(ii) (f × g)∆X = (f, g)] if dom(f) = dom(g) = X;

(iii) (fh, gh)] = (f, g)]h if cod(h) = dom(f) = dom(g);

(iv) (f × g)∆X = fg if dom(f) = dom(g) = X;

(v) ∆X : X → X ×X is natural in X.

Proof:

(i) Since

∆X
∆(ηX)−→ ∆U∆X

ε∆X−→ ∆X = ∆X
1∆X−→ ∆X

for each X-object X by the adjunction ∆ a U , there is a unique total X-map

(1∆X)] = ηX such that

∆X

∆(ηX)
��

1∆X

%%KKKKKKKKK

∆U∆X
ε∆X // ∆X
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commutes in rCatl. But ε∆X∆((1∆X)]) ≤ 1∆X implies ε∆X∆((1∆X)]) = 1∆X . It

follows that there is a total X-map ∆X = ηX : X → X ×X such that

X
1X

{{vvvvvvvvvv
1X

##HHHHHHHHHH

∆X

��
X X ×XpX
oo

qX
// X

commutes, where (pX , qX) = ε∆X is total in X×X.

(ii) Since ε : ∆U → 1 is a lax natural transformation in rCatl, for each X ×X-map

(f, g) : (X, Y )→ (X ′, Y ′),

∆U(X, Y )

∆U(f,g)

��

∆U(f,g)// ∆U(X, Y )
ε(X,Y ) // (X, Y )

(f,g)

��
∆U(X ′, Y ′)

ε(X′,Y ′) // (X ′, Y ′)

commutes. That is

X × Y
πX
��

X × Yf×goo f×g //

f×g

��

X × Y
πY
��

X

f
��

Y

g
��

X ′ × Y ′ X ′ × Y ′
πX′oo πY ′ // Y ′

If dom(f) = dom(g) = X, then

πX′(f × g)∆X = fπX(f × g)∆X

= fπX(f × g)∆X

= fπX∆(f × g)∆X

= f(f × g)∆X

= fπX′(f × g)∆X
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and so πX′(f × g)∆X ≤ f . Similarly, πY ′(f × g)∆X ≤ g. Hence

∆(X)

∆((f×g)∆X)
��

(f,g)

''NNNNNNNNNNN

≤ ''NNNNNNNNNNN

∆(X ′ × Y ′)
(πX′ ,πY ′ )

// (X ′, Y ′)

anf therefore (f × g)∆ = (f, g)].

(iii) If cod(h) = dom(f) = dom(g), then we have the commutative diagram

W

h

��

∆(W )

∆(h)
��

(fh,gh)

��;;;;;;;;;;;;;;;;;;

Z

∃!(f,g)|]
��

∆(Z)

∆(f,g)]

��
(f,g)

MMMM

&&MMMM

X × Y ∆(X × Y )
(πX ,πY )

// (X, Y )

in rCatl and so

ε(Y,Z)∆((f, g)]h) = ε(Y,Z)∆((f, g)])∆(h) ≤ (f, g)∆(h) = (fh, gh).

Hence (fh, gh)] = (f, g)]h.

(iv) Proposition 4.3(i) in [16].

(v) Proposition 4.3(ii) in [16].

�

For the binary partial products, we have:

Lemma 2.1.5 Given a restriction category X, the following are equivalent:

(i) X has binary partial products;
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(ii) for each pair of X-objects X and Y , there is a pair of total maps πX : X × Y → X

and πY : X ×Y → Y such that for each pair of X-maps f : Z → X and g : Z → Y

there exists a unique X-map 〈f, g〉 : Z → X × Y such that

πX〈f, g〉 = fg and πY 〈f, g〉 = gf ;

(iii) for each pair of X-objects X and Y , there is a pair of total maps πX : X × Y → X

and πY : X ×Y → Y such that for each pair of X-maps f : Z → X and g : Z → Y

there exists a unique X-map 〈f, g〉 : Z → X × Y such that

Z
f

{{vvvvvvvvvv

≥{{vvvvvvvvvv
g

##GGGGGGGGGG

≤ ##GGGGGGGGGG

〈f,g〉
��

X X × YπX
oo

πY
// Y

(iv) ∆ : X→ X×X has a right adjoint U : X×X→ X in rCatl.

Proof: (i)⇒ (ii): By (i), there is a unique 〈f, g〉 : Z → X × Y such that

πX〈f, g〉 ≤ f, πY 〈f, g〉 ≤ g, and 〈f, g〉 = fg.

Hence

πX〈f, g〉 = fπX〈f, g〉 = fπX〈f, g〉 = f〈f, g〉 = ffg = fg.

Similarly, we have πY 〈f, g〉 = gf .

(ii)⇒ (iii): Clear.

(iii) ⇒ (iv): Define U : X × X → X by sending (f, g) : (X, Y ) → (X ′, Y ′) to the

unique X-map f × g = 〈fπX , gπY 〉 : X × Y → X ′ × Y ′ satisfying

X

f
��

≥

X × Y
≤f×g

��

πXoo πY // Y

g

��
X ′ X ′ × Y ′πX′
oo

πY ′
// Y ′
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Let ε(X,Y ) = (πX , πY ) : ∆U(X, Y ) → (X, Y ). Clearly, the diagram in (iii) gives rise

to the following commutative diagram

∆U(X, Y )
ε(X,Y ) //

∆U(f,g)
��

(X, Y )

(f,g)
��

∆U(X ′, Y ′)
ε(X′,Y ′)// (X ′, Y ′)

in rCatl. Hence ε : ∆U → 1 is a lax restriction natural transformation. Obviously, by

the diagram in (iii), ε(X,Y ) = (πX , πY ) : ∆U(X, Y ) → (X, Y ) is a universal arrow from

∆ to (X, Y ). Thus, ∆ a U in rCatl.

(iv)⇒ (i): The diagonal ∆ : X→ X×X has a right adjoint if and only if there is a

universal arrow from ∆ to each given (X, Y ), namely, for each X×X-map ∆Z → (X, Y )

there is a unique X-map 〈f, g〉 : Z → X × Y such that

Z

∃!〈f,g〉
��

∆(Z)

∆(〈f,g〉)
��

(f,g)

&&MMMMMMMMMM

X × Y ∆(X × Y )
ε(X,Y ) // (X, Y )

commutes in rCatl. This is equivalent to the diagram (i) above with ε(X,Y ) = (πX , πY ).

On the other hand, by Lemma 2.1.4,

〈f, g〉 = (f, g)] = fg.

Thus, (iv)⇒ (i). �

By Lemmas 2.1.3 and 2.1.5, obviously we have:

Proposition 2.1.6 Let X be a restriction category. Then X has finite partial products

if and only if X is a cartesian object in rCatl.

By Lemma 2.1.2 and Proposition 2.1.6, immediately one has:

Proposition 2.1.7 If a restriction category X is a cartesian object in rCat, then X is

a cartesian object in rCatl and X has the trivial restriction.
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Proof: By Lemma 2.1.2, X has finite products and has the trivial restriction. By

Proposition 2.1.6, it suffices to prove that X has a partial terminal object and binary

partial products.

Let 1 be a terminal object in X. Then there is a unique map !X : X → 1 that is total

since X has the trivial restriction. For any X-map f : X → Y , since f = 1X , we have

!Y f =!X =!Xf.

Hence 1 is a partial terminal object in X.

For each pair of X-objects X and Y , assume that (X×Y, πX , πY ) is a binary product

of X and Y . Then, for each pair of X-maps f : Z → X and g : Z → Y there is a unique

map 〈f, g〉 : Z → X × Y such that

Z
f

{{vvvvvvvvvv
g

##GGGGGGGGGG

〈f,g〉
��

X X × YπX
oo

πY
// Y

commutes. Since X has the trivial restriction, we have π1 = π2 = 1X×Y and 〈f, g〉 =

1Z = fg. Hence (X × Y, π1, π2) is a binary partial product of X and Y in X. �

Recall that there are 2-functors Total : rCatl → Cat, Total : rCat → Cat, Split :

rCat→ rCat, and Split : rCatl→ rCatl and each 2-functor preserves adjunctions. So

immediately one has:

Proposition 2.1.8 Let X be a restriction category.

(i) If X is a cartesian object in rCat, then Split(X) is a cartesian object in rCat and

both Total(Split(X)) and Total(X) are cartesian objects in Cat;

(ii) If X is a cartesian object in rCatl, then Split(X) is a cartesian object in rCatl

and both Total(Split(X)) and Total(X) are cartesian objects in Cat.
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Proof: Clearly, Total(1) ∼= 1, Split(1) ∼= 1, Total(X × X) ∼= Total(X) × Total(X),

Split(X×X) ∼= Split(X)×Split(X), Total(!) ∼= !, and Split(!) ∼= !. The lemma immediately

follows as 2-functors Total : rCatl → Cat, Total : rCat → Cat, Split : rCat → rCat,

and Split : rCatl→ rCatl preserve adjoints. �

2.1.2 Partial Map Categories as Cartesian Objects

Given anM-category (C,M), we have a restriction category Par(C,M) that is a object

of Cat, rCat, and rCatl. This subsection is intended to study when a partial map

category Par(C,M) is a cartesian object in Cat, rCat, and rCatl, respectively.

First, let’s study when a partial map category is a cartesian object in Cat. Given

an M-category (C,M), by Proposition 2.1.1, Par(C,M) is a cartesian object in Cat if

and only if Par(C,M) has finite products. The following lemma considers when a partial

map category has terminal objects.

Lemma 2.1.9 Given an M-category (C,M), if 0 is a C-object such that for each C-

object X

∅ 6= mapC(0, X) ⊆M,

then 0 is a terminal object in Par(C,M) if and only if 0 is a strict initial object in C.

Proof: If 0 is a terminal object in Par(C,M), then for each C-object X we have

m ∈ mapC(0, X) ⊆M and so the partial map (m, 10) : X → 0 must be the unique map

from X to 0 in Par(C,M). Clearly, 0 is initial in C. For each map tX : X → 0, the

partial map (1X , tX) : X → 0 must be (m, 10). Hence tX : X → 0 is an isomorphism and

therefore 0 is strict.

Conversely, If 0 is a strict initial object in C, then for each C-object X we have a

partial map (mX , 10) : X → 0, where mX : 0→ X ∈ mapC(0, X) ⊆M. For any partial
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map (n, f) : X → 0,

X ′

n

~~||||||||
f

��@@@@@@@@

f

��

X 0

0

mX

aaBBBBBBBB 10

>>~~~~~~~~

since 0 is strict, f is an isomorphism and X ′ is a strict initial object. It follows that

mXf = n. Hence (n, f) = (mX , 10) and so 0 is a terminal object in Par(C,M). �

Now we consider when a partial map category can have binary products by provid-

ing an example that Par(Set,MonicsSet) has binary products as shown in the following

lemma.

Lemma 2.1.10 Par(Set,MonicsSet) has binary products,

Proof: Given two sets X and Y , we claim that

(X +X × Y + Y, (ι1, 〈1X |πX〉), (ι2, 〈πY |1Y 〉))

is a product of X and Y in Par(Set,MonicsSet), where ι1 : X+X×Y ↪→ X+X×Y +Y

and ι2 : X × Y + Y ↪→ X +X × Y + Y are the coproduct injections.

For partial maps (m, f) : Z → X and (n, g) : Z → Y , without loss of generality, we

assume that both m and n are set-inclusions. Define the partial function (i, f ∪ g) : Z →

X +X × Y + Y by

(f ∪ g)(x) =


ιX(f(x)) if x ∈ X ′ \ Y ′;

ιX×Y (f(x), g(x)) if x ∈ X ′ ∩ Y ′;

ιY (g(x)) if x ∈ Y ′ \X ′.

Here

ιX : X ↪→ X +X × Y + Y,

ιX×Y : X × Y ↪→ X +X × Y + Y,
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and

ιY : Y ↪→ X +X × Y + Y

are the coproduct injections. Now it is easy to show that

Z
(m,f)

uukkkkkkkkkkkkkkkkkkkk
(n,g)

))SSSSSSSSSSSSSSSSSSSS

(i,f∪g)
��

X X +X × Y + Y
(ι1,〈1X |πX〉)
oo

(ι2,〈πY |1Y 〉)
// Y

commutes in Par(Set,MonicsSet) by looking at the following diagrams

X ′I i

vvmmmmmmmmmmmmmm
f∪g|X′

))SSSSSSSSSSSSSSSS

X ′ ∪ Y ′L l

i

{{vvvvvvvvvv
f∪g

((QQQQQQQQQQQQQ X +X × Y
H h

ι1

uukkkkkkkkkkkkkk
〈1X |πX〉

%%LLLLLLLLLLL

Z X +X × Y + Y X

and

Y ′I i

vvmmmmmmmmmmmmmm
f∪g|Y ′

))SSSSSSSSSSSSSSSS

X ′ ∪ Y ′L l

i

{{vvvvvvvvvv
f∪g

((QQQQQQQQQQQQQ X × Y + Y
H h

ι2

uukkkkkkkkkkkkkk
〈πY |1Y 〉

%%KKKKKKKKKKK

Z X +X × Y + Y Y

To prove the uniqueness of (i, f ∪g) : Z → X+X×Y +Y , let (j, t) : Z → X+X×Y +Y

be a partial function such that

Z
(m,f)

uukkkkkkkkkkkkkkkkkkkk
(n,g)

))SSSSSSSSSSSSSSSSSSSS

(j,t)
��

X X +X × Y + Y
(ι1,〈1X |πX〉)
oo

(ι2,〈πY |1Y 〉)
// Y

commutes in Par(Set,MonicsSet), with a set-inclusion j. Clearly, t−1(ι1(X+X×Y )) = X ′

and t−1(ι2(X × Y + Y )) = Y ′ imply t(X ′ ∩ Y ′) ⊆ X × Y as t(a) ∈ X or Y for some

a ∈ X ′ ∩ Y ′ gives rise to t−1(ι1(X + X × Y )) 6= X ′ or t−1(ι2(X × Y + Y )) 6= Y ′. Hence
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t(X ′ \ Y ′) ⊆ X. Similarly, t(Y ′ \X ′) ⊆ Y . Therefore, in order to have

