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Abstract

In concurrent programming, message passing along channels plays a key role. This is a form

of communication between two processes in which messages can be sent in both directions.

To ensure the coherent sequencing of receiving and sending messages the communications

on such a channel are goverened by a “protocol”.

In this thesis, the categorical semantics of protocols for the message passing logic (in-

troduced by Cockett and Pastro) is introduced. A special class of protocols, built on linear

functors, is investigated and it is shown that these protocols naturally form linear functors.
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Chapter 1

Introduction

In [22], Milner introduced a process calculus for concurrent communication which provided

a calculus for describing communication between processes and relied on the idea of passing

messages along channels. A communication channel basically connects two processes and

allows both the sending and receiving of messages. While Milner’s notion of communication

was non-deterministic so that many processes could potentially communicate on a channel,

here we are interested in a deterministic semantics so that a channel will always connect

exactly two processes.

The sequencing of sending and receiving and the types of messages which can be sent

and received along a channel is determined by a communication protocol. Protocols are,

thus, “types” for interaction in the concurrent world. Consider the two processes P and Q,

which are connected by a channel: either of the processes can receive or produce a message

on the channel. When a protocol is assigned to the channel this determines the sequencing

and the types of messages which are allowed to be sent or received on the channel. Thus, a

protocol applied to a channel between process P and Q, may require that initially process

P should listen for a particular type of message and, thus, dually Q should send a message

of this type.

In recent work [17], [25], the notion of a session type has been introduced to govern

reciprocal interactions between two processes in a concurrent program. In [18], Honda,

Vasconcelos and Kubo described a session type in the context of functional programming

language for implementing concurrent communication as a “ series of reciprocal interactions

between two processes, possibly with branching and recursion and serves as a unit of ab-
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straction for describing interaction.” They are, therefore, protocols in the sense described in

this thesis.

Linear logic from its inception has been thought to be closely related to concurrent pro-

gramming. Indeed, when linear logic was first introduced by Girard in [16], he suggested that

there should be a link between the connectives of linear logic and concurrent computation.

In linear logic, there are two types of propositional connectives: the additives (×, +, 1 and

0 ) and the multiplicatives (⊗, ⊕ , > and ⊥). The classical conjunction ∧ and its unit > is

divided into the additive categorical product × with unit 1 and the multiplicative “tensor”

⊗ with unit > respectively while the classical disjunction ∨ and its unit ⊥ is divided into

the additive categorical coproduct + and unit 0 and the multiplicative “par” ⊕ and unit ⊥

respectively.

There is a considerable literature concerning the connection between linear logic and the

logic of concurrent communication. Abramsky and Jagadeesan [1] proposed a game model

for the multiplicative linear logic where games are denoted by formulas and winning strate-

gies are denoted by proofs. From the game semantics view, a formula is represented as a

two-player game between “player” and “opponent” and “winning strategies” are proofs of

formulas for the player. So the interaction between player and opponent can be thought of

as a proof. From the proccess point of view, player is considered as the “system”, oppo-

nent as the “environment” and winning strategies as “deadlock free processes”. From this

perspective, a proof can be seen as a process or system that interacts with its environment.

The game model which is described in [1] does not provide a model for concurrent compu-

tation as it is only for seqential games which have a fixed interleaving of moves between the

player and the opponent. In [2], Abramsky and Mellies introduce a new form of concurrent

game semantics by using multiplicative-additive linear logic. In these “concurrent games”

both the player and the opponent can play in a distributed and asynchronous manner. How-
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ever, there is no explicit notion of protocol or of message passing.

In [20], Joyal studied the free bicompletion of categories, that is categories with free

limits and colimits. A special case of this is known as sum-product logic or ΣΠ-logic when

the limits are products and the colimits are coproducts. The internal language of a category

with free products and coproducts is given by ΣΠ-logic which was studied in [9] by Cockett

and Seely: they realized that this logic is just the logic of communication between processes

that allows communication only along a single (two-way) channel.

In [24], Pastro extended the ΣΠ-logic to support communication between processes via

multiple channels. In [7], Cockett and Pastro introduced the multiplicative-additive linear

logic for channel based concurrent communication where simple protocols are attached to

each channel. This multiplicative-additive linear logic is represented by linearly distributive

categories with additives (sums and products): note that the two tensorial structures ⊗ and

⊕ allow bundling of channels together. However, in [7] there is no description of how to

define general protocols for channels or how a message passing mechanism might work.