X ′I i

vvmmmmmmmmmmmmmm
t|X′

))SSSSSSSSSSSSSSSS

X ′

m

~~~~~~~~~~
f

  AAAAAAAA X ′ ∪ Y ′L l

i

{{vvvvvvvvvv
t

((QQQQQQQQQQQQQ X +X × Y
H h

ι1

uukkkkkkkkkkkkkk
〈1X |πX〉

%%LLLLLLLLLLL

Z X

=

Z X +X × Y + Y X

and

Y ′I i

vvmmmmmmmmmmmmmm
t|X′

))SSSSSSSSSSSSSSSS

Y ′

n

��~~~~~~~~
g

  @@@@@@@@ X ′ ∪ Y ′L l

i

{{vvvvvvvvvv
t

((QQQQQQQQQQQQQ X × Y + Y
H h

ι2

uukkkkkkkkkkkkkk
〈πY |1Y 〉

%%KKKKKKKKKKK

Z Y

=

Z X +X × Y + Y Y

t = f ∪ g and the uniqueness of (i, f ∪ g) : Z → X +X × Y + Y follows. �

By Lemmas 2.1.9 and 2.1.10, we have immediately

Corollary 2.1.11 Par(Set,MonicsSet) has finite products so that it is a cartesian object

in Cat.

But Par(Setffib,M), given in Example 1.6.16, is not cartesian as it does not have

partial terminal objects, where M = {injections i : A ↪→ B | |B \ i(A)| < +∞}.

Now we turn to study when a partial map category is a cartesian object in rCat.

Given an M-category (C,M), by Proposition 2.1.1 and Lemma 2.1.2, Par(C,M) is a

cartesian object in rCat if and only if Par(C,M) has finite products and Par(C,M)

has the trivial restriction. But Par(C,M) has the trivial restriction if and only if M =

{isomorphisms in C}. We have:

Proposition 2.1.12 Par(C,M) is a cartesian object in rCat if and only if

M = {isomorphisms in C}

and C has finite products.
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Proof: If M = {isomorphisms in C}, then Par(C,M) ∼= C. By Proposition 2.1.7,

Par(C,M) is a cartesian object in rCat if and only if Par(C,M) has finite products

and Par(C,M) has the trivial restriction if and only if M = {isomorphisms in C}

and C has finite products as Par(C,M) has the trivial restriction if and only if M =

{isomorphisms in C} clearly. �

Finally, we study when a partial map category is a cartesian object in rCatl.

Proposition 2.1.13 For a given M-category (C,M), C is a cartesian object in Cat if

and only if Par(C,M) is a cartesian object in rCatl.

Proof: If 1 is a terminal object of C, then, for each C-object X, there is a unique

map !X : X → 1. Consider the total Par(C,M)-map tX = (1X , !X) : X → 1. For each

Par(C,M)-map (m, f) : X → 1, we have

tX(m, f) = (1X , !X)(m,m) = (m, !Xm) = (m, f)

since !Xm =!X′ = f and (∗) is a pullback in the following diagram

X ′

1X′

}}||||||||
m

  BBBBBBBB f

��

(∗)X ′

m

~~||||||||
m

!!CCCCCCCC X
1X

~~||||||||
!X

��????????

X X 1

Hence 1 is a partial terminal object in Par(C,M) with tX = (1X , !X) : X → 1.

For each pair of (C,M)-objects X and Y , assume that (X × Y, πX , πY ) is a product

of X and Y in C. We claim that (X × Y, (1X×Y , πX), (1X×Y , πY )) is a partial product of

X and Y in Par(C,M).

In fact, for each pair of (C,M)-maps (m, f) : Z → X and (n, g) : Z → Y , assume
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the square (2) is a pullback in the following diagram:

P

}}}}}}}}

}}}}}}}}

AAAAAAAA

AAAAAAAA

(1)P
n′

~~}}}}}}}
m′

  AAAAAAA P
m′

~~}}}}}}}
n′

  AAAAAAA

(2)X ′

m

~~}}}}}}}}
Y ′

n

  AAAAAAAA X ′

m

~~}}}}}}}}
f

  BBBBBBBB

Z Z X

Since (1) is a pullback square, we have

(m, f)(nm′,mn′) = (mn′, fn′).

Hence

(1X×Y , πX)(mn′, 〈fn′, gm′〉) = (mn′, πX〈fn′, gm′〉)

= (mn′, fn′)

= (m, f)(n′m,mn′)

= (m, f)(mn′, fn′)

≤ (m, f).

Symmetrically,

(1X×Y , πY )(mn′, 〈fn′, gm′〉) ≤ (n, g).

So we have

Z
(m,f)

vvnnnnnnnnnnnnnnn

≥
vvnnnnnnnnnnnnnnn

(n,g)

''PPPPPPPPPPPPPPP

≤
''PPPPPPPPPPPPPPP

(mn′,〈fn′,gm′〉)
��

X X × Y
(1X×Y ,πX)

oo
(1X×Y ,πY )

// Y

Clearly, both (1X×Y , π1) and (1X×Y , π2) are total and

(mn′, 〈fn′, gm′〉) = (mn′,mn′) = (m,m)(n, n) = (m, f) (n, g).
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If (k, h) : Z → X × Y is a partial map such that

(1X×Y , πX)(k, h) = (m, f)(n, g) and (1X×Y , πY )(k, h) = (n, g)(m, f) :

Z
(m,f)

vvnnnnnnnnnnnnnnn

≥
vvnnnnnnnnnnnnnnn

(n,g)

''PPPPPPPPPPPPPPP

≤
''PPPPPPPPPPPPPPP

(k,h)

��
X X × Y

(1X×Y ,πX)
oo

(1X×Y ,πY )
// Y

then

(k, k) = (k, h) = (m, f) (n, g) = (mn′,mn′),

(mn′, πXh) = (mn′, fn′),

and

(mn′, πY h) = (mn′, gm′)

and so (k, h) = (mn′, 〈fn′, gm′〉), namely, the uniqueness of (mn′, 〈fn′, gm′〉) follows.

Thus, (X × Y, (1X×Y , π1), (1X×Y , π2)) is a partial product of X and Y in Par(C,M).

Conversely, suppose now that Par(C,M) has partial terminal object 1 and partial

binary product (X × Y, (m, p1), (n, p2)) for objects X and Y .

For each C-object X, there is unique total map (1X , tX) : X → 1 such that

(1X , tX)(m, f) = (1X , tX)(m,m) = (m, tXm) = (m, f)

for any map (m, f) : X → 1 in Par(C,M). In particular, for each C-map f : X → Y ,

(1X , f) : X → Y is a Par(C,M)-map. Then (1X , tX)(1X , f) = (1X , f) and so f ∼= tX .

Thus, 1 is a terminal object with the unique map !X = tX : X → 1 in C.

If (X × Y, (m, p1), (n, p2)) is a binary partial product of X and Y in Par(C,M), then

m ∼= 1X×Y and n ∼= 1X×Y since projections must be total. For each pair of C-maps

f : Z → Y and g : Z → Y , there is a unique 〈(1Z , f), (1Z , g)〉 = (i, h) such that

〈(1Z , f), (1Z , g)〉 = (i, h) = (i, i) = (1Z , f) (1Z , g) = (1Z , 1Z)
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and

Z
(1Z ,f)

vvnnnnnnnnnnnnnnn

≥
vvnnnnnnnnnnnnnnn

(1Z ,g)

''PPPPPPPPPPPPPPP

≤
''PPPPPPPPPPPPPPP

(i,h)

��
X X × Y

(1X×Y ,p1)
oo

(1X×Y ,p2)
// Y

It follows that

(1X×Y , p1)(i, h) = (1X×Y , p1)(1Z , h)

= (1Z , p1h)

= (1Z , f)(1Z , p1h)

= (1Z , f)(1Z , 1Z)

= (1Z , f).

Then p1h ∼= f . Similarly, p2h ∼= g and so

Z
f

{{vvvvvvvvvv
g

##GGGGGGGGGG

〈f,g〉=h
��

X X × Yp1

oo
p2

// Y

commutes. If h′ : Z → X × Y is such that

Z
f

{{vvvvvvvvvv
g

##GGGGGGGGGG

h′

��
X X × Yp1

oo
p2

// Y

commutes, then

Z
(1Z ,f)

vvnnnnnnnnnnnnnnn

≥
vvnnnnnnnnnnnnnnn

(1Z ,g)

''PPPPPPPPPPPPPPP

≤
''PPPPPPPPPPPPPPP

(1Z ,h
′)
��

X X × Y
(1X×Y ,p1)

oo
(1X×Y ,p2)

// Y

and so h′ ∼= h. Thus, (X × Y, p1, p2) is a product of X and Y in C. �
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2.2 Cartesian Completion for Restriction Categories

Recall that the product completion
∏

X of a category X has small-indexed X-objects

families (Xi)i∈I as objects and a map f : (Xi)i∈I → (Yj)j∈J of
∏

X is specified by a

function φ : J → I and a family (fj : Xφ(j) → Bj)j∈J of X-maps [18]. As in [4],
∏

X =

(Fam(Xop))op. To form free cartesian restriction categories over restriction categories,

we need to keep restrictions working with free products.

2.2.1 The Construction π(−)

Given a restriction category X, define the following construction π(X) with

objects: functions F : I → X0 where I is a finite set;

maps: a map from object F : I → X0 to object G : J → X0 is a triple (e, γ, g) such

that

I

F

��

J
goo

γ

}}{{{{{{{{

G

��

X1

∂0

}}||||||||
∂1

!!CCCCCCCC

X0 X0

and

I

F

��

e

!!CCCCCCCC J
goo

γ

~~}}}}}}}}

X1
∂0

}}||||||||

∂1}}||||||||

X0

commute, where e : F → F satisfies e(i) = e(i) for each i ∈ I.

Obviously, e : F → F and γ : Fg → G in (e, γ, g) can be characterized as

(
e(i) : F (i)→ F (i)

)
i∈I

and
(
γ(j) : F (g(j))→ G(j)

)
j∈J
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in which e(i) = e(i) and γ(j) = e(g(j)) for each i ∈ I and j ∈ J ;

identities: For each object F : I → X0, 1(F :I→X0) = (F1, F1, 1):

I

F

��

I
1oo

F1

}}{{{{{{{{

F

��

X1

∂0

}}||||||||
∂1

!!CCCCCCCC

X0 X0

where
(
F1(i) = 1F (i) : F (i)→ F (i)

)
i∈I

;

composition: For maps (e, γ, g) : (F : I → X0) → (G : J → X0) and (f, ϕ, h) : (G :

J → X0)→ (H : K → X0), define

(f, ϕ, h)(e, γ, g) = (d, ψ, gh)

where d : I → X1 and ψ : K → X1 are given by

d =
(
e(i)

∏
g(j)=i

f(j)γ(j) : F (i)→ F (i)
)
i∈I

and

ψ =
(
ϕ(k)γ(h(k))d(g(h(k))) : F (g(h(k)))→ H(k)

)
k∈K

=
(
ϕ(k)γ(h(k))

∏
g(j)=g(h(k))

f(j)γ(j) : F (g(h(k)))→ H(k)
)
k∈K

:

I

F

��

J
goo

γ

}}{{{{{{{{

G

��

K

H

��

ϕ

}}{{{{{{{{
hoo

X1

∂0

}}||||||||
∂1

!!CCCCCCCC X1

∂0

}}||||||||
∂1

!!CCCCCCCC

X0 X0 X0

restriction: (e, γ, g) = (e, e, 1).
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2.2.2 π(X) is a Cartesian Restriction Category

First, we verify that composition is well-defined and identity and associative laws hold

true.

(1) Obviously, each d(i) = e(i)
∏

g(j)=i f(j)γ(j) is a restriction idempotent. Since γ(j) =

e(g(j)) and ϕ(k) = f(h(k)), we have

ψ(k) = ϕ(k)γ(h(k)) ·
∏

g(j)=g(h(k))

f(j)γ(j)

= ϕ(k)γ(h(k)) ·
∏

g(j)=g(h(k))

f(j)γ(j)

= f(h(k))γ(h(k)) ·
∏

g(j)=g(h(k))

f(j)γ(j)

= γ(h(k)) f(h(k))γ(h(k)) ·
∏

g(j)=g(h(k))

f(j)γ(j)

= e(g(h(k))) f(h(k))γ(h(k)) ·
∏

g(j)=g(h(k))

f(j)γ(j)

= e(g(h(k)))
∏

g(j)=g(h(k))

f(j)γ(j)

= d(g(h(k))).

So the composition is well-defined.

(2) Identity Law: For any map (e, γ, g) : (F : I → X0)→ (G : J → X0), assume

(G1, G1, 1)(e, γ, g) = (f, ψ, g).

Then, for each i ∈ I and each j ∈ J ,

f(i) = e(i)
∏
g(j)=i

G1(j)γ(j) = e(i)
∏
g(j)=i

γ(j) = e(i)
∏
g(j)=i

e(g(j)) = e(i)

and

ψ(j) = G1(j)γ(j)f(g(j)) = γ(j)e(g(j)) = γ(j)γ(j) = γ(j).
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Hence (G1, G1, 1)(e, γ, g) = (e, γ, g). Assume now that (e, γ, g)(F1, F1, 1) = (f, ψ, g).

Then for each i ∈ I and j ∈ J ,

f(i) = F1(i)
∏

1(j)=i

e(j)F1(j) =
∏

1(j)=i

e(j) = e(i)

and

ψ(j) = γ(j)F1(j) = γ(j)f(g(j)) = γ(j)e(g(j)) = γ(j)γ(j) = γ(j).

Hence (e, γ, g)(F1, F1, 1) = (e, γ, g).

(3) Association Law: For maps (e, γ, g) : (F : I → X0) → (G : J → X0), (d, ϕ, h) :

(G : J → X0) → (H : K → X0), and (c, ψ,m) : (H : K → X0) → (M : L → X0),

we have

(c, ψ,m)
(

(d, ϕ, h)(e, γ, g)
)

= (c, ψ,m)
((
e(i)

∏
g(j)=i

d(j)γ(j)
)
i∈I
,(

ϕ(k)γ(h(k)) ·
∏

g(j)=g(h(k))

d(j)γ(j)
)
k∈K

, gh
)

=
((
e(i)

∏
g(j)=i

d(j)γ(j) ·
∏

g(h(k))=i

c(k)ϕ(k)γ(h(k))
∏

g(j)=g(h(k))

d(j)γ(j)
)
i∈I
,(

ψ(l)ϕ(m(l))γ(h(m(l)))
∏

g(j)=g(h(m(l)))

d(j)γ(j) ·

∏
g(h(k))=g(h(m(l)))

c(k)ϕ(k)γ(h(k))
∏

g(j)=g(h(k))

d(j)γ(j)
)
l∈L
, ghm

)
=

((
e(i)

∏
g(j)=i

d(j)γ(j) ·
∏

g(h(k))=i

(
c(k)ϕ(k)γ(h(k))

∏
g(j′)=g(h(k))

d(j′)γ(j′)
))

i∈I
,(

ψ(l)ϕ(m(l))γ(h(m(l)))
∏

g(j)=g(h(m(l)))

d(j)γ(j) ·

∏
g(h(k))=g(h(m(l)))

(
c(k)ϕ(k)γ(h(k))

∏
g(j)=g(h(k))

d(j)γ(j)
))

l∈L
, ghm

)
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=
((
e(i)

∏
g(j)=i

d(j)γ(j) ·
∏

g(h(k))=i

c(k)ϕ(k)γ(h(k)) ·
∏

g(j′)=i

d(j′)γ(j′)
)
i∈I
,(

ψ(l)ϕ(m(l))γ(h(m(l)))
∏

g(j)=g(h(m(l)))

d(j)γ(j) ·

∏
g(h(k))=g(h(m(l)))

(
c(k)ϕ(k)γ(h(k))

∏
g(j)=g(h(m(l)))

d(j)γ(j)
))

l∈L
, ghm

)
=

((
e(i)

∏
g(j)=i

d(j)γ(j) ·
∏

g(h(k))=i

c(k)ϕ(k)γ(h(k))
)
i∈I
,(

ψ(l)ϕ(m(l))γ(h(m(l)))
∏

g(j)=g(h(m(l)))

d(j)γ(j) ·

∏
g(h(k))=g(h(m(l)))

c(k)ϕ(k)γ(h(k))
)
l∈L
, ghm

)
=

((
e(i)

∏
j∈g−1(i)

d(j)γ(j) ·
∏

k∈(gh)−1(i)

c(k)ϕ(k)γ(h(k))
)
i∈I
,

(
ψ(l)ϕ(m(l))γ(h(m(l)))

∏
j∈g−1(g(h(m(l))))

d(j)γ(j) ·

∏
k∈(gh)−1(g(h(m(l))))

c(k)ϕ(k)γ(h(k))
)
l∈L
, ghm

)

and

(
(c, ψ,m)(d, ϕ, h)

)
(e, γ, g)

=
((
d(j)

∏
h(k)=j

c(k)ϕ(k)
)
j∈J

,(
ψ(l)ϕ(m(l)) ·

∏
h(k)=h(m(l))

c(k)ϕ(k)
)
l∈L
, hm

)
(e, γ, g)

=
((
e(i)

∏
g(j)=i

d(j)
∏

h(k)=j

c(k)ϕ(k)γ(j)
)
i∈I
,(

ψ(l)ϕ(m(l))
∏

h(k)=h(m(l))

c(k)ϕ(k)γ(h(m(l))) ·

∏
g(j)=g(h(m(l)))

d(j)
∏

h(k)=j

c(k)ϕ(k)γ(j)
)
l∈L
, ghm

)
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=
((
e(i)

∏
g(j)=i

d(j)γ(j)
∏

h(k)=j

c(k)ϕ(k)γ(j)
)
i∈I
,(

ψ(l)ϕ(m(l))γ(h(m(l)))
∏

h(k)=h(m(l))

c(k)ϕ(k)γ(h(m(l))) ·

∏
g(j)=g(h(m(l)))

(
d(j)γ(j)

∏
h(k)=j

c(k)ϕ(k)γ(j)
))

l∈L
, ghm

)
=

((
e(i)

∏
j∈g−1(i)

(
d(j)γ(j)

∏
k∈h−1(j)

c(k)ϕ(k)γ(h(k))
))

i∈I
,

(
ψ(l)ϕ(m(l))γ(h(m(l)))

∏
h(k)=h(m(l))

c(k)ϕ(k)γ(h(k)) ·

∏
g(j)=g(h(m(l)))

(
d(j)γ(j)

∏
h(k)=j

c(k)ϕ(k)γ(h(k))
))

l∈L
, ghm

)
=

((
e(i)

∏
j∈g−1(i)

d(j)γ(j)
∏

k∈h−1(g−1(i))

c(k)ϕ(k)γ(h(k))
)
i∈I
,

(
ψ(l)ϕ(m(l))γ(h(m(l)))

∏
k∈h−1(h(m(l)))

c(k)ϕ(k)γ(h(k)) ·

∏
j∈g−1(g(h(m(l))))

(
d(j)γ(j) ·

∏
k∈h−1(j)

c(k)ϕ(k)γ(j)
))

l∈L
, ghm

)
=

((
e(i)

∏
j∈g−1(i)

d(j)γ(j)
∏

k∈h−1(g−1(i))

c(k)ϕ(k)γ(h(k))
)
i∈I
,

(
ψ(l)ϕ(m(l))γ(h(m(l))) ·

∏
j∈g−1(g(h(m(l))))

d(j)γ(j) ·

∏
k∈h−1(g−1(g(h(m(l)))))

c(k)ϕ(k)γ(h(k))
)
l∈L
, ghm

)
=

((
e(i)

∏
j∈g−1(i)

d(j)γ(j) ·
∏

k∈(gh)−1(i)

c(k)ϕ(k)γ(h(k))
)
i∈I
,

(
ψ(l)ϕ(m(l))γ(h(m(l)))

∏
j∈g−1(g(h(m(l))))

d(j)γ(j) ·

∏
k∈(gh)−1(g(h(m(l))))

c(k)ϕ(k)γ(h(k))
)
l∈L
, ghm

)
= (c, ψ,m)

(
(d, ϕ, h)(e, γ, g)

)
.

Hence π(X) is a category. Now we verify four restriction axioms as follows.



67

[R.1] For any π(X)-map (e, γ, g) : (F : I → X0)→ (G : J → X0),

(e, γ, g)(e, γ, g) = (e, γ, g)(e, e, 1)

=
((
e(i)e(i)e(i)

)
i∈I
,
(
γ(j)e(g(j))

)
j∈J

, g
)

=
((
e(i)
)
i∈I
,
(
γ(j)

)
j∈J

, g
)

= (e, γ, g).

[R.2] For any π(X)-maps (e, γ, g) : (F : I → X0) → (G : G → X0) and (d, ϕ, h) : (F :

I → X0)→ (H : K → X0),

(e, γ, g) (d, ϕ, h) = (e, e, 1)(d, d, 1)

=
((
d(i)e(i)e(i)

)
i∈I
,
(
e(i)d(i) · e(i)d(i)

)
i∈I
, 1
)

=
((
e(i)d(i)

)
i∈I
,
(
e(i)d(i)

)
i∈I
, 1
)

= (d, d, 1)(e, e, 1)

= (d, ϕ, h) (e, γ, g).

[R.3] For any π(X)-maps (e, γ, g) : (F : I → X0) → (G : J → X0) and (d, ϕ, h) : (F :

I → X0)→ (H : K → X0),

(d, ϕ, h)(e, γ, g) = (d, ϕ, h)(e, e, 1)

=
((
e(i)d(i)e(i)

)
i∈I
,
(
e(i)d(i)e(i)

)
i∈I
, 1
)

=
((
e(i)d(i)

)
i∈I
,
(
e(i)d(i)

)
i∈I
, 1
)

= (d, d, 1)(e, e, 1)

= (d, ϕ, h) (e, γ, g).

[R.4] For any π(X)-maps (e, γ, g) : (F : I → X0) → (G : J → X0) and (d, ϕ, h) : (G :
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J → X0)→ (H : K → X0),

(d, ϕ, h)(e, γ, g)

= (d, d, 1)(e, γ, g)

=
((
e(i)

∏
g(j)=i

d(j)γ(j)
)
i∈I
,
(
d(j)γ(j)

∏
g(j′)=g(j)

d(j′)γ(j′)
)
j∈J

, g
)

=
((
e(i)

∏
g(j)=i

d(j)γ(j)
)
i∈I
,
(
γ(j)d(j)γ(j)

∏
g(j′)=g(j)

d(j′)γ(j′)
)
j∈J

, g
)

=
((
e(i)

∏
g(j)=i

d(j)γ(j)
)
i∈I
,
(
γ(j)e(g(j))

∏
g(j′)=g(j)

d(j′)γ(j′)
)
j∈J

, g
)

= (e, γ, g)
((
e(i)

∏
g(j)=i

d(j)γ(j)
)
i∈I
,
(
e(i)

∏
g(j)=i

d(j)γ(j)
)
i∈I
, 1
)

= (e, γ, g)(d, ϕ, h)(e, γ, g).

Hence π(X) is a restriction category.

To prove that π(X) is cartesian, it suffices to show that π(X) has both a partial

terminal object and binary partial products.

First, the partial terminal object in π(X) is given by ∅ : ∅ → X0. In fact, for a given

object F : I → X0 in π(X), there is a (unique) total map !(F :I→X0) = (1F (I), ∅, ∅) from

(F : I → X0) to (∅ : ∅ → X0):

I

F

��

∅∅oo

∅

��

∅

}}{{{{{{{{

X1

∂0

}}||||||||
∂1

!!CCCCCCCC

X0 X0

where 1F (I) is given by 1F (I)(i) = 1F (i) : F (i)→ F (i). We verify the following:

(i) Obviously, (1F (I), ∅, ∅) is a map in π(X).

(ii) Since (1F (I), ∅, ∅) = (1F (I), 1F (I), 1) = 1(F :I→X0), (1F (I), ∅, ∅) is total.
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(iii) For any map (e, γ, g) : (F : I → X0) → (∅ : ∅ → X0), g : ∅ → I and γ : ∅ → X1

must be the unique maps since ∅ is initial in Sets. Note that

(1F (I), ∅, ∅)(e, γ, g) = (1F (I), ∅, ∅)(e, e, 1)

= (e, ∅, ∅)

= (e, γ, g).

Thus, ∅ : ∅ → X0 is the partial final object in π(X).

Given two objects F : I → X0 and G : J → X0 in π(X), their binary partial

product is given by 〈F |G〉 : I + J → X0 with two total projections π1 = (e, γ, ι1) and

π2 = (f, ϕ, ι2):

I

F

��

ι1 //

γ

!!CCCCCCCC I + J

〈F |G〉

��

J
ι2oo

G

��

ϕ

}}{{{{{{{{

X1

∂0

}}||||||||
∂1

##FFFFFFFF X1

∂0

{{xxxxxxxx
∂1

!!CCCCCCCC

X0 X0 X0

where, for each l ∈ I + J ,

e(l) = f(l) = 1〈F |G〉(l) : 〈F |G〉(l)→ 〈F |G〉(l),

γ : I → X1 is given by

γ(i) = 1F (i) : 〈F |G〉(ι1(i))→ F (i),

and ϕ : J → X1 is given by

ϕ(j) = 1G(j) : 〈F |G〉(ι2(j))→ G(j).

Now we check the following:
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(i) (e, γ, ι1) and (f, ϕ, ι2) are total maps in π(X).

Since γ(i) = 1F (i) = 1F (i) = e(ι1(i)), (e, γ, ι1) is a map in π(X). Similarly, one

can easily check that (f, ϕ, ι2) is a map in π(X) too. Since (e, γ, ι1) = (e, e, 1) =

1(〈F |G〉:I+J→X0) and (f, ϕ, ι2) = (f, f, 1) = 1(〈F |G〉:I+J→X0), (e, γ, ι1) and (f, ϕ, ι2) are

total.

(ii) For any π(X)-maps (c1, ψ1,m1) : (X : T → X0)→ (F : I → X0) and (c2, ψ2,m2) :

(X : T → X0)→ (G : J → X0):

T

X

��

I
m1oo

F

��

ψ1

}}{{{{{{{{
T

X

��

J
m2oo

G

��

ψ2

}}{{{{{{{{

X1

∂0

}}||||||||
∂1

!!CCCCCCCC X1

∂0

}}||||||||
∂1

!!CCCCCCCC

X0 X0 X0 X0

there is a π(X)-map

〈
(c1, ψ1,m1), (c2, ψ2,m2)

〉
= (c, ψ,m) : (X : T → X0)→ (〈F |G〉 : I + J → X0) :

T

X

��

I + J
moo

〈F |G〉

��

ψ

{{xxxxxxxxx

X1

∂0

}}||||||||
∂1

##FFFFFFFF

X0 X0

where

m = 〈m1|m2〉 : I + J → T,

c(t) = c1(t)c2(t) : X(t)→ X(t)

for each t ∈ T , and

ψ = 〈ψ1 · c2m1|ψ2 · c1m2〉 : I + J → 〈F |G〉.
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Recalling that coproducts are given by disjoint unions in Set, we have

ψ(l) =

 ψ1(l)c2(m1(l)) if l ∈ I;

ψ2(l)c1(m2(l)) if l ∈ J.

Since, for each t ∈ T , both both c1(t) and c2(t) are restriction idempotents, c(t) is

a restriction idempotent too. For each i ∈ I and j ∈ J , we have

ψ1(i) = c1(m1(i)) and ψ2(j) = c2(m2(j)).

Then, for each l ∈ I + J ,

ψ(l) =

 ψ1(l)c2(m1(l)) = ψ1(l)c2(m1(l)) = c1(m1(l))c2(m1(l)) if l ∈ I

ψ2(l)c1(m2(l)) = ψ2(l)c1(m2(l)) = c1(m2(l))c2(m2(l)) if l ∈ J

= c(m(l)).

Hence (c, ψ,m) : 〈F |G〉 → X is a well-defined map in π(X).

(iii)

(e, γ, ι1)(c, ψ,m) =
((
c(t)

∏
m(l)=t

e(l)ψ(l)
)
t∈T ,(

γ(i)ψ(ι1(i))
∏

m(l)=m(ι1(i))

e(l)ψ(l)
)
i∈I ,m1

)
=

((
c1(t)c2(t)

∏
m(l)=t

ψ(l)
)
t∈T ,(

ψ(ι1(i))
∏

m(l)=m(ι1(i))

ψ(l)
)
i∈I ,m1

)
=

((
c1(t)c2(t)

∏
m(l)=t

c(m(l))
)
t∈T ,(

ψ(ι1(i))
∏

m(l)=m(ι1(i))

c(m(l))
)
i∈I ,m1

)
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=
((
c1(t)c2(t)

∏
m(l)=t

c(t)
)
t∈T ,(

ψ(ι1(i))
∏

m(l)=m(ι1(i))

c(m1(i))
)
i∈I ,m1

)
=

((
c1(t)c2(t)

)
t∈T ,

(
ψ1(i)c1(m1(i))c2(m1(i))

)
i∈I ,m1

)
=

((
c2(t)

∏
1T (t′)=t

c1(t′)c2(t′)
)
t∈T ,(

ψ1(i)c2(m1(i))
∏

1T (t)=1T (m1(i))

c1(t)c2(t)
)
i∈I ,m1

)
= (c1, ψ1,m1)(c2, c2, 1)

= (c1, ψ1,m1)(c2, ψ2,m2).

(iv)

(f, ϕ, ι2)(c, ψ,m) =
((
c(t)

∏
m(l)=t

f(l)ψ(l)
)
t∈T ,(

ϕ(j)ψ(ι2(j))
∏

m(l)=m(ι2(j))

f(l)ψ(l)
)
j∈J ,m2

)
=

((
c1(t)c2(t)

∏
m(l)=t

ψ(l)
)
t∈T ,(

ψ(ι2(j))
∏

m(l)=m(ι2(j))

ψ(l)
)
j∈J ,m2

)
=

((
c1(t)c2(t)

∏
m(l)=t

c(t)
)
t∈T ,(

ψ(ι2(j))
∏

m(l)=m(ι2(j))

c(m2(j))
)
j∈J ,m2

)
=

((
c1(t)c2(t)

)
t∈T ,

(
ψ2(j)c1(m2(j))c2(m2(j))

)
j∈J ,m2

)
=

((
c1(t)

∏
1T (t′)=t

c2(t′)c1(t′)
)
t∈T ,

(
ψ2(j)c1(m2(j))

∏
1T (t)=1T (m2(j))

c2(t)c1(t)
)
j∈J ,m2

)
= (c2, ψ2,m2)(c1, c1, 1)

= (c2, ψ2,m2)(c1, ψ1,m1).
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Then there is a π(X)-map (c, ψ,m) : (X : T → X0)→ (〈F |G〉 : I + J → X0) such that

(e, γ, ι1)(c, ψ,m) = (c1, ψ1,m1)(c2, ψ2,m2)

and

(f, ϕ, ι2)(c, ψ,m) = (c2, ψ2,m2)(c1, ψ1,m1) :

(X : T → X0)
(c1,ψ1,m1)

uujjjjjjjjjjjjjjj
(c2,ψ2,m2)

))TTTTTTTTTTTTTTT

(c,ψ,m)

��
(F : I → X0) (〈F |G〉 : I + J → X0)

(e,γ,ι1)
oo

(f,ϕ,ι2)
// (G : J → X0)

To prove the uniqueness of (c, ψ,m), we consider a π(X)-map (c′, ψ′,m′) : (X : T →

X0)→ (〈F |G〉 : I + J → X0) such that

(e, γ, ι1)(c′, ψ′,m′) = (c1, ψ1,m1)(c2, ψ2,m2)

and

(f, ϕ, ι2)(c′, ψ′,m′) = (c2, ψ2,m2)(c1, ψ1,m1).

Since

(e, γ, ι1)(c′, ψ′,m′) =
((
c′(t)

∏
m′(l)=t

e(l)ψ′(l)
)
t∈T ,(

γ(i)ψ′(ι1(i))
∏

m′(l)=m′(ι1(i))

e(l)ψ′(l)
)
i∈I , ι1m

′
)

=
((
c′(t)

∏
m′(l)=t

ψ′(l)
)
t∈T ,

(
ψ′(ι1(i))

∏
m′(l)=m′(ι1(i))

ψ′(l)
)
i∈I , ι1m

′
)

=
((
c′(t)

∏
m′(l)=t

c′(m′(l))
)
t∈T ,(

ψ′(ι1(i))
∏

m′(l)=m′(ι1(i))

c′(m′(l))
)
i∈I , ι1m

′
)

=
((
c′(t)

)
t∈T ,

(
ψ′(ι1(i))

∏
m′(l)=m′(ι1(i))

c′(m′(ι1(i)))
)
i∈I , ι1m

′
)

=
((
c′(t)

)
t∈T ,

(
ψ′(ι1(i))c′(m′(ι1(i)))

)
i∈I , ι1m

′
)

=
((
c1(t)c2(t)

)
t∈T ,

(
ψ1(i)c1(m1(i))c2(m1(i))

)
i∈I ,m1

)
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and

(f, ϕ, ι2)(c′, ψ′,m′) =
((
c′(t)

∏
m′(l)=t

f(l)ψ′(l)
)
t∈T ,(

ϕ(j)ψ′(ι2(j))
∏

m′(l)=m′(ι2(j))

f(l)ψ′(l)
)
j∈J , ι2m

′
)

=
((
c′(t)

∏
m′(l)=t

ψ′(l)
)
t∈T ,

(
ψ′(ι2(j))

∏
m′(l)=m′(ι2(j))

ψ′(l)
)
j∈J , ι2m

′
)

=
((
c′(t)

∏
m′(l)=t

c′(m′(l))
)
t∈T ,(

ψ′(ι2(j))
∏

m′(l)=m′(ι2(j))

c′(m′(l))
)
j∈J , ι2m

′
)

=
((
c′(t)

)
t∈T ,

(
ψ′(ι2(j))c′(m′(ι2(j)))

)
j∈J , ι2m

′
)

=
((
c1(t)c2(t)

)
t∈T ,

(
ψ2(j)c1(m2(j))c2(m2(j))

)
j∈I ,m2

)
,

we have

c′(t) = c1(t)c2(t) for all t ∈ T,

ψ′(ι1(i))c′(m′(ι1(i))) = ψ1(i)c1(m1(i))c2(m1(i)) for all i ∈ I,

ψ′(ι2(j))c′(m′(ι2(j))) = ψ2(j)c1(m2(j))c2(m2(j)) for all j ∈ J,

ι1m
′ = m1, ι2m

′ = m2.

Then

m′ = 〈m1|m2〉 = m,

c′(t) = c1(t)c2(t) = c(t),
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ψ′(ι1(i)) = ψ′(ι1(i))ψ′(ι1(i))

= ψ′(ι1(i))c′(m′(ι1(i)))

= ψ′(ι1(i))c(m(ι1(i)))

= ψ1(i)c1(m1(i))c2(m1(i))

= ψ(ι(i))

for each i ∈ I and

ψ′(ι2(j)) = ψ′(ι2(j))ψ′(ι2(j))

= ψ′(ι2(j))c′(m′(ι2(j)))

= ψ′(ι2(j))c(m(ι2(j)))

= ψ2(j)c1(m2(j))c2(m2(j))

= ψ(ι(i))

for each j ∈ J and so (c′, ψ′,m′) = (c, ψ,m). The uniqueness of (c, ψ,m) follows. Hence

π(X) has binary partial products and therefore π(X) is cartesian.

2.2.3 π(X) is Free

There is a forgetful functor

U : π(X)op → Sets

sending (e, γ, g) : (F : I → X0) → (G : J → X0) in π(X) to g : J → I and a forgetful

functor

Uc : crCat0 → rCat0

which forgets finite partial products. Obviously,

π : rCat0 → crCat0,
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sending each restriction functor F : X → Y in rCat0 to a cartesian restriction functor

π(F) in crCat0, is a functor, where π(F) is defined by sending (e, γ, g) : (F : I → X0)→

(G : J → X0) in π(X) to (F(e),F(γ), g) : (F(F ) : I → Y0) → (F(G) : J → Y0) in

π(Y) by noting

F(γ)(j) = F(γ(j))

= F(e(g(j))

= F(e)(g(j)).

There is also an canonical embedding

J : X→ π(X)

which identities objects of X with singleton families:

J (f : X → Y ) = (f, γf , [Y 7→ X]) : (X : {X} → X0)→ (Y : {Y } → X0) :

{X}

X

��

{Y }[Y 7→X]oo

Y

��

γf

}}zzzzzzzz

X1

∂0

||yyyyyyyy
∂1

""DDDDDDDD

X0 X0

where γf (Y ) = (f : X → Y ). Obviously, (f, γf , [Y 7→ X]) : (X : {X} → X0) → (Y :

{Y } → X0) is a well-defined map in π(X).

Note that in the cartesian restriction category π(X) each object F : I → X0 can be

written as the finite partial product of singleton families:

(F : I → X0) =
∏
i∈I

(F (i) : {i} → X0).

For each map (e, γ, g) : (F : I → X0) → (G : J → X0) and each i ∈ I, if i = g(j) for

some j ∈ J , we can construct a map Si = (e(i), γγ(j), [j 7→ g(j)]) : (F (i) : {i} → X0) →
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(G(j) : {j} → X0) between singleton families:

{g(j)}

F (i)

��

{j}[j 7→g(j)]oo

G(j)

��

γγ(j)

}}{{{{{{{{

X1

∂0

{{wwwwwwwww
∂1

!!CCCCCCCC

X0 X0

where γγ(j) = γ(j) : F (g(j))→ G(j) and γ(j) = e(i). Otherwise, when i /∈ g(J), we have

the following map between singleton families Si = (e(i), ∅, ∅) : (F (i) : {i} → X0) → (∅ :

∅ → X0):

{i}

F (i)

��

∅∅oo

∅

��

∅

~~|||||||||

X1

∂0

}}{{{{{{{{
∂1

!!CCCCCCCC

X0 X0

It is easy to see that (e, γ, g) : (F : I → X0)→ (G : J → X0) can be written as the finite

partial product of maps between singleton families:

(e, γ, g) =
∏
i∈I

Si.

To summarize, we have

Lemma 2.2.1 (i) Each object can be written as a finite partial product of singleton

families in π(X);

(ii) Each map between singleton families in π(X) is the form of

(f, γf , [Y 7→ X]) : (X : {X} → X0)→ (Y : {Y } → X0);

(iii) Each map can be written as a finite partial product of maps between singleton fam-

ilies in π(X).
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For each Cartesian restriction category Y, every restriction functor F : X → Uc(Y)

has a finite partial product-preserving restriction functor extension F∗ : π(X) → Y in

crCat0:

X
J //

F $$HHHHHHHHHH Uc(π(X))

Uc(F∗)
��

π(X)

∃!F∗
��

Uc(Y) Y

where F∗ : π(X)→ Y is constructed by

F∗((eX , γY , [Y 7→ X]) : (X : {X} → X0)→ (Y : {Y } → X0)) = F(γY ),

and

F∗((e, γ, g) : (F : I → X0)→ (G : J → X0)) = F∗(
∏
i∈I

Si) =
∏
i∈I

F∗(Si).

Obviously, Uc(F
∗)J = F . If G is a finite partial product-preserving restriction functor

such that Uc(G)J = F , then for each map (eX , γY , [Y 7→ X]) between singleton families

in π(X) we have

G(eX , γY , [Y 7→ X]) = F∗(eX , γY , [Y 7→ X])

and so for each map (e, γ, g) =
∏

i Si with maps Si between singleton families in π(X)

we have

G(e, γ, g) = G(
∏
i

Si) =
∏
i

G(Si) =
∏
i

F∗(Si) = F∗(
∏
i

Si) = F∗(e, γ, g).

That is, G = F∗. Hence such a finite partial product-preserving restriction functor F∗ is

unique up to natural isomorphism. Therefore π(X) is free to Uc : crCat0 → rCat0.

Theorem 2.2.2 π a Uc : crCat0 → rCat0 is an adjoint pair so that π(X) is the free

cartesian restriction category over a restriction category X.
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Chapter 3

Join Restriction Categories

As each inverse semigroup has a natural partial order given by s ≤ t ⇔ s = te for

some idempotent e, join (least upper bound) and meet (greatest lower bound) operations

can be introduced to inverse semigroups so that join completion and meet completion

theorems can be shown (see [31] or [32] for details). Similarly, as each restriction category

is poset enriched with f ≤ g ⇔ f = gf by Lemma 1.6.3, join and meet operations may

exist in restriction categories. In particular, a join restriction category is a restriction

category with a join operation that works well with the restriction and is distributive

with respect to composition, introduced to each hom set (see Definition 3.1.7 below).

This chapter is devoted to studying join restriction categories.

Not every restriction category is a join restriction category. To form a class of join

restriction categories, naturally we ask how a join can be added to a given restriction

category freely. After introducing ^-compatible relation, shared by elements having a

join, and join restriction categories, we immediately answer this question by providing a

construction, called the join completion for restriction categories, using down closed and

^-compatible sets.

Since join completion for inverse semigroups, given by down closed and ∼-compatible

sets, is well known in inverse semigroup theory, one may wonder how join completion

for restriction categories is related to join completion for inverse semigroups. First,

as each inverse semigroup is a both restriction and corestriction category, we can talk

about ^-compatibility, ^op-compatibility, and ^̂-compatibility, where f^̂g if f ^ g

and f ^op g. The ^̂-compatibility is the same as the ∼-compatibility in semigroup

theory so that the join completion for restriction categories coincides with the ^̂-join



80

completion for inverse semigroups in the setting of inverse categories. Then we provide

adjunctions among restriction categories, inverse categories, join restriction categories,

and join inverse categories.

Since the partial map category of a given M-category is a restriction category by

Proposition 1.6.17, it is very natural to wonder precisely which partial map categories

correspond to join restriction categories. The answer, given that join restriction cate-

gories are a very natural concept, is much more involved than one might have suspected.

It involves the existence of certain colimits which must be stable, and, in addition a

significant side-condition on the monics used for the partiality.

Lack and Sobocińsk [28, 29] introduced adhesive categories which provide a general

setting in which double-pushout (DPO) rewriting (see [19]) could be performed. To our

surprise and delight the basic diagrammatic conditions involved in that development

matched the diagrammatic conditions needed for our completeness result. In hindsight,

of course, this should have been expected. One of the most more significant properties

of a join restriction category is that one can formally glue together objects in a join

restriction category to form new objects. This, of course, is directly related to the

operations required in double pushout rewriting.

The relationship between the join restriction categories and adhesive categories is,

unfortunately, not so straightforward. An adhesive category requires all pushouts along

monics exist, all pullbacks exist, and all pushouts along monics are “well-behaved” in the

sense that they are van Kampen squares (see [28, 29] by Lack and Sobocińsk). However,

to form a join for a set of partial maps {(mi, fi)}, which is ^-compatible, in Par(C,M),

we need to have a special colimits for M-maps {mi} that is pullback stable and all

“gaps” between such colimits and M-maps must be in M. To express these precisely,

we introduce the notions of van colimits, M-adhesive categories, and M-gaps. It turns

out that Par(C,M) is a join restriction category if and only if for each ^-compatible



81

set of partial maps {(mi, fi)}, {mi} has a stable colimit and all M-maps between such

stable colimits andM-maps are inM, or equivalently, C is anM-adhesive category and

all M-gaps are in M. The second main goal of this chapter is to provide a proof of the

completeness of join restriction categories in partial map categories.

3.1 Join Restriction Categories

In this section, we shall introduce join restriction categories and provide a construction

that can add a join to eah given restriction category freely, called join completion for

restriction category. Then we shall compare join completion for restriction categories

with join completion for inverse semigroups by providing adjunctions among restriction

categories, inverse categories, join restriction categories, and join inverse categories.

3.1.1 Compatibility and Join

We start with the following lemma.

Lemma 3.1.1 In a restriction category X, let ∅ 6= S ⊆ mapX(X, Y ). If ∨s∈Ss exists

with respect to f ≤ g ⇔ f = gf , then s1s2 = s2s1 for all s1, s2 ∈ S.

Proof: If ∨s∈Ss exists, then s1, s2 ≤ ∨s∈Ss and so

s1 = (∨s∈Ss)s1 and s2 = (∨s∈Ss)s2.

Hence

s1s2 = (∨s∈Ss)s1(∨s∈Ss)s2 = (∨s∈Ss)s2 s1 = s2s1.

�

In a restriction category, by Lemma 3.1.1 above, if ∨s∈Ss exists, then elements in

S must have the relationship, described by s1s2 = s2s1, which will be ^-compatible

relation defined below.
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Definition 3.1.2 In a restriction category, two maps f and g is called ^-compatible,

denoted by f ^ g, if fg = gf . A set S of maps is called ^-compatible if s1 ^ s2 for all

s1, s2 ∈ S.

Some properties of ^-compatibility are summarized in the following lemma.

Lemma 3.1.3 In any restriction category,

(i) f ^ f ;

(ii) f ^ g implies g ^ f ;

(iii) any two restriction idempotents with the same domain are ^-compatible;

(iv) f ≤ g implies f ^ g;

(v) if f ^ f ′ and g ^ g′,then gf ^ g′f ′;

(vi) suppose that f ′ ≤ f and g′ ≤ g. If f ^ g, then f ′ ^ g′;

(vii) f ^ g and f = g imply f = g.

Proof:

(i) Obvious.

(ii) Clear.

(iii) If maps f and g have the same domain, then fg = fg = gf = gf and so f ^ g.

(iv) f ≤ g ⇒ f = gf ⇒ fg = gfg = ggf = gf ⇒ f ^ g.
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(v)

gfg′f ′ = gff ′ g′f ′

= gf ′f g′f ′

= gf ′g′f ′ f

= gg′f ′ f

= g′gf f ′

= g′fgf f ′

= g′ff ′ gf

= g′f ′f gf

= g′f ′gf.

(vi) Since f ′ ≤ f , g′ ≤ g, and f ^ g, we have

ff ′ = f ′, gg′ = g′ and gf = fg.

Hence

g′f ′ = gg′ff ′

= gg′ f f ′

= gf g′ f ′

= fg g′ f ′

= ff ′ gg′

= f ′g′

and therefore f ′ ^ g′.

(vii) f ^ g implies fg = gf and so, f = g gives

f = ff = fg = gf = gg = g.
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�

Now, let us look at the compatibility ^ in a partial map category.

Lemma 3.1.4 In a partial map category Par(C,M), {(mi, fi)}i∈Γ is compatible if and

only if for any i, j ∈ Γ, fiπj = fjπi, where (πi, πj) is the pullback of (mi,mj):

•
πj

��

πi // •
mj

��
• mi // •

Proof: Note that

(mi, fi) ^ (mj, fj) ⇔ (mj, fj)(mi, fi) = (mi, fi)(mj, fj)

⇔ (mj, fj)(mi,mi) = (mi, fi)(mj,mj)

⇔ (miπj, fjπi) = (mjπi, fiπj)

⇔ there is an isomorphism α such that

miπjα = mjπi and fjπiα = fiπj.

Since miπj = mjπi and mi, mj are monics, miπjα = mjπi implies πiα = πi and πjα = πj.

Hence α = 1. Therefore (mi, fi) ^ (mj, fj)⇔ fiπj = fjπi. �

For any subset S of a poset (X,≤), write

↓S = {x ∈ X | ∃s ∈ S such that x ≤ s}.

We say a subset S of a poset (X,≤) is down closed if ↓S = S. The operator ↓ ( ) is a

closure operator that is for any subsets S, T of a poset (X,≤),

↓∅ = ∅, ↓(↓S) =↓S, S ⊆↓S, ↓(S ∪ T ) = (↓S) ∪ (↓T ).

Lemma 3.1.5 In a restriction category C, if S ⊆ C(B,C) and T ⊆ C(A,B), then

(i) ↓((↓S)T ) =↓(ST ) =↓(S(↓T )) =↓((↓S)(↓T )) = (↓S)(↓T );
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(ii) ↓(S) = (↓S). In particular, if S is down closed then so is S.

Proof: (i) Clearly, ↓(ST ) ⊆↓((↓S)T ) since S ⊆↓S. For any x ∈↓((↓S)T ), x ≤ yt for

some y ∈↓S and t ∈ T and so y ≤ s for some s ∈ S. Hence x ≤ yt ≤ st and therefore

x ∈↓ (ST ). It follows that ↓ (S(↓ T )) ⊆↓ (ST ). Then ↓ (ST ) =↓ ((↓ S)T ). Similarly,

↓ (ST ) =↓ (S(↓T )). Now, applying ↓ (ST ) =↓ (↓ (S)T ) to ↓ (S(↓ (T ))), clearly we have

↓(ST ) =↓(S(↓(T ))) =↓((↓S)(↓T )).

For each f ∈↓ ((↓S)(↓T )), f ≤ uv for some u ∈↓S and v ∈↓T so that u ≤ s and

v ≤ t for some s ∈ S and t ∈ T . Hence f ≤ uv ≤ st and therefore f = s · tf ∈ (↓S)(↓T )

as s ∈↓S and tf ∈↓T . Thus, ↓ ((↓S)(↓T )) = (↓S)(↓T ) as (↓S)(↓T ) ⊆↓ ((↓S)(↓T ))

obviously.

(ii) For any x ∈↓(S), x ≤ s for some s ∈ S and so x = s x = sx ∈ (↓S) since sx ≤ s.

Hence ↓(S) ⊆ (↓S). Conversely, for any x ∈↓S, x ≤ s for some s ∈ S and so sx = x.

Then x = sx = s x ∈↓S since s x ≤ s. Hence (↓S) ⊆↓S. Therefore ↓(S) = (↓S). �

A set S of maps is ^-compatible if for any s, s′ ∈ S, s ^ s′. Clearly, each subset of a

^-compatible set is also ^-compatible.

Lemma 3.1.6 Let F : C→ D be a restriction functor. Then, for any ^-compatible set

S ⊆ C(A,B),

(i) both ↓S and F (S) are also a ^-compatible set;

(ii) for any map f : X → A, Sf = {sf | s ∈ S} is ^-compatible;

(iii) ↓F (↓S) =↓F (S).

Proof: (i) By Lemma 3.1.3 (vi), ↓S is ^-compatible.

For any s1, s2 ∈ S, if s1 ^ s2, then s1s2 = s2s1 and so F (s1)F (s2) = F (s2)F (s1).

Hence F (s1) ^ F (s2) and therefore F (S) is ^-compatible.
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(ii) For any sf, s′f ∈ Sf , since s ^ s′, ss′ = s′s. Then ss′f = s′sf and so sfs′f =

s′fsf . Hence sf ^ s′f .

(iii) Clearly, ↓F (S) ⊆↓F (↓S) since S ⊆↓S. Conversely, for any x ∈↓F (↓S), there is

y ∈↓S such that x ≤ F (y). But y ≤ s for some s ∈ S. Then x ≤ F (y) ≤ F (s). Hence

x ∈↓F (S) and therefore ↓F (↓S) ⊆↓F (S). So ↓F (↓S) =↓F (S). �

Definition 3.1.7 A restriction category C is called a (finite) join restriction category

if for each pair of objects A and B and each (finite) ^-compatible subset S ⊆ C(A,B)

there is ∨s∈Ss ∈ C(A,B) such that

[J.1] ∨s∈Ss is the join with respect to the partial order ≤ on C(A,B),

[J.2] ∨s∈Ss = ∨s∈Ss, and for any f ∈ C(B, Y ) and g ∈ C(X,A),

[J.3] (∨s∈Ss)g = ∨s∈S(sg),

[J.4] f(∨s∈Ss) = ∨s∈S(fs).

The last condition [J.4] is, in fact, implied by the other conditions as shown in the

following lemma:

Lemma 3.1.8 In a join restriction category C,

(i) for each (finite) ^-compatible subset S ⊆ C(A,B) and each s ∈ S, s ^ ∨s∈Ss;

(ii) for each (finite) ^-compatible subset S ⊆ C(A,B) with t ∈ S, (∨s∈Ss)t = t;

(iii) the condition [J.4] is redundant in Definition 3.1.7;

(iv) for any ^-compatible sets S ⊆ C(B,C) and T ⊆ C(A,B),
(
∨s∈S s

)(
∨t∈T t

)
=

∨s∈S,t∈T (st);

(v) for any ^-compatible set T ⊆ C(A,B), ∨x∈↓Tx = ∨t∈T t. In particular, for any

map f , ∨x∈↓{f}x = f .
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Proof:

(i) Since s ≤ ∨s∈Ss, by Lemma 3.1.3(iv) we have s ^ ∨s∈Ss.

(ii) Since S is ^-compatible, for each s ∈ S \ {t} we have

st = ts ≤ t.

Hence

(∨s∈Ss)t =
(

(∨s′∈S\{s}s′) ∨ t
)
t

= (∨s′∈S\{s}s′)t ∨ t ([J.3])

= (∨s′∈S\{s}s′t) ∨ t

= t.

(iii) We observe first that f(∨s∈Ss) = ∨s∈S(fs) since

f(∨s∈Ss) =
(
∨s∈S s

)
f(∨s∈Ss)

= ∨s∈S
(
sf(∨s∈Ss)

)
([J.3])

= ∨s∈S
(
sf(∨s∈Ss)s

)
= ∨s∈S

(
sfs
)

= ∨s∈S
(
fs
)
.
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It follows that

f(∨s∈Ss) = f(∨s∈Ss)

= ∨s∈Sfs

= ∨s∈Sfs ([J.2])

= ∨s∈Sfs

= ∨s∈Sfs ([J.2]).

Since, for each t ∈ S, t ≤ ∨s∈Ss, we have

ft ≤ f ∨s∈S s.

Hence

∨s∈Sfs ≤ f ∨s∈S s

and therefore

∨s∈Sfs ^ f ∨s∈S s

Thus, by Lemma 3.1.3(vii),

f
(
∨s∈S s

)
= ∨s∈S(fs).

That is, the condition [J.4] is redundant.

(iv) By [J.3] and [J.4].

(v) Since T ⊆↓ T , we have ∨t∈T t ≤ ∨x∈↓Tx.

For each x ∈↓ T , there is t ∈ T such that x ≤ t. Then x ≤ t ≤ ∨t∈T t and so

∨x∈↓Tx ≤ ∨t∈T t. Thus, ∨x∈↓Tx = ∨t∈T t.

�
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3.1.2 Join Completion for Restriction Categories

A restriction functor F : C→ D between two join restriction categories C and D is called

a join restriction functor if for any ^-compatible subset S, F (∨s∈Ss) = ∨s∈SF (s). Join

restriction categories and join restriction functors form a category, denoted by jrCat0,

which is a subcategory of rCat0. Clearly, we have the inclusion functor Ij : jrCat0 →

rCat0.

Given any restriction category X, we construct a join restriction category j(X), called

the join completion of X, with

objects: X ∈ X;

maps: a map S : A→ B is given by a down closed and ^-compatible set S ⊆ X(A,B);

identities: 1A =↓{1A} = {e|e = e : A→ A in X};

composition: for any maps S : A → B and T : B → C in j(X), TS = {ts|s ∈ S, t ∈

T};

restriction: S = {s|s ∈ S};

join: ∨i∈ΓSi =
⋃
i∈Γ Si, where each Si is a down closed and ^-compatible set in X and

{Si}i∈Γ is a ^-compatible set in j(X).

By Lemma 3.1.5, it is easy to see that j(X) is a restriction category as shown in the

following lemma.

Lemma 3.1.9 j(X) is a restriction category.

Proof: By Lemma 3.1.5, clearly, identities, composition, and restriction are well-

defined. For all j(X)-maps S : A→ B, T : B → C, and U : C → D, since

1BS =↓{1B}S = S = S ↓{1A} = S1A
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and

U(TS) = (UTS) = (UT )S,

j(X) is a category. Now the four restriction axioms are verified as follows.

[R.1] SS = {s1s2|s1, s2 ∈ S} = S as S is down closed and each s1s2 ≤ s1 ∈ S.

[R.2] S1 S2 = {s1 s2|s1 ∈ S1, s2 ∈ S2} = {s2 s1|s1 ∈ S1, s2 ∈ S2} = S2 S1.

[R.3] S2S1 = {s2s1|s1 ∈ S1, s2 ∈ S2} = {s2 s1|s1 ∈ S1, s2 ∈ S2} = S2 S1.

[R.4] Clearly, TS = {ts|s ∈ S, t ∈ T} = {sts|s ∈ S, t ∈ T} ⊆ STS. On the other hand,

for all s1, s2 ∈ S and t ∈ T , since S is ^-compatible, s1ts2 = s1s2ts2 = s2s1ts2 ≤

s2ts2 = ts2. Hence STS ⊆ TS. Thus, TS = STS.

�

The relations ^ and ≤ in j(X) are characterized in the following lemma.

Lemma 3.1.10 For any map S, T : A→ B in j(X):

(i) S ^ T in j(X) if and only if s ^ t in X for any s ∈ S and t ∈ T .

(ii) If S ^ T , then S ≤ S ∪ T and T ≤ S ∪ T .

(iii) S ≤ T in j(X) if and only if S ⊆ T .

Proof: (i) If S ^ T in j(X), then ST = TS. For any s ∈ S and t ∈ T , since

st ∈ ST = TS, there are s′ ∈ S, t′ ∈ T such that st ≤ t′s′. Hence, by noticing t ^ t′

implies tt′ = t′t,

st = t′s′st = t′s′st = t′t s′s = tt′ s′s = ts(t′ s′) ≤ ts.

Symmetrically, we have ts ≤ st. Then ts = st and so s ^ t.
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Conversely, if for any s ∈ S, t ∈ T , s ^ t, then st = st and so

ST = {st | s ∈ S, t ∈ T} = {ts | s ∈ S, t ∈ T} = TS.

Thus, S ^ T in j(X), as desired.

(ii) Clearly, S ⊆ (S ∪ T )S since S ⊆ S ∪ T . For any x ∈ (S ∪ T )S, x ≤ ws for

some w ∈ S ∪ T and s ∈ S. If w ∈ S, then x ≤ ws ≤ w ∈ S implies x ∈ S since S is

down closed. If w ∈ T , then ws = sw ≤ s ∈ S since S ^ T and so x ∈ S too. Hence

(S ∪ T )S ⊆ S and therefore (S ∪ T )S = S. Then S ≤ S ∪ T . Similarly, T ≤ S ∪ T .

(iii) If S = ∅, then TS = ∅ = S and so S ≤ T . If ∅ 6= S ⊆ T , then, for any t ∈ T and

s ∈ S, ts = st ≤ s since s, t ∈ T and T is ^-compatible. Hence ts ∈ S and therefore

TS ⊆ S. Clearly, for any s ∈ S, s = ss ∈ TS. Thus, S ⊆ TS. Then S = TS and so

S ≤ T .

Conversely, if S ≤ T , then S = TS. For any s ∈ S, we have s ≤ ts′ ≤ t for some

s′ ∈ S, t ∈ T and so s ∈ T . Hence S ⊆ T , as desired. �

Now we are ready to show that j(X) is a join restriction category.

Lemma 3.1.11 j(X) is a join restriction category.

Proof: By Lemma 3.1.10 (i),
⋃
i∈Γ Si is down closed and ^-compatible and so the join

∨i∈ΓSi =
⋃
i∈Γ Si is well-defined.

For any ^-compatible set {Si}i∈Γ ⊆ j(X)(A,B), each Si ≤ ∨i∈ΓSi. On the other

hand, if each Si ≤ X, then XSi = Si and so X(
⋃
i∈Γ Si) =

⋃
i∈Γ Si. Hence X

⋃
i∈Γ Si =⋃

i∈Γ Si and therefore ∨i∈ΓSi =
⋃
i∈Γ Si ≤ X. Thus, ∨i∈ΓSi =

⋃
i∈Γ Si is the join with

respect to the partial order ≤ on the hom-set of j(X)(A,B). Clearly, for any map

M ∈ j(X)(B, Y ) and N ∈ j(X)(X,A) we have

M(∨i∈ΓSi) = M(
⋃
i∈Γ

Si) =
⋃
i∈Γ

(MSi) = ∨i∈Γ(MSi),
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(∨i∈ΓSi)N = (
⋃
i∈Γ

Si)N =
⋃
i∈Γ

(SiN) = ∨i∈Γ(SiN),

and

∨i∈ΓSi =
⋃
i∈Γ

Si =
⋃
i∈Γ

Si = ∨i∈ΓSi.

Hence j(X) is indeed a join restriction category. �

Join completion j is indeed a left adjoint of the inclusion functor jrCat0 → rCat0.

Theorem 3.1.12 Ij : jrCat0 → rCat0 has a left adjoint given by the join completion

j.

Proof: For any restriction category X, we have a faithful restriction functor

ηX : X→ Ijj(X)

given by taking f : X → Y to ↓{f} : X → Y , which serves as the unit of j a Ij. In fact,

for any join restriction category and restriction functor F : X → Ij(Y), there is a join

restriction functor F# : j(X)→ C given by sending S : A→ B to ∨ ↓(F (S)) : F (A)→

F (B) such that

X
ηX //

F ''OOOOOOOOOOOOOO Ij(j(X))

Ij(F#)
��

j(X)

F#

��
Ij(C) C

commutes. Suppose that G : j(X)→ C is a join restriction functor such that Ij(G)ηX =

F . For any map S : A → B in j(X), since S is down closed and ^-compatible, S =

{s}s∈S = ∨s∈S(↓{s}), where each s : A → B is a map in X. Clearly, for each s ∈ S,

G(↓{s}) = F (s) = F#(↓{s}). Hence

G(S) = G(∨s∈S ↓{s}) = ∨s∈SG(↓{s}) = ∨s∈SF#(↓{s}) = F#(∨s∈S ↓{s}) = F#(S)

and therefore the uniqueness of F# follows. Thus, j a Ij. �
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3.1.3 Join Completion for Inverse Categories

Join completion for inverse semigroups is well-known (See [31]). In this subsection, we

shall describe the join completion for inverse categories and compare it with the join

completion given in the last subsection. Throughout this subsection, I is an inverse

category.

For a given X ∈ ob(I), we write

E(X) = {f : X → X | f 2 = f}, E(I) =
⋃

X∈ob(I)

E(X)

and

O(X) = {f : X → X | f = f},O(I) =
⋃

X∈ob(I)

O(X).

Some basic properties of inverse categories are summarized in the following lemma.

Lemma 3.1.13 In an inverse category I,

(1) for each f ∈ E(I), f (−1) = f ;

(2) for each X ∈ ob(I), E(X) = O(X). In particular, two idempotents with the same

domain commute;

(3) for each idempotent e and each map f , both f (−1)ef and fef (−1) are idempotents

whenever they are defined. In particular, for each f ∈ map(I), both f (−1)f and

ff (−1) are idempotents;

(4) for each f ∈ map(I), (f (−1))(−1) = f ;

(5) for f1, · · · , fn ∈ map(I) such that f1 · · · fn is defined, (f1 · · · fn)(−1) = f
(−1)
n · · · f (−1)

1 ;

(6) for idempotents e : X → X and e′ : Y → Y and a map f : X → Y , fe ≤ f and

e′f ≤ f ;

(7) the following are equivalent:
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(7.1) g ≤ f ,

(7.2) g = fe for some idempotent e,

(7.3) g = e′f for some idempotent e′,

(7.4) g(−1) ≤ f (−1),

(7.5) g = gg(−1)f ;

(8) if g ≤ f , then g(−1) ≤ f (−1), g(−1)g ≤ f (−1)f , and gg(−1) ≤ ff (−1).

Proof:

(1) For each f ∈ E(I), f 2 = f . Then

fff = f 2f = f 2 = f

and so f (−1) = f .

(2) For each f ∈ E(X), f = f (−1)f = f 2 = f and so f ∈ O(X). Obviously,

O(X) ⊆ E(X). Thus, E(X) = O(X). Since restriction idempotents are com-

mutative, idempotents are all restriction idempotents so that they are commutative.

(3) Since idempotents are commutative,

(f (−1)ef)2 = f (−1)eff (−1)ef = f (−1)eff (−1)f = f (−1)ef.

Similarly, (fef (−1))2 = fef (−1). So both f (−1)ef and fef (−1) are idempotents.

In particular, taking e = 1, one has that both f (−1)f and ff (−1) are idempotents.

(4) As f (−1) is the unique solution of xfx = x and fxf = f .

(5) When n = 2, using idempotents with the same domain are commutative,

f1f2(f
(−1)
2 f

(−1)
1 )f1f2 = f1(f2f

(−1)
2 )(f

(−1)
1 f1)f2 = f1(f

(−1)
1 f1)(f2f

(−1)
2 )f2 = f1f2
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and

f
(−1)
2 f

(−1)
1 (f1f2)f

(−1)
2 f

(−1)
1 = f

(−1)
2 (f

(−1)
1 f1)(f2f

(−1)
2 )f

(−1)
1

= f
(−1)
2 (f2f

(−1)
2 )(f

(−1)
1 f1)f

(−1)
1 = (f

(−1)
2 f2f

(−1)
2 )(f

(−1)
1 f1f

(−1)
1 ) = f

(−1)
2 f

(−1)
1 .

Then (f1f2)(−1) = f
(−1)
2 f

(−1)
1 and so, by mathematical induction,

(f1 · · · fn)(−1) = f (−1)
n · · · f (−1)

1 .

(6) As ffe = ffe = fe and fe′f = e′f = e′f .

(7) (7.1) ⇒ (7.2): g ≤ f ⇒ g = fg(−1)g so that there is an idempotent e = g(−1)g such

that g = fe.

(7.2)⇒ (7.3): Since fef (−1)f = ff (−1)fe = fe.

(7.3) ⇒ (7.4): Since g = e′f ≤ f implies g = fg(1)g, g(−1) = g(−1)gf (−1) ≤ f (−1) as

g(−1)g is an idempotent.

(7.4)⇒ (7.5): g(−1) ≤ f (−1) implies g(−1) = f (−1)gg(−1) implies g = gg(−1)f .

(7.5)⇒ (7.1): As gg(−1) is an idempotent, g = gg(−1)f ≤ f .

(8) If g ≤ f , then g(−1)g ≤ f (−1)g ≤ f (−1)f and gg(−1) ≤ gf (−1) ≤ ff (−1).

�

A category C is called a regular-inverse category if one of the following two conditions

is satisfied:

(1) each C-map f has at least one map g, called a regular-inverse of f , such that fgf = f ;

(2) each C-map f has at least one map h, called an inverse of f , such that fhf = f and

hfh = h.
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Remark 3.1.14 The two conditions in the definition of regular-inverse categories above

are equivalent. To see this, assume first that C is defined by (1). Then gfg satisfies

f(gfg)f = f and (gfg)f(gfg) = gfg so that gfg is an inverse of f . Conversely, if C is

defined by (2), then, obviously, h serves as a regular-inverse of f in (1).

As inverse semigroups can be characterized by regular semigroups in which idempo-

tents commute, inverse categories can be characterized by regular-inverse categories in

which idempotents commute. To show this, we need the following technical lemma.

Lemma 3.1.15 In a category, if h1 and h2 are inverse of f , then the following are

equivalent:

(i) (fh1)(fh2) = (fh2)(fh1) and (h1f)(h2f) = (h2f)(h1f);

(ii) fh1 = fh2 and h1f = h2f ;

(iii) h1fh2 = h2fh1;

(iv) h1 = h2.

Proof: (i) ⇒ (ii): fh1 = (fh2f)h1 = (fh1)(fh2) = fh2. Similarly, h1f = h1(fh2f) =

(h2f)(h1f) = h2f .

(ii)⇒ (iii): h1fh2 = h2fh2 = h2fh1.

(ii)⇒ (iv): h1 = h1fh1 = h2fh1 = h2fh2 = h2.

(iii)⇒ (i) and (iv)⇒ (i) are clear. �

Now we list a few characterizations of inverse categories in the following proposition.

Proposition 3.1.16 For a category C, the following are equivalent:

(i) C is an inverse category;
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(ii) C is a category in which each map has a unique inverse;

(iii) there is a functor ( )◦ : C → Cop that is the identity on objects and satisfies

(f ◦)◦ = f , ff ◦f = f , and ff ◦gg◦ = gg◦ff ◦;

(iv) C is a regular-inverse category in which for each pair of idempotents with the same

domain commute.

Proof: (i)⇔ (ii)⇔ (iii): By Theorem 2.20 in [14].

(i) ⇒ (iv): Clearly, each inverse category is a regular-inverse category in which, by

Lemma 3.1.13(2), each pair of idempotents with the same domain commute.

(iv) ⇒ (ii): Assume that each pair of idempotents with the same domain commute

and that map f : A → B has inverse h1 and h2. By Lemma 3.1.15, h1 = h2. Thus, the

uniqueness of the inverse of f follows. Hence C is an inverse category. �

Remark 3.1.17 The existence of a unique regular-inverse implies clearly the existence

of a unique inverse but the opposite does not hold true. For example, IX , the set of all

partial one to one transformations on a set X, forms a one-object category, called the

symmetric inverse semigroup on X in inverse semigroup theory. The empty transforma-

tion ∅ : X → X has a unique inverse ∅ as ∅h∅ = ∅ and h∅h = h implies h = ∅. But ∅

does not have a unique regular inverse as ∅g∅ = ∅ for all one to one transformation g on

X. Hence the existence of a unique inverse in Proposition 3.1.16(ii) can not be replaced

by the existence of a unique regular-inverse.

In order to give the definition of join restriction categories and construct free join

restriction categories over restriction categories, at the beginning of this chapter we in-

troduced ^-compatibility in a restriction category by f ^ g ⇔ fg = gf . As each

inverse category I is both a restriction and a co-restriction category, we can talk about

^-compatibility, ^op-compatibility, and ^̂-compatibility, where, f ^op g in I if and
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only if f ^ g in Iop, and f^̂g if and only if f ^ g and f ^op g. Furthermore, ^,

^op, and ^̂ are precisely ∼l, ∼r, and ∼, which are defined in inverse semigroup theory,

respectively. To prove this, we first recall the compatible relations ∼l, ∼r, and ∼ in

inverse semigroup theory.

As in [31], for I-maps f, g : X → Y , the ∼l-compatibility is defined by

f ∼l g ⇔ fg(−1) ∈ E(Y ),

the ∼r-compatibility relation is defined by

f ∼r g ⇔ f (−1)g ∈ E(X),

and the ∼-compatible relation is defined by

f ∼ g ⇔ fg(−1) ∈ E(Y ) and f (−1)g ∈ E(X).

Obviously, the three relations are reflexive and symmetric but not transitive.

The relationship between ∼-compatibility and ^-compatibility is shown in the fol-

lowing lemma.

Lemma 3.1.18 In an inverse category I,

(i) f ∼l g ⇔ f (−1) ∼r g(−1);

(ii) f ∼l g if and only if fg(−1)g = gf (−1)f if and only if f ^ g;

(iii) f ∼r g if and only if g(−1)gf = f (−1)fg if and only if f ^op g;

(iv) f ∼ g if and only if fg(−1)g = gf (−1)f and g(−1)gf = f (−1)fg if and only if f^̂g;

(v) if f ≤ h then f ∼ h and if f ≤ h and g ≤ h then f ∼ g.

Proof:

(i) f ∼l g ⇔ (f (−1))(−1)g(−1) = fg(−1) ∈ E(I)⇔ f (−1) ∼r g(−1).
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(ii) If f ∼l g, then fg(−1) ∈ E(I) and so gf (−1) = (fg(−1))(−1) = fg(−1).

To prove that fg(−1)g = gf (−1)f , we first claim that w ≤ f and w ≤ g implies

w ≤ gf (−1)f and w ≤ fg(−1)g.

In fact, w ≤ f and w ≤ g implies w(−1)w ≤ f (−1)f by Lemma 3.1.13 so that

w = ww(−1)w ≤ gf (−1)f.

Similarly, w ≤ f and w ≤ g implies w = ww(−1)w ≤ fg(−1)g.

Now, since fg(−1)g ≤ f and fg(−1)g ≤ g as g(−1) and fg(−1) are restriction idempo-

tents, we have

fg(−1)g ≤ gf (−1)f.

Similarly, as gf (−1)f = fg(−1)f ≤ f and gf (−1)f ≤ g,

gf (−1)f ≤ fg(−1)g.

Thus, gf (−1)f = fg(−1)g.

Conversely, if gf (−1)f = fg(−1)g, then

fg(−1) = fg(−1)gg(−1) = gf (−1)fg(−1) = (fg(−1))(−1)fg(−1) ∈ E(I)

and so f ∼l g. Thus, f ∼l g if and only if gf (−1)f = fg(−1)g.

(iii) Similar to (ii).

(iv) By (ii) and (iii).

(v) If f ≤ h, then f = hf (−1)f and so

f (−1)h = (hf (−1)f)(−1)h = (f (−1)f)(h(−1)h)

and

fh(−1) = hf (−1)fh(−1) = (hf (−1))(hf (−1))(−1).
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Hence both f (−1)h and fh(−1) are idempotents and therefore f ∼ h.

If f ≤ h and g ≤ h, then f = hf (−1)f and g = hg(−1)g and so

fg(−1) = hf (−1)f(hg(−1)g)(−1) = hf (−1)fg(−1)gh(−1)

is an idempotent by Lemma 3.1.13. Similarly, f (−1)g is an idempotent too. Thus,

f ∼ g.

�

A set S ⊆ mapI(A,B) is said to be ∼l-compatible (resp. ∼r-compatible, ∼-compatible,

^-compatible, ^op-compatible, ^̂-compatible) if for all f, g ∈ S, f ∼l g (resp. f ∼r g,

f ∼ g, f ^ g, f ^op g, f^̂g).

Recall that an inverse semigroup S is join complete if every non-empty ^̂-compatible

subset has a join ([31], p.27). An inverse semigroup S is left (right) infinitely distributive

if, whenever A ⊆ S is a non-empty subset for which ∨A exists, then ∨sA (∨(As)) exists

for any s ∈ S and s(∨A) = ∨(sA) ((∨A)s = ∨(As)). An inverse semigroup that is

both left and right infinitely distributive is called infinitely distributive ([31], p.28). It

is well-known that each inverse semigroup can be embedded in a complete, infinitely

distributive inverse semigroup, called join completion ([31], p.31). One can describe the

join completion jj(I) for inverse category I using ^̂-compatible down closed sets as its

maps as follows.

Let jj(I) be with

objects: X ∈ I;

maps: a map P : X → Y is given by a ^̂-compatible and down closed subset

P ⊆ mapI(X, Y );
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identities: 1X = O(X);

composition: for any maps P : X → Y and Q : Y → Z in jj(I), QP = {gf |f ∈ P, g ∈

Q};

restriction: P = P (−1)P ;

join: ∨i∈ΓPi =
⋃
i∈Γ Pi, where each Pi : X → Y is ^̂-compatible and down closed in I

and {Pi}i∈Γ is a ^̂-compatible set in jj(I).

To show that jj(I) is an inverse category, we need the following lemma.

Lemma 3.1.19 Given an inverse category I,

(i) O(X) is ^̂-compatible and down closed in I;

(ii) if P ⊆ mapI(X, Y ) is ∼l-compatible (∼r-compatible) and down closed, then P (−1)

is ∼r-compatible (∼l-compatible) and down closed;

(iii) if P ⊆ mapI(X, Y ) and Q ⊆ mapI(Y, Z) are ^̂-compatible (resp. ^-compatible,

^op-compatible) and down closed, then so is QP ⊆ mapI(X,Z) ^̂-compatible (resp.

^-compatible, ^op-compatible) and down closed;

(iv) if P ⊆ mapI(X, Y ) is ∼r-compatible and down closed, then P (−1)P = {a(−1)a|a ∈

P} is ^̂-compatible and down closed and PP (−1)P = P . If P ⊆ mapI(X, Y ) is

∼l-compatible and down closed, then PP (−1) = {aa(−1)|a ∈ P} is ^̂-compatible and

down closed and PP (−1)P = P ;

(v) if P ⊆ mapI(X,X) is ^̂-compatible and down closed, then P 2 = P if and only if

P ⊆ O(X).

Proof:
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(i) If e ≤ f ∈ O(X), then e = fe ∈ O(X) and so O(X) is down closed. Obviously,

for all e, e′ ∈ O(X), e(e′)(−1) = ee′ ∈ O(X) and e(−1)e′ = ee′ ∈ O(X). Hence e^̂e′

and so O(X) is ^̂-compatible. Thus, O(X) is ^̂-compatible and down closed.

(ii) If f ≤ p(−1) for some p ∈ P , then f = p(−1)f (−1)f and so

f (−1) = f (−1)fp ≤ p ∈ P

as f (−1)f is an idempotent. Hence f (−1) ∈ P as P is down closed, and therefore

f = (f (−1))(−1) ∈ P (−1). Thus, P (−1) is down closed.

For each p
(−1)
1 , p

(−1)
2 ∈ P (−1) with p1, p2 ∈ P , since P is ∼l-compatible, p1 ∼l p2.

Then we have p
(−1)
1 ∼r p(−1)

2 and so P (−1) is ∼r-compatible.

(iii) We only show the case of ^̂ as ^ and ^op cases are similar. If h ≤ gf ∈ QP with

f ∈ P and g ∈ Q, then h = gfh(−1)h. Since fh(−1)h ≤ f and P is down closed,

fh(−1)h ∈ P and h = g(fh(−1)h) ∈ QP.

Hence QP is down closed.

To show that QP is ^̂-compatible, let g1f1, g2f2 ∈ QP with f1, f2 ∈ P and g1, g2 ∈

Q. Since P and Q are ^̂-compatible, f1f
(−1)
2 , g1g

(−1)
2 , f

(−1)
1 f2, and g

(−1)
1 g2 are

idempotents. Then

(g1f1)(−1)g2f2 = f
(−1)
1 g

(−1)
1 g2f2 ≤ f

(−1)
1 f2 ∈ O(I)

and

g1f1(g2f2)(−1) = g1f1f
(−1)
2 g

(−1)
2 ≤ g1g

(−1)
2 ∈ O(I)

and so both g1f1(g2f2)(−1) and (g1f1)(−1)g2f2 are idempotents. Thus, g1f1^̂g2f2.



103

(iv) Obviously, {a(−1)a|a ∈ P} ⊆ P (−1)P . For each f (−1)g ∈ P (−1)P with f, g ∈ P , if P

is ∼r-compatible, then f (−1)g ∈ O(I). Since ff (−1)g ≤ g ∈ P , ff (−1)g ∈ P . Hence

f (−1)g = (f (−1)g)(−1)f (−1)g

= g(−1)ff (−1)g

= g(−1)ff (−1)ff (−1)g

= (ff (−1)g)(−1)(ff (−1)g)

∈ {a(−1)a|a ∈ P}.

Thus, P (−1)P = {a(−1)a|a ∈ P}.

Let e ≤ f (−1)f ∈ P (−1)P with f ∈ P . Then

fe ≤ ff (−1)f = f ∈ P.

But

e = f (−1)fe = f (−1)fe2 = ef (−1)fe = (fe)(−1) · fe.

Hence e ∈ P (−1)P and therefore P (−1)P is down closed.

For all f (−1)f, g(−1)g ∈ P (−1)P with f, g ∈ P , clearly both

(f (−1)f)(−1)g(−1)g = f (−1)fg(−1)g

and

f (−1)f(g(−1)g)(−1) = f (−1)fg(−1)g

are idempotents. Hence f (−1)f^̂g(−1)g and therefore P (−1)P is ^̂-compatible and

down closed.

Obviously P ⊆ PP (−1)P as p = pp(−1)p ∈ PP (−1)P for each p ∈ P . To prove

the inverse direction, let fg(−1)h ∈ PP (−1)P with f, g, h ∈ P . Since P (−1)P =

{p(−1)p|p ∈ P}, there exists u ∈ P such that g(−1)h = u(−1)u. Then

fg(−1)h = fu(−1)u ≤ f ∈ P
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and so fg(−1)h ∈ P as P is down closed. Hence PP (−1)P ⊆ P and therefore

PP (−1)P = P .

Similarly, if P is ∼l-compatible and down closed, then PP (−1) = {aa(−1)|a ∈ P} is

^̂-compatible and down closed and PP (−1)P = P .

(v) For each ^̂-compatible and down closed subset P ⊆ mapI(X, Y ) such that P 2 = P

and each p ∈ P , we have p = p1p2 for some p1, p2 ∈ P . Then

p = pp(−1)p = p(p1p2)(−1)p = (pp
(−1)
2 )(p

(−1)
1 p)

is an idempotent as p^̂p1 and p^̂p2 and so P ⊆ O(X).

On the other hand, if a ^̂-compatible and down closed subset P ⊆ O(X), then,

clearly,

P 2 = PP = P (−1)P = {p(−1)p|p ∈ P} = {pp|p ∈ P} = {p|p ∈ P} = P.

So, P : X → X is an idempotent in jj(I).

�

We can now show that jj(I) is an inverse category.

Lemma 3.1.20 jj(I) is an inverse category.

Proof: By Lemma 3.1.19 (i) and (iii), the identity and composition in jj(I) are well-

defined. To show that jj(I) is a category, we need to verify both identity and associative

laws.

For each jj(I)-map P : X → Y ,

1Y P = O(Y )P ⊇ P

as 1Y ∈ O(Y ). On the other hand, for each ep ∈ O(Y )P with e ∈ O(Y ) and p ∈ P ,

ep ≤ p ∈ P.
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Since P is down closed, ep ∈ P . Hence O(Y )P ⊆ P and therefore 1Y P = O(Y )P = P .

Similarly, we have P1X = PO(X) = P . So identity law holds true.

For all jj(I)-maps P : X → Y , Q : Y → Z, and R : Z → A,

R(QP ) = {r(qp)|p ∈ P, q ∈ Q, r ∈ R} = {(rq)p|p ∈ P, q ∈ Q, r ∈ R} = (RQ)P.

Hence associative law holds true and therefore jj(I) is a category.

For each jj(I)-map P : X → Y , by Lemma 3.1.19 (iv), PP (−1)P = P . So jj(I) is a

regular-inverse category.

Finally, by Lemma 3.1.19 (v), each map P is an idempotent in jj(I) if and only if

P ⊆ O(I) and so they commute. Thus, jj(I) is an inverse category by Proposition 3.1.16.

�

The following lemma characterizes ≤ and ^̂ and verifies that ∨ is well-defined in

jj(I).

Lemma 3.1.21 (i) For jj(I)-maps P1, P2 : X → Y , P1 ≤ P2 if and only if P1 ⊆ P2;

(ii) for jj(I)-maps Pi : X → Y, i ∈ Γ, {Pi|i ∈ Γ} is ^̂-compatible in jj(I) if and only if⋃
i∈Γ Pi is ^̂-compatible and down closed in I.

Proof:

(i) If P1 ≤ P2, then the fact that P
(−1)
1 P1 = {p(−1)p|p ∈ P1} consists of idempotents

implies that P1 = P2P
(−1)
1 P1 ⊆ P2 as P2 is down closed.

Conversely, if P1 ⊆ P2, then, clearly,

P1 = P1P
(−1)
1 P1 ⊆ P2P

(−1)
1 P1.

On the other hand, as P1 is ^̂-compatible and down closed, P
(−1)
! P1 = {p(−1)

1 p1|p1 ∈

P1}. For each p2p
(−1)
1 p1 ∈ P2P

(−1)
1 P1 with p1 ∈ P1 and p2 ∈ P2, p1 ∈ P2 and
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p2 ∈ P2 implies that p2p
(−1)
1 is an idempotent as p1^̂p2. Hence p2p

(−1)
1 p1 ∈ P1 as

p2p
(−1)
1 p1 ≤ p1 ∈ P1, and therefore P2P

(−1)
1 P1 ⊆ P1. Thus, P1 = P2P

(−1)
1 P1.

(ii) If
⋃
i∈Γ Pi is ^̂-compatible and down closed in I, then,

⋃
i∈Γ Pi is a jj(I)-map and

for all i, j ∈ Γ, Pi ≤
⋃
i∈Γ Pi and Pj ≤

⋃
i∈Γ Pi and so Pi^̂Pj. Hence {Pi|i ∈ Γ} is

^̂-compatible in jj(I).

Conversely, suppose that {Pi}i∈Γ is ^̂-compatible in jj(I). For all f, g ∈
⋃
i∈Γ Pi,

assume that f ∈ Pi and g ∈ Pj for some i, j ∈ Γ. Since {Pi|i ∈ Γ} is ^̂-compatible

in jj(I), both P
(−1)
i Pj ⊆ O(jj(I)) and PiP

(−1)
j ⊆ O(jj(I)) and so both f (−1)g and

fg(−1) are idempotents. Hence f^̂g and therefore
⋃
i∈Γ Pi is ^̂-compatible.

If f ≤ p ∈
⋃
i∈Γ Pi, then f ≤ p ∈ Pi for some i ∈ Γ and so f ∈ Pi ⊆

⋃
i∈Γ Pi as Pi

is down closed. Hence
⋃
i∈Γ Pi is ^̂-compatible and down closed.

�

Definition 3.1.22 An inverse category I is called a join inverse category if for each

pair of I-objects X and Y and each ^̂-compatible subset P ⊆ mapI(X, Y ), there is

∨p∈Pp ∈ mapI(X, Y ) such that the conditions [J.1], [J.2], [J.3], and [J.4] in the definition

of join restriction categories (Definition 3.1.7) are satisfied.

The inverse categories and join functors (functors that preserve joins) form a subcategory

jinvCat0 of invCat0 so that there is an obvious inclusion Ijj : jinvCat0 → invCat0.

jj(I) is actually a join inverse category as shown in the following lemma.

Lemma 3.1.23 The inverse category jj(I) is a join inverse category.

Proof: it is clear that the inverse category jj(I) is a restriction category with the

restriction P = P (−1)P = {p(−1)p|p ∈ P}. The four join axioms are verified as follows.
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[J.1] For each ^̂-compatible set of jj(I)-maps Pi : X → Y, i ∈ Γ, the join ∨i∈ΓPi is given

by
⋃
i∈Γ Pi. The join is well-defined as

⋃
i∈Γ Pi is ^̂-compatible and down closed

by Lemma 3.1.21. Clearly, each Pi ≤
⋃
i∈Γ Pi = ∨i∈ΓPi. If Pi ≤ Q for each i ∈ Γ,

then Pi ⊆ Q and so ∨i∈ΓPi =
⋃
i∈Γ Pi ⊆ Q.

[J.2]

∨i∈ΓPi =
⋃
i∈Γ

Pi = (
⋃
i∈Γ

Pi)
(−1)

⋃
i∈Γ

Pi =
{
p(−1)p|p ∈

⋃
i∈Γ

Pi
}

=
⋃
i∈Γ

{
p

(−1)
i pi|pi ∈ Pi

}
= ∨i∈ΓP

(−1)
i Pi = ∨i∈ΓPi.

[J.3] S
(
∨i∈Γ Pi

)
= S

(⋃
i∈Γ Pi

)
=
⋃
i∈Γ SPi = ∨i∈ΓSPi.

[J.4] (∨i∈ΓPi)T =
⋃
i∈Γ PiT = ∨i∈ΓPiT .

�

We are now ready to show that jj(I) is free.

Theorem 3.1.24 The inclusion Ijj : jinvCat0 → invCat0 has a left adjoint given by

the join completion jj.

Proof: For any inverse category I, we have a faithful functor

ηI : I→ Ijj(jj(I))

given by taking f : X → Y to ↓f : X → Y , which serves as the unit of jj a Ijj. In fact,

for any join inverse category X and any functor F : I → Ijj(X), there is a join functor

F# : jj(I)→ X given by sending P : A→ B to ∨ ↓(F (P )) : F (A)→ F (B) such that

I
ηI //

F ''OOOOOOOOOOOOOO Ijj(jj(I))

Ijj(F#)
��

jj(I)

F#

��
Ijj(X) X
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commutes. Suppose that G : jj(I) → X is a join functor such that Ijj(G)ηI = F . For

any map P : A → B in jj(I), since P is ^̂-compatible and down closed, P = ∨p∈P (↓p),

where each p : A → B is a map in I. Clearly, for each p ∈ P , G(↓p) = F (p) = F#(↓p).

Hence

G(P ) = G
(
∨p∈P ↓p

)
= ∨p∈PG(↓p) = ∨p∈PF#(↓p) = F#

(
∨p∈P ↓p

)
= F#(P )

and therefore the uniqueness of F# follows. Thus, jj a Ijj. �

Given an inverse category I, we have a join restriction category j(I). But j(I) is

not an inverse category usually as, for a j(I)-map S : X → Y that is ^-compatible

and down closed, S(−1) is not necessarily ^-compatible so that S(−1) is not a j(I)-map

and cannot provide a regular inverse to S, even thought SS(−1)S = S. The difference

between j(I) and jj(I) is their maps: a map S : X → Y in j(I) is a down closed and

^-compatible subset S ⊆ mapI(X, Y ) while a map P : X → Y in jj(I) is a down closed

and ^̂-compatible subset P ⊆ mapI(X, Y ).

Given an inverse category I, even though j(I) is not a join inverse inverse category

generally, we can form the inverse subcategory inv(j(I)) of j(I). Now a natural question

is whether or not the inverse category inv(j(I)) is a join inverse category. The answer is

“Yes!” as proved in the following proposition.

Proposition 3.1.25 For each inverse category I, inv(j(I)) = jj(I).

Proof: inv(j(I)) is a subcategory of j(I), consisting of all restricted isomorphisms of

j(I). Since each ^̂-compatible down closed subset is ^-compatible and down closed,

there is an embedding jj(I) ↪→ inv(j(I)).

For each inv(j(I))-map S : X → Y , S is down closed and ^-compatible and there is

a j(I)-map T : Y → X such that

TS = S = {s(−1)s|s ∈ S} and ST = T = {t(−1)t|t ∈ T}.
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Clearly,

STS = S{s(−1)s|s ∈ S} = S

and

TST = T{t(−1)t|t ∈ T} = T

as both S and T are down closed.

On the other hand, S(−1) = {s(−1)|s ∈ S}, as a subset, is also down closed and

SS(−1) = {ss(−1)|s ∈ S}, by Lemma 3.1.19, as S down closed and ∼l-compatible. Hence

SS(−1)S = S and S(−1)SS(−1) = S(−1).

Obviously, (ST )(SS(−1)) = (SS(−1))(ST ) as both ST and SS(−1) are subsets of O(Y ).

We claim now that (TS)(S(−1)S) = (S(−1)S)(TS). In fact, for each s(−1)s ∈ TS, u(−1)v ∈

S(−1)S with s, u, v ∈ S, we have

(s(−1)s)(u(−1)v) = u(−1)v(v(−1)u(s(−1)s)u(−1)v)

= u(−1)v((su(−1)v)(−1)(su(−1)v))

∈ (S(−1)S)(TS),

as su(−1)v ∈ SS(−1)S = S. Hence (TS)(S(−1)S) ⊆ (S(−1)S)(TS). Similarly, we have

(S(−1)S)(TS) ⊆ (TS)(S(−1)S).

Thus, (TS)(S(−1)S) = (S(−1)S)(TS).

By Lemma 3.1.15, T = S(−1). Then S(−1) is ∼l-compatible and so S is ∼r-compatible.

Hence S is ^̂-compatible and down closed and therefore S is a map in jj(I). Thus,

inv(j(I)) = jj(I). �

Given a join restriction category X, we can form the inverse subcategory inv(X) of

X. Furthermore, the inverse category inv(X) has also the join inherited from X. To see

this, we need the following lemma.
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Lemma 3.1.26 In a restriction category X, let P = {restriction isomorphisms: pi :

X → Y, i ∈ I} be such that both ∨i∈Ipi and ∨i∈Ip(−1)
i exist. Then

(∨i∈Ipi)(−1) = ∨i∈Ip(−1)
i .

Proof: It suffices to show

∨i∈Ip(−1)
i pi = (∨i∈Ip(−1)

i )(∨i∈Ipi)

and

∨i∈Ipip(−1)
i = (∨i∈Ipi)(∨i∈Ip(−1)

i ).

We only prove the first equality as the proof of the second one is similar.

Clearly, each pi ≤ ∨i∈Ipi and so

p
(−1)
i pi ≤ p

(−1)
i ∨i∈I pi ≤ (∨i∈Ip(−1)

i )(∨i∈Ipi)

for all i ∈ I.

If p
(−1)
i pi ≤ q for all i ∈ I, then

pi = pip
(−1)
i pi ≤ piq

and so ∨i∈Ipi ≤ (∨i∈Ipi)q. Hence

(∨i∈Ip(−1)
i )(∨i∈Ipi) ≤ (∨i∈Ip(−1)

i )(∨i∈Ipi)q = ∨i,j∈Ip(−1)
i pjq ≤ q

as each p
(−1)
i pj is a restriction idempotent. Thus, ∨i∈Ip(−1)

i pi = (∨i∈Ipi)(−1)(∨i∈Ipi). �

Now we can verify that inv : jrCat0 → jinvCat0 is a functor:

Lemma 3.1.27 For a given join restriction category X, inv(X) is a join inverse category

so that there is a functor inv : jrCat0 → jinvCat0.
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Proof: For each join restriction category X, inv(X) is an inverse category. For each

^̂-compatible set P = {pi|i ∈ I} ⊆ mapinv(X)(X, Y ), both ∨i∈Ipi and ∨i∈Ip(−1)
i exist in

X. It suffices to verify that ∨i∈Ipi is a map in inv(X). But this is clear as, by Lemma

3.1.26,

(∨i∈Ip(−1)
i )(∨i∈Ipi) = ∨i∈Ip(−1)

i pi = ∨i∈Ipi = ∨i∈Ipi

and

(∨i∈Ipi)(∨i∈Ip(−1)
i ) = ∨i∈Ipip(−1)

i = ∨i∈Ip−1
i = ∨i∈Ip(−1)

i .

Now it is routine to verify that inv : jrCat0 → jinvCat0 is a functor. �

We now construct the left adjoint of inv : jrCat0 → jinvCat0 using the notion of

a density relation introduced by Cockett in [7]. So let us recall the definitions and the

basic properties of density relations.

A density relation ≤j, on a restriction category X, is a relation ≤j on parallel maps

such that the following seven density relation axioms are satisfied:

[D.1] f ≤j g implies f ≤ g;

[D.2] f ≤j f (reflexivity);

[D.3] f ≤j g and g ≤j h imply f ≤j h (transitivity);

[D.4] f ≤j g implies f ≤j g (restriction);

[D.5] f ≤ h ≤ g and f ≤j g imply h ≤j g (gap closed);

[D.6] f ≤j g implies fx ≤j gx (stability);

[D.7] f ≤j g implies yf ≤j yg (universality).

The following lemma provides some examples of density relations.
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Lemma 3.1.28 1. (Lemma 3.1 [7]) Each restriction functor F : X → Y induces a

density relation ≤jF on X given by

f ≤jF g ⇔ f ≤ g and F (f) = F (g).

2. For a given join inverse category I, the relation ≤j(I) on the join completion j(I) given

by

P ≤j(I) Q

⇔ P ⊆ Q and for each q ∈ Q, there exists a ^̂-compatible subset {pi, i ∈ Γq} ⊆ P

such that q = ∨i∈Γqpi,

is a density relation on j(I).

Proof:

1. One needs to check the seven density relation axioms.

[D.1] Obviously, by the definition, f ≤jF g implies f ≤ g.

[D.2] Reflexivity is clear as f ≤ f and F (f) = F (f).

[D.3] Transitivity is clear too as both ≤ and = are transitive.

[D.4] If f ≤jF g, then f ≤ g and F (f) = F (g) and so f ≤ g and F (f) = F (g).

Therefore, f ≤jF g.

[D.5] If f ≤ h ≤ g and f ≤jF g, then F (f) = F (g) and so F (f) ≤ F (h) ≤ F (g)

implies F (h) = F (g). Hence, h ≤jF g.

[D.6] If f ≤jF g, then f ≤ g and F (f) = F (g) and so fh ≤ gh and F (fh) =

F (f)F (h) = F (g)F (h) = F (gh). Hence fh ≤jF gh.

[D.7] Similar to the argument of of [D.6] above.

2. The seven density relation axioms are verified as follows.
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[D.1] As P ≤j(I) Q implies P ⊆ Q so that P ≤ Q in j(I).

[D.2] Clearly.

[D.3] If P ≤j(I) Q and Q ≤j(I) R, then P ⊆ Q ⊆ R and for each r ∈ R, there are

^̂-compatible subsets {qi|i ∈ Γr} ⊆ Q and {pik |k ∈ Λqi} ⊆ P such that

r = ∨i∈Γrqi and qi = ∨k∈Λqi
pik .

Hence

r = ∨i,kpik .

For each pair of pik and pjl , as pik ≤ ∨pik^̂∨ pjl ≥ pjl , we have pik^̂pjl . Thus,

P ≤j(I) R.

[D.4] If P ≤j(I) Q, then P ⊆ Q and for each q ∈ Q there exists a ^̂-compatible

{pi|i ∈ Γ} ⊆ P such that q = ∨i∈Γpi and so P ⊆ Q and q = ∨i∈Γpi = ∨i∈Γpi.

Hence P ≤j(I) Q.

[D.5] If P ≤ H ≤ Q and P ≤j(I) Q, then, clearly, H ≤j(I) Q as P ⊆ H.

[D.6] If P ≤j(I) Q, then P ⊆ Q and for each q ∈ Q, there is a ^̂-compatible subset

{pi|i ∈ Γ} ⊆ P such that q = ∨i∈Γpi. For any j(I)-map H such that HP

and HQ are composable, HP ⊆ HQ and hq = h(∨pi∈P,i∈Γpi) = ∨pi∈P,i∈Γhpi.

Obviously, for each h ∈ H, {hpi|i ∈ Γ} is ^̂-compatible. Thus, HP ≤j(I) HQ.

[D.7] Similar to the proof of [D.6] above.

�

Given a restriction category X, each density relation ≤j on X gives rise to a restriction

congruence ∼j on parallel maps by

f ∼j g ⇔ there is a map k such that k ≤j f and k ≤j g.

One has:
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Proposition 3.1.29 (Proposition 3.2 [7]) Given a density relation ≤j on a restric-

tion category X, ∼j is a restriction congruence which has an associated quotient functor

Qj : X→ X/ ∼j

that induces precisely the density relation ≤j. Furthermore, for any restriction functor

F : X → Y such that f ≤j g implies F (f) = F (g) there is a unique restriction functor

F ] : X/ ∼j→ Y such that

X

F ""FFFFFFFFF
Qj //X/ ∼j

F ]

��
Y

commutes.

By Lemma 3.1.28, each restriction functor F : X→ Y induces a density relation ≤jF

and so a restriction congruence ∼jF . As f ≤jF g implies F (f) = F (g) obviously, the

restriction functor F can be factored as

X F //

QjF ##GGGGGGGGG F

F ]{{wwwwwwwww

X/ ∼jF

A restriction functor F : X → Y is called open-separated if e, e′ ∈ O(X) implies

F (e) = F (e′). A functor G between restriction categories is called dense if G is bijective

on the objects, full on maps, and G(f) = G(g) implies there is an idempotent e with

G(f) = G(e) = G(g). It is easy to see that QjF and F ] above are dense and open-

separated, respectively.

Proposition 3.1.30 ([7], Proposition 3.3) The dense functors and the open-separated

functors provide a factorization system on restriction functors.

If X is a restriction category and ≤j is a density relation on X, an object X ∈ X is

j-unitary if for all X-maps f, g : Z → X, f ∼j g implies f ^ g. The restriction category

X is j-unitary if every X-object is j-unitary.
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A join density relation on a join restriction category X is a density relation ≤j on X

with the additional requirement:

[jLoc] If {fi|i ∈ I} and {gi|i ∈ I} are ^-compatible families such that fi ≤j gi, i ∈ I,

then ∨i∈Ifi ≤j ∨i∈Igi.

If ≤j is a join density relation on a join restriction category X, then X/ ∼j is a join

restriction category shown by Cockett in [7].

Lemma 3.1.31 (Lemma 5.1 [7]) If ≤j is a join density relation on a j-unitary join

restriction category X, then X/ ∼j is a join restriction category and Qj : X→ X/ ∼j is

a join restriction functor.

Given a join inverse category I, we can first form the join restriction category j(I) and

then the quotient category j(I)/ ∼j(I), where ∼j(I) is the restriction congruence induced

by the density relation ≤j(I) given in Lemma 3.1.28. j(I)/ ∼j(I) is indeed a join restriction

category:

Lemma 3.1.32 j(I)/ ∼j(I) is a join restriction category.

Proof: By Lemma 3.1.28 and Proposition 3.1.29, j(I)/ ∼j(I) is a restriction category.

For each object X ∈ j(I), if P,Q : Z → X are j(I)-maps such that P ∼j(I) Q, then there

is a j(I)-map K such that K ≤j(I) P and K ≤j(I) Q and so for each p ∈ P and q ∈ Q

there are ^̂-compatible {ki|i ∈ Γ} ⊆ K and {k′j|j ∈ Λ} ⊆ K such that

p = ∨i∈Γki and q = ∨j∈Λk
′
j.

Hence

pq = ∨i∈Γki ∨j∈Λ k
′
j = ∨i∈Γ,j∈Λkik

′
j = ∨i∈Γ,j∈Λk′jki = ∨j∈Λk′j ∨i∈Γ ki = qp

as K is ^-compatible and therefore PQ = QP , namely, P ^ Q. Thus, j(I) is j-unitary.
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If {Pi|i ∈ I} and {Qi|i ∈ I} are ^-compatible families such that Pi ≤j(I) Qi, then

Pi ⊆ Qi and for each q ∈ Qi there is a ^̂-compatible {pk|k ∈ Γ} ⊆ Pi such that

q = ∨k∈Γpk. Since

∨i∈IPi =
⋃
i∈I

Pi ≤
⋃
i∈I

Qi = ∨i∈IQi,

we have ∨i∈IPi ≤j(I) ∨i∈IQi. Then [jLoc] is satisfied and so, by Lemma 3.1.31, j(I)/ ∼j(I)

is a join restriction category. �

For each given join inverse category I, let β(I) = j(I)/ ∼j(I). We are now ready to

show that β actually gives a left adjoint to inv : jrCat0 → jinvCat0.

Theorem 3.1.33 inv : jrCat0 → jinvCat0 has a left adjoint given by β.

Proof: For each join inverse category I and each I-map f : X → Y , [↓f ] : X → Y , as

a β(I)-map, has its restriction inverse [↓f (−1)] : Y → X as

[↓f ][↓f (−1)][↓f ] = [↓(ff ( − 1)f)] = [↓f ]

and

[↓f (−1)][↓f ][↓f (−1)] = [↓(f (−1)ff (−1)] = [↓f (−1)].

Hence [↓f ] : X → Y is a map in inv(β(I)). Define the join functor

ηI : I→ inv(β(I))

by taking f : X → Y to [↓f ] : X → Y , which serves as the unit of β a inv. In fact, for

any join inverse category X and any join functor F : I → inv(X), by Theorem 3.1.12

j provides a left adjoint to the inclusion jrCat0 ↪→ rCat0. Then there is a unique join

restriction functor F ∗ : j(I)→ inv(X) such that

I

F ""EEEEEEEEE
η′I // j(I)

F ∗