In [8], Cockett and Pastro returned to the subject and proposed a model for message

passing for concurrency using a two-tier logic. The base tier they called “message logic”,

it represents a sequential programming logic, while the tier built on top of message logic

is the “message passing logic”, which is a concurrent programming logic. An equivalence

is established in [8] between the proof theory, the categorical semantics, and the internal

language for this message passing logic.

From the categorical point of view, Cockett and Pastro [8] describe sequential (mes-

sage) logic as a distributive monoidal category where tensor distributes over coproducts; the

concurrent (message passing) logic is then a linear actegory which is defined as a linearly

distributive category with a monoidal category acting on it both covariantly and contravari-

antly. The message passing logic which is developed in [8] can be thought of as a very basic
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language for concurrent programs where two or more processes communicate via channels

by passing messages. However, general protocols had still not been introduced in [8].

It turns out that even in the concurrent world, categorical initial and final algebras (i.e.,

inductive and co-inductive data) can be used to express communication protocols in a formal

manner. The covariant and contravariant actions together with the additive connectives can

be used as the basis for generating protocols as initial and final fixed points. The fact that

the coproduct in the sequential world is connected to the additives in the concurrent world

allows control dependent on passed messages to transmit into concurrent actions governed

by these protocols.

This thesis describes the categorical semantics for message passing and introduces the

semantics of protocols as inductive and coinductive concurrent data. The properties of some

special protocols that are built on linear functors are then studied. In the concurrent world

linear functors play an important role: they provides a basic building block on which one can

build initial and final concurrent data or protocols. When data is built on a linear functor,

then the initial and final datatypes themselves form a linear functor pair. In this thesis, first

it is proven that the two actions from linear actegories give the structure of a parameterized

linear functor. Next it is proven that protocols generated by linear functors are themselves

a linear functor pair.

Outline of this thesis: Chapter 2 (Section 2.1-2.8) provides the basic definitions from

category theory required in this thesis with examples. In Section 2.9, the definition of linearly

distributive categories are discussed with examples and Section 2.10 describes the circuit

diagrams for linearly distributive categories. Section 2.11 and 2.12 provide the definition

of monoidal functors and the circuit represention of these respectively. Linear functors and

their circuit diagrams are described in Section 2.13 and 2.14 respectively.

In Chapter 3, linear actegories are defined and a proof of the first main result (Theorem
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3.3.2) is given. Section 3.1 provides the definition of linear actegories. Section 3.2 presents

the circuit diagrams for linear actegories and Section 3.3 proves Theorem 3.3.2 which says

the actions defined in a linear actegory have the structure of a parameterized linear functor.

To establish this theorem, circuit diagrams are used extensively. Section 3.3 provides the

circuit equalities (Figure 3.1-3.9). Chapter 4 is devoted to proving Theorem 4.5.1 which says

the fixed point of a linear functor is a linear functor (see Section 4.5). This Chapter also

describes the algebraic versus circular definition of initial/inductive and final/coinductive

datatype with examples (see Section 4.1-4.2). It turns out that the circular form of the

definition is necessary in the concurrent setting in order to capture interaction with channels.

Chapter 5 presents conclusion and possible future work.

Contribution of this thesis: In Chapter 3, Theorem 3.3.2 (see Section 3.3) is presented

and proved which is new to this thesis. It gives the structure of parameterized linear functor

on which initial and final concurrent data i.e., protocols can be built. To prove Theorem

3.3.2, circuit diagrams for linear actegories are used. Chapter 4 defines the fixed points of

linear functors: these give basic protocols and the definitions of these fixed points is the first

presentation of this material. This chapter also shows that the fixed point of a linear functor

is a linear functor (Theorem 4.5.1) which is also new to this thesis. This says protocols that

are generated by linear functors themselves form linear functors.
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Chapter 2

Background

In this chapter, we start by providing some basic definitions from category theory [3], [12]

in Section 2.1-2.8. Then we discuss linearly distributive categories [28] in Section 2.9 which

are important to this thesis as they form the basis for the categorical semantics of message

passing. Section 2.10 provides the circuit representation for linearly distributive categories.

As the goal of this thesis is to introduce the semantics of communication protocols, which

are built on linear functors, the notion of linear functors [14] is central to the thesis: these

are described in Section 2.13. The circuit representation of linear functors are provided in

Section 2.14.

2.1 Categories

A category, X, consists of a collection1of objects, X0, and a collection of morphisms,

X1, together with:

• For each morphism, f ∈ X1, D0(f) ∈ X0 is a domain and D1(f) ∈ X0 is a

codomain. A map f with D0(f) = A and D1(f) = B is written as A
f //B .