��
inv(X)
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commutes, where η′I is given by sending f to ↓f F ∗ sending P to ∨ ↓(F (P )). As each

I-map f : A → B has a inverse f (−1), ↓f has an inverse ↓f (−1) : B → A in j(I). So we

have the following commutative diagram:

I

F ##GGGGGGGGGG
η′I // inv(j(I))

inv(F ∗)
��

inv(X)

For j(I)-maps P ≤j(I) Q and each q ∈ Q, there is a ^̂-compatible {pi|i ∈ Γ} ⊆ P

such that q = ∨i∈Γpi. Then

F (q) = F (∨i∈Γpi) = ∨i∈ΓF (pi)

and so

F ∗(Q) = ∨ ↓F (Q) = ∨ ↓F (P ) = F ∗(P ).

Hence, by Proposition 3.1.29, there is a join restriction functor F ] : j(I)/ ∼j(I) such that

j(I)

F ∗ ""EEEEEEEE

Qj // β(I)

F ]

��
Y

commutes. Thus, we have the following commutative diagram:

I
inv(Qj)η

′
I //

F ''PPPPPPPPPPPPPP

ηI

!!
inv(β(I))

inv(F#)
��

inv(X)

Suppose that G : β(I) → X is a join restriction functor such that inv(G)ηI = F . For

any map [P ] : A→ B in β(I), since P is ^̂-compatible and down closed, P = ∨p∈P (↓p),

where each p : A→ B is a map in I. Clearly, for each p ∈ P , G([↓p]) = F (p) = F#([↓p]).

Hence

G([P ]) = G
(
∨p∈P [↓p]

)
= ∨p∈PG([↓p]) = ∨p∈PF#([↓p]) = F#

(
∨p∈P [↓p]

)
= F#([P ])
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and therefore the uniqueness of F# follows. Thus, β a inv. �

Summarizing the adjoints between restriction categories, join restriction categories,

inverse categories, and join inverse categories, we have:

Theorem 3.1.34 There is an adjunction situation:

jrCat0 ��
Ij

//⊥

inv
��

rCat0

joo

inv
��

jinvCat0

aβ

OO

��
Ijj
//⊥ invCat0

jjoo ?�

aIi

OO

in which

1. Ijj ◦ inv = inv ◦ Ij;

2. β ◦ jj = j ◦ Ii;

3. inv ◦ j ◦ Ii = jj;

Proof: Theorems 3.1.12, 3.1.24, and 3.1.33 give j a Ij, jj a Ijj, and β a inv, respec-

tively while Proposition 2.24 [14] implies Ii a inv. So we have the adjunction situation.

1. It is clear.

2. As β◦jj and j◦Ii are the left adjoints of Ijj◦inv and inv◦Ij, respectively, β◦jj = j◦Ii.

3. By Proposition 3.1.25.

�

3.2 M-adhesive Categories and M-gaps

Adhesive categories, introduced in [28], are a class of categories where pushouts along

monics exist and are well-behaved with respect to pullbacks. They are instances of Van

Kampen squares. In [22], characterized being Van Kampen as a universal property: Van
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Kampen cocones are precisely those diagrams in a category that induce bicolimit dia-

grams in its associated bicategory of spans, provided that the category has pullbacks

and enough colimits. In [20], Garner and Lack gave a general framework for describing

categorical structures consisting of the existence of finite limits as well as certain types

of colimits, along with exactness conditions stating that the limits and colimits interact

in the same way as they do in a topos. In [21], Garner and Lack provided four charac-

terization theorems dealing with adhesive categories and their variants. In this section,

we develop some elementary results on van Kampen colimits. van Kampen squares are

a special case of these colimits and we start by describing these. The results on van

Kampen colimits facilitate the definition of M-adhesive categories and lead us into a

discussion of the properties of M-gaps.

3.2.1 van Kampen Squares

Recall, as in [28, 29] by Lack and Sobociński, a pushout square ABCD is a van Kampen

(VK) square if for any commutative cube

A′ //

��

�����
C ′

��

�����

B′ //

��

D′

��
A //

�����
C

�����

B // D

such that ABA′B′ and ACA′C ′ are pullback squares, BDB′D′ and CDC ′D′ are pullback

squares if and only if A′B′C ′D′ is a pushout square.

Equivalently, a van Kampen (VK) square in a category with pullbacks is a pushout

diagram:

A
m2 //

m1

��

C

m3

��
B m4

// D
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such that given a commutative diagram (I) + (II), (I) and (II) are pullback diagrams

if and only if there is an object E and some maps from E such that (III) and (IV ) are

pullback diagrams and (V ) is a pushout diagram:

B′

b
��

m′4 //

(I)

D′

d
��

(II)

C ′

c
��

m′3oo B′

b
��

(III)

E
m′1oo

m′2 //

e
��

(IV )

C ′

c
��

E
m′2 //

m′1
��

(V )

C ′

m′3
��

B m4

// D Cm3

oo B Am1

oo
m2

// C B′
m′4

// D′

Lemma 3.2.1 In a VK square

A
m2 //

m1

��

C

m3

��
B m4

// D

if m1 (or m2) is monic, so is m3 (or m4) and such a square is a pullback diagram.

Proof: See [29], Lemma 2.3. �

VK squares are stable.

Lemma 3.2.2 VK squares are stable.

Proof: Suppose that the square A′B′C ′D′ is the pullback of a VK square ABCD along

a map f :

B′ //

��

D′

f

��
A′

??���
//

��

C ′

??���

��
B // D

A //

??���
C

??���

which means that front faces and back faces are pullback diagrams. Then A′B′C ′D′ is

a pushout diagram. Now it is easy to test A′B′C ′D′ is indeed a VK square by using

pullback cancellation and gluing laws. �
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3.2.2 van Kampen Colimits

We generalize van Kampen squares to van Kampen colimits.

Definition 3.2.3 Let C be a category and let D : S→ C be a diagram on S. A colimit

α : D ⇒ C in C is called a van Kampen colimit on S if for any diagram D′ : S→ C on

S, any cocone α′ : D′ ⇒ X under D′, and any commutative diagram

D′
α′ +3

β
��

X

r
��

D α +3 C

in which β is cartesian, α′ : D′ ⇒ X is a colimit if and only if for each s ∈ S

D′(s)

β(s)

��

α′(s) // X

r

��
D(s)

α(s) // C

is a pullback diagram, where a natural transformation S
D′

++

D

33⇓β C is cartesian if for

each map f : s1 → s2 in S,

D′(s1)
D′(f) //

β(s1)
��

D′(s2)

β(s2)
��

D(s1)
D(f) // D(s2)

is a pullback diagram.

van Kampen colimits are stable too.

Lemma 3.2.4 van Kampen colimits are stable.

Proof: Let D : S→ C be a diagram, α : D ⇒ C a van Kampen colimit, and

D′
α′ +3

β
��

X

r
��

D
α +3 C
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a pullback diagram of diagrams, which means that for each s ∈ S each

D′(s)

β(s)

��

α′(s) // X

r

��
D(s)

α(s) // C

is a pullback diagram, where D′ : S → C is a diagram from S. Then α′ : D′ ⇒ X is a

colimit since α : D ⇒ C is a van Kampen colimit. To prove that α′ : D′ ⇒ Z is indeed

a van Kampen colimit, suppose that

D′′ α′′ +3

γ
��

X ′

p

��
D′ α′ +3 X

is a commutative diagram, where D′′ : S → C is a diagram and α′′ : D′′ ⇒ X ′ is a

cocone. Suppose that for each f : s1 → s2 in S

D′′(s1)
D′′(f) //

γ(s1)

��

D′′(s2)

γ(s2)

��
D′(s1)

D′(f) // D′(s2)

is a pullback diagram. Then we have a commutative diagram:

D′′
α′′ +3

βγ
��

X ′

rp

��
D α +3 C

If α′′ : D′′ ⇒ Z ′ is a colimit, then for each s ∈ S

D′′(s)

β(s)γ(s)

��

α′′(s) // X ′

rp

��
D(s)

α(s) // C

is a pullback diagram and so each

D′′(s)

γ(s)

��

α′′(s) // X ′

p

��
D′(s)

α′(s) // X
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is a pullback diagram.

Conversely, if each

D′′(s)

γ(s)

��

α′′(s) // X ′

p

��
D′(s)

α′(s) // X

is a pullback diagram, then

D′′(s)

β(s)γ(s)

��

α′′(s) // X ′

rp

��
D(s)

α(s) // C

is a pullback diagram and so α′′ : D′′ ⇒ X ′ is a colimit. Thus, α′ : D′ ⇒ X is a van

Kampen colimit, which means that the van Kampen colimit is stable. �

3.2.3 Pullbacks of van Kampen Colimits

Obviously, a pullback of a van Kampen colimit α : D ⇒ C along a given map f : X → C:

D′
α′ +3

β
��

X

f
��

D α +3 C

can be given by the following pullback diagram:

D′(s)

β(s)

��

α′(s) // X

f

��
D(s)

α(s) // C

for each s ∈ S.

Given two van Kampen colimits αi : Di ⇒ X, i = 1, 2, we can form a new van

Kampen colimit α1 ×X α2 : D1 ×X D2 ⇒ X. To do this, we need the following technical

lemma on colimits.
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Lemma 3.2.5 Let ∂ : δ(S)→ S be an opfibration and let F,G be functors such that for

any s ∈ S the colimit αs : F |∂(−1)(s) ⇒ G(s) exists and for each map f : s→ s′ in S and

each t ∈ ∂(−1)(s) the following diagram

F (t)

F (ϑf (t))

��

αs(t) // G(s)

G(f)

��
F (f∗(t))

αs
′
(f∗(t)) // G(s′)

commutes, where ϑf (t) : t→ f∗(t) is an opcartesian lifting of f at t.

δ(S)

∂
��

F // C

S
G

=={{{{{{{{{

Then the colimit β : F ⇒ V exists if and only if the colimit γ : G⇒ V exists.

Proof: “only if” Suppose that β : F ⇒ V is a colimit. For a given s ∈ S and each

t ∈ ∂(−1)(s), since αs : F |∂(−1)(s) ⇒ G(s) is a colimit and β : F |∂(−1)(s) ⇒ V is a cocone,

there is a unique map γ(s) : G(s)→ V such that for any t ∈ ∂(−1)(s)

F (t)
β(t) //

αs(t) ""FFFFFFFF
V

G(s)
γ(s)

==

commutes. Since ∂ : δ(S)→ S is an opfibration and

F (t)

F (ϑf (t))

��

αs(t) // G(s)

G(f)
��

F (f∗(t))
αs
′
(f∗(t)) // G(s′)

commutes, γ(s)αs(t) = β(t) = γ(s′)αs
′
(f∗(t))F (ϑf (t)) = γ(s′)G(f)αs(t). Since {αs(t)|t ∈

∂(−1)(s)} is jointly epic, γ(s) = γ(s′)G(f) for each map f : s→ s′ in S. Hence γ : G⇒ V

is a cocone.
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For any cocone χ : G⇒ X, we have a cocone χα∂(−) : F ⇒ X given by (χα∂(−))(t) =

χ(∂(t))α∂(t)(t). So there is a unique k : V → X such that χ(∂(t))α∂(t)(t) = k · β(t) for

each t ∈ δ(S). In particular, for each s ∈ S and each t ∈ ∂(−1)(s),

χ(s)αs(t) = χ(∂(t))α∂(t)(t) = k · β(t) = k · γ(s)αs(t).

Then χ(s) = k · γ(s) for each s ∈ S since {α∂(t)(t1) | t1 ∈ ∂(−1)(∂(t))} is jointly epic.

Clearly, k is the unique map such that χ(s) = k · γ(s) for each s ∈ S. So γ : G⇒ V is a

colimit.

“if” Suppose now that γ : G ⇒ V is a colimit. For each t ∈ δ(S), we have t ∈

∂(−1)(∂(t)). Define β(t) = γ(∂(t))α∂(t)(t). Then β : F ⇒ V is a cocone since ∂ is an

opfibration and the last diagram is commutative. For any cocone χ : F ⇒ X, there is a

κ(∂(t)) : G(∂(t))→ X such that

κ(∂(t)) · α∂(t)(t) = χ(t)

since α∂(t) : F |∂(−1)(t) ⇒ X is a colimit. Now it is easy to see that κ : G ⇒ X is a

cocone. Since γ : G ⇒ V is a colimit, there is a unique map x : V → X such that

xγ(∂(t)) = k(∂(t)). Then xβ(t) = χ(t) and x is the unique such a map and so β : F ⇒ V

is a colimit.

X

F (t)

χ(t)

55jjjjjjjjjjjjjjjjjjjj β(t) //

α∂(t)(t) $$IIIIIIIII
V

x

OO

G(∂(t))
γ(∂(t))

;;xxxxxxxxx κ(∂(t))

WW

�

The pullbacks of van Kampen colimits can be formed as follows.

Lemma 3.2.6 Let Di be diagrams from Si, i = 1, 2. If both α1 : D1 ⇒ X and α2 :

D2 ⇒ X are van Kampen colimits, then so is α1 ×X α2 : D1 ×X D2 ⇒ X, where
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D1 ×X D2 : S1 × S2 → C is given by the following pullback diagram:

(D1 ×X D2)(s1, s2)
β(s1,s2)//

γ(s1,s2)

��

D2(s2)

α2(s2)

��
D1(s1)

α1(s1) // X

and (α1 ×X α2)(s1, s2) = α1(s1)γ(s1, s2) = α2(s2)β(s1, s2), for each (s1, s2) ∈ S1 × S2.

Proof: Clearly, D1 ×X D2 : S1 × S2 → C is a diagram from S1 × S2. For each s∗2 ∈ S2,

we have a diagram (D1 ×X D2)(−, s∗2) : S1 → C and a commutative diagram:

(D1 ×X D2)(−, s∗2)
β(−,s∗2)

+3

γ(−,s∗2)

��

D2(s∗2)

α2(s∗2)

��
D1

α1 +3 X

For each f : s1 → s′1 in S1,

(D1 ×X D2)(s1, s
∗
2)

(D1×XD2)(f,s∗2)
//

γ(s1,s∗2)

��

(D1 ×X D2)(s′1, s
∗
2)

γ(s′1,s
∗
2)

��
D1(s1)

D1(f) // D(s′1)

is a pullback diagram since (D1×XD2)(s1, s
∗
2) and (D1×XD2)(s′1, s

∗
2) are the pullbacks of

α1(s1), α2(s∗2) and α1(s′1), α2(s∗2), respectively, as in the following commutative diagram:

(D1 ×X D2)(s1, s
∗
2)

γ(s1,s∗2)

��

D1×XD2(f) **TTTTTTTTTTTTTTTT

β(s1,s∗2)
// D2(s∗2)

α2(s∗2)

��

(D1 ×X D2)(s′1, s
∗
2)
β(s′1,s

∗
2)

66mmmmmmmmmmmm

γ(s′1,s
∗
2)

��

D1(s1)
α1(s1) //

D1(f) **TTTTTTTTTTTTTTTTTTT X

D1(s′1)
α1(s′1)

66mmmmmmmmmmmmmmm

Then both β and γ are cartesian on each variable. Since α1 : D1 ⇒ X is a van Kampen

colimit and each

(D1 ×X D2)(s1, s
∗
2)

γ(s1,s∗2)

��

β(s1,s∗2)
// D2(s∗2)

α2(s∗2)

��
D1(s1)

α1(s1) // X
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is a pullback diagram, for each s∗2 ∈ S2

β(−, s∗2) : (D1 ×X D2)(−, s∗2)⇒ D2(s∗2)

is a van Kampen colimit. So we have the following situation

S1 × S2

Pr
��

D1×XD2 // C

S2

D2

77nnnnnnnnnnnnnnn

where the projection Pr is a bifibration that is surjective on objects and for each s2 ∈ S2,

β(−, s2) : (D1 ×X D2)|Pr(−1)(s2) ⇒ D2(s2) is a van Kampen colimit. Hence, by Lemma

3.2.5, α1 ×X α2 : D1 ×X D2 ⇒ X is a colimit.

For any cocone α : D ⇒ Y from S1 × S2 and any commutative diagram

D
α +3

ν
��

Y

x
��

D1 ×X D2
α1×Xα2 +3 X

in which ν is cartesian, if α : D ⇒ Y is a colimit, then each

D(s1, s2)
α(s1,s2) //

ν(s1,s2)

��

Y

x

��

(D1 ×X D2)(s1, s2)

β(s1,s2)

��
D2(s2)

α2(s2) // X

is a pullback diagram since α2 : D2 ⇒ X is a van Kampen colimit. Since β(−, s2) :

(D1 ×X D2)(−, s2)⇒ D2(s2) is a van Kampen colimit, we know that

D(s1, s2)
α(s1,s2) //

ν(s1,s2)

��

Y

x

��
(D1 ×X D2)(s1, s2)

β(s1,s2)// D2(s2)
α2(s2) // X

is a pullback diagram.
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Conversely, suppose that each last square is a pullback diagram. Let µ : D′2 ⇒ Y be a

pullback of the van Kampen colimit α2 : D2 ⇒ X along x. That is (D′2(s2), µ(s2), ρ(s2))

is a pullback of α2(s2) and x. Then there is a unique map λ(s1, s2) : D(s1, s2)⇒ D2(s2)

such that

D(s1, s2)
λ(s1,s2) //

ν(s1,s2)

��

α(s1,s2)

&&
D′2(s2)

µ(s2) //

ρ(s2)

��

Y

x

��
(D1 ×X D2)(s1, s2)

β(s1,s2)// D2(s2)
α2(s2) // X

It is routine to check that λ(−, s2) : D(−, s2) ⇒ D′2(s2) is a cocone. Since both the

outside and right hand side squares are pullback diagrams, the left hand side square

is a pullback diagram. Hence λ(−, s2) : D(−, s2) ⇒ D′2(s2), as a pullback of β(−, s2) :

(D1×XD2)(−, s2)⇒ D2(s2), is a van Kampen colimit. Now, by Lemma 3.2.5, α : D ⇒ Y

is a colimit since α(s1, s2) = µ(s2)λ(s1, s2). Thus, α1 ×X α2 : D1 ×X D2 ⇒ X is a van

Kampen colimit. �

3.2.4 M-adhesive Categories

Recall that a category is said to be adhesive if it has pushouts along monics and pullbacks

and if pushouts along monics are VK-squares [28, 29]. Toposes are adhesive [30]. In [25],

Johnstone, Lack, and Sobociński introduced several examples which fail to be adhesive.

In [21], Garner and Lack reformulated the van Kampen condition in the definition of

an adhesive category. By Theorem 3.2 [21], for each category C with pullbacks, C is

adhesive if and only if C has pushouts along monics and these pushouts are stable and

are pullbacks.

From now on, we shall consider diagrams of stable meet semilattices. Let S be a

stable meet semilattice, namely, a poset with a binary meet (no top is assumed), and let

D : S → C be a diagram. A cocone α : D ⇒ X, is called an amalgam cocone if for all
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s1, s2 ∈ S each

D(s1 ∧ s2)

D(≤)

��

D(≤) // D(s1)

α(s1)

��
D(s2)

α(s2) // X

is a pullback diagram. Observe that if α : D ⇒ X is an amalgam cocone then each

component α(s) is necessarily monic since

D(s ∧ s)
=

��

= // D(s)

α(s)

��
D(s)

α(s) // X

is a pullback diagram.

When we have an M-category we can consider diagrams and cocones which are

restricted to the subcategory determined byM; these giveM-diagrams andM-cocones.

AnM-diagram D : S→M isM-amalgamable if there is an amalgamM-cocone for D.

Definition 3.2.7 An M-category, (C,M), is M-adhesive if each amalgamable M-

diagram has a van Kampen colimit. In this case, we call C an M-adhesive category.

Associated with anM-adhesive category is a rather important class of maps: M-gaps.

But M-gaps can be defined in M-categories.

Definition 3.2.8 A map g : X → Y in an M-category is called an M-gap if there is

an M-amalgamable colimit ν : D ⇒ X such that each gν(s) ∈M for each s ∈ S:

D ν +3

α �$
AAAAAAA

AAAAAAA X

g
��
Y

Our first observation on M-gaps is:

Lemma 3.2.9 In an M-adhesive category, each M-gap is a monic.
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Proof: Let g : X → Y be an M-gap such that gν(s) ∈ M for all s ∈ S for some van

Kampen colimit ν : D ⇒ X from S. Let x, y : W → X be maps such that gx = gy

and let νx : Dx ⇒ W and νy : Dy ⇒ W be the pullbacks of ν : D ⇒ X along x, y,

respectively. Then we have the following commutative diagram:

Dx ×W Dy

αx

u} ttttttttt

ttttttttt
αy

!)JJJJJJJJJ

JJJJJJJJJ
νx×W νy

��
Dx

νx +3

γx
��

W

yx

��

Dy
νyks

γy

��
D

ν +3

α
"*LLLLLLLLLLL

LLLLLLLLLLL X

g
��

D
νks

α
t| rrrrrrrrrrr

rrrrrrrrrrr

Y

Note that gx = gy implies gx(νx×W νy) = gy(νx×W νy) so that gνγxαx = gνγyαy. Since

gν(s) ∈ M, γxαx = γyαy. Hence x(νx ×W νy) = y(νx ×W νy) and therefore x = y since

(νx ×W νy) : Dx ×W Dy ⇒ W is a van Kampen colimit. Thus, g is a monic. �

Let g : X → Y be a M-gap and ν : D ⇒ X a van Kampen colimit such that

gν(s) ∈ M. Since g is a monic, by the left-cancellable property of M (Lemma 1.6.15)

each ν(s) is in M.

In anM-adhesive category C, anM-gap g : X → Y can be determined by a canonical

van Kampen colimit αg : Dg ⇒ X, where Sg is the stable meet semilattice with

objects: (A, a), a : A→ X is an M-map with ga ∈M;

maps: a map m : (A, a)→ (B, b) is a map m : A→ B in C such that bm = a. Clearly,

such a map m must be in M;

meet: (A, a) ∧ (B, b) = (C, c) is given by the following pullback diagram:

C

a′

��

b′ // A

a
��

B
b // X
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where c = ab′ = ba′.

αg : Dg ⇒ X is defined by

Dg(m : (A, a)→ (B, b)) = (m : A→ B) and αg(A, a) = a.

Obviously, αg is an amalgam M-cocone.

Lemma 3.2.10 In an M-adhesive category, a map g : X → Y is an M-gap if and only

if αg : Dg ⇒ X is a van Kampen colimit such that gαg(s) ∈M,∀s ∈ Sg.

Proof: “if” is clear. We prove the “only if” part as follows. Since αg is an amalgam

M-cocone, Dg has a van Kampen colimit α : Dg ⇒ Z. Hence there is a unique M-gap

c : Z → X such that cα(s) = αg(s) for all s ∈ Sg. It suffices to show that the monic

M-gap c is an isomorphism.

Since g : X → Y is an M-gap, there is an M-van Kampen colimit ν : D ⇒ X from

a stable meet semilattice T such that gν(t) ∈ T for all t ∈ T.

Z

c

��
Dg

α

:B}}}}}}}}

}}}}}}}} αg +3

�$
AAAAAAA

AAAAAAA
X

g

��

k

VV

Dνks

α′
[c???????

???????

{� ��������

��������

Y

Note that there is a stable meet semilattice map F : T→ Sg given by F (t) = (D(t), ν(t) :

D(t) → X). So the cocone α : Dg ⇒ Z gives rise to a cocone α′ : D ⇒ Z from T by

α′(t) = α(F (t)). Hence there is a unique map k : X → Z such that kν(t) = α′(t) for all
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t ∈ T. Since

ckν(t) = cα′(t)

= cα(F (t))

= αg(F (t))

= αg(D(t), ν(t) : D(t)→ X)

= ν(t),

ck = 1X . Hence the monic c is an isomorphism, as desired. �

All M-gaps form a stable system of monics.

Proposition 3.2.11 The class Mgap of all M-gaps in an M-adhesive category C is a

stable system of monics in C with M⊆Mgap.

Proof: For each m ∈M, since

•
1
��

1 // •
1
��

• 1 // •
is a van Kampen colimit (a pushout diagram) and since m1 ∈ M, we have m ∈ Mgap.

Hence M⊆Mgap.

Let g : A→ B be an M-gap and let α : D ⇒ A be a van Kampen colimit such that

gα(s) ∈ M. Then, for each map x : X → B, we form the pullback of g along x and the

pullback of α along x′:

D′
α′ +3

β
��

Y

x′

��

g′ // X

x
��

D α +3 A
g // B

Then, by Lemma 3.2.4, α′ : D′ ⇒ Z is a van Kampen diagram and each g′α′(s) ∈ M.

Hence g′ ∈Mgap.

To prove that Mgap is a stable system of monics in C, it suffices to prove that Mgap

is closed under composition. Let g1 : X1 → X2 and g2 : X2 → A be M-gaps and let
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αi : Di ⇒ Xi be van Kampen colimits such that giαi(si) ∈ M for all si ∈ Si, where Si

are stable meet semilattices and Di : Si →M are stable meet semilattice M-diagrams,

i = 1, 2. Let α′2 : D′2 ⇒ X1 be the pullback of α2 along g1. Then α′2 : D′2 ⇒ X1 is van

Kampen colimit. Now, we form the van Kampen colimit α1 ×X1 α
′
2 : D1 ×X1 D

′
2 ⇒ X1

by the following pullback diagrams:

(D1 ×X1 D
′
2)(s1, s2)

α′′2 (s1)

��

α′1(s2)
// D′2(s2)

α′2(s2)

��

g′1 // D2(s2)

α2(s2)

��
D1(s1)

α1(s1) // X1
g1 // X2

g2 // A

Then g2g1(α1×X1α
′
2)(s1, s2) = g2g1(α′2(s2)α′1(s1)) = g2α2(s2)g′1α

′
1(s2) ∈M since g′1α

′
1(s2)

is a pullback of g1α1(s1) and so g2g1 ∈Mgap, as desired. �

Since Mgap is a stable system of monics in an M-adhesive category C, it is natural

to ask if C is an Mgap-adhesive category and if (Mgap)gap is larger than Mgap. In order

to answer these questions, we first observe that any amalgam Mgap-cocone gives rise to

an amalgam M-cocone.

Given an amalgamMgap-cocone β : D ⇒ X from S, we have a stable meet semilattice

δ(S) with

objects: (s,m : A→ D(s)) with s ∈ S, m ∈M, and β(s)m ∈M;

maps: a map (≤, f) : (s,m : A → D(s)) → (s′,m′ : A′ → D(s′)) is a pair of a map

s ≤ s′ in S and a map f : A→ A′ in C such that

A

f

��

m // D(s)

D(s≤s′)
��

A′
m′ // D(s′)

commutes, when s ≤ s′. Since β(s′)m′f = β(s)m ∈M, f must be an M-map;

meet (s,m : A→ D(s))∧ (m′,m′ : A′ → D(s′)) = (s∧ s′,m∧m′ : A∧A′ → D(s∧ s′))
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is given by the pullback of β(s)m and β(s′)m′:

A m // D(s)
β(s)

!!DDDDDDDD

A ∧ A′

""FFFFFFFFFF
m∧m′ //

<<yyyyyyyyy
D(s ∧ s′)

99ssssssssss

%%KKKKKKKKKK
X

A′
m′

// D(s′)
β(s′)

==zzzzzzzzz

Clearly, m ∧m′ : A ∧ A′ → D(s ∧ s′) is in M.

Note that there is a stable meet map ∂ : δ(S)→ S taking

(≤, f) : (s,m : A→ D(s))→ (s′,m′ : A′ → D(s′))

to s ≤ s′. For each s ∈ S, since β(s) : D(s)→ X is anM-gap, there is van KampenM-

colimit αβ(s) : Dβ(s) ⇒ D(s) from T such that each β(s)αβ(s)(t) ∈ M for t ∈ T. Hence

(s, αβ(s)(t) : Dβ(s)(t) → D(s)) are in δ(S) such that ∂(s, αβ(s)(t) : Dβ(s)(t) → D(s)) = s

and therefore ∂ is surjective on objects.

Given s ≤ s′ in S, for each (s′,m′ : A′ → D(s′))(s′,m′ : A′ → D(s′)) ∈ ∂(−1)(s′), the

cartesian lifting (≤)∗(s′,m′ : A′ → D(s′)) = (s, n : A∗ → D(s)) is given by the following

pullback diagram:

A∗

n
��

a // A′

m′

��
D(s)

D(≤) // D(s′)

On the other hand, for each (s,m : A → D(s)) ∈ ∂(−1)(s), the opcartesian lefting

(≤)∗(s,m : A→ D(s)) = (s′, D(≤)m : A→ D(s′)). Hence ∂ : δ(S)→ S is a bifibration.

The amalgam Mgap-cocone β : D ⇒ X from S gives rise to an amalgam M-cocone

δ(β) : δ(D) ⇒ X from δ(S), where δ(D) takes (≤, f) : (s,m : A → D(s)) → (s′,m′ :

A′ → D(s′)) to f : A → A′ and δ(β)(s,m : A → D(s)) = β(s)m. It is easy to see that
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δ(β) : δ(D)⇒ X is an amalgam M-cocone. So we have the following situation:

δ(S)

∂
��

δ(D) // C

S
D

=={{{{{{{{{

where ∂ is a bifibration that is surjective on objects and for each s ∈ S and the van

Kampen colimit αβ(s) : δ(D)|∂(−1)(s) ⇒ D(s) of δ(D)|∂(−1)(s) exists by Lemma 3.2.10.

For any map f : s → s′ in S and any (s,m : A → D(s)) ∈ ∂(−1)(s), the opcartesian

lifting ϑf of f at (s,m : A → D(s)) is (1A, f) : (s,m : A → D(s)) → (s′, D(f)m : A →

D(s′)). Hence

δ(D)(s,m)
αβ(s) //

δ(ϑf )

��

D(s)

D(f)

��
δ(D)(f∗(s,m))

αβ(s′)// D(s′)

commutes since it is actually the following commutative diagram

A

1A
��

m // D(s)

D(f)

��
A

m // D(s)
D(f) // D(s′)

Lemma 3.2.12 The van Kampen colimit κ : D ⇒ C of D exists, where C is the colimit

cocone vertex of δ(D).

Proof: Given any amalgam Mgap-cocone β : D ⇒ X, we have an amalgam M-cocone

δ(β) : δ(D) ⇒ X. Since X is an M-adhesive category, δ(β) has colimit ν : δ(D) ⇒ C.

By Lemma 3.2.5, κ : D ⇒ C, given by the following commutative diagram

δ(D)(t)

αδ(t)(t) %%KKKKKKKKKK

ν(t) // C

D(δ(t))
κ(δ(t))

<<xxxxxxxxx
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is a colimit. We need to check that κ : D ⇒ C is indeed a van Kampen colimit. For any

amalgamable diagram E and any commutative diagram

E
χ +3

µ

��

C ′

r
��

D
κ +3 C

in which µ is cartesian, form the pullback (ψ(t), φ(t) of αδ(t)(t) along µ(δ(t)):

δ(D)′(t)

ψ(t) %%LLLLLLLLLL

++VVVVVVVVVVVVVVVVVVVVVVVVVV

φ(t)

��
δ(D)(t)

αδ(t)(t) %%LLLLLLLLLL

ν(t)
++VVVVVVVVVVVVVVVVVVVVVVVVVV E(δ(t))

χ(δ(t))
//

µ(δ(t))
��

C ′

r

��
D(δ(t))

κ(δ(t))
// C

If the front square is a pullback diagram, then the back square is a pullback diagram and

so χψ = i : δ(D)′ ⇒ C ′, as a pullback of a van Kampen colimit ν : δ(D) ⇒ C, is a van

Kampen colimit. Thus, by Lemma 3.2.5, χ : E ⇒ C ′ is a colimit.

Conversely, suppose that χ : E ⇒ C ′ is a colimit, then χψ : δ(D)′ ⇒ C ′ is a colimit.

Hence we have the following situation:

δ(D)′(t)
ψ(t) //

φ(t)
��

E(δ(t))

µ(δ(t))
��

χ(δ(t)) // C ′

r

��
δ(D)(t)

αδ(t)(t) // D(δ(t))
κ(δ(t)) // C

in which both the left two rows are van Kampen colimits, both the right two rows are

colimits, and both the left and the outer squares are pullback diagrams. We want to

show the right square is a pullback diagram. To do this, we form pullback (u, v) of

κ(δ(t)) along r. Then there is a unique map x : E(δ(t))→ P such that ux = χ(δ(t)) and



137

vx = µ(δ(t)):

δ(D)′(t)

++

ψ(t) //

φ(t)

��

E(δ(t))

x

##
µ(δ(t))

��

χ(δ(t)) // C ′

r

��

P

y
ii

u

??��������

v{{wwwwwwwww

δ(D)(t)
αδ(t)(t)

// D(δ(t))
κ(δ(t))

// C

Since xψ(t) is a pullback of αδ(t)(t) along v and since the left-lower row is a van Kampen

colimit, xψ : δ(D)′ ⇒ P is a colimit so that there is a unique map y : Y → E(δ(t)) such

that

yxψ(t) = ψ(t).

Then yx = 1. Similarly, since the left-upper row is a colimit, xy = 1. Hence the right

square is a pullback diagram, as desired. Thus, κ : D ⇒ C is a van Kampen colimit. �

For M-adhesivity and M-gaps, we have:

Proposition 3.2.13 If C is an M-adhesive category, then

(i) C is an Mgap-adhesive category;

(ii) (Mgap)gap =Mgap.

Proof:

(i) For any Mgap-diagram D from a stable meet semilattice S such that there is an

amalgamMgap-cocone α : D ⇒ X, we have an amalgamM-cocone δ(α) : δ(D)⇒

X so that δ(D) has van Kampen colimit ν : δ(D) ⇒ C. By Lemma 3.2.12, D has

van Kampen colimit κ : D ⇒ C. Thus, C is an Mgap-adhesive category.

(ii) It suffices to prove that (Mgap)gap ⊆Mgap. For any g : X → Y in (Mgap)gap, there

is anMgap-van Kampen colimit αg : Dg ⇒ X from Sg such that g ·αg(s) ∈Mgap for

each s ∈ S. Since αg : Dg ⇒ X is a van KampenMgap-cocone, δ(αg) : δ(Dg)⇒ X



138

is an amalgamM-cocone from δ(Sg) that is a van Kampen colimit cocone such that

gδ(αg)(t) ∈ M for all t ∈ δ(Sg). Hence g is an M-gap and therefore (Mgap)gap ⊆

Mgap.

�

3.2.5 Binary Gaps

Let’s consider a partial map category Par(C,M) with M = {all monics}. If Par(C,M)

has van Kampen colimits for amalgamable pushouts of monic, then all binary joins of

Par(C,M) exist, if there is a strict initial object, it follows that all non-empty finite joins

given by van Kampen colimits exist in Par(C,M). Hence all diagrams D on a non-empty

finite stable meet semilattice have the van Kampen colimits. Further as gaps are monic

we immediately have that the partial map category is a join restriction category.

Our objective is to generalize these observations to anyM-adhesive category so that

we can reexpress the condition in terms of Van Kampen squares.

Definition 3.2.14 In an M-adhesive category, a map b : X → Y is called a binary

M-gap if there is a van Kampen square

•

α1   @@@@@@@

��
•

m1

??��������

m2
��>>>>>>>> X

b // •

•

α2

>>~~~~~~~~

BB

such that bα1, bα2 ∈M. Similarly, a map f : X → Y is called a finiteM-gap if there is

a van Kampen colimit ν : D ⇒ X on a finite stable semilattice S such that fν(s) ∈ M

for all s ∈ S.

Let

Mbgap = {all binary gaps in C}
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and

Mfgap = {all finite gaps in C}.

Let f1 : X → Y and f2 : Y → Z be in Mfgap. Suppose the finite gaps f1 and f2 are

given by van Kampen colimits ν1 : D1 ⇒ X on S1 and ν2 : D2 ⇒ Y on S2, respectively.

Then, by the proof of Lemma 3.2.11, f2f1 is a gap given by D1×X D2 on S1× S2. Since

|S1 × S2| < ∞, f2f1 ∈ Mfgap. It follows that Mfgap is a stable system of monics. Let

C(Mbgap) be the composition closure of Mbgap. Then, clearly,

M⊆Mbgap ⊆ C(Mbgap) ⊆Mfgap ⊆Mgap.

Proposition 3.2.15 Suppose that (C,M) has van Kampen colimits (squares) for M-

amalgamable diagram of the form

•
V = •

@@���

��>>>

•
and Mbgap = M, then C has van

kampen colimits for all diagram D : S→M which are M-amalgamable, when 2 ≤ |S| ≤

∞. Moreover, Mfgap =Mbgap ∪ {empty gaps, unary gaps}.

Proof: Since |S| ≤ ∞, S has at least one maximal element. We distinguish 2 cases.

If S has a unique maximal element, namely, its maximum >, then it is easy to see

that D has van Kampen colimit ≤: D ⇒ D(>).

Assume now that S has more than one but finitely many maximal elements>1, . . . ,>n.

Since D : S→M is an amalgamM-cocone, so is D|{>1∧>2,>1,>2}. Hence D|{>1∧>2,>1,>2}

has van Kampen colimit D(>1) ∨D(>2):

D(>1)
))TTTTT

D(>1 ∧ >2)

66llll

))RRRR
D(>1) ∨D(>2)

D(>2)

55jjjjj

Let S1 = S ∪ {>1 ∨ >2}. Then S1 becomes a stable meet semilattice by adding

s ∧ (>1 ∨ >2) = (s ∧ >1) ∨ (s ∧ >2)
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for each s ∈ S that is not below >1 or >2. Now, we can extend D : S → M to

D1 : S1 → M by adding the gaps induced by the van Kampen colimits >1 ∨ >2 and

(s ∧ >1) ∨ (s ∧ >2). Clearly, D1 is M-amalgamable. So, we have an M-amalgamable

diagram D1 : S1 → M such that both D and D1 have the same colimit if they exist

and S1 has n − 1 maximal elements >1 ∨ >2,>3, . . . ,>n. Continuing in this way, we

have a stable meet semilattice S′ in which D can be extended from S to S′ such that

D′ : S′ → M is also an M-amalgamable diagram and both D and D′ have the same

colimit. So D has van Kampen colimit since D′ does.

To prove that Mfgap = Mbgap, suppose that f ∈ Mfgap is given by a van Kampen

colimit ν : D ⇒ X on a finite stable meet semilattice S with |S| ≥ 2, namely, fν(s) ∈M

for all s ∈ S. Now, we look at the number max(S) of maximal elements of S

If max(S) = 1, then the van Kampen colimit of D must be ≤: D ⇒ D(>) that is,

actually, a van Kampen square. So f ∈Mbgap.

Otherwise, if max(S) > 1, by the first part of the proof of the proposition, there

is a van Kampen colimit ν : D′ ⇒ X on S′ such that ν ′(s′) ∈ M for all s′ ∈ S′ and

max(S′) = 1. Hence f ∈Mbgap, too. �

3.3 Completeness for Join Restriction Categories

The main goal of this section is to prove the completeness theorem for join restriction

categories.

3.3.1 Joins in Partial Map Categories and M-adhesive Categories

In the following lemma, we demonstrate that if Par(C,M) has the bottom element then

C has a strict initial object that is a van Kampen colimit from the stable meet semilattice

∅.
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Lemma 3.3.1 If each hom-set in Par(C,M) has the bottom element, then C has the

strict initial object 0 and each map 0→ X is in M.

Proof: Suppose that each hom-set in Par(C,M) has the bottom element. For each pair

of objects A,B in C, let ⊥AB = (mA, 0B), with 0B : 0AB → B, be the bottom element of

hom(A,B) in Par(C,M). First, we claim that the map 0B : 0AB → B is unique in C. In

fact, if there were two maps f, g : 0AB → B, then there were a map ≤: 0AB → 0AB such

that

0AB}}
mA

}}{{{{{{{{ f

!!CCCCCCCC

g
!!CCCCCCCC

A B

0AB

≤

OO

aamA

aaCCCCCCCC 0B

=={{{{{{{{

commutes since ⊥AB= (mA, 0B) is the bottom element in homPar(C,M)(A,B). Hence

mA = mA ≤ and therefore ≤= 1. Thus, f = 0B = g.

For any object X in C, we can compose the two bottom elements by forming the

pullback diagram (∗):

0AX||
k

||yyyyyyyy 0′B

""EEEEEEEEE

0AB~~
mA

~~||||||||
0B

""EEEEEEEEE (∗) 0BX||
mB

||xxxxxxxxx
0X

!!CCCCCCCC

A B X

Since (mA, 0B) ≤ (mAk,mB0′B), there is a map k′ : 0AB → 0AX . Hence kk′ = 10AB and

k′k = 10AX and therefore k is an isomorphism. Hence there is a unique map from 0AB to

X. Thus, 0AB is an initial object in C.
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The initial object 0 is also strict: if there is a map x : X → 0, then one can form the

join (1X , x) ∨ (10, 0X) by taking pullback diagram (∗∗):

•||
l

||zzzzzzzzz

!!CCCCCCCCC

X��
1X

����������
x

!!CCCCCCCCC (∗∗) 0~~
10

~~}}}}}}}}}
0X

��>>>>>>>>

X 0 X

But (1X , x) ∨ (10, 0X) must be (1X , 1X). Note that

X

x
��

X

x
��

0 0

is a pullback diagram. Hence l is an isomorphism and X ∼= 0 and therefore x is an

isomorphism. �

Clearly, each strict initial object is stable. However, the existence of a stable initial

object 0 and 0→ X ∈M imply each hom-set in Par(C,M) has the bottom element.

Lemma 3.3.2 If C has a stable initial object 0 and each map 0 → X is in M, then

each hom-set in Par(C,M) has the bottom element.

Proof: If C has a stable initial object 0, then, for any objects A,B in C, it is easy to

check that ⊥mapC(A,B) = (0A, 0B), where 0A is the unique map 0 → A. In fact, for any

partial map (m, f) : A→ B,

(m, f)(0A, 0B) = (m, f)(0A, 0A)

= (0A, 0B)
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as the initial object 0 is stable so that (∗ ∗ ∗) is a pullback diagram:

0
1

yyyyyyyyyy

yyyyyyyyyy

0A′ ##GGGGGGGGGG

0��
0A

����������
0A

""EEEEEEEEEE (∗ ∗ ∗) A′{{
m

{{xxxxxxxxxx
f

��????????

A A B

Hence (0A, 0A) ≤ (m, f). �

For example, since Setffib, defined in Example 1.6.16, does not have any strict inital

objects, each hom-set in Par(Setffib,M) does not have the bottom element but does have

binary joins, where M = {injections i : A ↪→ B | |B \ i(A)| < +∞}.

Now we consider arbitrary joins in a partial map category. In one direction, we have:

Theorem 3.3.3 Let C be a category with a stable system of monics M. If each amal-

gamable M-diagram has a stable colimit and each M-gap is in M, then Par(C,M) is a

join restriction category.

Proof: Since each amalgamable M-diagram has a stable colimit, it has a stable col-

imit from ∅ so that it has a stable initial object. Hence each hom set in Par(C,M)

has a bottom element by Lemma 3.3.2. For any ^-compatible set {(mi, fi)|i ∈ I} ⊆

MapPar(C,M)(A,B), with I 6= ∅, where mi : Ai → A and fi : Ai → B are maps with

mi ∈ M, let the diagram D : I → C be such that D(i) = Ai. Clearly, {Ai|i ∈ I}

forms a stable meet semilattice diagram with the binary meet given by pullbacks and

ν : D ⇒ A, given by ν(i) = mi, is an amalgam M-cocone. Since each amalgamable

M-diagram has a stable colimit, D has a stable colimit (∨j∈IAj, α). Since {mi|i ∈ I}

provides a D-cocone, there is a unique map m : ∨j∈IAj → A such that mα(Ai) = mi.

Clearly, m is an M-gap and so it is an M-map, Clearly, {fi|i ∈ I} forms a D-cocone
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and so there is a map f : ∨j∈IAj → B such that fα(Ai) = fi.

Ai

mi

��~~~~~~~~~~~~~~~~~~~

fi

��@@@@@@@@@@@@@@@@@@@

α(Ai)

��
∨j∈IAj

m
ww

f
''

A B

Now it is routine to check that (m, f) is the join of the ^-compatible set {(mi, fi)|i ∈ I}

and that Par(C,M) is indeed a join restriction category since ∨j∈IAj is a stable colimit.

The four join axioms are verified as follows.

[J.1] Since for each i ∈ I

Ai

1Ai
��

α(Ai) // ∨j∈IAj
m

��
Ai

mi // A

is a pullback square, 1Ai : Ai → Ai is an isomorphism, and f = fiα(Ai)1
−1
Ai

, by

Lemma 1.6.20 (mi, fi) ≤ (m, f) for each i ∈ I.

Suppose that each (mi, fi) ≤ (n, g) for all i ∈ I. Then, by Lemma 1.6.20, πni is

an isomorphism and gπmiπ
−1
ni = fi, where πmi and πni are given by the following

pullback square:

Ci

πni
��

πmi // A′

n

��
Ai

mi // A

Assume that

C

ρn
��

ρm // A′

n
��

∨i∈IAi m // A

is a pullback diagram. Similarly, D′ : I → C, given by D′(i) = Ci, forms an

amalgamable M-diagram. Then the colimit ∨i∈ICi of D′ exists and is stable and
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so ∨i∈ICi = C:

Ci
α(Ci)

{{wwwwwwwwww
πmi

  AAAAAAA

πni
��

C

ρn

��

ρm // A′

n

��

Ai
α(Ai)

{{wwwwwwwww
mi

  @@@@@@@@

∨i∈IAi m // A

As monics and retracts are stable and each πni is an isomorphism, ρn is an isomor-

phism. Since

fρnα(Ci) = fα(Ai)πni = fiπni = gπmi = gπmα(Ci),

fρn = gρm. Hence (m, f) ≤ (n, g). Thus, (m, f) = ∨i∈I(mi, fi).

[J.2] Clearly, as m is the M-gap given by the stable colimit (∨j∈IAj, α) of {mi : Ai →

A}i∈I , we have

∨i∈I(mi, fi) = (m, f) = (m,m) = ∨i∈I(mi,mi) = ∨i∈I(mi, fi).

[J.3] For any partial map (m, f) : A → B and ^-compatible partial maps {(ni, gi) :

B → C, i ∈ J}, ∨i∈J
(
(ni, gi)(m, f)

)
= (k, h) is given by the stable colimit

(∨i∈JDi, α(Di)):

Di
n′i

{{wwwwwwwww
f ′i

##GGGGGGGGG

α(Di)
��

A1

m

~~}}}}}}}}
∨i∈JDi

k
vv

h
((

Bi

gi

  @@@@@@@

B C

where each

Di

n′i
��

f ′i //

(∗i)

Bi

ni
��

A1
f // B
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is a pullback diagram. On the other hand, ∨i∈J(ni, gi) = (n, g) is given by the

stable colimit (∨i∈JBi, α(Bi)):

Bi

ni

��~~~~~~~~~~~~~~~~~~~

gi

��@@@@@@@@@@@@@@@@@@@

α(Bi)
��

∨i∈JBi

n
ww

g
''

B C

and
(
∨i∈J (ni, gi)

)
(m, f) = (mn′, gf ′′) is given by

D
n′

~~}}}}}}}}
f ′′

##GGGGGGGGG

(∗∗)A1

m

~~~~~~~~~~ f

  AAAAAAAA ∨i∈JBi

n

{{wwwwwwwww g

##GGGGGGGGG

A B C

where (∗∗) is a pullback diagram. As ∨i∈JBi is stable, D = ∨i∈JDi:

Di

n′i

		���������������������� f ′i

##GGGGGGGGG

α(Di)

��

Bi

ni

�������������������������

gi

��-
----------------------

α(Bi)

��

Dn′

~~||||||||
f ′′

##HHHHHHHHH

(∗∗)A1

m

~~~~~~~~~~ f

  BBBBBBBB ∨i∈JBi

n

{{vvvvvvvvv g

##GGGGGGGGG

A B C

Hence

∨i∈J
(
(ni, gi)(m, f)

)
= ∨i∈J(mn′i, gif

′
i) = (mn′, gf ′′) =

(
∨i∈J (ni, gi)

)
(m, f).

[J.4] Similar to the proof of [J.3] above or by Lemma 3.1.8.
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�

By Theorem 3.3.3 and Proposition 3.2.13, immediately we have:

Corollary 3.3.4 Par(C,Mgap) is a join restriction category.

Conversely, we have:

Theorem 3.3.5 Let C be a category with a stable system of monics M. If Par(C,M)

is a join restriction category, then C is an M-adhesive category and Mgap ⊆M.

Proof: If Par(C,M) is a join restriction category, then its hom-sets have the bottom

elements and so, by Lemma 3.3.1, C has van Kampen colimit from ∅, given by its strict

initial object. For every M-diagram D : S → M with a stable meet semilattice S 6= ∅

such that there is an amalgam M-cocone α : D ⇒ X, for each s1, s2 ∈ S

D(s1 ∧ s2)
D(≤) //

D(≤)

��

D(s2)

α(s2)

��
D(s1)

α(s1) // X

is a pullback diagram. Then, by Lemma 3.1.4, {(α(s), α(s))|s ∈ S} is ^-compatible and

so the join ∨s∈S(α(s), α(s)) exists, say (m,m), in MapPar(C,M)(X,X), where m : C → X

is in M. Since (α(s), α(s)) ≤ (m,m), there is an M-map ι(s) : D(s) → C for each

s ∈ S. (ι(s) is the pullback of α(s) along m by Lemma 1.6.20.) So we have an amalgam

M-cocone ι : D ⇒ C. We claim that ι : D ⇒ C is a colimit. For any cocone β : D ⇒ Y

in C, since {(ι(s), β(s))} is compatible in Par(C,M), ∨s∈S(ι(s), β(s)) must exist and

must be (1, g) for some map g : C → Y for it is total by the fact that

(m,m) = ∨s∈S(α(s), α(s)) = ∨s∈S(mι(s),mι(s))

= ∨s∈S(1,m)(ι(s), ι(s))(m, 1) = (1,m)
(
∨s∈S (ι(s), ι(s))

)
(m, 1).
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It follows that ι(s)g = β(s) for each s ∈ S from the fact that (ι(s), β(s)) ≤ (1, g). If

g′ : C → Y is a map such that g′ι(s) = β(s) for all s ∈ S, then (1, g) = ∨s∈S(ι(s), β(s)) =

∨s∈S(ι(s), g′ι(s)) ≤ (1, g′) and so g = g′ by Lemma 1.6.20, as desired.

D(s)
ι(s) //

β(s) !!DDDDDDDD
C

g

��
Y

So, we proved:

In a join restriction category Par(C,M), for a stable meet semilattice M-diagram D,

there is an M-cocone α : D ⇒ X if and only if the colimit ι : D ⇒ C exists and it is an

M-cocone, where C is given by ∨s∈S(α(s), α(s)).

Letting X = Par(C,M) and applying the functor MTotal, we actually have:

In a split restriction category X, for a stable MX diagram D : S → MX, there is an

MX-cocone α : D ⇒ X if and only if the colimit ι : D ⇒ C exists in Total(X) and it is

an MX-cocone, where C is given by ∨s∈Seα(s).

Throughout the rest of the proof, we work either with a join restriction category

Par(C,M) or with a split join restriction category X = Par(Total(X),MX).

ι : D ⇒ C is indeed an MX-van Kampen colimit in Total(X). In fact, for any MX-

diagram D′ : S → MX such that there is an amalgam MX-cocone under D′ and any

commutative diagram of stable meet semilattice diagram:

D′
α′ +3

β
��

Z

r
��

D ι +3 C
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in which β is cartesian. Suppose that α′ : D′ ⇒ Z is a colimit. Then we want to show

that for each s ∈ S

D′(s)

β(s)

��

α′(s) // Z

r

��
D(s)

ι(s) // C

is a pullback diagram. To do this, it suffices to prove eι(s)r = eα′(s) by Lemma 1.6.21.

For any s, s′ ∈ S, since β is cartesian, we have the following commutative diagram

D′(s)
α′(s) //

β(s)

��

Z

r

��

D′(s ∧ s′)

99ssssssssss
u′ //

β(s∧s′)

��

D′(s′)

α′(s′)
<<zzzzzzzzz

β(s′)

��

D(s)
α(s) // C

D(s ∧ s′) u //

99ssssssssss
D(s′)

α(s′)

<<zzzzzzzzz

in which the left, front, top, and bottom faces are pullback diagrams. Hence, by Lemma

1.6.21,

eα(s)rα′(s′) = eu′ = eα′(s)α′(s′)

and therefore

eα(s)rα′(s′) · α′(s′)(−1) = eα′(s)α′(s′) · α′(s′)(−1).

Since ∨s′∈S
(
α′(s′)α′(s′)(−1)

)
= 1,

eα(s)r = ∨s′∈Seα(s)rα′(s′)α′(s′)(−1) = ∨s′∈Seα′(s)α′(s′)α′(s′)(−1) = eα′(s),

as desired. Thus, if α′ : D′ ⇒ Z is a colimit then

D′(s)

β(s)
��

α′(s) // Z

r

��
D(s)

ι(s) // C
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is a pullback diagram.

Suppose now that for each s ∈ S

D′(s)

β(s)

��

α′(s) // Z

r

��
D(s)

ι(s) // C

is a pullback diagram. Since α′ : D′ ⇒ Z is an MX-cocone, the colimit ι′ : D′ ⇒ C ′

of D′ exists and it is an MX-cocone. So there is a total map r′ : C ′ → C such that

r′ι′(s) = ι(s)β(s). Obviously, rg′ = r′. That is the front-right square is commutative.

D′(s)

β(s)

��

ι′(s) ""EEEEEEEE

α′(s) // Z

r

��

C ′

r′

��

g′

??��������

D(s)
ι(s) //

ι(s) ""EEEEEEEE
C

C

��������

��������

Since each back square is a pullback diagram, we have

eι(s)r = eα′(s),∀s ∈ S.

Hence

r = (∨s∈Seι(s))r = ∨s∈S(eι(s)r) = ∨s∈Seι(s)r = ∨s∈Seα′(s) = eg′

an therefore, by Lemma 1.6.21, the front-right square is a pullback diagram. Then g′ is

an isomorphism and so α′ : D′ ⇒ Z is a colimit. Thus, ι : D ⇒ C is a van Kampen

colimit.

For any g : X → Y in Mgap, there is an M-van Kampen colimit ν : D ⇒ X from S

such that g · ν(s) ∈M for all s ∈ S. So we have anM-cocone α : D ⇒ Y from S, given
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by α(s) = g · ν(s).

D(s)
ν(s) //

α(s) ""DDDDDDDD
X

g

��
Y

Since both ν : D ⇒ X and g are determined by ∨s∈S(α(s), α(s)) as seen in constructing

colimit of D, g ∈M. Hence Mgap ⊆M. �

Since van Kampen colimits are stable, by Theorems 3.3.3 and 3.3.5, clearly we have:

Theorem 3.3.6 (Characterization of Partial Map Categories with Joins) For

each M-category (C,M), the following are equivalent:

(i) Each amalgamable M-diagram has a stable colimit and each M-gap is in M;

(ii) C is an M-adhesive category and Mgap ⊆M;

(iii) Par(C,M) is a join restriction category.

Proof: (i)⇒ (iii): By Theorem 3.3.3.

(iii)⇒ (ii): By Theorem 3.3.5.

(ii)⇒ (i): By definitions of a M-adhesive category and Mgap and the fact that van

Kampen colimits are stable. �

By Theorem 3.3.6, immediately we have the following completeness theorem of join

restriction categories.

Theorem 3.3.7 (Completeness of Join Restriction Categories) Each join restric-

tion category X can be fully and faithfully embedded, in a join and restriction preserving

manner, into a partial map category Par(Y,M), where Y is anM-adhesive category and

Mgap ⊆M.
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Proof: For a given join restriction category X, by Proposition 1.6.11, there is a full and

faithful embedding

X
ηX→ Split(X) ≈ Par(Total(Split(X)),MSplit(X)).

For each ^-compatible subset S ⊆ hom(e1, e2) in Split(X), where e1 : X → X and

e2 : Y → Y are restriction idempotents in X, clearly S is a ^-compatible subset of

hom(X, Y ). Hence the join ∨s∈Ss exists in hom(X, Y ) as X is a join restriction category.

Now it is easy to check that ∨s∈Ss is a join in the hom-set hom(e1, e2) of Split(X) so that

Split(X) is a join restriction category. By Theorem 3.3.6, Y = Total(Split(X)) isMSplit(X)-

adhesive and (MSplit(X))gap ⊆ MSplit(X) as Par(Total(Split(X)),MSplit(X)) ≈ Split(X) is a

join restriction category. Obviously, the restriction functor ηX preserves joins. �

3.3.2 Join Completion Using M-gaps

Let (C,M) be an M-category and let P : C → D be a full functor which preserves

pullbacks alongM-maps. Suppose that D has pullbacks. Then, by [15], there are a least

class of monicsMP and a greatest class of monicsMP , which make both P : (C,M)→

(D,MP ) and P : (C,M) → (D,MP ) be M-functors, where MP is the composition

closure of all pullbacks of P (m) with m ∈M andMP =MP
0 ∩{monics in D} withMP

0

being the class of maps n : D′ → D in D for which if u : P (C) → D is a D-map then

there is an M-map m : C ′ → C such that P (m) is a pullback of n along u:

P (C ′)

u′

��

P (m) // P (C)

u

��
D′

n // D

If P generates D, then MP
0 = MP . In particular, the Yoneda embedding Y : C →

SetC
op

generates SetC
op

. Thus, for any M-category (C,M), one has two M-functors

Y : (C,M)→ (SetC
op

,MY)
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and

Y : (C,M)→ (SetC
op

,MY).

Given an M-functor F , it is natural to ask when Par(F ) is (full and) faithful. We

have:

Lemma 3.3.8 Let F : (C,M)→ (D,N ) be an M-functor such that F : C→ D is full

and faithful. Then

(1) Par(F ) : Par(C,M)→ Par(D,N ) is faithful.

(2) The following are equivalent:

(a) Par(F ) : Par(C,M)→ Par(D,N ) is full and faithful.

(b) For any N -map n : D → F (C), there is an M-map m and an isomorphism

α : D → F (dom(m)) such that F (m)α = n.

(c) F (m) ∈ N implies m ∈ M and for any N -map n : D → F (C) there is a

C-object XD such that F (XD) ∼= D.

Proof: (1) Let (m, f) : A → B and (m′, f ′) : A → B be maps in Par(C,M) such

that Par(F )(m, f) = Par(F )(m′, f ′). Then there is an isomorphism α : F (dom(m′)) →

F (dom(m)) such that F (m)α = F (m′) and F (f)α = F (f ′). Since F is full and faithful,

there is an isomorphism β : dom(m′) → dom(m) such that F (β) = α and so mβ = m′

and fβ = f ′. Hence (m, f) = (m′, f ′) and therefore F is faithful.

(2) It is proved as follows.

“(a)⇒ (b)” Since (n, n) : F (C)→ F (C) is a map in Par(D,N ) and

Par(F ) : Par(C,M)→ Par(D,N )

is full and faithful, there is a map (m, f) : C → C in Par(C,M) such that

Par(F )(m, f) = (F (m), F (f)) = (n, n)
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and so there is an isomorphism α : D → F (dom(m)) such that F (m)α = n, as

desired.

“(b) ⇒ (c)” By (b), there is an M-map m and an isomorphism α : D → F (dom(m))

such that F (m)α = n. Clearly, let XD = dom(m), then F (XD) ∼= D. If m : A→ B

is a C-map such that F (m) ∈ N , then, by (b) there are an M-map m′ and an

isomorphism α such that F (m′)α = F (m) and so there is an isomorphism β in C

such that F (β) = α. But F is full and faithful. It follows that m = m′β ∈M since

m′, β ∈M.

“(c)⇒ (a)” By (1), we only need to prove that Par(F ) is full. For any objects A,B in

Par(C,M) and any map (n, f) : F (A)→ F (B) in Par(D,N ), by hypothesis there

is an object XD in C and an isomorphism α : F (XD) → D, where D = dom(n).

Clearly, (nα, fα) = (n, f). Since F is full and faithful, there are an map m and

g : XD → B in C such that F (m) = nα and F (g) = fα. Since F (m) = nα ∈ N ,

by (c) m ∈M. Then (m, g) is a map in Par(C,M) and Par(F )(m, g) = (n, f) and

so Par(F ) is full, as desired.

�

Proposition 3.3.9 Let P : (C,M)→ (D,N ) be a full and faithful M-functor then

Par(F ) : Par(C,M)→ Par(D,N )

is full and faithful whenever MP ⊆ N ⊆MP .

Proof: It suffices to prove that

Par(F ) : Par(C,M)→ Par(D,MP )

is full and faithful.
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For any MP -map n : D → P (C), by the definition of MP there is an M-map

m : C ′ → C such that

P (C ′)
P (m) //

��

P (C)

1P (C)

��
D

n // P (C)

is a pullback diagram. But

D
n //

1D
��

P (C)

1P (C)

��
D n // P (C)

is also a pullback diagram since n is a monic. Hence there is an isomorphism α such that

P (m)α = n and therefore, by Lemma 3.3.8, Par(P ) is full and faithful. �

Since the Yoneda embedding

Y : C→ SetC
op

is full and faithful, by Proposition 3.3.9 we have:

Corollary 3.3.10 Both

Par(Y) : Par(C,M)→ Par(SetC
op

,MY)

and

Par(Y) : Par(C,M)→ Par(SetC
op

,MY)

are full and faithful.

Recall that for any given restriction category C, by Propositions 1.6.13 and 1.6.19

and Theorem 1.6.22 there are an M-category (Total(Split(C)),MSplit(C)) and a full and

faithful functor JC : C → Par(Total(Split(C)),MC). Clearly, JC is the composition of

the full and faithful unit ηC : C→ Split(C) and the equivalence

Split(C) ≈ Par(Total(Split(C)),MSplit(C)).
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Explicitly, JC is given by

A

7→f

��

f
f

����������
f

&&LLLLLLLLLLLLL

B 1A 1B

Since any elementary topos is adhesive by Proposition 3.7 in [29] and since a colimit of

an amalgam MC-cocone is in MC, SetTotal(Split(C))op

is an MC-adhesive category. Since

MC ⊆ (MC)gap, there is a faithful embedding

E : Par((SetTotal(Split(C)))op,MC)→ Par((SetTotal(Split(C)))op, (MC)gap).

Hence there is a unique restriction functor F : j(C)→ Par((SetTotal(Split(C)))op, (MC)gap)

such that the following diagram is commutative:

C
Par(Y)JC //

ηC

��

Par((SetTotal(Split(C)))op,MC)

E
��

j(C) F // Par((SetTotal(Split(C)))op, (MC)gap)

The restriction functor F is indeed full and faithful.

Proposition 3.3.11 The functor F in the last commutative diagram is full and faithful.

Proof: Since Par(Y)JC is full and faithful and since

j(C) and Par((SetTotal(Split(C)))op, (MC)gap)

are generated from C and Par((SetTotal(Split(C)))op,MC) by adding joins respectively, F

is full.

For faithfulness of F , note that the embedding

D : Par((SetTotal(Split(C)))op, (MC)gap)→ Par((SetTotal(Split(C)))op, {monics})

is faithful so

F : j(C)→ Par((SetTotal(Split(C)))op, (MC)gap)
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is faithful if and only if

DF : j(C)→ Par((SetTotal(Split(C)))op, {monics})

is faithful.

To prove this, suppose that S1, S2 ∈ j(C)(A,B) with S1 6= S2. Without loss of

generality, we may assume that S1 ∩ S2 6= S2 so that it suffices to show that if S1 $ S2

then DF (S1) $ DF (S2).

Suppose on the contrary that S1 $ S2 but DF (S1) = DF (S2). Then there is an

s ∈ S2 \ S1, where s ∈ C(A,B). But (DF )(s) is

TS(C)op(−, s)
DF (s)

uulllllllllllll DF (s)

))RRRRRRRRRRRRR

TS(C)op(−, A) TS(C)op(−, B)

where TS(C)op = Total(Split(C))op.

Now, compute

(DF )(S1) = ∪s1∈S1(DF )(s1)

= ∪s1∈S1TS(C)op(−, s1)

⊆ TS(C)op(−, A).

Since s ∈ DF (S2) = DF (S1), we have

DF (s) j ∪s1∈S1DF (s1)

so that there is a natural transformation ι : DF (s) → ∪s1∈S1DF (s1) such that the

following diagram

DF (s) ι //

DF (s) %%JJJJJJJJJ
∪s1∈S1DF (s1)

DF (∪s1∈S1
s1)wwooooooooooo

DF (A)
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is commutative. By Yoneda Lemma, ι corresponds to

∪s1∈S1DF (s1)(s) = ∪s1∈S1TS(C)op(s, s1)

which is a contradiction since each TS(C)op(s, s1) = ∅ by noting that s ≤ s1 and s ^ s1

implies s ≤ s1 and so s ∈ S1. Hence DF (S1) $ DF (S2) and therefore DF is faithful, as

desired. �
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Chapter 4

Meet Restriction Categories

In Chapter 3, we introduced joins to restriction categories so that we had the notion of

join restriction categories. In this chapter, we first consider meet structures in restriction

categories to introduce the notion of meet restriction categories. Then we show when

a partial maps category Par(X,M) is a meet restriction category and how to add meet

structures to restriction categories freely.

4.1 Meet Restriction Categories

We consider binary meets on hom sets of a restriction category.

Definition 4.1.1 A meet restriction category is a restriction category equipped with a

meet operation on parallel maps
f, g : X → Y

f ∧ g : X → Y

such that the following three meet axioms are satisfied:

[M.1] for each map f , f ∧ f = f ;

[M.2] for each pair of parallel maps f, g : X → Y , f ∧ g ≤ f and f ∧ g ≤ g;

[M.3] for each map f : X → Y and each pair of parallel maps g, h : Y → Z, (g ∧ h)f =

gf ∧ hf .

Some properties of a meet in a restriction category are summarized in the following

lemma.

Lemma 4.1.2 In a meet restriction category, for any maps f, g, f ′, g′, h that make senses,

we have
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(i) f ≤ f ′ and g ≤ g′ ⇒ f ∧ g ≤ f ′ ∧ g′. In particular, f ≤ f ′ ⇔ f ∧ x ≤ f ′ ∧ x for all

maps x that have the same domain and codomain with f ;

(ii) h ≤ f, h ≤ g ⇔ h ≤ f ∧ g;

(iii) f ∧ g = g ∧ f ;

(iv) (f ∧ g) ∧ h = f ∧ (g ∧ h);

(v) f ≤ g ⇔ f ∧ g = g ∧ f = f ;

(vi) ff ∧ g = gf ∧ g = f ∧ g;

(vii) h(f ∧ g) = hf ∧ g = f ∧ hg = hf ∧ hg;

(viii) (f ∧ g)h = fh ∧ g = f ∧ gh = fh ∧ gh;

(ix) f ∧ g = fg;

(x) f ∧ g is a restriction idempotent. Moreover, if fk+1 = fk for some positive integer

k and if the restriction idempotent f ∧ g splits as f ∧ g = mr with rm = 1, then

gfk splits as gfk = m · (rfk) with rfkm = 1.

(xi) 1 ∧ f = f ⇔ f = f . Moreover, f ∧ g = fg if and only if fg is a restriction

idempotent.

Proof:

(i) Since

f ≤ f ′, g ≤ g′ ⇒ f ∧ g ≤ f ≤ f ′, f ∧ g ≤ g ≤ g′

⇒ f ′f ∧ g = f ∧ g, g′f ∧ g = f ∧ g

⇒ (f ′ ∧ g′)f ∧ g = f ′f ∧ g ∧ g′f ∧ g = f ∧ g

⇒ f ∧ g ≤ f ′ ∧ g′.
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(ii) Since

h ≤ f, h ≤ g ⇒ h = h ∧ h ≤ f ∧ g

and

h ≤ f ∧ g ⇒ h ≤ f ∧ g ≤ f, h ≤ f ∧ g ≤ g.

(iii) Note that

f ∧ g ≤ g, f ∧ g ≤ f ⇒ f ∧ g ≤ g ∧ f

and symmetrically g ∧ f ≤ f ∧ g. Hence f ∧ g = g ∧ f .

(iv) Since

(f ∧ g) ∧ h ≤ f ∧ g ≤ f, (f ∧ g) ∧ h ≤ g ∧ h⇒ (f ∧ g) ∧ h ≤ f ∧ (g ∧ h)

and

f ∧ (g ∧ h) ≤ f ∧ g, f ∧ (g ∧ h) ≤ g ∧ h ≤ h⇒ f ∧ (g ∧ h) ≤ (f ∧ g) ∧ h.

(v) Since f ≤ g, we have f = f ∧f ≤ f ∧g and f = f ∧f ≤ g∧f . Obviously, f ∧g ≤ f

and g∧f ≤ f . Then f∧g = g∧f = f . Conversely, clearly f = f∧g ⇒ f = f∧g ≤ g.

(vi) Since

f ∧ g ≤ f, f ∧ g ≤ g ⇒ ff ∧ g = f ∧ g = gf ∧ g.
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(vii) hf ∧ g ≤ hf gives

hf ∧ g = (hf)hf ∧ g

= fhf fhf ∧ g ([R.4])

= ffhf ∧ g hf ([R.2])

= f(fhf ∧ g)hf ([R.3])

= ff ∧ g hf ([M.3] and [R.3])

= hf f ∧ g ([R.4])

= h(f ∧ g) (f ∧ g ≤ f).

Note also that

f ∧ hg = hg ∧ f = h(g ∧ f) = h(f ∧ g)

and

h(f ∧ g) = h(hf ∧ g) = hf ∧ hg.

Hence

h(f ∧ g) = hf ∧ g = f ∧ hg = hf ∧ hg.

(viii) fh ∧ g ≤ fh implies

fh ∧ g = (fh)fh ∧ g

= f(fh ∧ g)h ([R.2] and [R.3])

= ff ∧ g h ([M.3] and [R.3])

= (f ∧ g)h (f ∧ g ≤ f).

It follows that

f ∧ gh = gh ∧ f = (g ∧ f)h = (f ∧ g)h = fh ∧ gh.

(ix) Since f ∧ g = f f ∧ g g = fg ∧ fg = fg.
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(x) Since

f ∧ g = (f ∧ 1)g = f ∧ 1g = 1 · f ∧ 1 · g = (f ∧ 1)g = f ∧ g.

f ∧ g is a restriction idempotent. Note that

gfk = gfk+1 ∧ gfk = g(f ∧ g)fk = (f ∧ g)fk = m · rfk

and

rfk ·m = rfk · (f ∧ g)m = · · · = r(f ∧ g)m = 1.

(xi) Since 1∧f = f ⇔ f ∧f = 1∧ff = f ⇔ f ≥ f ⇔ f = f. Note that f ∧g = fg∧1.

Then f ∧ g = fg ⇔ fg = fg ⇔ fg is a restriction idempotent.

�

4.2 Completeness of Meet Restriction Categories

This section is intended to characterize when a partial maps category is a meet restriction

category and the completeness of meet restriction categories in partial maps categories

using equalizers.

4.2.1 Meet Restriction Implies Equalizers

Recall that by Proposition 1.6.11 if C is a restriction category, then so is Split(C) with

a split restriction structure given by the restriction in the category C and there is a

restriction preserving inclusion C→ Split(C) sending f : X → Y to f : 1X → 1Y .

If a restriction category C has a meet, then it is natural to ask what the special

properties of the partial maps category Par(Total(Split(C)),MSplit(C)) has. We shall see

that in some sense, C’s having a meet is equivalent to Total(Split(C))’s having equalizers.
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Since Split(C) is a split restriction category, let D be a restriction category with split

restriction. Recall the following class of maps:

MD = {m : X → Y inTotal(D) | ∃ r : Y → X in D, rm = 1X and r = mr}.

If C is a meet restriction category, then not only is Split(C) a split restriction category

but also Total(Split(C)) has equalizers.

Proposition 4.2.1 If C is a meet restriction category, then Total(Split(C)) has equaliz-

ers and regular monics are restriction monics in Total(Split(C)).

Proof: For each pair of maps f, g : e1 → e2 in Total(Split(C)), we have

e2f = f, e2g = g, fe1 = f, ge1 = g, f = g = 1e1 = e1.

Then

f ∧ ge1 = fe1 ∧ ge1 = f ∧ g

and so all triangles in

• f∧g //

f∧g
��
f∧g

@@@

��@@@

•
e1

��
•

f∧g
// •

are commutative. That is, f ∧ g : f ∧ g → e1 is a map in Total(Split(C)). We claim that

f ∧ g f∧g // e1 g
//

f // e2

is an equalizer diagram in Total(Split(C)). For each map x : e → e1 such that fx = gx

in Total(Split(C)), we have

e1x = x, xe = x, x = 1e = e.

Then

f ∧ gx = x(f ∧ g)x = xfx ∧ gx = xfx = fx = e1x = x
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and so x : e→ f ∧ g is a map in Total(Split(C)). Since f ∧ g f ∧ g = f ∧ g = 1f∧g, f ∧ g

is a restriction monic splitting f ∧ g and there is a unique map x : e→ f ∧ g such that

f ∧ g f∧g // e1 g
//

f // e2

e

x

<<yyyyyyyyy
!x

OO

is commutative. Therefore, Total(Split(C)) has equalizers and each regular monic f ∧ g

is a restriction monic. �

4.2.2 Equalizers Imply Meet Restriction

First, let’s study when a partial maps category Par(X,M) is a meet restriction category.

Proposition 4.2.2 For an M-category (X,M), if X has equalizers and

{regular monics in X} ⊆ M,

then Par(X,M) is a meet restriction category.

Proof: Recall that Par(X,M) is restriction category with the split restriction (m, f) =

(m,m). It suffices to show that the split restriction category Par(X,M) has a meet.

For each pair of maps (m, f), (n, g) : X → Y in Par(X,M), we form the pullback

square of M-maps m and n:

P
m′ //

n′

��

Z2

n

��
Z1

m // X

and then we equalize fn′ and gm′ in X:

E k // P
fn′ //
gm′
// Y
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Since the regular monic k : E → P is in M, mn′k′ ∈ M and (mn′k, fn′k) is a partial

map in (X,M). We claim that

(m, f) ∧ (n, g) = (mn′k, fn′k) : X → Y

gives a meet on Par(X,M). The three meet axioms are showed as follows.

[M.1] For each partial map (m, f) : X → Y , since

Z
1Z //

1Z
��

Z

m
��

Z
m // X

is a pullback diagram and

Z
1Z // Z

f //
f
// Y

is an equalizer diagram, we have

(m, f) ∧ (m, f) = (m · 1 · 1, f · 1 · 1) = (m, f).

[M.2] For each pair of parallel partial maps (m, f), (n, g) : X → Y , looking at the

following

E
1E

��~~~~~~~~
k

  AAAAAAAA

E
k

����������
k

��???????? P
1P

~~}}}}}}}}
n′

  BBBBBBBB

P
n′

��~~~~~~~~
P

n′

��@@@@@@@@ Z1
1Z1

~~}}}}}}}} 1Z1

  AAAAAAAA

Z1

m

~~}}}}}}}
Z1

m
  BBBBBBB Z1

m

~~||||||| f

  AAAAAAA

X X Y
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where each square is a pullback diagram, we have

(m, f)(m, f) ∧ (n, g) = (m, f)(mn′k, gm′k)

= (m, f)(mn′k,mn′k)

= (mn′k, fn′k)

= (m, f) ∧ (n, g).

Then (m, f)∧ (n, g) = (mn′k, fn′k) ≤ (m, f). Similarly, we have (m, f)∧ (n, g) =

(mn′k, gm′k) ≤ (n, g).

[M.3] For each partial map (m, f) : X → Y and each pair of parallel partial maps

(n1, g1), (n2, g2) : Y → Z, we want to show that

((n1, g1) ∧ (n2, g2))(m.f) = ((n1, g1)(m, f)) ∧ ((n2, g2)(m.f)).

To do this, first, note that (n1, g1)∧ (n2, g2) = (n1te, g1te) is given by the pullback

square

G s //

t
��

G2

n2

��
G1

n1 // Y

and the equalizer diagram

E
e // G

g1t //
g2s
// Z.

So

((n1, g1) ∧ (n2, g2))(m, f) = (n1te, g1te)(m, f)

= (n2se, g2se)(m, f)

= (mn′1t
′e′, g1tef3)
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is given by

C
e′