The set of all morphisms from A to B is written as Hom(A,B) or X(A,B),

and is called the hom-set (from A to B).

• For each object A ∈ X0, there is an identity morphism 1A : A→ A.

• For each pair of maps A
f //B and B

g //C where f, g ∈ X1, there is a

composite, A
fg //C . This data must satisfy (i) Identity: if f : A → B, then

1Af = f = f1B and (ii) Associativity: f(gh) = (fg)h.
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In a category X, A
f //B is an isomorphism if there exists B

f−1
//A such that ff−1 = 1

and f−1f = 1.

Examples:

1. The category, Set, is the category whose objects are sets, and morphisms are

functions between sets. The composition is the usual composition of functions

and identities are identity functions.

2. The category of relations, Rel, is a category whose objects are sets and mor-

phisms are relations. If R is a relation on X and Y , and S is a relation on Y

and Z then the composition of relations is RS = {(x, z) | ∃y(x, y) ∈ R and

(y, z) ∈ S}. The identity relation on X is 1X = {(x, x) | x ∈ X}.

3. Given two categories X and Y, one can define a product category X×Y whose

objects are ordered pairs (X, Y ), where X ∈ X and Y ∈ Y, and morphisms

are pairs of morphisms (f, g) : (X, Y ) → (X ′, Y ′), where f : X → X ′ and

g : Y → Y ′. Composition of morphisms is componentwise composition, e.g.,

(f, g)(f1, g1) = (ff1, gg1), where (f1, g1) : (X1, Y1) → (X ′1, Y
′

1). Identities are

pairs of identities, e.g., 1(X,Y ) = (1X , 1Y ).

4. Suppose R is a rig (ring without negatives), for example, the natural numbers,

N under addition and multiplication. The category of matrices, Mat(R) is

defined as follows:

• Objects: n ∈ N;

• Morphisms: (aij)nm are n×m matrices with entries in R;

1Categories which have both objects and maps sets are called small categories. However, for example,
the category of sets is not small in this sense because the set of all sets is not a set (Russell’s paradox).
This problem can be surmounted, for example, by allowing large categories to have objects to belonging to
a “class” while insisting the hom-sets are still sets.
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• Composition: Matrix multipication,

(ab)ik =
m∑
j=1

aijbjk

• Identities: Identity matrix, δij where

δij =

 0 if i 6= j

1 if i = j

.

5. The simplex category, ∆ is a category whose objects are finite ordered sets,

i.e., isomorphic to [n] = {0, ..., n − 1} and also the empty set Ø(where [0] is

the empty set), and the morphisms are order preserving maps.

2.2 Functors

Given two categories X and Y, a functor F : X→ Y is a pair of maps F0 : X0 → Y0 and

F1 : X1 → Y1 for which

• if f : A→ B in X, then F1(f) : F0(A)→ F0(B) in Y;

• F1(1A) = 1F0(A) for any object A in X, i.e., functors preserve identities;

• F1(fg) = F1(f) F1(g), i.e., functors preserve composition.

We will generally drop the subscripts from the functor writing F (f) and F (A) instead

of F1(f) and F0(A) respectively. Small categories and functors form a category called Cat

whose objects are categories, and morphisms are functors. For a category X, the identity

functor is 1X : X→ X such that for every object A and every morphism f in X, 1X(A) = A

and 1X(f) = f . The composition of two functors F and G is (FG)i = FiGi. X and Y are

isomorphic when there is an isomorphism X→ Y in Cat.
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For a category X, its dual or opposite category is defined as Xop where the objects are

the same as X but a morphism B
f //A in Xop is A

f //B in X. A contravariant functor,

F from X to Y is F : Xop → Y where Xop is a dual or opposite category of X. A covariant

functor F : X→ Y is just an ordinary functor.

Examples:

1. The hom-functor is a bi-functor, consisting of a covariant hom-functor and a

contravariant hom-functor. Given a category X with an object X, the co-

variant hom functor, X(X, ) : X → Set is defined as: (i) for each object

A ∈ X,X(X, ) mapsA toX(X,A), the set of morphisms (ii) for any morphism

f : Y → Z, X(X, ) maps f to the function X(X, f) : X(X, Y ) → X(X,Z)

defined by g 7→ gf for g ∈ X(X, Y ). On the other hand, for an object W ∈ X,

the contravariant hom-functor, X( ,W ) : Xop → Set sends an object A to

X(A,W ) and a morphism f : Y → Z to the X(f,W ) : X(Z,W ) → X(Y,W )