~~~~~~~~~~
f ′′1

��>>>>>>>>

X ′1
t′

~~||||||| f ′1

��@@@@@@@
E

e

����������
e

��>>>>>>>>

X1
n′1

~~|||||||
f1

!!BBBBBBBB G
t

~~~~~~~~~~
G

t

  @@@@@@@@

X ′

m

~~}}}}}}}}
f

!!BBBBBBBB G1

n1

}}{{{{{{{{
G1

g1

  AAAAAAAA

X Y Z

where each square is a pullback diagram.

On the other hand, (n1, g1)(m, f) = (mn′1, g1f1) is given by the pullback square:

X1
n′1

~~|||||||
f1

''PPPPPPPPPPPPPPP

X ′

m

~~}}}}}}}}

f
((PPPPPPPPPPPPPPPP G1

n1~~}}}}}}}} g1

&&MMMMMMMMMMMMM

X Y Z

and (n2, g2)(m, f) = (mn′2, g2f2) is given by the pullback square:

X2
n′2

~~|||||||
f2

''PPPPPPPPPPPPPPP

X ′

m

~~}}}}}}}}

f
((PPPPPPPPPPPPPPPP G2

n2~~}}}}}}}} g2

&&MMMMMMMMMMMMM

X Y Z

So

(n1, g1)(m, f) ∧ (n2, g2)(m, f) = (mn′1, g1f1) ∧ (mn′2, g2f2) = (mn′1n
′′
2d, g1f1n

′′
2d)
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is given by the pullback squares

X ′′
n′′1 //

n′′2
��

X ′2
1X′2 //

n′2
��

X ′2

n′2
��

f2

��
X ′1

1X′1
��

n′1 // X ′

1X′
��

1X′ // X ′

m

��

G2

g2

��

X ′1
n′1 //

f1 ''

X ′
m // X

G1 g1

// Z

and an equalizer diagram

D
d // X ′′

g1f1n′′2 //
g2f2n′′1

// Z.

Note that n′1t
′ = n′2s

′ (and X1 = X ′2, up to isomorphism) since they are pullbacks

of n1t = n2s along f . Then mn′1t
′ = mn′2s

′ and so there is a unique map w :

X ′1 → X ′′ such that

n′′1w = s′ and n′′2w = t′.

Hence

g1f1n
′′
2we

′ = g1f1t
′e′ = g1tef

′′
1 = g2sef

′′
2 = g2f2n

′′
1we

′′

and therefore there exists a unique map u : C → D such that

du = we′ = we′′.

Since m is a monic, we have

mn′1n
′′
2 = mn′2n

′′
1 ⇒ n′1n

′′
2 = n′2n

′′
1

⇒ n1f1n
′′
2 = fn′1n

′′
2 = fn′2n

′′
1 = n2f2n

′′
1.

So there is a unique map p : X ′′ → G such that

sp = f2n
′′
1 and tp = f1n

′′
2.
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Since

g1tpd = g1f1n
′′
2d = g2f2n

′′
1d = g2spd,

there exists a unique map q : D → E such that

eq = pd.

It follows that

fn′1n
′′
2d = n1f1n

′′
2d = n1tpd = n1teq.

Then there is a unique map v : D → C such that

f ′′1 v = q and t′e′v = n′′2d.

Since n′′2d is a monic,

n′′2duv = n′′2we
′v = t′e′v = n′′2d⇒ uv = 1D

and since t′ is a monic,

t′e′vu = n′′2du = n′′2we
′ = t′e′ ⇒ vu = 1C .

Hence

((n1, g1) ∧ (n2, g2))(m, f) = (mn′1t
′e′, g1tef3)

= (mn′1n
′′
2d, g1f1n

′′
2d)

(as uv = 1D, vu = 1C)

= (n1, g1)(m, f) ∧ (n2, g2)(m, f).
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D

d

  AAAAAAAAAAAAAAAAAAAA

v

��

q

��

C

e′′

��

f ′′2 //uoo E

e

��
X ′2

s′

��

f ′2 //

w

vv

G

s

��
X ′′

n′′2

��

n′′1 //

p

��

X2

n′2
��

f2 // G2

n2

��

g2

		

X ′

m

��

f
// Y

C

f ′′1
��

e′ // X ′1

f ′1
��

t′ //

w

FF

X1

f1

��

n′1 // X ′

f

��

m // X

E e // G t // G1
n1 //

g1

44Y Z

�

Now we are ready to show:

Theorem 4.2.3 A category is a meet restriction category if and only if it is a full sub-

category of Par(X,M) for someM-category (X,M) in which X has equalizers and every

regular monics of X is in M.

Proof: “if” part: By Proposition 4.2.2, Par(X,M) is a meet restriction category and

so is its full subcategory.

“only if” part: Conversely, a meet restriction category C is a full sub-restriction cat-

egory of Par(Total(Split(C)),MSplit(C)). By Proposition 4.2.1, Total(Split(C)) has equal-

izers and every monic of Par(Total(Split(C))) is in MSplit(C), as desired. �

As an example, Par(Setffib,M), given in Example 1.6.16, is not a meet restriction

category as not every regular monic of Setffib is inM clearly, whereM = {injections i :

A ↪→ B | |B \ i(A)| < +∞}.
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4.3 Meet Completion for Restriction Categories

This section is intended to construct the free meet restriction category over a given

restriction category. Let X be a restriction category. Define the meet restriction category

Mt(X) (the meet completion of X) as follows:

objects: the same as the objects of X;

maps: a map from X to Y in Mt(X) is a pair (f,Q) of a X-map f and a finite set

Q = {(fi, f ′i)|i = 1, · · · , n} of parallel X-map pairs: f : X → Y , f1, f
′
1 : X →

X1, · · · , fn, f ′n : X → Xn

Q=

X

f

((

f1

}}{{{{{{{

f ′1}}{{{{{{{

fn !!CCCCCCCC
f ′n

!!CCCCCCCC Y

X1 · · · Xn

factored out by the equivalence relation (f,Q) ∼ (g,R), where (f,Q) ∼ (g,R) if

(g,R) can be obtained from (f,Q) by finite steps ':

[MC.1] if (f, g) ∈ Q, then (f,Q) ' (g,Q) and (g,Q) ' (f,Q);

[MC.2] (f,Q ∪ {(1, 1)}) ' (f,Q) and (f,Q) ' (f,Q ∪ {(1, 1)});

[MC.3] for each pair of parallel maps h and k which have the same domain as that of

f ,

(f,Q ∪ {(h, k)}) ' (f,Q ∪ {(k, h)});

[MC.4] if (h, k), (k, w) ∈ Q, then (f,Q) ' (f,Q ∪ {(h,w)}) and (f,Q ∪ {(h,w)}) '

(f,Q);

[MC.5] if vh = h and if (h, k) ∈ Q, then

(f,Q) ' (f,Q ∪ {(vh, vk)})
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and

(f,Q ∪ {(vh, vk)}) ' (f,Q);

[MC.6] for any restriction idempotent e = e : X → X, if (h, k) ∈ Q, then

(fe,Q) ' (f,Q ∪ {(he, k)})

and

(f,Q ∪ {(he, k)}) ' (fe,Q).

We shall prove that ∼ is an equivalence relation in Lemma 4.3.1 below. The

equivalence class of (f,Q) is also denoted by (f,Q). So (f,Q) = (f1, Q1) usually

means that (f,Q) and (f1, Q1) have the same equivalence class, that is, (f,Q) ∼

(f1, Q1).

composition: for maps (f,Q) : X → Y and (g,R) : Y → Z in Mt(X),

(g,R)(f,Q) = (gf,Q ∪Rf) :

Q=

X

f

))

f1

}}{{{{{{{

f ′1}}{{{{{{{

fn !!CCCCCCCC
f ′n

!!CCCCCCCC

R=

Y
g1

}}|||||||

g′1}}|||||||

gn !!CCCCCCCC
g′n

!!CCCCCCCC

g

((Z

X1 · · · Xn Y1 · · · Ym

identities: for each object X, 1X = (1X , ∅);

restriction: (f,Q) = (f,Q);

meet: for a pair of parallel maps; (f,Q), (g,R) : X → Y in Mt(X),

(f,Q) ∧ (g,R) = (f,Q ∪R ∪ {(f, g)}).

We first observe:

Lemma 4.3.1 ∼ in the definition of Mt(X) above is an equivalence relation.
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Proof: We show the reflexivity, the symmetry, and the transitivity of ∼ as follows.

Reflexivity: For each map (f,Q), (f,Q) can be obtained from (f,Q) by 0 step ' and

so (f,Q) ∼ (f,Q).

Symmetry: It suffices to show that if (f,Q) ' (g,R) then (g,R) ' (f,Q), which is

clear by the definition of '.

Transitivity: Clearly, if (f,Q) ∼ (g,R) and (g,R) ∼ (h, S), then (g,R) and (h, S) can

be obtained from (f,Q) and (g,R) by finite steps ' respectively and so (h, S) can

be obtained from (f,Q) by finite steps '. Hence (f,Q) ∼ (h, S).

�

Some properties of Mt(X) are summarized in the following lemma.

Lemma 4.3.2 In the meet completion Mt(X) of a restriction category X,

(i) if (h, k) ∈ Q, then (f,Q) = (f,Q ∪ {(h, k)});

(ii) if h ≥ f , then (f,Q ∪ {(h, h)}) = (f,Q);

(iii) let (h, k) ∈ Q. If h ≤ u and k ≤ v, then (f,Q) = (f,Q ∪ {(u, v)});

(iv) for each restriction idempotent e that makes senses, (f,Q ∪Re) = (fe,Q ∪R);

(v) if (f, f ′) ∈ Q, then (gf,Q) = (gf,Q ∪ {(gf, gf ′)});

(vi) if (f, f ′) ∈ Q, then (gf,Q ∪Rf) = (gf,Q ∪Rf ∪Rf ′).

Proof:
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(i)

(f,Q) = (f,Q ∪ {(hh, kk)})

= (fh k,Q) ([MC.6])

= (fh k,Q ∪ {(1, 1)}) ([MC.2])

= (f,Q ∪ {(h, k)}) ([MC.6]).

(ii) If h ≥ f , then h f = f and so

(f,Q) = (ff h,Q ∪ {(1, 1)}) ([MC.2])

= (f,Q ∪ {(1, 1), (h, 1)}) ([MC.6])

= (f,Q ∪ {(1, 1), (h, h)}) ([MC.5])

= (f,Q ∪ {(h, h)}) ([MC.2]).

(iii) Since h ≤ u and k ≤ v, h = uh and k = vk. Then

(f,Q) = (f,Q ∪ {(h, k)})

= (f,Q ∪ {(uh, vk)})

= (fh k,Q ∪ {(u, v)}) ([MC.6])

= (f,Q ∪ {(u, v)}) ([MC.6]).
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(iv) Assume R = {(s1, t1), · · · , (sn, tn)}. Then

(f,Q ∪Re) = (f,Q ∪ {(s1e, t1e), · · · , (sne, tne))

= (fen, Q ∪ {(s1, t1e), · · · , (sn, tne)) ([MC.6])

= (fen, Q ∪ {(t1e, s1), · · · , (tne, sn)) ([MC.3])

= (fe2n, Q ∪ {(t1, s1), · · · , (tn, sn)) ([MC.6])

= (fe,Q ∪ {(t1, s1), · · · , (tn, sn)) (e2 = e)

= (fe,Q ∪ {(s1, t1), · · · , (sn, tn)) ([MC.3]))

= (fe,Q ∪R).

(v) (gf,Q) = (gf,Q ∪ {(fgf, f ′)}) = (gf,Q ∪ {(gfgf, gf ′)}) = (gf,Q ∪ {(gf, gf ′)}).

(vi) Assume that R = {(s1, t1), · · · , (sn, tn)}. Then

(gf,Q ∪Rf) = (gf,Q ∪ {(s1f, t1f), · · · , (snf, tnf)})

= (gf,Q ∪ {(s1f, t1f), · · · , (snf, tnf), (1, 1)})

(1 ≥ gf and [MC.2])

= (gf,Q ∪ {(s1f, t1f), · · · , (snf, tnf), (s1f, 1), (t1f, 1)})

([MC.6])

= (gf,Q ∪ {(s1f, t1f), · · · , (snf, tnf), (f s1f, 1), (f t1f, 1)})

([MC.6])

= (gf,Q ∪ {(s1f, t1f), · · · , (snf, tnf), (fs1f, f), (ft1f, f)})

([MC.5])

= (gf,Q ∪ {(s1f, t1f), · · · , (snf, tnf), (fs1f, f
′), (ft1f, f

′)})

((f, f ′) ∈ Q and [MC.4])
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= (gf,Q ∪ {(s1f, t1f), · · · , (snf, tnf), (s1f, s1f
′), (t1f, t1f

′)})

([MC.5])

= (gf,Q ∪ {(s1f, t1f), · · · , (snf, tnf), (s1f
′, s1f), (t1f, t1f

′)})

([MC.3])

= (gf,Q ∪ {(s1f, t1f), · · · , (snf, tnf), (s1f
′, s1f), (t1f, t1f

′),

(s1f
′, t1f

′)}) ([MC.4])

= (gf,Q ∪ {(s1f, t1f), · · · , (snf, tnf),

(s1f
′, t1f

′)}) (reserving the above process)

· · · induction on n

= (gf,Q ∪ {(s1f, t1f), · · · , (snf, tnf), (s1f
′, t1f

′),

· · · , (snf ′, tnf ′)})

= (gf,Q ∪Rf ∪Rf ′}).

�

Then we need to prove:

Lemma 4.3.3 The composition, restriction, and meet defined above are well-defined.

Proof:

1. The Composition (g,R)(f,Q) = (gf,Q ∪Rf) is well-defined.

We need to prove that if (g,R) ∼ (g1, R1) and (f,Q) ∼ (f1, Q1) then

(g,R)(f,Q) ∼ (g1, R1)(f1, Q1).

It suffices to show that if (g,R) ' (g1, R1) and (f,Q) ' (f1, Q1) then

(g,R)(f,Q) ∼ (g,R)(f1, Q1) ((g,R) fixed)
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and

(g,R)(f,Q) ∼ (g1, R1)(f,Q) ((f,Q) fixed).

Case 1. Fix (g,R).

[MC.1] If (f, f ′) ∈ Q, then (f,Q) ' (f ′, Q). Note that

g · fgf = g · gf = gf = fgf.

Then

(g,R)(f,Q) = (gf,Q ∪Rf)

= (gf,Q ∪Rf ∪ {(gf, gf ′)}) (Lemma 4.3.2(v))

= (gf,Q ∪Rf ∪Rf ′ ∪ {(gf, gf ′)}) (Lemma 4.3.2(vi))

= (gf ′, Q ∪Rf ∪Rf ′ ∪ {(gf, gf ′)}) ([MC.1])

= (gf ′, Q ∪Rf ′ ∪ {(gf, gf ′)}) (Lemma 4.3.2(vi))

= (gf ′, Q ∪Rf ′) (Lemma 4.3.2(v))

= (g,R)(f ′, Q).

[MC.2] Since

(g,R)(f,Q) = (gf,Q ∪Rf)

= (gf,Q ∪Rf ∪ {(1, 1)}) ([MC.2])

= (g,R)(f,Q ∪ {(1, 1)}).
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[MC.3] Since

(g,R)(f,Q ∪ {(h, k)}) = (gf,Q ∪Rf ∪ {(h, k)})

= (gf,Q ∪Rf ∪ {(k, h)}) ([MC.3])

= (g,R)(f,Q ∪ {(k, h)}).

[MC.4] If (h, k), (k, w) ∈ Q, then (f,Q) ∼ (f,Q ∪ {(h,w)}) and

(g,R)(f,Q) = (gf,Q ∪Rf)

= (gf,Q ∪Rf ∪ {(h,w)}) ([MC.4])

= (g,R)(f,Q ∪ {(h,w)}).

[MC.5] If (h, k) ∈ Q and if vh = h, then (f,Q) ∼ (f,Q ∪ {(vh, vk)}) and

(g,R)(f,Q) = (gf,Q ∪Rf)

= (gf,Q ∪Rf ∪ {(vh, vk)}) ([MC.5])

= (g,R)(f,Q ∪ {(vh, vk)}).

[MC.6] If e is a restriction idempotent and (h, k) ∈ Q, then (fe,Q) ∼ (f,Q ∪

{(he, k)}) and

(g,R)(fe,Q)

= (gfe,Q ∪Rfe)

= (gf,Q ∪Rfe ∪ {(he, k)) ((h, k) ∈ Q and [MC.6])

= (gf,Q ∪Rf ∪ {(he, k)) (Lemma 4.3.2(iv))

= (g,R)(f,Q ∪ {(he, k)}).
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Case 2. Fix (f,Q).

[MC.1] If (g, g′) ∈ R, then (g,R) ∼ (g′, R) and

(g,R)(f,Q) = (gf,Q ∪Rf)

= (g′f,Q ∪Rf) ((gf, g′f) ∈ Rf)

= (g′, R)(f,Q).

[MC.2] Since

(g,R)(f,Q) = (gf,Q ∪Rf)

= (gf,Q ∪Rf ∪ {(f, f)}) (f ≥ gf and Lemma 4.3.2(ii))

= (g,R ∪ {(1, 1)})(f,Q).

[MC.3] Since

(g,R ∪ {(t, s)})(f,Q) = (gf,Q ∪Rf ∪ {(tf, sf)})

= (gf,Q ∪Rf ∪ {(sf, tf)}) ([MC.3])

= (g,R ∪ {(s, t)})(f,Q).

[MC.4] If (u, v), (v, w) ∈ R, then (g,R) ∼ (g,R ∪ {(u,w)}) and

(g,R)(f,Q) = (gf,Q ∪Rf)

= (gf,Q ∪Rf ∪ {(uf, wf)})

((uf, vf), (vf, wf) ∈ Rf and [MC.4])

= (g,R ∪ {(u,w)})(f,Q).
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[MC.5] If (s, t) ∈ R and vs = s, then (g,R) ∼ (g,R ∪ {(vs, vt)}) and

(g,R)(f,Q) = (gf,Q ∪Rf)

= (gf,Q ∪Rf ∪ {(vsf, vtf)}) (vsf = sf and [MC.5]))

= (g,R ∪ {(vs, vt)})(f,Q).

[MC.6] If e = e and (s, t) ∈ R, then (ge,R) ∼ (g,R ∪ {(se, t)}) and

(ge, R)(f,Q) = (gef,Q ∪Rf)

= (gfef,Q ∪Rf)

= (gf,Q ∪Rf ∪ {(sfef, tf)})

((sf, tf) ∈ Rf and [MC.6]))

= (gf,Q ∪Rf ∪ {(sef, tf)})

= (g,R ∪ {(se, t)})(f,Q).

2. Restriction (f,Q) = (f,Q) is well-defined.

[MC.1] If (f, g) ∈ Q, then (f,Q) = (g,Q). We want to show that (f,Q) = (g,Q).

Note that

(f,Q) = (f,Q)

= (1, Q ∪ {(ff, g)}) ((f, g) ∈ Q and [MC.6])

= (1, Q ∪ {(gg, f)}) ([MC.3])

= (g,Q ∪ {(g, f)}) ([MC.6])

= (g,Q) ((f, g) ∈ Q and [MC.3])

= (g,Q),
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as desired.

[MC.2] If h ≥ f , then (f,Q ∪ {(h, h)}) ∼ (f,Q). Since h ≥ f , we have

(f,Q) = (f,Q) = (f,Q ∪ {(h, h)}) = (f,Q ∪ {(h, h)}).

[MC.3] If (h, k) ∈ Q, then (f,Q) ∼ (f,Q ∪ {(k, h)}) and

(f,Q) = (f,Q) = (f,Q ∪ {(k, h)}) = (f,Q ∪ {(k, h)}).

[MC.4] If (h, k), (k, w) ∈ Q, then (f,Q) ∼ (f,Q ∪ {(h,w)}) and

(f,Q) = (f,Q) = (f,Q ∪ {(h,w)}) = (f,Q ∪ {(h,w)}).

[MC.5] If (h, k) ∈ Q and vh = h, then (f,Q) ∼ (f,Q ∪ {(vh, vk)}) and

(f,Q) = (f,Q) = (f,Q ∪ {(vh, vk)}) = (f,Q ∪ {(vh, vk)}).

[MC.6] If e is a restriction idempotent and (h, k) ∈ Q, then

(fe,Q) ∼ (f,Q ∪ {(he, k)})

and

(fe,Q) = (fe,Q) = (fe,Q) = (f,Q ∪ {(he, k)}) = (f,Q ∪ {(he, k)}).

3. The meet (g,R) ∧ (f,Q) = (f,Q ∪R ∪ {(f, g)}) is well-defined.

Case 1. Fix (g,R).
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[MC.1] If (f, f ′) ∈ Q, then (f,Q) ∼ (f ′, Q) and

(f,Q) ∧ (g,R) = (f,Q ∪R ∪ {(f, g)})

= (f,Q ∪R ∪ {(f, g), (f ′, f)}) ((f, f ′) ∈ Q and [MC.3])

= (f,Q ∪R ∪ {(f, g), (f ′, f), (f ′, g)}) ([MC.4])

= (f ′, Q ∪R ∪ {(f, g), (f ′, f), (f ′, g)}) ([MC.1])

= (f ′, Q ∪R ∪ {(f, g), (f ′, g)}) ((f, f ′) ∈ Q and [MC.3])

= (f ′, Q ∪R ∪ {(f ′, g)})

((f, f ′), (f ′, g) ∈ Q ∪R ∪ {(f ′, g)} and [MC.4])

= (f ′, Q) ∧ (g,R).

[MC.2] Since

(f,Q) ∧ (g,R) = (f,Q ∪R ∪ {(f, g)})

= (f,Q ∪R ∪ {(f, g), (1, 1)}) ([MC.2])

= (f,Q ∪ {(1, 1)}) ∧ (g,R).

[MC.3] Since

(f,Q ∪ {(h, k)}) ∧ (g,R) = (f,Q ∪R ∪ {(f, g), (h, k)})

= (f,Q ∪R ∪ {(f, g), (k, h)}) ([MC.3])

= (f,Q ∪ {(k, h)}) ∧ (g,R).

[MC.4] If (h, k), (k, w) ∈ Q, then (f,Q) ∼ (f,Q ∪ {(h,w)}) and

(f,Q) ∧ (g,R) = (f,Q ∪R ∪ {(f, g)})

= (f,Q ∪R ∪ {(f, g), (h,w)}) ([MC.4])

= (f,Q ∪ {(h,w)}) ∧ (g,R).
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[MC.5] If (h, k) ∈ Q and if vh = h, then (f,Q) ∼ (f,Q ∪ {(vh, vk)}) and

(f,Q) ∧ (g,R) = (f,Q ∪R ∪ {(f, g)})

= (f,Q ∪R ∪ {(f, g), (vh, vk)}) ([MC.5])

= (f,Q ∪ {(vh, vk)}) ∧ (g,R).

[MC.6] If e is a restriction idempotent and (h, k) ∈ Q, then

(fe,Q) ∼ (f,Q ∪ {(he, k)})

and

(fe,Q) ∧ (g,R) = (fe,Q ∪R ∪ {(fe, g)})

= (f,Q ∪R ∪ {(fe, g), (he, k)}) ([MC.6])

= (f,Q ∪R ∪ {(f, g), (he, k)})

= (f,Q ∪ {(he, k)}) ∧ (g,R).

Case 2. Fix (f,Q).

[MC.1] If (g, g′) ∈ R, then (g,R) ∼ (g′, R) and

(f,Q) ∧ (g,R) = (f,Q ∪R ∪ {(f, g)})

= (f,Q ∪R ∪ {(f, g), (f, g′), (g′, g)})

((g, g′) ∈ R, [MC.3], and [MC.4])

= (f,Q ∪R ∪ {(f, g′), (g′, g)}) ([MC.4])

= (f,Q ∪R ∪ {(f, g′)}) ([MC.3])

= (f,Q) ∧ (g′, R).
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[MC.2] Since

(f,Q) ∧ (g,R) = (f,Q ∪R ∪ {(f, g)})

= (f,Q ∪R ∪ {(f, g), (1, 1)}) ([MC.2])

= (f,Q) ∧ (g,R ∪ {(1, 1)}).

[MC.3] Since

(f,Q) ∧ (g,R ∪ {(s, t)}) = (f,Q ∪R ∪ {(f, g), (s, t)})

= (f,Q ∪R ∪ {(f, g), (t, s)}) ([MC.3])

= (f,Q) ∧ (g,R ∪ {(t, s)}).

[MC.4] If (u, v), (v, w) ∈ R, then (g,R) ∼ (g,R ∪ {(u,w)}) and

(f,Q) ∧ (g,R) = (f,Q ∪R ∪ {(f, g)})

= (f,Q ∪R ∪ {(f, g), (u,w)}) ([MC.4])

= (f,Q) ∧ (g,R ∪ {(u,w)}).

[MC.5] If (s, t) ∈ R and vs = s, then (g,R) ∼ (g,R ∪ {(vs, vt)}) and

(f,Q) ∧ (g,R) = (f,Q ∪R ∪ {(f, g)})

= (f,Q ∪R ∪ {(f, g), (vs, vt)}) ([MC.5])

= (f,Q) ∧ (g,R ∪ {(vs, vt)}).
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[MC.6] If e = e and (s, t) ∈ R, then (ge,R) ∼ (g,R ∪ {(se, t)}) and

(f,Q) ∧ (ge, R) = (f,Q ∪R ∪ {(f, ge)})

= (g,Q ∪R ∪ {(f, ge), (se, t)}) ([MC.6])

= (f,Q ∪R ∪ {(ge, f), (se, t)}) ([MC.3])

= (f,Q ∪R ∪ {(g, f), (se2, t)}) ([MC.6])

= (f,Q ∪R ∪ {(f, g), (se, t)}) ([MC.3])

= (f,Q) ∧ (g,R ∪ {(se, t)}).

�

4.3.1 Mt(X) is a Restriction Category

We need to verify the identity law, associative law, and four restriction axioms. The

identity law and associative law are verified as follows.

identity law: For any map (f,Q) : X → Y , we have

(f,Q)(1X , ∅) = (f, ∅ ∪Q · 1X) = (f,Q)

and

(1Y , ∅)(f,Q) = (f,Q ∪ ∅f) = (f,Q).

So identity law holds true.

association law: For any maps (f,Q) : X → Y , (g,R) : Y → Z, and (h, S) : Z → A,(
(h, S)(g,R)

)
(f,Q) = (hg,R ∪ Sg)(f,Q)

= (hgf,Q ∪Rf ∪ Sgf)

= (h, S)(gf,Q ∪Rf)

= (h, S)
(

(g,R)(f,Q)
)
.
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So associative law holds true.

Hence Mt(X) is a category. To prove that Mt(X) is a restriction category, we verify the

four restriction axioms as follows.

[R.1]

(f,Q)(f,Q) = (f,Q)(f,Q)

= (f,Q ∪Qf)

= (ff,Q) (Lemma 4.3.2(iv))

= (f,Q);

[R.2]

(f,Q) (g,R) = (f,Q)(g,R)

= (fg,R ∪Qg)

= (fg g,R ∪Q) (Lemma 4.3.2(iv))

= (fgf,Q ∪R)

= (gf,Q ∪Rf) (Lemma 4.3.2(iv))

= (g,R) (f,Q);

[R.3]

(g,R)(f,Q) = (gf,Q ∪Rf)

= (gf,Q ∪Rf)

= (g,R)(f,Q)

= (g,R) (f,Q);



188

[R.4]

(g,R)(f,Q) = (g,R)(f,Q)

= (gf,Q ∪Rf)

= (fgf,Q ∪Rf)

= (fgf,Q ∪Rf ∪Qgf) (Lemma 4.3.2(iv))

= (f,Q)(gf,Q ∪Rf)

= (f,Q)(g,R)(f,Q).

4.3.2 Mt(X) is a Meet Restriction Category

For maps (f,Q), (g,R) : X → Y , note that

(f,Q) ≤ (g,R)

⇔ (g,R)(f,Q) = (f,Q)

⇔ (gf,Q ∪Rf) = (f,Q).

The three meet axioms are showed as follows.

[M.1] For each map (f,Q) : X → Y in Mt(X),

(f,Q) ∧ (f,Q) = (f,Q ∪Q ∪ {(f, f)})

= (f,Q) (f ≥ f and Lemma 4.3.2(ii)).

[M.2] For maps (f,Q), (g,R) : X → Y , since

(f,Q)(f,Q ∪R ∪ {(f, g)}) = (ff,Q ∪Qf ∧R ∪ {(f, g)})

= (f,Q ∪R ∪ {(f, g)}),
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we have

(f,Q) ∧ (g,R) = (f,Q ∪R ∪ {(f, g)}) ≤ (f,Q).

Similarly, (f,Q) ∧ (g,R) ≤ (g,R).

[M.3] For maps (f,Q) : X → Y , and (g,R), (h, S) : Y → Z,

(
(g,R) ∧ (h, S)

)
(f,Q) = (g, S ∪R ∪ {(g, h)})(f,Q)

= (gf,Q ∪ Sf ∪Rf ∪ {(gf, hf)})

= (gf,Q ∪Rf) ∧ (hf,Q ∪ Sf)

=
(

(g,R)(f,Q)
)
∧
(

(h, S)(f,Q)
)
.

Hence Mt(X) is a meet restriction category.

4.3.3 Mt(X) is a Free Meet Restriction Category

Let mrCat0 be the category of meet restriction categories and meet restriction functors

between them. Then there is an obvious forgetful functor

Umt : mrCat0 → rCat0.

For each given restriction category X, we have a restriction functor

J : X→ Umt(Mt(X))

given by sending each map f : X → Y in X to a map (f, ∅) : X → Y in Mt(X).
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For each map (f,Q) : X → Y in Mt(X) with Q = {(f1, f
′
1), · · · , (fn, f ′n)}, we have

(f,Q) = (f, ∅)(1X , {(f1, f
′
1), · · · , (fn, f ′n)})

= (f, ∅)
n∏
i=1

(1, {(fi, f ′i)}),

(fi, ∅) ∧ (f ′i , ∅) = (fi, {(fi, f ′i)})

= (fi, {(fi, f ′i)})

= (1, {(fifi, f ′i)}) ([MC.6])

= (1, {(fi, f ′i)}).

For a given restriction functor F : X → Umt(Y) with a meet restriction category Y, we

define

F ∗ : Mt(X)→ Y

by

F ∗(f, ∅) = F (f)

F ∗(f,Q) = F (f)
n∏
i=1

F (fi) ∧ F (f ′i).

Then, for each X-map f : X → Y ,

(Umt(F
∗)J)(f) = Umt(F

∗)(f, ∅) = F (f).

Suppose that G : Mt(X) → Y is a meet restriction functor such that Umt(G)J = F .

Then

Umt(G)(f, ∅) = (Umt(G)J)(f) = F (f) = Umt(F
∗)(f, ∅)
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and so, for any Mt(X)-map (f,Q) : X → Y with Q = {(f1, f
′
1), · · · , (fn, f ′n)}, we have

Umt(G)(f,Q) = Umt(G)
(

(f, ∅)
n∏
i=1

(1, {(fi, f ′i)})
)

= Umt(G)(f, ∅)Umt(G)
( n∏
i=1

(1, {(fi, f ′i)})
)

= F (f)
n∏
i=1

Umt(G)(1, {(fi, f ′i)})

= F (f)
n∏
i=1

Umt(G)((fi, ∅) ∧ (f ′i , ∅))

= F (f)
n∏
i=1

Umt(G)(fi, ∅) ∧ Umt(G)(f ′i , ∅)

= F (f)
n∏
i=1

F (fi) ∧ F (f ′i)

= Umt(F
∗)(f,Q).

Hence G = F ∗ and therefore there is a unique meet restriction functor F ∗ suct that

X J //

F %%KKKKKKKKKKK Umt(Mt(X))

Umt(F ∗)
��

Mt(X)

∃!F ∗
��

Umt(Y) Y

commutes. Thus, there is a functor

Fmt : rCat0 →mrCat0

given by sending each restriction functor F : X → Y to a meet restriction functor

Fmc(F ) : Mt(X)→ Mt(Y), where

Fmt(F )(f,Q) = (F (f), F (Q))

and Mt(X) is free over a restriction category X.

If J(f) = (f, ∅) = (g, ∅) = J(g), then (f, ∅) ∼ (g, ∅). By Lemma 4.3.2, we have

(f, ∅) = (f, {(h, h)|f ≤ h} ∪ {(s, t)|f ≤ s, t})
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and

(g, ∅) = (g, {(k, k)|g ≤ k} ∪ {(u, v)|g ≤ u, v}).

Hence J(f) = J(g) if and only if f = g. So we have actually proved:

Theorem 4.3.4 Fmt a Umt : mrCat0 → rCat0 is an adjoint pair with a faithful unit so

that Mt(X) is a free meet restriction category over a restriction category X.

4.3.4 Meet Completion for Inverse Categories

In the last subsection, we provided the meet completion Mt(X) for restriction categories.

Recall that an inverse semigroup is meet complete if every non-empty subset has a meet

([31], p.27). Similar to join completion for inverse semigroups, it is well-known that each

inverse semigroup can be embedded in a meet complete inverse semigroup, called meet

completion ([31], p.34). This subsection is intended to show the relationship between the

meet completion for restriction categories and the meet completion for inverse categories.

First, we recall the meet completion for inverse semigroups, described in [31] (pp.34-

36). Let S be an inverse semigroup and X a non-empty subset of S. Write

X ↑= {s ∈ S|x ≤ s for some x ∈ X}.

A subset X is called up closed if X = X ↑. A non-empty up closed subset A of S is

called a coset if A = AA(−1)A. For each non-empty subset X ⊆ S, define

〈X〉 =
⋂
{cosets A|X ⊆ A}.

One can describe the meet completion K(S) for an inverse semigroup S with

composition: A⊗B = 〈AB〉.

The category invSgrp0 of all inverse semigroups and homomorphisms between them,

has the subcategory minvSgrp0 consisting of all meet complete inverse semigroups.
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There is the forgetful functor Umci : minvSgrp0 → invSgrp0, forgetting the meets. Umci

has the left adjoint Fmci given by the meet completion K( ):

Theorem 4.3.5 Fmci a Umci : minvSgrp0 → invSgrp0 is an adjoint pair with a faithful

unit so that the meet completion K(S) is a free meet inverse semigroup over an inverse

semigroup S.

Proof: Theorems 28, 29, 30 [31], pp.35-36. �

Remark 4.3.6 The meet completion for inverse semigroups can be fitted to inverse

categories. Let I be an inverse category. The meet completion K(I) can be described as

the following meet complete inverse category with:

objects: X ∈ I;

maps: a map U : X → Y is given by a coset U ⊆ mapI(X, Y );

identities: 1X = {1X};

composition: for any maps U : X → Y and V : Y → Z in K(I), V U = 〈V U〉;

restriction: U = 〈U (−1)U〉;

meet: ∧i∈ΓUi =
⋂
i∈Γ Ui.

Let mcinvCat0 be the subcategory of invCat0, consisting of all meet complete in-

verse categories, analogous to meet complete inverse semigroups. Similarly, the obvious

forgetful functor Umc : mcinvCat0 → invCat0 has the left adjoint given by the meet

completion K(I):

Fmc a Umc : mcinvCat0 → invCat0 is an adjoint pair with a faithful unit so that K(I)

is a free meet complete inverse category over an inverse category I.

Let us be back to the meet completion Mt(X) for restriction categories proved in

the last subsection. As each inverse category I is a restriction category, we have a meet
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restriction category Mt(I) that turns out to be a meet inverse category, where an inverse

category is called a meet inverse category if there is a meet operation on parallel maps in

such that the three meet axioms in the definition of a meet restriction category (Definition

4.1.1) are satisfied. To see this, we characterize idempotents in Mt(I) by the following

lemma.

Lemma 4.3.7 An Mt(I)-map (f,Q) : X → Y is an idempotent if and only if there exists

a restriction idempotent e in I such that (f,Q) = (e, P ).

Proof: Clearly, if e is a restriction idempotent in I, then (e, P )2 = (e2, P ∪Pe) = (e, P )

and so each (e, P ) is an idempotent in Mt(I).

Conversely, if (f,Q)2 = (f 2, Q ∪ Qf) = (f,Q), then after finite steps ' there are

restriction idempotents e1 and e2 such that

(f,Q)2 = (f, T ∪ {(fe1, f
2e2)}) = (f,Q).

By [MC.5], (f, T ∪ {(fe1, f
2e2)}) = (f, T ∪ {(fe1, fe2)}) = (f, T ∪ {(fe1, fe2)}), as

desired. �

Now we are ready to show that Mt(I) is a meet inverse category.

Lemma 4.3.8 Let I be an inverse category. Then Mt(I) is a meet inverse category.

Proof: As Mt(I) is a meet restriction category, it suffices to show each Mt(I)-map has

a least one regular-inverse and idempotents with the same domain in Mt(I) commute.

For each Mt(I)-map (f,Q) : X → Y ,

(f,Q)(f (−1), Qf (−1))(f,Q) = (ff (−1), Qf (−1))(f,Q)

= (ff (−1)f,Q ∪Qf (−1)f)

= (f,Q) ([MC.6]).
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So (f,Q) has a regular inverse (f (−1), Qf (−1)).

By Lemma 4.3.7, each idempotent in Mt(I) has the form of (e, P ) with a restriction

idempotent e. For any idempotents with the same domain (e1, Q1), (e2, Q2) : X → X,

here e1 and e2 are restriction idempotents in I, we have

(e1, Q1)(e2, Q2) = (e1e2, Q2 ∪Q1e2)

= (e1e2, Q2e2 ∪Q1) ([MC.6])

= (e2, Q2)(e1, Q1).

Hence idempotents with the same domain in Mt(I) commute. Thus, Mt(I) is a meet

inverse category. �

By Lemma 4.3.8, Fmt(invCat0) is a subcategory of minvCat0. So there is an ad-

junction Fmt a Umt : minvCat0 → invCat0 given by restricting adjunction Fmt a Umt :

mrCat0 → rCat0 to invCat0. We have:

Theorem 4.3.9 There is a commutative adjunction diagram:

invCat0

Fmti //
⊥� _

��

minvCat0
Umti

oo � _

��
rCat0

Fmt //
⊥ mrCat0
Umt

oo

For a given inverse category I, both Mt(I) and K(I) share some properties as reflected

in the following two propositions.

Proposition 4.3.10 For an inverse category I, if (f,Q) : X → Y is an Mt(I)-map with

(h, k) ∈ Q, then

1. h ≤ u and k ≤ v implies (f,Q) = (f,Q ∪ {(u, v)}),

2. (f,Q) = (f,Q ∪ {(1, h(−1)k)}) = (f,Q ∪ {(k(−1)h, 1)}).
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Proof:

1. By Lemma 4.3.2(iii).

2. As h = hh(−1)h = h(−1)h,

(f,Q) = (f,Q ∪ {(h(−1)h, h(−1)k)}) ([MC.5])

= (fh(−1)h,Q ∪ {(1, h(−1)k)}) ([MC.6])

= (f,Q ∪ {(1, h(−1)hh(−1)k)}) ([MC.6])

= (f,Q ∪ {(1, h(−1)k)}).

Similarly, (f,Q) = (f,Q ∪ {(k(−1)h, 1)}).

�

So, for an inverse category I each parallel pair (h, k) can be turned into the form of

(1, h(−1)k) or (k(−1)h, 1).

Proposition 4.3.11 For an inverse category I and an Mt(I)-map (f,Q), if

(1, h), (1, k), (1, l) ∈ Q

and h, k, l have the same domain, then

1. (1, h(−1)) ∈ Q;

2. (h, hk), (1, hk) ∈ Q;

3. (1, hk(−1)l) ∈ Q.

Proof:
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1. As

(1, h) ∈ Q ⇔ (h, 1) ∈ Q

⇔ (h(−1)h, 1) ∈ Q

⇒ (h(−1)h, h(−1)) ∈ Q

⇒ (1, h(−1)hh(−1)) ∈ Q

⇔ (1, h(−1)) ∈ Q.

2. Since

(1, h), (1, k) ∈ Q ⇒ (1, h), (1, k) ∈ Q

⇒ (h, 1), (1, k) ∈ Q

⇒ (h, k) ∈ Q

⇒ (h, hk) ∈ Q.

Clearly, (1, h), (h, hk) ∈ Q imply (1, hk) ∈ Q.

3. As (1, h), (1, k(−1)), (1, l) ∈ Q.

�

4.3.5 Interactions with Cartesianess

In Chapter 2, we studied cartesian objects in restriction categories and how to add

partial products to a restriction category freely. In this subsection, we shall study how

meet completion interacts with cartesianess.

Recall that in a restriction category, a partial terminal object is an object 1 satisfying

for each object X there is a total map !X : X → 1 such that for any map f : X → 1,
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f =!Xf :

X
!X //

f

==f
((

1

For each pair of objects X and Y in a restriction category, a binary partial product of

X and Y is an object X×Y with two total maps πX : X×Y → X and πY : X×Y → Y

such that for any pair of maps f : Z → X and g : Z → Y there is a unique map

〈f, g〉 : Z → X × Y such that

X
f

{{wwwwwwwww

≥{{wwwwwwwww
g

##GGGGGGGGG

≤ ##GGGGGGGGG

〈f,g〉
��

A A×Bπ1

oo
π2

// B

A restriction category is cartesian if it has a partial terminal object and binary partial

products.

Assume that X is a cartesian restriction category with a partial terminal object (1, !)

and a binary partial product (X×Y, πX , πY ) for each pair of X-objects X and Y . We are

wondering if the unit J : X → Mt(X), given by sending f : X → Y to (f, ∅) : X → Y ,

preserves the partial terminal object (1, !) and the binary partial product (X×Y, πX , πY ).

Claim 1. (1, (!, ∅)) is a partial terminal object in Mt(X) so that the unit J preserves

partial terminal objects.

In fact, for each Mt(X)-object X, there is a total Mt(X)-map (!X , ∅) : X → 1

such that for any Mt(X)-map (f,Q) : X → 1

(!X , ∅)(f,Q) = (!X , ∅)(f,Q) = (!Xf,Q) = (f,Q).

Clearly, (!X , ∅) = (!X , ∅) = (!X , ∅). So (!X , ∅) is total in Mt(X). Hence (1, (!, ∅))

is a partial terminal object in Mt(X).

Claim 2. (X ×Y, (πX , ∅), (πY , ∅)) is not a partial product of X and Y in Mt(X) so that

J does not preserve binary partial products.
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For each pair Mt(X)-maps (f,Q) : Z → X and (g,R) : Z → Y , the Mt(X)-

map (〈f, g〉, Q ∪R) : Z → X × Y satisfies

(πX , ∅)(〈f, g〉, Q∪R) = (πX〈f, g〉, Q∪R) = (fg,R∪Qg) = (f,Q)(g,R) ≤ (f,Q)

and

(πY , ∅)(〈f, g〉, Q∪R) = (πY 〈f, g〉, Q∪R) = (gf,Q∪Rf) = (g,R)(f,Q) ≤ (g,R) :

Z
(f,Q)

≥
vvnnnnnnnnnnnnnnn

(g,R)

≤
''PPPPPPPPPPPPPPP

(〈f,g〉,Q∪R)
��

X X × Y
(πX ,∅)

oo
(πY ,∅)

// Y

However, the uniqueness of the Mt(X)-map (〈f, g〉, Q ∪ R) is a problem as

(f,Q) = (f ′, Q) and (g,R) = (g′, R) do not imply (〈f, g〉, Q∪R) = (〈f ′, g′〉, Q∪

R) generally. For example, given X-maps f, f ′, g, g′ with the same domain and

codomain, suppose that f 6= f ′ and g 6= g′. Then

(f, {(f, f ′), (f ′, f)}) = (f ′, {(f, f ′), (f ′, f)})

and

(g, {(g, g′), (g′, g)}) = (g′, {(g, g′), (g′, g)})

but

(〈f, g〉, {(f, f ′), (f ′, f), (g, g′), (g′, g)}) 6= (〈f ′, g′〉, {(f, f ′), (f ′, f), (g, g′), (g′, g)}).

So, we have:

Proposition 4.3.12 The unit J : X → Mt(X), given by sending f : X → Y to (f, ∅) :

X → Y , preserves partial terminal objects but does not preserve binary partial products

generally.

But, we have:
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Proposition 4.3.13 Given a cartesian restriction category X, then the unit J : X →

Mt(X), given by sending f : X → Y to (f, ∅) : X → Y , preserves binary partial products

if and only if the maps in Mt(X), defined in Section 4.3, satisfies one more equivalent

step ∼:

[MC.7] (f,Q) ∼ (f ′, Q′) and (g,R) ∼ (g′, R′) imply (〈f, g〉, Q ∪R) ∼ (〈f ′, g′〉, Q′ ∪R′).

Proof: (The Sketch). First of all, it is easy to show that ∼, after adding [MC.7], is

an equivalence relation as we did in Lemma 4.3.1. Then, it is routine to verify that the

composition, restriction, and meet defined in Section 4.3 are well defined after adding

[MC.7], as in Lemma 4.3.3. Now we want to show that J(X × Y, πX , πY ) = (X ×

Y, (πX , ∅), (πY , ∅)) is a partial product of X and Y in Mt(X) with adding [MC.7].

For any Mt(X)-maps (f,Q) : Z → X and (g,R) : Z → Y , as we did in Claim 2

above, we have the following diagram:

Z
(f,Q)

≥
vvnnnnnnnnnnnnnnn

(g,R)

≤
''PPPPPPPPPPPPPPP

(〈f,g〉,Q∪R)
��

X X × Y
(πX ,∅)

oo
(πY ,∅)

// Y

Let (h, S) : Z → X × Y be an Mt(X)-map such that

Z
(f,Q)

≥
vvnnnnnnnnnnnnnnn

(g,R)

≤
''PPPPPPPPPPPPPPP

(h,S)
��

X X × Y
(πX ,∅)

oo
(πY ,∅)

// Y

Then

(πX , ∅)(h, S) = (πXh, S) = (f,Q)(g,R) = (f,Q)(g,R) = (fg,Q ∪R)

and

(πY , ∅)(h, S) = (πY h, S) = (g,R)(f,Q) = (g,R)(f,Q) = (gf,Q ∪R)

and so

(πXh, S) ∼ (fg,Q ∪R) and (πY h, S) ∼ (gf,Q ∪R).
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By [MC.7], we have

(h, S) = (〈πXh, πY h〉, S ∪ S) = (〈fg, gf〉, Q ∪R ∪Q ∪R) = (〈f, g〉, Q ∪R).

Hence the uniqueness of (〈f, g〉, Q ∪ R) follows and therefore (X × Y, (πX , ∅), (πY , ∅)) is

a partial product of X and Y in Mt(X).

Conversely, let (X × Y, πX , πY ) be a partial product of X and Y in X. If the unit J :

X→ Mt(X) preserves binary partial products, then (X × Y, (πX , ∅), (πY , ∅)) is a partial

product of X and Y in Mt(X). Suppose that (f,Q) ∼ (f ′, Q′) and (g,R) ∼ (g′, R′).

Then, as we did in Claim 2 above, we have the following diagram

Z

(f,Q)

≥

||zzzzzzzzzzzzzzzzzz

(g,R)

≤

""DDDDDDDDDDDDDDDDDD

(〈f,g〉,Q∪R)

(〈f ′,g′〉,Q′∪R′)
��

X X × Y
(πX ,∅)

oo
(πY ,∅)

// Y

and so (〈f, g〉, Q ∪R) ∼ (〈f ′, g′〉, Q′ ∪R′). �
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Chapter 5

Range Categories

In [10], we introduced the notion of range categories that axiomatized both domain and

image of a partial map and showed that the category of all range categories with split

restrictions is equivalent to the category of allM-stable factorization systems so that each

range category X can be embedded fully and faithfully into the partial maps category of

someM-stable factorization system after splitting restriction idempotents of X. In [43],

Schein embedded each type 3 function system, which can be viewed as a range category

with one object, satisfying certain condition ([RR.6] below), into the category of partial

functions Par(Set,EpicsSet,MonicsSet). This chapter is devoted to studying the Schein’s

representation theorem for type 3 function systems in range categories.

5.1 Introduction to Range Categories

In this section, we shall give a brief introduction to range categories and collect some

results on range categories, which we shall use in this chapter later on.

5.1.1 Range Category Basics

Let f : X → Y be a partial map in Par(Set,MonicsSet). We define a partial map

f̂ : Y → Y by

f̂(y) =

 y if ∃x f(x) = y,

↑ otherwise.

Obviously f̂ describes the range of f and satisfies the following four conditions:

[RR.1] f̂ = f̂ for each map f ,
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[RR.2] f̂f = f for each map f ,

[RR.3] ĝf = gf̂ for all maps f, g with codom(f) = dom(g),

[RR.4] ĝf̂ = ĝf for all maps f, g with codom(f) = dom(g).

Definition 5.1.1 A range structure on a restriction category C is an assignment of a

map f̂ : Y → Y in C to each map f : X → Y such that the four range axioms [RR.1],

[RR.2], [RR.3], and [RR.4] mentioned above are satisfied. A restriction category with

a range structure is called a range category.

Here are some examples of range categories.

Example 5.1.2 1. Any category is a range category with trivial restriction structure

and trivial range structure given by

f = 1X and f̂ = 1Y ,

for any map f : X → Y .

2. Par(Set,MonicsSet) is a restriction category with restriction given by

f(x) =

 x whenever ↓ f(x),

↑ otherwise.

for each map f : X → Y . It is also a range category with the range structure given

by

f̂(y) =

 y if ∃x f(x) = y,

↑ otherwise.

We denote the range category of sets and partial functions by

Par(Set,EpicsSet,MonicsSet).
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3. Any inverse semigroup with an identity can be regarded as the one object range

category with the restriction and the range given by x = x(−1)x and x̂ = xx(−1)

(Similar to Example 1.6.6.4).

4. More generally, each inverse category is a range category with the restriction and the

range given by f = f (−1)f and f̂ = ff (−1). The four range axioms are checked as

follows:

[RR.1] f̂ = ff (−1) = (ff (−1))(−1)ff (−1) = ff (−1)ff (−1) = ff (−1) = f̂ ;

[RR.2] f̂f = ff (−1)f = f ;

[RR.3]

ĝf = ĝ(−1)gf

= g(−1)gf(g(−1)gf)(−1)

= g(−1)gff (−1)g(−1)g

= g(−1)gg(−1)gff (−1)

= g(−1)gff (−1)

= gf̂ ;

[RR.4]

ĝf̂ = ̂gff (−1)

= gff (−1)(gff (−1))(−1)

= gff (−1)ff (−1)g(−1)

= gff (−1)g(−1)

= (gf)(gf)(−1)

= ĝf .
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Some basic properties of range categories are recorded in the following lemma, which

are easy to verify.

Lemma 5.1.3 In a range category,

(i) ĝf̂ = f̂ ĝ if codom(f) = codom(g);

(ii) f̂ g = gf̂ if dom(g) = codom(f);

(iii) ̂̂gf = ĝf̂ if codom(f) = codom(g);

(iv) f̂ = 1 if f is epic. In particular, 1̂ = 1;

(v) (f̂)2 = f̂ for each map f ;

(vi)
̂̂
f = f̂ for each map f ;

(vii) f̂ = f for each map f ;

(viii) ĝf ĝ = ĝf if codom(f) = dom(g);

(ix)
̂̂
gf̂ = ĝf̂ if codom(f) = codom(g).

A functor F : C → D between two range categories is called a range functor if

F (f) = F (f) and F (f̂) = F̂ (f) for each map f in C. A natural transformation between

two range functors is called a range transformation if its components are total.

Range categories and range functors form a category, denoted by rrCat0. There is

an evident forgetful functor Urr : rrCat0 → Cat0, which forgets restriction and range

structures. Range categories, range functors between them, and range natural trans-

formations form a 2-category, denoted by rrCat. Again, there is an evident forgetful

2-functor Urr : rrCat → Cat. rrCat has an important full 2-subcategory, compris-

ing those objects with split restriction, denoted by rrCats. The underlying category of

rrCats is denoted by rrCats0.
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5.1.2 Splitting Restriction Idempotents

Given a range category C, as in Subsection 1.6.4, one can split restriction idempotents

of C to form Split(C) that is a range category. Similar to Proposition 1.6.11, we have:

Proposition 5.1.4 ([10], Proposition 2.1.4) If C is a range category, so is Split(C),

but with a split restriction structure given by the restriction in the category C.

Similar to Proposition 1.6.13, one has:

Proposition 5.1.5 There is an adjunction with a full and faithful unit

ηC : C→ E(Split(C))

given by sending f : X → Y to f : 1X → 1Y :

rrCats0 ��
E

⊥ // rrCat0

Splitoo

where E is the inclusion.

5.1.3 M-Stable Factorization Systems and Range Categories

In Subsection 1.6.5, we have seen that eachM-category (C,M) gives rise to a restriction

category Par(C,M). It is natural to ask when Par(C,M) becomes a range category. As

in [10], M-stable factorization systems provide a possible answer.

Let C be a category and let A be a set of maps in C, along which pullbacks exist. A

factorization system (E ,M) of C is said to be stable along A-maps if for any a ∈ A and

any (E ,M)-factorization f = mfef , f
′ = m′fe

′
f is a pullback of f = mfef along a, then

f ′ = m′fe
′
f is the (E ,M)-factorization of f ′.

Recall that a category is regular if each map has a kernel pair and each kernel

pair has a coequalizer and if regular epics are stable. The algebraic and monadic cate-

gories over Set, including Ω-algebras, are regular [3]. Any regular category admits the

(RegEpi,Mon)-factorization system which is stable [3].
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But Setffib, defined in Example 1.6.16, does not admit any (E ,M)-factorization sys-

tem, where

M = {injections i : A ↪→ B | |B \ i(A)| < +∞}.

Factorization systems are related to other categorical notions, such as fibrations ([23],

[38]). localizations ([3], [44]), torsion theory [38], and Eilenberg-Moore algebras [26].

Stability of factorization systems can be characterized using fibrations as follows.

Let (E ,M) be a factorization system in a given category C. Recall that (E ,M) gives

rise to a bifibration ∂ :M→ C that is a subbifibration of the basic codomain fibration

δ : C2 → C:

M � � //

∂   AAAAAAAA C2

δ~~}}}}}}}}

C

Recall also that a bifibration P : B → C is said to satisfy Beck-Chevalley condition

if for each pullback square in C:

A
v //

u
��

B

g
��

C
f // D

the canonical natural transformation v!u
∗ ⇒ g∗f! is an isomorphism. The pullback

stability of factorization systems has been characterized using Beck-Chevalley condition

by Hughes and Jacobs as in the following proposition.

Proposition 5.1.6 ([23]) The bifibration ∂ :M→ C induced by a factorization system

(E ,M) in C satisfies Beck-Chevalley condition if and only if E is stable.

To characterize M-pullback stability of factorization systems, we introduce:

Definition 5.1.7 Let (E ,M) be a factorization system in a given category C. The

bifibration ∂ : M→ C is said to satisfy range pre-Beck-Chevalley condition if for each
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pullback square in C in which e ∈ E and m ∈M:

A v //

u
��

B

m
��

C
e // D

the canonical natural transformation v!u
∗ ⇒ m∗e! is an isomorphism.

Using the similar idea as in Proposition 5.1.6, we have:

Proposition 5.1.8 The bifibration ∂ :M→ C induced by a factorization system (E ,M)

in C satisfies range pre-Beck-Chevalley condition if and only if E is M-stable.

Proof: Suppose that E is M-stable. Given a pullback square:

A v //

u
��

B

m
��

C e // D

in C with m ∈ M and e ∈ E and for each M-map x : X → C, suppose that the left

and the right squares are pullback squares and ex = e!(x)e1 is an (E ,M)-factorization.

Then there is a unique map e2 such that m∗e!x · e2 = v · u∗x and the outermost square

commutes:

•

m1

��

e2 //

u∗x

  BBBBBBBB •
m∗e!x