given by g 7→ fg for g ∈ X(Z,W ). The hom-functor, X( , ) : Xop ×X →

Set, consists of X(X, ) and X( ,W ), which maps a pair of objects (X,W )

to X(X,W ), and a pair of morphisms, f : X → A and g : Z → W to

X(f, g) : X(A,Z)→ X(X,W ) that sends h : A→ Z to

fhg : X

f

��

W

A
h

// Z

g

OO

2. The Product functor, × A : Set→ Set is defined as

X

×A:Set→Set: f
��

7−→

X × A
f×A

��
Y Y × A

(x, a)
_

��
(f(x), a)
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3. The list functor, L : Set → Set sends a set A to the set of finite sequences

whose elements are in A, and extends the maps as

X

f

��
7−→

L(X)

L(f)

��
Y L(Y )

[a1, ..., an]
_

��
[f(a1), ...f(an)]

2.3 Natural transformations

Given two functors F,G : X → Y, a natural transformation α : F ⇒ G is a family of

morphisms αX : F (X) → G(X), X ∈ X0 such that given any morphism f : X → Y in X,

the following diagram commute.

F (X)

F (f)

��

αX // G(X)

G(f)

��
F (Y ) αY

// G(Y )

The composition of two natural transformations, α : F ⇒ G and β : G ⇒ H is defined

as (αβ)X = αXβX

A natural transformation γ : G ⇒ F is called a natural isomorphism if it has an

inverse, α : F ⇒ G. In this case, we say F and G are isomorphic.

Examples:

1. Given two functors F,G : X → Y, one can define the product of F and G

as F × G such that for each object A ∈ X, (F × G)(A) = F (A) × G(A)

and for a morphism f : A → B, (F × G)(f) = F (f) × G(f). Then the

projections, π0 : F (A) × G(A) → F (A) and π1 : F (A) × G(A) → G(A) are

natural transformations such that the following diagrams commute:

F (A)×G(A)
π0 //

F (f)×G(f)
��

F (A)

F (f)
��

F (B)×G(B)
π0 // F (B)

F (A)×G(A)
π1 //

F (f)×G(f)
��

G(A)

G(f)
��

F (B)×G(B)
π1 // G(B)

10



2. Constructing a list is a natural transformation. For example, consA(1, [2, 3]) =

[1, 2, 3]. Moreover,

A× L(A)
consA //

f×L(f)

��

L(A)

L(f)

��
B × L(B)

consB // L(B)

3. Appending a list X to a list Y is a natural transformation. For example,

AppendX([x1, x2, ..., xn], [y1, y2, ..., ym]) = [x1, ...xn, y1, ..., ym].

Moreover,

L(X)× L(X)
AppendX //

L(f)×L(f)

��

L(X)

L(f)

��
L(Y )× L(Y )

AppendY // L(Y )

4. Flattening a list of lists is a natural transformation. For example,

FlattenN[[1], [1, 2], [3, 4, 5]] = [1, 1, 2, 3, 4, 5].

Moreover,

L(L(X))
FlattenX //

L(L(f))

��

L(X)

L(f)

��
L(L(Y ))

FlattenY // L(Y )

2.4 Initial and Final Objects

An initial object in a category X is an object Ø such that for any object A ∈ X there is

a unique map ? : Ø → A. Dually, a final object in a category X is an object 1 such that

there is a unique map ! : A→ 1 for any object A ∈ X.

In the category of sets, the initial object is the empty set, Ø, and a final object is any

one element set.
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2.5 Products and Coproducts

Suppose A and B are two objects in a category X. The binary product of A and B is

an object A× B together with morphisms π0 : A× B → A (called the first projection) and

π1 : A× B → B (called the second projection) such that for any object D with morphisms

f : D → A and g : D → B, there is a unique morphism 〈f, g〉 : D → A× B that makes the

following diagram commute.

D

〈f,g〉
�
�
�

���
�
�

f

�����������������

g

��888888888888888

A A×Bπ0oo π1 // B

Given two objects A and B in a category X then the coproduct of A and B is an

object A + B together with morphisms σ0 : A → A + B (called the first injection) and

σ1 : B → A + B (called the second injection) such that for any object E with morphisms

f : A → E and g : B → E there is a unique morphism 〈f |g〉 : A + B → E that makes the

following diagram commute.

A

f

��888888888888888
σ0 // A+B

〈f |g〉
�
�
�

���
�
�

B
σ1oo

g

�����������������

E

2.6 Adjoints

Suppose F : X → Y and G : Y → X are functors. Then F is a left adjoint to G if there

is a natural transformation η : X → G(F (X)) such that for any objects X ∈ X and Y ∈ Y

and for any map f : X → G(Y ), there is a unique map f ] : F (X)→ Y making the following
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triangle commute.