~~~~~~~~~

m2

��

A
v //

u
��

B

m
��

C
e // D

X

x

>>~~~~~~~~ e1 // •
e!x

__????????

Obviously, by pullback composition and cancellation rules, the outermost square is a

pullback square and so m1,m2 ∈ M and e1, e2 ∈ M. Hence m∗e!x · e2 is indeed an

(E ,M)-factorization of v · u∗x and therefore v!u
∗ ∼= m∗e!.
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Conversely, assume that ∂ : M → C satisfies range pre-Beck-Chevalley condition.

Given an E-map e : C → D and an M-map m : B → D, we form a pullback square

A v //

u
��

B

m
��

C
e // D

in C. Then v!u
∗ ∼= m∗e! and so

v!(1A) ∼= v!(u
∗(1C)) ∼= m∗(e!(1C)) ∼= m∗(1D) ∼= 1B.

Hence v has (E ,M)-factorization 1B · v and therefore v ∈ E . Thus, E is M-stable. �

Suppose that MStabFac is with

objects: M-stable factorization systems (C, E ,M), where C is a category such that

C has an (E ,M)-factorization system which is stable along M-maps with M ⊆

{monics in C}, and C has pullbacks along M-maps;

maps: (E ,M)-functors. A (E ,M)-functor F : (C, E ,M) → (C′, E ′,M′) is a functor

F : C → C′ such that F (E) ⊆ E ′, F (M) ⊆ M′, and F preserves pullbacks along

M-maps;

composition: as the composition of functors;

identities: 1(C,E,M) = 1C;

2-cells: M-cartesian natural transformations. A natural transformation α : F → G

between (E ,M)-functors: F,G : (C, E ,M) → (C′, E ′,M′) is M-cartesian if for

each m : A→ B in M,

F (A)

F (m)
��

αA // G(A)

G(m)

��
F (B)

αB // G(B)

is a pullback diagram.
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Then, MStabFac is a 2-category. Its underlying category is denoted, as usual, by

MStabFac0.

Theorem 5.1.9 ([10], Theorem 4.3) Let C be a category with an (E ,M)-factorization

system which is stable alongM-maps withM⊆ {monics in C}. If C has pullbacks along

M-maps, then Par(C,M) is a range category with the split restriction structure given

by (m, f) = (m,m) and the range structure given by (̂m, f) = (mf ,mf ), where mf is

determined by the (E ,M)-factorization of f : f = mfef with ef ∈ E and mf ∈ M.

Furthermore, a map is total in Par(C,M) if and only if it is total as a partial map.

The range category induced by theM-stable factorization system (C, E ,M) in Theorem

5.1.9 will be denoted by Par(C, E ,M). As explained in [10], we have:

Proposition 5.1.10 There is a 2-functor Par :MStabFac→ rrCat taking

F : (C, E ,M)→ (C′, E ′,M′)

to

Par(F ) : Par(C, E ,M)→ Par(C′, E ′,M′)

given by sending (m, f) to (F (m), F (f)).

5.1.4 Completeness of Range Categories

Let D be a range category with split restriction. Then consider the following:

ED = {f : X → Y inTotal(D) | f̂ = 1Y }

and

MD = {m : X → Y inTotal(D) | ∃ r : Y → X in D, rm = 1X and r = mr}.

We have:
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Theorem 5.1.11 ([10], Theorem 4.4) If D is a range category with split restriction,

then Total(D) admits the (ED,MD)-factorization system which is stable alongMD-maps

and Total(D) has pullbacks along MD-maps, where ED and MD are as above with

MD ⊆ {monics in Total(D)}.

More precisely, for each map f in Total(D), the (ED,MD)-factorization of f is

f = mf · rff

where f̂ = mfrf with rfmf = 1.

If F : C → D is a range functor between two range categories with split restriction,

then we have a functor Total(F ) : Total(C)→ Total(D) by restricting F to Total(C). The

construction of pullbacks in Total(D) (see Lemma 1.6.21) yields that Total(F ) preserves

pullbacks along MC-maps. Obviously, Total(F )EC ⊆ ED, and Total(F )MC ⊆ MD.

Hence, we have a functor

Total(F ) : (Total(C), EC,MC)→ (Total(D), ED,MD)

and therefore a functor Total : rrCats →MStabFac given by:

C

7→F

��

7→ (Total(C), EC,MC)

Total(F )

��
D 7→ (Total(D), ED,MD)

Range categories with split restrictions are essentially the same as M-stable factor-

ization systems.

Theorem 5.1.12 ([10], Theorem 4.5) The 2-functors Total and Par give an equiva-

lence of 2-categories between rrCats and MStabFac.

By Proposition 5.1.5 and Theorem 5.1.12, immediately one has:
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Theorem 5.1.13 (Completeness of Range Categories [10]) Every range category

embeds via a full and faithful range preserving functor into a range category of the form

Par(C, E ,M), where C has the M-stable factorization system (E ,M).

Similar to Corollary 1.6.24, we have the following corollary.

Corollary 5.1.14 For givenM-stable factorization systems (C, E ,M) and (C′, E ′,M′),

the following are equivalent:

(i) Par(C, E ,M) ≈ Par(C′, E ′,M′) in rrCat;

(ii) (C, E ,M) ≈ (C′, E ′,M′) in MStabFac;

(iii) There are category equivalences F : C → C′ and G : C′ → C such that F (M) ⊆

M′, F (E) ⊆ E ′, G(M′) ⊆M, and G(E ′) ⊆ E.

Proof: “(i) ⇔ (ii):” As Par and MTotal are part of equivalences between rCats and

MCat, it is clear.

“(ii) ⇒ (iii):” Assume that F : (C, E ,M) → (C′, E ′,M′) and G : (C′, E ′,M′) →

(C, E ,M) are such that GF ≈ 1(C,E,M) and FG ≈ 1(C′E ′,M′). Then, obviously, GF ≈ 1C

and FG ≈ 1C′ with F (M) ⊆M′, F (E) ⊆ E ′, G(M′) ⊆M, and G(E ′) ⊆ E .

“(iii)⇒ (ii):” Clearly, F and G give rise to (E ,M)-functors such that GF ≈ 1(C,E,M)

and FG ≈ 1(C′,E ′,M′). �

To split idempotents in inverse categories, we need the following lemma.

Lemma 5.1.15 For a given map f : X → Y in an inverse category I,

(i) the following are equivalent:

(a) f = 1X (f̂ = 1Y );

(b) f is a split monic (epic);
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(c) f is a restriction monic (epic).

(ii) f = 1X and f̂ = 1Y if and only if f is an isomorphism.

Proof:

(i) We shall prove the “monic” case as the “epic” case is similar.

“(a)⇒ (b):” f = f (−1)f = 1X implies clearly that f is a split monic.

“(b)⇒ (a)” and “(c)⇒ (a):” Since each monic is total.

“(a)⇒ (c):” f = 1X implies f (−1)f = 1X . But

ff (−1) = (ff (−1))(−1)(ff (−1)) = ff (−1)ff (−1) = ff (−1).

So f is a restriction monic.

(ii) By (i).

�

Given an inverse category I, by Lemma 1.6.12 Split(I) is again an inverse category

with the split restriction so that by Example 5.1.2 (4) Split(I) can be viewed as a range

category with the split restriction. Now, applying Theorem 5.1.12 we have an equivalence

of range categories:

Split(I) ≈ Par(Total(Split(I)), ESplit(I),MSplit(I)),

where, by Lemma 5.1.15,

ESplit(I) = {isomorphisms in Split(I)}

and

MSplit(I) = {split monics in Split(I)}.
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Clearly, Yoneda embedding

Y : (Total(Split(I)), ESplit(I),MSplit(I))

→ (SplitMonics(SetTotal(Split(I))
op

), {Isomorphisms}, {Split monics})

is an (E ,M)-functor and

Par(Y) : Par(Total(Split(I)), ESplit(I),MSplit(I))

→ Par(SplitMonics(SetTotal(Split(I))
op

), {Isomorphisms}, {Split monics})

is a full and faithful range functor. Thus, clearly, we have a full and faithful range functor:

I ↪→ Split(I) ≈ Par(Total(Split(I)), ESplit(I),MSplit(I))

→ Par(SplitMonics(SetTotal(Split(I))
op

), {Isomorphisms}, {Split monics}).

5.2 Schein’s Representation Theorem for Range Categories

Let P(X) be the set of partial functions on a set X. As described in [24], P(X) has some

interesting operations R,L, I, J,∧,f. For example, the operation R can be defined by

the following four R-axioms:

(R1) xR(x) = x,

(R2) R(x)R(y) = R(y)R(x),

(R3) R(R(x)) = R(x), and

(R4) R(xy)R(y) = R(xy).

R is called twisted if

(R5) R(x)y = yR(xy).
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L can be defined dually by the following four L-axioms:

(L1) L(x)x = x,

(L2) L(x)L(y) = L(y)L(x),

(L3) L(L(x)) = L(x), and

(L4) L(x)L(xy) = L(xy).

Recall that a semigroup with extra operations is representable if it is isomorphic to a

subalgebra of P(X) endowed with some subset Λ of the set of operations {R,L, I, J,∧,f}.

Schweizer and Sklar ([39], [40], [41], [42]) introduced the notion of a type 2 function

system, which one can show is equivalent to an {R,L}-semigroup in which R is twisted

and L satisfies the law:

(L5) L(xy) = L(xL(y)).

A type 2 function system is called a type 3 function system if it satisfies Schein’s condition:

(L6) xz = yz ⇒ xL(z) = yL(z).

Schein proved that each type 3 function system is representable ([43], [24]).

Clearly, each type 3 function system can be viewed as a range category with one

object. In this section, we shall fit Schein’s proof for representing {R,L}-semigroups to

range categories. Throughout this section, C is a range category.

5.2.1 Permissible Arrow Chains

Let us first observe when an assignment T : C→ Par(Set,EpicsSet,MonicsSet) is a range

functor.
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Lemma 5.2.1 Let T : C → Par(Set,EpicsSet,MonicsSet) be given by sending C-map

f : X → Y to to the partial function

d(f)
M m

{{wwwwwwwww Tf

""EEEEEEEE

pd(f) c(f)

where c(f) ⊆ pd(f). If

(S1) for each C-object X, T1X : d(1X)→ c(1X) is 1d(1X),

(S2) for each pair of composable C-maps f : X → Y and g : Y → Z, T−1
f (d(g)) = d(gf)

and TgTf = Tgf ,

(S3) for each C-map f : X → Y , Tf : d(f)→ c(f) is the inclusion d(f) ↪→ pd(f), and

(S4) for each C-map f : X → Y , Tf̂ : d(f̂)→ c(f̂) is the inclusion Tf (d(f)) ↪→ c(f),

then T is a range functor.

Proof: From (S1) and (S2), T is a functor. (S3) implies that T is a restriction functor

while (S4) implies that T preserves the range f̂ . �

According to Schein [43], a permissible arrow chain (pac) in C is an odd length (the

number of maps) tuple α = 〈f0, g1, f1, · · · , gi, fi, · · · 〉 of C-maps such that

[pac.1] f̂i = ĝi and fi = gi+1 that can be presented graphically:

•
f0

��~~~~~~~
g1

��>>>>>>>> •
f1

����������
···

•
gi

��>>>>>>>> •
fi

����������
···

A • •

for all integers i that make senses.

A pac 〈f0, g1, f1, · · · , gi, fi, · · · 〉 in C is reduced (rpac) if

[rpac] for all integers i that make senses and all C-maps x, xgi+1 6= fi.
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Clearly, given a pac(rpac) 〈f0, g1, f1, · · · 〉 in C, a part 〈fi−1, gi, · · · 〉 of 〈f0, g1, f1, · · · 〉

is again a pac(rpac).

Example 5.2.2 1. Let f be a C-map. Then 〈f〉 is a rpac.

2. For each C-map f : A → B that is not a section and f = 1A (for example, a monic

that is not a section) and each C-map g : A → B, 〈1A, f, f̂〉 is a rpac and 〈g, 1A, 1A〉

is always not a rpac.