X

f $$HHHHHHHHHH
η // G(F (X))

G(f])
���
�
�

G(Y )

This property of η is the universal mapping property, and (F (X), η) is a universal

pair. Dually, G is a right adjoint to F if there is a natural transformation ε : F (G(X))→ X

such that for any objects X ∈ X and Y ∈ Y and for any map h : F (X) → Y , there is a

unique h[ : X → G(Y ) making the following triangle commute.

F (X)

F (h[)
���
�
�

h

##HHHHHHHHHH

F (G(Y )) ε
// Y

This property of ε is the couniversal mapping property, and (G(Y ), ε) is a couni-

versal pair.

An adjunction (η, ε) : F ` G : X → Y consists of functors F : X → Y and G : Y → X

and natural transformations η : X → G(F (X)) and ε : F (G(X)) → X with the above

universal and couniversal properties.

If F : X→ Y and G : Y → X are functors with natural transformations ηX and εY that

satisfy the following triangle identities, then for any object X ∈ X, there is a universal pair

(F (X), ηX) for G at X. This means that an adjunction can be defined as two functors F

and G and two natural transformations ηX : X → G(F (X)) and εY : F (G(X))→ X called

the unit and counit that satisfy the triangle identities.

G(X)

NNNNNNNNNNN

NNNNNNNNNNN

ηG(Y ) // G(F (G(X)))

G(εY )

��
G(X)

F (X)

NNNNNNNNNNN

NNNNNNNNNNN

F (ηX) // F (G(F (X)))

εF (X)

��
F (X)
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Suppose F : X × Z → Y is a functor and for each X ∈ X, F (X, ) has a right adjoint

G(X, ).

Lemma 1. If F : X×Z→ Y for each X ∈ X has a right adjoint such that (η, ε) : F (X, ) `

G(X, ) : Z→ Y then G : Xop ×Y → Z is a functor where G(x, y) := (F (x, 1)εy)b.

Proof. In order to show that G is a functor, we must show that G preserves identities and

composition. Preservation of identities is straightforward. For preservation of composition

we have to show that G(xx′, yy′) = G(x′, y)G(x, y′).

Given x : X0 → X1, x′ : X1 → X2, y : Y0 → Y1 and y′ : Y1 → Y2, then

F (X0, G(X2, Y0))
F (xx′,1) //

F (1,G(xx′,yy′))

�
�
�

���
�
�

F (X2, G(X2, Y0)) ε // Y0
yy′ // Y2

F (X0, G(X0, Y2))

ε

44iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

This diagram commutes by the couniversal property of adjunction.

F (X0, G(X2, Y0))

(1)F (1,G(x′,y))

���
�
�
�
�
�
�

F (x,1)// F (X1, G(X2, Y0))

(2)F (1,G(x′,y))

�
�
�

���
�
�

F (x′,1)// F (X2, G(X2, Y0))

ε

��
Y0

y

��
F (X0, G(X1, Y1))

(3)F (1,G(x,y′))
���
�
�

F (x,1)// F (X1, G(X1, Y1)) ε // Y1

y′

��
F (X0, G(X0, Y2)) ε

// Y2

In this diagram, (1) commutes because of the functorialty of F , and (2) and (3) commute

by the couniversal property of adjunction. This means the composite G(x′, y)G(x, y′) =

G(xx′, yy′).
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G : Xop ×Y → Z is called the parameterized right adjoint of F : X× Z→ Y. We note

the following important fact about parameterized adjoints:

Corollary 2.6.1. In a parameterized adjoint, ε is dinatural (and dually, η is dinatural).

The dinatural diagram is the following special instance of the couniversal property defin-

ing G(x, y) above:

F (X0, G(X1, Y0))
F (x,1) //

F (1,G(x,1))

�
�
�

���
�
�

F (X1, G(X1, Y0)) ε // Y0

F (X0, G(X0, Y0))

ε

55kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

2.7 Monoidal Categories

A monoidal category X is a category equipped with a bi-functor, the tensor product,

⊗ : X × X → X, a unit > : 1 → X (where 1 is the one-object-one-arrow category), and

three natural isomorphisms:

a⊗ : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)

l⊗ : >⊗X → X

r⊗ : X ⊗> → X

such that the following two diagrams commute:

(X ⊗>)⊗ Z a⊗ //

r⊗⊗1
OOOO

''OOOOO

X ⊗ (>⊗ Z)