Parallel to (L6), we assume further that the range category C satisfies

[RR.6] xh = yh⇒ xĥ = yĥ.

Example 5.2.3 1. Each type 3 function system is a one-object category that satisfies

[RR.6].

2. Each inverse category satisfies [RR.6] as gf = hf ⇒ gff (−1) = hff (−1) ⇔ gf̂ = hf̂ .

3. We will see shortly that Par(Set,EpicsSet,MonicsSet) also always satisfies [RR.6] (in

Proposition 5.3.1) but

Par(Total(Split(Set)), ESplit(Set),MSplit(Set))

does not satisfy [RR.6] (in Example 5.3.9).

Let A be an object in C and let

pac(C) =
{

pacs in C
}
, pac(A) =

{
pacs 〈f0, g1, f1, · · · 〉 in C | cod(f0) = A

}
,

and

rpac(C) =
{

rpacs in C
}
, rpac(A) =

{
rpacs 〈f0, g1, f1, · · · 〉 in C | cod(f0) = A

}
.

As Schein did in [43], 〈f0, g1, f1, · · · 〉 < h if hf0 = f0 and define h〈f0, g1, f1, · · · 〉 =

〈hf0, g1, f1, · · · 〉 when hf0 is composable.
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In particular, for each α ∈ rpac(A) and each total map m with dom(m) = A, α < m

always.

For a given α = 〈f0, g1, f1, · · · 〉 ∈ pac(C) and a C-map h such that hα is composable,

hα = 〈hf0, g1, f1, · · · 〉 may not be in pac(C) since hfo may not equal to g1. But, if

α = 〈f0, g1, f1, · · · 〉 < h, then hα = h〈f0, g1, f1, · · · 〉 = 〈hf0, g1, f1, · · · 〉 is a pac again

since

hf0 = hf0 = f0 = g1.

So we have:

Lemma 5.2.4 Given a pac α, if α < h, then hα is also a pac.

If α = 〈f0, g1, f1, · · · 〉 ∈ rpac(C) and α < h, then the pac hα may not be a rpac. In

this case, we can use the following reduction operation rd to reduce h〈f0, g1, f1, · · · 〉 into

a rpac.

〈f0, g1, f1, · · · 〉 ∈ pac(C) is said to be reduced to 〈xf1, g2, f2, · · · 〉 if f0 = xg1 for some

map x, written as rd〈f0, g1, f1, · · · 〉 = 〈xf1, g2, f2, · · · 〉.

Given a rpac α with α < h, we can apply the reduction operation rd to hα =

〈hf0, g1, f1, · · · 〉 k-steps anywhere rd is applicable from the beginning until rd can not

be applied further so that we obtain a rpac rdk(hα) and the rpac rdk(hα) is denoted by

red(hα).

5.2.2 Technical Lemmas

Here are some technical results on permissible arrow chains.

Lemma 5.2.5 If 〈f0, g1, f1, · · · 〉 ∈ pac(C) and f0 = xg1, then β = 〈f1, g1, · · · 〉 < x

and so 〈xf1, g1, · · · 〉 ∈ pac(C). Moreover, if α ∈ rpac(C) and α < h, then red(hα) ∈

rpac(C).
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Proof: Since

xf1 = xf̂1f1 ([RR.2])

= xĝ1f1 (f̂1 = ĝ1)

= xĝ1f1 (gf = gf)

= x̂g1f1 ([RR.3])

= ĝ1xg1f1 ([RR.4])

= ĝ1f0f1 (xg1 = f0)

= ĝ1g1f1 (f0 = g1)

= ĝ1f1 ([R.1])

= f̂1f1 (f̂1 = ĝ1)

= f1,

we have xf1 = f1xf1 = f1f1 = f1. Then β = 〈f1, g2, · · · 〉 < x and so 〈xf1, g2, · · · 〉 ∈

pac(C).

If α ∈ rpac(C) and α < h, then red(hα) ∈ pac(C) and satisfies [rpac] and so

red(hα) ∈ rpac(C). �

Lemma 5.2.6 α < f if and only if fα = α.

Proof: Assume that α = 〈f0, g1, f1, · · · 〉. Then α < f if and only if ff0 = f0 ⇔ ff0 =

f0 ⇔ fα = α. �

Lemma 5.2.7 Given a pac α, reduction on α is well-defined.

Proof: Assume α = 〈f0, g1, f1, · · · 〉. If f0 = xg1 = yg1, then, by [RR.6], we have

xĝ1 = yĝ1 and so xf̂1 = yf̂1. Hence xf1 = yf1 and therefore 〈xf1, g2, · · · 〉 = 〈yf1, g2, · · · 〉,

as desired. �
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Lemma 5.2.8 For each pac α with α < f , red(fα) = red(α).

Proof: Since

α < f ⇔ fα = α,

we have red(fα) = red(α). �

Lemma 5.2.9 Given a pac α, then α < h if and only if red(α) < h.

Proof: Assume that α = 〈f0, g1, f1, · · · 〉 is reduced to β = 〈xf1, g2, f2, · · · 〉 with f0 =

xg1. Note that

α < h ⇔ hf0 = f0

⇔ hxg1 = xg1

⇔ hxĝ1 = xĝ1 ([RR.6])

⇔ hxf̂1 = xf̂1

⇔ hxf1 = xf1 ([RR.6])

⇔ β < h.

�

Lemma 5.2.10 Given a pac α = 〈f0, g1, f1, · · · 〉, if α < h1 and α < h2, then h1α =

h2α⇔ red(h1α) = red(h2α).

Proof: “⇒”: Obviously.

“⇐”: Assume that after being reduced k − 1 steps, we have

red(h1α) = 〈xkfk, gk+1, fk+1, · · · 〉 = red(h2α).
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Then

h1f0 = x1g1,

x1f1 = x2g2,

...

xk−1fk−1 = xkgk,

h2f0 = y1g1,

y1f1 = y2g2,

...

yk−1fk−1 = ykgk,

xkfk = ykfk.

for some xi, yj, 1 ≤ i, j ≤ k. By [RR.6] xkfk = ykfk implies xkf̂k = ykf̂k. That

is xkĝk = ykĝk. Hence xkgk = ykgk. Since xk−1fk−1 = xkgk and yk−1fk−1 = ykgk,

xk−1fk−1 = yk−1fk−1. Continuing in this way, we have x1g1 = y1g1. Thus, h1f0 = h2f0.

Therefore, h1α = h2α. �

Lemma 5.2.11 If a pac α < f , then red(fα) = red(f · red(α)).

Proof: It suffices to prove that fα can be reduced to f · red(α). Assume α =

〈f0, g1, f1, · · · 〉 and red(α) = 〈xkfk, gk+1, fk+1, · · · 〉. Then

f0 = x1g1,

x1f1 = x2g1,

...

xk−1fk−1 = xkgk.
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Composing f from the left, we have

ff0 = fx1g1,

fx1f1 = fx2g1,

...

fxk−1fk−1 = fxkgk.

This means that fα can be reduced to f · red(α), as desired. �

Lemma 5.2.12 If a pac α < g and α < h, then gα = hα ⇔ red(g · red(α)) = red(h ·

red(α)).

Proof: Since

gα = hα ⇔ red(gα) = red(hα) (Lemma 5.2.10)

⇔ red(g · red(α)) = red(h · red(α)) (Lemma 5.2.11).

�

Lemma 5.2.13 If a pac α < g and α < h, then gα = hα ⇔ g · red(α) = h · red(α). In

particular, gα = α⇔ g · redfα) = red(α).

Proof: Since

gα = hα ⇔ red(g · red(α)) = red(h · red(α)) (Lemma 5.2.12)

⇔ g · red(α) = h · red(α) (Lemma 5.2.10).

�
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Lemma 5.2.14 Assume that β = 〈u0, v1, u1, · · · 〉 ∈ rpac(C) and f is a C-map. If

β < f̂ and α = 〈û0f, û0f, β〉, then

(i) α ∈ pac(C),

(ii) α < f ,

(iii) ρf (red(α)) = β.

Proof:

(i) β < f̂ gives f̂u0 = u0. Since û0f = û0f and ̂̂u0f =
̂̂
u0f̂ =

̂̂
fû0 =

̂̂
fu0 = û0, we have

α ∈ pac(C).

(ii) f û0f = û0f implies α < f .

(iii) Since

ρf (red(α)) = red(f · red(α))

= red(fα) (Lemma 5.2.13)

= red(〈fû0f, û0f, β〉)

= red(〈û0f, û0f, β〉)

= β.

�

5.2.3 Schein’s Representation for Range Categories

Define S : C → Par(Sets,EpicsSet,MonicsSet) by sending f : A → B to a partial

map ξf = (i, ρf ) : rpac(A) → rpac(B), where |ρf | = {α ∈ rpac(A) : α < f} and

ρf (α) = red(fα):

|ρf |L l

i

zzuuuuuuuuu
ρf

$$IIIIIIIII

rpac(A) rpac(B)
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That is, with Schein’s representation, d(f) = |ρf |, pd(f) = rpac(A), c(f) = rpac(B),

and Tf = ρf .

Note that, to have Schein’s representation S well-defined, one must assume that the

range category C satisfies [RR.6]. We have:

Lemma 5.2.15 S is a range functor.

Proof: By Lemma 5.2.1, we need to verify conditions (S1)-(S4).

(S1) For each C-object A and each α = 〈f0, g1, f1, · · · 〉 ∈ rpac(A), 1Af0 = f0 implies

|ρ1A| = rpac(A) and ρ1A(α) = red(1Aα) = red(α) = α implies ρ1A = T1A . Hence

T1A = ρ1A = 1S(A), that is S preserves identities.

(S2) For any C-maps f : A → B and g : B → C, we need to check ρ−1
f (|ρg|) = |ρgf |

and ρgρf = ρgf . For any α = 〈f0, g1, f1, · · · 〉 ∈ ρ−1
f ({β ∈ rpac(B), β < g}) ⊆ |ρf |,

ρf (α) = red(fα) ∈ {β ∈ rpac(B), β < g}. Hence red(fα) < g and α < f . Thus,

g · red(fα) = red(fα) that implies g(fα) = fα and fα = α. It follows that

g(ff0) = ff0 and ff0 = f0. Then

gff0 = gff0

= f0gff0

= f0ff0

= ff0

= f0,

and so α < gf . Hence α ∈ |ρgf |.

Conversely, for any α = 〈f0, g1, f1, · · · 〉 ∈ {α ∈ rpac(A), α < gf}, α < gf . Then

gff0 = f0
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and so

ff0 = f gff0 = gff0 = f0

and

gff0 = fgff0 = ff0.

Hence α < f and red(fα) < g since, by Lemma 5.2.9, fα < g ⇔ red(fα) < g and

therefore α ∈ ρ−1
f ({β ∈ rpac(B), β < g}). Thus,

ρ−1
f ({β ∈ rpac(B), β < g}) = {α ∈ rpac(A), α < gf}

which means ρ−1
f (|ρg|) = |ρgf |.

For any α ∈ |ρgf |, we have

(ρgρf )(α) = ρg(red(fα))

= red(g · (red(fα)))

= red(gfα) (Lemma 5.2.13)

= ρgf (α).

Then ρgρf = ρgf .

(S3) For each C-map f : A→ B and each α ∈ |ρf | = {α ∈ rpac(A), α < f},

ρf (α) = red(fα) = red(α) = α.

Then ρf is the inclusion. Since

α ∈ |ρf | ⇔ α < f

⇔ fα = α

⇔ α < f

⇔ α ∈ |ρf |,

we have |ρf | = |ρf |. Then ρf : |ρf | → rpac(A) is the inclusion |ρf | ⊆ rpac(A).
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(S4) For each C-map f : A→ B and each α ∈ |ρf̂ | = {α ∈ rpac(A), α < f̂},

ρf̂ (α) = red(f̂α) = red(α) = α.

Then ρf̂ is the inclusion.

Let ρf = mρf eρf be ({surjections}, {injections})-factorization of ρf in Set. It

suffices to prove that

|mρf | = ρf (|ρf |) = |ρf̂ |.

For any β ∈ |mρf | = ρf (|ρf |), there is a rpac α = 〈f0, · · · 〉 ∈ |ρf | such that

ξf (α) = red(fα) = β. Since fα = f̂(fα), red(f · α) = f̂ · red(fα) and so β = f̂β.

Hence β = f̂β = f̂β and therefore β < f̂ . Thus, β ∈ |ρf̂ |.

Conversely, if β = 〈u0, · · · 〉 ∈ |ρf̂ |. then β < f̂ . By Lemma 5.2.14, there is a rpac

α such that α ∈ |ρf | and ρf (α) = β. Thus, β ∈ ρf (|ρf |), as desired.

�

Lemma 5.2.16 If C satisfies [RR.6], then S : C → Par(Set,EpicsSet,MonicsSet) is a

faithful functor.

Proof: By Lemma 5.2.15, it suffices to prove that S is faithful. For any C-objects A,B,

any maps f, g ∈ homC(A,B) such that f 6= g, we distinguish the following cases:

(1) f = g. we have 〈f〉 < f, g and so ρf (〈f〉) = red(〈ff〉) = 〈f〉 and ρg(〈f〉) =

red(〈gf〉) = 〈g〉 6= 〈f〉. Then ξf 6= ξg.

(2) f 6= g. In this case, we distinguish two cases:

(i) fg = f , then fg 6= g and so 〈g〉 ∈ |ρg| \ |ρf |.

(ii) fg 6= f , then 〈f〉 ∈ |ρf | \ |ρg|.
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Hence |ρg| 6= |ρf | and therefore ξf 6= ξg.

In all cases, ξf 6= ξg and so S is faithful. �

By Lemma 5.2.16, immediately we have:

Theorem 5.2.17 Given a range category X, X satisfies [RR.6] if and only if there is

a faithful functor

T : X→ Par(Set,EpicsSet,MonicsSet).

Proof: “⇐”: If there is a faithful functor T : X→ Par(Set,EpicsSet,MonicsSet), then,

as explained in Example 5.2.3, X must satisfy [RR.6] since Par(Set,EpicsSet,MonicsSet)

does.

“⇒”: By Lemma 5.2.16. �

However, Schein’s representation S is not full as shown in the following

Example 5.2.18 (i) Let 1 be the range category with one object 1 and one map 11

and with trivial restriction and trivial range. Then 1 satisfies [RR.6] and rpac(1) =

{11}. Since 11 is total, |ρ11| = rpac(1) and ρ11 = 1rpac(1). That is, S(11) = 1rpac(1).

But there is another partial map (∅, ∅) : rpac(1) → rpac(1). Hence S : 1 →

Par(Set,EpicsSet,MonicsSet) is not full.

(ii) Since Par(Set,EpicsSet,MonicsSet) satisfies [RR.6], there is a faithful Schein’s rep-

resentation

S : Par(Set,EpicsSet,MonicsSet)→ Par(Set,EpicsSet,MonicsSet)

sending each partial map

(m, f) = X ′N n
m

~~||||||||
f

  AAAAAAAA

X Y
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to

|ρ(m,f)|
K k

yyrrrrrrrrrr ρ(m,f)

%%KKKKKKKKKK

rpac(X) rpac(Y )

Let X = {a}, Y = {1, 2}. Consider

S|hom(X,Y ) : homPar(Set,EpicsSet,MonicsSet)

→ homPar(Set,EpicsSet,MonicsSet)(rpac(X), rpac(Y))

and a partial map

(i, t) = {1X : X → X}
I i

i

vvnnnnnnnnnnnn
t

((PPPPPPPPPPPP

rpac(X) rpac(Y )

in homPar(Set,EpicsSet,MonicsSet)(rpac(X), rpac(Y)), where t is given by sending 1X to

1{1,2}. If S|hom(X,Y ) were surjective, then there were a partial map

(m, f) = X ′N n
m

}}{{{{{{{{
f

""FFFFFFFFF

{a} {1, 2}

such that

S(m, f) = |ρ(m,f)|
K k

yyrrrrrrrrrr ρ(m,f)

%%KKKKKKKKKK

rpac(X) rpac(Y )

= (i, t)

but this is not possible since t 6= ρ(m,f) by noting that |ρ(m,f)| = {1X} implies

ρ(m,f)(1X) = (m, f) 6= 1{1,2} = t(1X). Hence S is not full.

5.2.4 Interactions of Schein’s Representation with Meets

Recall that, by Proposition 4.2.2, for an M-category (X,M), if X has equalizers and

regular monics of X are in M, then Par(X,M) is a meet restriction category with the
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meet give by the equalizer described in the proof of Proposition 4.2.2. If C is a meet

range category (a range category with a meet operation) satisfying [RR.6], then one has

Schein’s representation

S : C→ par(Set,EpicsSet,MonicsSet).

Now it is natural to ask if S preserves meets. We have:

Proposition 5.2.19 If C is a meet range category satisfying [RR.6], then Schein’s rep-

resentation S on C preserves the meet of C.

Proof: It suffices to prove that S(f ∧ g) = S(f)∧S(g) for each pair of parallel C-maps

f, g : A→ B.

Recall that S(f ∧ g), S(f), and S(g) are given by the following partial maps respec-

tively:

|ρf∧g|
L l

yyttttttttt ρf∧g

%%KKKKKKKKKK

rpac(A) rpac(B),

|ρf |L l

zzuuuuuuuuu
ρf

$$JJJJJJJJJ

rpac(A) rpac(B),

and

|ρg|L l

zzuuuuuuuuu
ρg

$$IIIIIIIII

rpac(A) rpac(B)

S(f) ∧ S(g) turns out to be the following partial map

EL l

zzvvvvvvvvv
ρf

$$HHHHHHHHH

rpac(A) rpac(B)
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where E is given by the following equalizer diagram

E �
� // |ρf | ∩ |ρg|

ρf //
ρg
// rpac(B)

so that

E = {α ∈ rpac(A) | α < f, α < g, fα = gα}.

For each α ∈ E, we have

fα = α, gα = α, fα = gα.

Then

(f ∧ g)α = fα ∧ gα = fα = gα

and so

f ∧ gα = α(f ∧ g)α = αfα = fα = α.

Hence α ∈ |ρf∧g|.

Conversely, if α ∈ |ρf∧g| then f ∧ gα = α and so

fα = ff ∧ gα = gf ∧ gα = gα,

fα = f f ∧ gα = f ∧ gα = α,

and

gα = gf ∧ gα = f ∧ gα = α.

Thus, α ∈ E. So |ρf∧g| = E.

For each α ∈ |ρf∧g| = E, clearly,

(f ∧ g)α = ff ∧ gα = fα = gα.

That is,

ρf∧g||ρf∧g | = ρf |E = ρg|E.

It follows that S(f ∧ g) = S(f) ∧ S(g), as desired. �
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5.3 Partial Map Categories and Condition [RR.6]

To understand why we need the condition [RR.6] in Lemma 5.2.16, we consider an M-

stable factorization system (E ,M) in a category D, namely, E is M-stable. Recall that

if (E ,M) isM-stable then Par(D, E ,M) is a split range category by Theorem 5.1.9. We

have:

Proposition 5.3.1 Let D be a category and M ⊆ MonicsD. If D admits an M-

stable factorization system (E ,M), then Par(D, E ,M) satisfies [RR.6] if and only if

E ⊆ EpicsD.

Proof: “if” part: Given an M-stable factorization system (E ,M) such that M ⊆

MonicsD and E ⊆ EpicsD in a category D, let us check out if Par(D, E ,M) satisfies

[RR.6]. For any partial maps (i, h), (j, x), (k, y) such that (j, x)(i, h) = (k, y)(i, h), let

h = mheh be the (E ,M)-factorization of h. Looking at the following diagrams:

DxhN n

j′′

}}zzzzzzzz
h′

!!DDDDDDDD
e′h
// E ′

m′h
��

N n

j′
}}

DhN n

i

~~}}}}}}}}
h

""EEEEEEEE
eh // E

mh
��

DxM m

j

||yyyyyyyy
x

  AAAAAAAA

A B C

and

Dyh
N n

k′′

}}{{{{{{{{
h′′

!!CCCCCCCC
e′′h
// E ′′

m′′h
��

N n

k′}}
DhN n

i

~~}}}}}}}}
h

""DDDDDDDD
eh // E

mh
��

Dy
N n

k

}}zzzzzzzz y

  AAAAAAA

A B C

in which each square is a pullback diagram, we have

xh′ = xm′he
′
h = yh′′ = ym′′he

′′
h



232

and

ij′′ = ik′′.

Since i is monic, j′′ = k′′. Hence

j′e′h = ehj
′′ = ehk

′′ = k′e′′h

and therefore, by the uniqueness of the factorization j′e′h = k′e′′h, we get e′h
∼= e′′h. It

follows that xm′h = ym′′h, which means that (j, x)(̂i, h) = (k, y)(̂i, h). So Par(D, E ,M)

satisfies [RR.6].

“only if” part: For each E-map e : X → Y with xe = ye, we have

(1Y , x)(1X , e) = (1Y , y)(1X , e)

in Par(D, E ,M) by the following diagram

XN n
1X

~~}}}}}}}}
e

  AAAAAAAA

XN n
1X

~~}}}}}}}}
e

  AAAAAAAA YO o
1Y

~~~~~~~~~~
x

��@@@@@@@@

y ��@@@@@@@@

X Y Z

By [RR.6], we have (1Y , x)(̂1X , e) = (1Y , y)(̂1X , e). Since e has the (E ,M)-factorization

e = 1Y · e, (1Y , x)(̂1X , e) = (1Y , y)(̂1X , e) means that (1Y , x)(1Y , 1Y ) = (1Y , y)(1Y , 1Y ):

YO o
1Y

��~~~~~~~~
1Y

  @@@@@@@@

YO o
1Y

��~~~~~~~~
1Y

  @@@@@@@@ YO o
1Y

��~~~~~~~~
x

��@@@@@@@@

y ��@@@@@@@@

Y Y Z

Hence x = y and therefore e ∈ EpicsD. �

Recall that a factorization system (E ,M) of a category is proper if each E-map is epic

and each M-map is monic. So, by Proposition 5.3.1, we have:
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Corollary 5.3.2 If D admits anM-stable factorization system (E ,M) withM⊆ MonicsD,

then Par(D, E ,M) satisfies [RR.6] if and only if (E ,M) is proper.

When a range category D satisfies [RR.6], epics in D can be characterized by the

range.

Lemma 5.3.3 If a range category D satisfies [RR.6], then

(i) a map f is an epic ⇔ f̂ = 1;

(ii) EpicsD = {f |f̂ = 1}.

Proof:

(i) “⇒”: f̂f = f = 1 · f and f is an epic imply f̂ = 1.

“⇐”: Assume f̂ = 1. If xf = yf , then, by [RR.6], x = xf̂ = yf̂ = y and so f is

an epic.

(ii) By (i).

�

For epics in a partial map category, we have:

Lemma 5.3.4 Suppose that a given category D admits anM-stable factorization system

(E ,M) such that M⊆ MonicsD and E ⊆ EpicsD. If (m, f) : A→ B is a partial map in

Par(D, E ,M), then the following are equivalent:

(i) (̂m, f) = 1B;

(ii) (m, f) is an epic;

(iii) f ∈ E.
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Proof: By Proposition 5.3.1, Par(D, E ,M) satisfies [RR.6]. By Lemma 5.3.3, clearly

(i)⇔ (ii).

(i)⇒ (iii): Assume that f = mfef with ef ∈ E and mf ∈M. Then, by (i),

(̂m, f) = (mf ,mf ) = 1B,

and so mf is an isomorphism that belongs to E . Hence f = mfef ∈ E .

(iii)⇒ (i): If f ∈ E , then f = 1 · f is an (E ,M)-factorization of f and so

(̂m, f) = (1, 1) = 1B.

�

For a range category with the split restriction, we have:

Lemma 5.3.5 For a given split range category D, then the following are equivalent:

(i) D satisfies [RR.6];

(ii) Par(Total(D), ED,MD) satisfies [RR.6];

(iii) ED ⊆ EpicsTotal(D)).

Proof: Since D ≈ Par(Total(D), ED,MD) and Proposition 5.3.1. �

For the range categories obtained by splitting restriction idempotents from range

categories, we have:

Lemma 5.3.6 Given a range category C, then C satisfies [RR.6] if and only if Split(C)

satisfies [RR.6].

Proof: Assume that C satisfies [RR.6]. Let f : e1 → e2 and x, y : e2 → e3 be maps in

Split(C) such that xf = yf . Then xf = yf in C and so, by [RR.6], xf̂ = yf̂ . Hence

Split(C) satisfies [RR.6].
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Conversely, suppose f : X → Y and x, y : Y → Z and C-maps such that xf = yf .

Then we have Split(C)-maps f : 1X → 1Y and x, y : 1Y → 1Z such that xf = yf and so

xf̂ = yf̂ since Split(C) satisfies [RR.6]. Hence C satisfies [RR.6]. �

If C is a range category, then, by Proposition 5.1.4 Split(C) is a split range category

and by Theorem 5.1.11 Total(Split(C)) admits the (ESplit(C),MSplit(C))-factorization sys-

tem which is stable alongMSplit(C)-maps and has pullbacks alongMSplit(C)-maps, where

ESplit(C) = {f : e1 → e2 inTotal(Split(C)) | f̂ = 1e2}

and

MSplit(C) =

{m : e1 → e2 inTotal(Split(C)) | ∃ r : e2 → e1 in Split(C), rm = 1e1 and mr = mr}.

We shall denote the MSplit(C)-stable factorization system

(Total(Split(C)), ESplit(C),MSplit(C))

by K(C).

Recall that for a given map f : e1 → e2 in Total(Split(C)), f = f̂ · f is the

(ESplit(C),MSplit(C))-factorization of f , where f : e1 → f̂ and f̂ : f̂ → e2 are the ESplit(C)-

map and the MSplit(C)-map of f , respectively.

We are now wondering when the partial maps category Par(K(C)) satisfies [RR.6].

Proposition 5.3.7 Given a range category C, the following are equivalent:

(i) C satisfies [RR.6];

(ii) Split(C) satisfies [RR.6];

(iii) Par(Total(Split(C)), ESplit(C),MSplit(C)) satisfies [RR.6];

(iv) EC ⊆ EpicsTotal(Split(C)).
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Proof: By Lemmas 5.3.5 and 5.3.6. �

By Proposition 5.3.7, we immediately have the completeness of range categories sat-

isfying [RR.6] in partial map categories.

Theorem 5.3.8 Given a range category X, X satisfies [RR.6] if and only if X em-

beds via a full and faithful range preserving functor into a range category of the form

Par(Y, E ,M) with E ⊆ EpicsY and M⊆ MonicsY.

But not every partial map category satisfies [RR.6] by the following example.

Example 5.3.9 In general, for a given range category C, Par(C, EC,MC) may not sat-

isfy [RR.6]. Let S be a category with at least one map f that is not epic. (Set is such

a category!) Then S can be regarded as a trivial split range category with the inclusion

S ↪→ Par(Total(Split(S)), ESplit(S),MSplit(S)).

Since f is not epic, there are S-maps x, y such that xf = yf but x 6= y, that is xf̂ 6=

yf̂ . Hence Par(Total(Split(S)), ESplit(S),MSplit(S)) does not satisfy [RR.6]. This does not

contradict to Propositions 5.3.1 and 5.3.7 since ES * EpicsTotal(Split(S)).

Recall that, by Proposition 5.1.5, there is an adjunction:

rrCats0 ��
E

⊥ // rrCat0

Splitoo

with a full and faithful unit ηC : C → E(Split(C)) given by sending f : X → Y to

f : 1X → 1Y , where E is the inclusion. So, for each split range category Y and each

range functor F : X → E(Y), there is a unique range functor F ] : Split(X) → Y such

that

X
ηX //

F %%JJJJJJJJJJJ E(Split(X))

E(F ])
��

Split(X)

∃!F ]
��

E(Y ) Y
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commutes, where F ] is given by mapping f : (e1 : X → X) → (e2 : Y → Y ) to

F (f) : F (X)→ F (Y ). Obviously, F is full (faithful) if and only if F ] is full (faithful).

By Proposition 5.3.7, if a range category C satisfies [RR.6], so do both Split(C) and

Par(K(C)) and EC ⊆ EpicsTotal(Split(C)). Hence we have:

Proposition 5.3.10 There is the following adjunction situation:

MStabFac0+[E⊆{epics}] ≈
Par

//
_�

��

rrCats0+[RR.6]

Totaloo
��

E

⊥ //
_�

��

rrCat0+[RR.6]

Splitoo

_�

��
MStabFac0 ≈

Par
// rrCats0

Totaloo
��

E

⊥ // rrCat0

Splitoo

where rrCat0+[RR.6] (rrCats0+[RR.6]) is the subcategory of rrCat0 (rrCats0), comprising

of those objects satisfying the condition [RR.6], respectively, and MStabFac0+[E⊆{epics}]

is the subcategory of MStabFac0, with M-stable factorization systems (C, E ,M) such

that E-maps are epic in C, as objects.

From the top and bottom rows in Proposition 5.3.10, we have adjunctions:

Total · Split a E · Par :MStabFac0+[E⊆{epics}] → rrCat0+[RR.6]

and

Total · Split a E · Par :MStabFac0 → rrCat0.

So, for each M-stable factorization system (X, EX,MX) and each range functor

F : C→ E(Par(X, EX,MX)),

there is a unique range functor F ] : Split(C) → Par(X, EX,MX) and a unique (E ,M)-

functor F ∗ : K(C)→ (X, EX,MX) such that

C
ηC //

F ++WWWWWWWWWWWWWWWWWWWWWWWWW ESplit(C)
≈ //

E(F ])
RRRR

((RRRR

EPar(K(C))

EPar(F ∗)
��

Split(C)

∃!F ]
��

K(C)

∃!F ∗
��

EPar(X, EX,MX) Par(X, EX,MX) (X, EX,MX)

commutes, where K(C) = (Total(Split(C)), ESplit(C),MSplit(C)). Obviously, we have:
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Proposition 5.3.11 For anyM-stable factorization system (X, EX,MX) and any range

functor F : C → E(Par(X, EX,MX)), there is a unique range functor F ] : Split(C) →

Par(X, EX,MX) and a unique (E ,M)-functor F ∗ : K(C)→ (X, EX,MX) such that

C
ηC //

F ++WWWWWWWWWWWWWWWWWWWWWWWWW ESplit(C)
≈ //

E(F ])
RRRR

((RRRR

EPar(K(C))

EPar(F ∗)
��

Split(C)

∃!F ]
��

K(C)

∃!F ∗
��

EPar(X, EX,MX) Par(X, EX,MX) (X, EX,MX)

commutes and F is faithful (full) if and only if F ∗ is faithful (full), where

K(C) = (Total(Split(C)), ESplit(C),MSplit(C)).

By Proposition 5.3.11, finding a representation from a range category X to

Par(Set,EpicsSet,MonicsSet)

is equivalent to finding a range functor

F ] : Split(X)→ Par(X, EX,MX)

and is equivalent to finding an (E ,M)-functor

F ∗ : K(X)→ (Set,EpicsSet,MonicsSet).

Note that Split(X) is a range category with a split restriction while K(X) is a total range

category.

For a given a range category X satisfying [RR.6], applying Schein’s representation

S : X → Par(Set,EpicsSet,MonicsSet) to Proposition 5.3.11, there is a unique (E ,M)-

functor S∗ such that

X
E(≈)ηX //

S ))SSSSSSSSSSSSSSSSSS EPar(K(X))

EPar(S∗)
��

K(X)

∃!S∗
��

EPar(Set,EpicsSet,MonicsSet) (Set,EpicsSet,MonicsSet)
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commutes. The description of S∗ is as follows.

Firstly, there is a unique range functor S] : Split(X)→ Par(Set,EpicsSet,MonicsSet)

such that

X
ηX //

S ))TTTTTTTTTTTTTTTTTT E(Split(X))

E(S])
��

Split(X)

∃!S]
��

E(Par(Set,EpicsSet,MonicsSet)) Par(Set,EpicsSet,MonicsSet)

commutes, where S] is given by mapping f : (e1 : X → X) → (e2 : Y → Y ) to

S(f) : S(X)→ S(Y ) that is

|ρf |L l

i

zzuuuuuuuuu
ρf

((PPPPPPPPPPPPPP

rpac(X) rpac(Y ).

Since Φ : Split(X) → Par(MTotal(Split(X))), given by sending f : (e1 : X → X) →

(e2 : Y → Y ) to

f
Oo

f

����������
f

&&MMMMMMMMMMMMM

e1 e2,

is an equivalence of categories, par(S) is given by sending

e′1O o
m

��~~~~~~~~ f

&&MMMMMMMMMMMMM

e1 e2

in Par(K(X)) to S](fr), where rm = 1e′1 and mr = mr. Hence there is a faithful (E ,M)-

functor:

S∗ : K(X)→ (Set,EpicsSet,MonicsSet),

given by sending f : e1 → e2 to ρf : rpac(e1)→ rpac(e2), such that

X
ηX //

S ,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ESplit(X)
E(≈) //

E(S])
UUUUUU

**UUUUUU

EPar(K(X))

EPar(S∗)
��

K(X)

∃!S∗
��

EPar(Set,EpicsSet,MonicsSet) (Set,EpicsSet,MonicsSet)
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commutes.
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Chapter 6

Conclusions and Further Work

In this thesis, we studied certain structures: partial products, joins, meets, and ranges

over restriction categories. In this chapter, we provide some concluding remarks and

considerations for further work.

6.1 Main Results

The main results we obtained in this thesis are summarized as follows.

1. Cartesian Restriction Categories

We produced a free partial product structure for restriction categories by fitting re-

striction structures to product completion. The result is summarized in Theorem

2.2.2.

2. Join Restriction Categories and M-adhesive Categories

We introduced the notion of join restriction categories (Definition 3.1.7) and described

a free join structure, called join completion, to restriction categories (Theorem 3.1.12),

which was linked to the join completion given in inverse semigroups by providing

adjunctions among restriction categories, join restriction categories, inverse categories,

and join inverse categories (Theorem 3.1.34). To answer when a partial map category is

a join restriction category, we definedM-adhesive categories andM-gaps (Definitions

3.2.7 and 3.2.8) and proved the characterization theorem of partial map categories with

joins (Theorem 3.3.6) and the completeness of join restriction categories (Theorem

3.3.7). We also showed that M-gaps can give a join completion (Proposition 3.3.11).
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3. Meet Restriction Categories

We introduced the notion of meet restriction categories (Definition 4.1.1), showed the

completeness of meet restriction categories in partial map categories (Theorem 4.2.3),

and provided a free meet restriction structure for restriction categories (Theorem

4.3.4). We also studied when the free meet structure we provided preserves finite

partial products (Proposition 4.3.12).

4. Range Categories

We generalized Schein’s representation theorem for type 3 function systems to range

categories satisfying [RR.6] (Theorem 5.2.17) and studied when a partial map cate-

gory satisfies Schein’s condition [RR.6] (Propositions 5.3.1 and 5.3.7).

6.2 Further Work

We list here some possible directions for future work and some questions to which we

would like to know the answers.

1. In this thesis, we have studied partial products, joins, meets, ranges on restriction

categories. However, one of the objectives was to study how these structures interact

with computability. Some work in this direction has been done, see, for example,

[6, 12, 13, 45], but there remains much to do.

2. As mentioned in Subsection 5.1.3, factorization systems are related to other categor-

ical notions, such as fibrations. localizations, torsion theory, and Eilenberg-Moore

algebras. In [9], we have constructed free restriction categories using certain free fi-

brations. However, how ranges (= M-stable factorization systems in some senses)

interact with these categorical notions should be further studied.
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3. By Proposition 5.1.5 and Theorem 5.1.12, each range category X can be fully and

faithfully embedded, in a restriction and range preserving manner, into a partial map

category:

X
ηX→ Split(X) ≈ Par(Total(Split(X)), ESplit(X),MSplit(X)).

The Yoneda embedding Y can further map Total(Split(X)) to its presheaf category

SetTotal(Split(X))op

. On the other hand, there is a coproduct functor from the presheaf

category to Set. We conjecture that this way would lead to at least a faithful range

functor from each given range category satisfying [RR.6] to the category of sets and

partial functions, but the details need to be filled out.

4. Subsection 4.3.5 studied meets’ interactions with partial products. However, there is

much work still needed to be done on how partial products, joins, meets, and ranges

interact with each other and even with other mathematical structures.
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Curie - Paris 6, 1977.

[19] H. Ehrig, M. Pfender, and H.J. Schneider, Graph-grammars: an algebraic approach,

IEEE Conf. on Automata and Switching Theory, 167-180, 1973.

[20] R. Garner and S. Lack, Lex colimits, Journal of Pure and Applied Algebra

216(6)(2012), 1372-1396.

[21] R. Garner and S. Lack, On the axioms for adhesive and quasiadhesive categories,

preprint, 2011.

[22] T. Heindel and P. Sobocinski, Van Kampen colimits as bicolimits in Span, In Alge-

bra and Coalgebra in Computer Science (CALCO 09), No.5728 in LNCS, 335349.

Springer, 2009.



246

[23] J. Hughes and Bart Jacobs, Factorization systems and fibration: toward a fi-

bred Birkhoff variety theorem, Electronic Notes in Theoretical Computer Science

69(2003), 156-182.

[24] M. Jackson and T. Stokes, Partial maps with domain and range: extending Schein’s

representation. Communications in Algebra 37(2009), 2845-2870.

[25] P.T. Johnstone, S. Lack, and P. Sobociński, Quasitoposes, quasiadhesive categories
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