1⊗l⊗
oooo

wwoooo

X ⊗ Z
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((X ⊗ Y )⊗ Z)⊗W a⊗ //

a⊗⊗1

��

(X ⊗ Y )⊗ (Z ⊗W )

a⊗
��

(X ⊗ (Y ⊗ Z))⊗W a⊗ // X ⊗ ((Y ⊗ Z)⊗W )
1⊗a⊗ // X ⊗ (Y ⊗ (Z ⊗W ))

A monoidal category is symmetric if there is a natural isomorphism, c⊗ : X ⊗ Y →

Y ⊗X, called the symmetry transformation, such that the following diagrams commute:

X ⊗ Y 1

c⊗
LLLL

%%LLLL

X ⊗ Y

Y ⊗X

c⊗rrrr

99rrrr

X ⊗>
c⊗ //

r⊗
GGGG

##GGGG

>⊗X
l⊗

www

{{wwww

X

(X ⊗ Y )⊗ Z a⊗ //

c⊗⊗1

��

X ⊗ (Y ⊗ Z)
c⊗ // (Y ⊗ Z)⊗X

a⊗
��

(Y ⊗X)⊗ Z a⊗ // Y ⊗ (X ⊗ Z)
1⊗c⊗ // Y ⊗ (Z ⊗X)

Examples:

1. The category of sets, Set, with cartesian product × is an example of monoidal

category. In this case, the unit object is a one element set ,i.e., 1 ={∗} and the

tensor is S × T = {(s, t) | s ∈ S ∧ t ∈ T}. In any category with products (or

coproducts) the product (or coproduct) always is a symmetric tensor product.

2. The simplex category, ∆, is a non-symmetric monoidal category (as its mor-

phism preserves order) where the tensor product ⊗ is addition. For example,

[n]⊗[m] = [n+m], i.e., [0, 1, ..., n−1]⊗[0, 1, ...,m−1] = [0, 1, ..., n−1, n, ..., n+

m− 1]. If f : n→ n′ and g : m→ m′ are two morphisms, then we have
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(f ⊗ g)(i) =

 f(i) if i ∈ [0, n− 1]

n′ + g(i− n) if i ∈ [n, n+m− 1]

3. The category of relations, Rel, is a monoidal category where disjoint union,∐
, provides both the product and the coproduct and the cartesian product

in Set provides a tensor (⊗) which is neither a product nor a coproduct (See

Section 2.1-Examples: 2).

2.8 Closed monoidal categories

Let A ∈ X. Then A ⊗ : X → X is a functor in any monoidal category X: it takes an

object B to A⊗ B and a map f : B → C to A⊗ f : A⊗ B → A⊗ C. Then X is a closed

monoidal category if for each object A of X the functor A⊗ has a right adjoint.

Equivalently, a monoidal category X is closed if for two objects A and B, there is an

object A ⇒ B and a map evA,B : (A ⇒ B) ⊗ A → B that satisfy the universal mapping

property: for every map f : X ⊗ A → B, there is a unique map λf : X → A ⇒ B that

makes the following diagram commutes.

X ⊗ A

f
''OOOOOOOOOOOOOO

λf⊗1 // (A⇒ B)⊗ A
evA,B

��
B

2.9 Linearly distributive categories

Cockett and Seely [28] defined linearly distributive categories which arise from the categorical

semantics of multiplicative linear logic [6]. The proof theory of multiplicative-additive linear

logic can be described as linearly distributive categories which have products and coproducts
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over which the multiplicatives distribute; these have been used to provide a basic setting for

communication in the logic [8].

A linearly distributive category is a tuple (X,⊗,>,⊕,⊥, d⊗⊕, d⊕⊗) such that (X,⊗,>) and

(X,⊕,⊥) are monoidal. The two monoidal structures, ⊗ and ⊕, called“tensor” and “par”

respectively, are linked by two linear distributions, d⊗⊕ and d⊕⊗.

d⊗⊕ : X ⊗ (Y ⊕ Z) → (X ⊗ Y )⊕ Z

d⊕⊗ : (Y ⊕ Z)⊗X → Y ⊕ (Z ⊗X)

A linearly distributive category is symmetric if both the tensor and par are symmetric

given by c⊗ and c⊕ respectively. Note that in this case, the following two linear distributions

are canonically induced by d⊗⊕, d⊕⊗, c⊗, and c⊕.

d⊗
′

⊕ : X ⊗ (Y ⊕ Z) → Y ⊕ (X ⊗ Z)

d⊕
′

⊗ : (Y ⊕ Z)⊗X → (Y ⊗X)⊕ Z

The above data must obey certain coherence conditions which are as follows:

1. Tensors:

The two tensorial structures, ⊗ and ⊕ must satisfy the following set of equa-

tions:

a⊗ (1⊗ l⊗) = r⊗ ⊗ 1

a⊗ a⊗ = (a⊗ ⊗ 1) a⊗ (1⊗ a⊗)

a⊕ (1⊕ l⊕) = r⊕ ⊕ 1

a⊕ a⊕ = (a⊕ ⊕ 1) a⊕ (1⊕ a⊕)

For the first two equations, the diagrams are in Section 2.7.
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2. Units and distributions:

>⊗ (X ⊕ Y )
l⊗

))SSSSSSSSSSSSSSS

d⊗⊕
��

(>⊗X)⊕ Y
l⊗⊕1

// X ⊕ Y

(>⊕X)⊗ Y
l⊕⊗1

��

d⊕⊗ // >⊕ (X ⊗ Y )

l⊕
iiiiiii

ttiiiiiiiii

X ⊗ Y

The above diagrams generate the following set of equations by using the sym-

metry:

l⊗ = d⊗⊕ (l⊗ ⊕ 1)

(l⊕ ⊗ 1) = d⊕⊗ l⊕

r⊗ = d⊕⊗ (1⊕ r⊗)

(1⊗ r⊕) = d⊗⊕ r⊕

l⊗ = d⊗
′

⊕ (1⊕ l⊗)

r⊗ = d⊕
′

⊗ (r⊗ ⊕ 1)

(r⊕ ⊗ 1) = d⊕
′

⊗ r⊕

(1⊗ l⊕) = d⊗
′

⊕ l⊕

3. Associativity and distributions:

(X ⊗ Y )⊗ (Z ⊕W )
a⊗ //

d⊗⊕

��

X ⊗ (Y ⊗ (Z ⊕W ))

1⊗d⊗⊕
��

X ⊗ ((Y ⊗ Z)⊕W )

d⊗⊕
��

((X ⊗ Y )⊗ Z)⊕W a⊗⊕1 // (X ⊗ (Y ⊗ Z))⊕W
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The following equations follow from the above diagram:

d⊗⊕ (a⊗ ⊕ 1) = a⊗ (1⊗ d⊗⊕) d⊗⊕

a⊗ d
⊕
⊗ = (d⊕⊗ ⊗ 1) d⊕⊗ (1⊕ a⊗)

d⊕⊗ a⊕ = (a⊕ ⊗ 1) d⊕⊗ (1⊕ d⊕⊗)

(1⊗ a⊕) d⊗⊕ = d⊗⊕ (d⊗⊕ ⊕ 1) a⊕

d⊗
′

⊕ (1⊕ a⊗) = a⊗ (1⊗ d⊗′⊕ ) d⊗
′

⊕

a⊗ d
⊕′
⊗ = (d⊕

′

⊗ ⊗ 1) d⊕
′

⊗ (a⊗ ⊕ 1)

d⊗
′

⊕ a⊕ = (1⊗ a⊕) d⊗
′

⊕ (1⊕ d⊗′⊕ )

(a⊕ ⊗ 1) d⊕
′

⊗ = d⊕
′

⊗ (d⊕
′

⊗ ⊕ 1) a⊕

4. Distributions and distributions:

(X ⊕ Y )⊗ (Z ⊕W )
d⊕⊗ //

d⊗⊕
��

X ⊕ (Y ⊗ (Z ⊕W ))

1⊕d⊗⊕

��

((X ⊕ Y )⊗ Z)⊕W
d⊕⊗⊕1

��
(X ⊕ (Y ⊗ Z))⊕W a⊕ // X ⊕ ((Y ⊗ Z)⊕W )

The different forms of this diagram generate the following equations:

d⊗⊕ (d⊕⊗ ⊕ 1) a⊕ = d⊕⊗ (1⊕ d⊗⊕)

a⊗ (1⊗ d⊕⊗) d⊗⊕ = (d⊗⊕ ⊗ 1) d⊕⊗

d⊕
′

⊗ (d⊗
′

⊕ ⊕ 1) a⊕ = d⊗
′

⊕ (1⊕ d⊕′⊗ )

a⊗ (1⊗ d⊕′⊗ ) d⊗
′

⊕ = (d⊗
′

⊕ ⊗ 1) d⊕
′

⊗
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5. Coassociativity and distributions:

X ⊗ ((Y ⊕ Z)⊕W )
1⊗a⊕ //

d⊗⊕
��

X ⊗ (Y ⊕ (Z ⊕W ))

d⊗
′
⊕
��

(X ⊗ (Y ⊕ Z))⊕W

d⊗
′
⊕ ⊕1

��

Y ⊕ (X ⊗ (Z ⊕W ))

1⊕d⊗⊕
��

(Y ⊕ (X ⊗ Z))⊕W a⊕ // Y ⊕ ((X ⊗ Z)⊕W )

The following equations are obtained from the above diagram:

d⊗⊕ (d⊗
′

⊕ ⊕ 1) a⊕ = (1⊗ a⊕) d⊗
′

⊕ (1⊕ d⊗⊕)

d⊕
′

⊗ (d⊕⊗ ⊕ 1) a⊕ = (a⊕ ⊗ 1) d⊕⊗ (1⊕ d⊕′⊗ )

a⊗ (1⊗ d⊕′⊗ ) d⊗⊕ = (d⊗⊕ ⊗ 1) d⊕
′

⊗ (a⊗ ⊕ 1)

a⊗ (1⊗ d⊕⊗) d⊗
′

⊕ = (d⊗
′

⊕ ⊗ 1) d⊕⊗ (1⊕ a⊗)

A linearly distributive category may have, in addition, products and coproducts and

these are expected to behave well with respect to the tensor and par. This in the sense that

tensor should distribute over coproducts and par should distribute over products. If X is a

linearly distributive category with a binary product, ×, and binary coproduct, +, then the

following canonical natural transformations exists for any objects X, Y, Z.

X ⊕ (Y × Z)
〈1⊕π0,1⊕π1〉//(X ⊕ Y )× (X ⊕ Z)

X ⊕ 1 ! //1

(X ⊗ Y ) + (X ⊗ Z)
〈1⊗σ0|1⊗σ1〉 //X ⊗ (Y + Z)

0 ? //X ⊗ 0

We say that ⊕ distributes over products when the first two maps are invertible and sim-

ilarly, ⊗ distributes over coproducts iff the second two maps are invertible.
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Examples:

1. A monoidal category can be viewed as a degenerated (collapsed) linearly dis-

tributive category in the sense that ⊗ serves the role of both tensor and par:

the linear distributions are then given by associativity.

2. Any distributive lattice is a linearly distributive category where the objects

are elements and maps are comparisons. In this case, ⊗ is the meet (∧) and

⊕ is the join (∨).

3. Any ∗-autonomous category, as introduced by Michael Barr [4], [5], is a sym-

metric monoidal category (X,⊗,>) together with a functor ( )∗ : Xop → X

such that for every object X ∈ X, there is a natural isomorphism X ∼= X∗∗ and

(X ⊗ Y ) ∼= (X ⇒ Y ∗)∗. Moreover, a ∗-autonomous category, X is also a sym-

metric monoidal category (X,⊕,⊥) where (X ⊕ Y ) ∼= (X∗ ⊗ Y ∗)∗ ∼= X∗ ⇒ Y

and there is a following one-to-one correspondence:

X ⊗ Y // Z

Y // X∗ ⊕ Z

The unit for⊕ is>∗ which can be denoted as⊥ such thatX⊕⊥ = (X∗⊗⊥∗)∗ ∼=

(X∗ ⊗>)∗ ∼= X∗∗ ∼= X.

The above has all the linear distributions of linearly distributive categories.

Consider the linear distribution, d⊗⊕ : X ⊗ (Y ⊕ Z)→ (X ⊗ Y )⊕ Z. We want

to show that this linear distribution is present. From closedness, we have:

X // Y ⊕ Z
X ⊗ Z∗ // Y
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Then we can derive X ⊗ (Y ⊕ Z)→ (X ⊗ Y )⊕ Z as follows:

Y ⊕ Z → Y ⊕ Z
(Y ⊕ Z)⊗ Z∗ → Y

X ⊗ Y → X ⊗ Y
Y → X∗ ⊕ (X ⊗ Y )

(Y ⊕ Z)⊗ Z∗ → X∗ ⊕ (X ⊗ Y )

X ⊗ (Y ⊕ Z)⊗ Z∗ → X ⊗ Y
X ⊗ (Y ⊕ Z)→ (X ⊗ Y )⊕ Z

The category of relations, Rel, and the category of vector spaces, Vect are

examples of ∗-autonomous categories. In Rel, X∗ = X and ⊗ = ⊕ = ×. In

Vect, ⊗ = ⊕ and X∗ is a dual vector space.

4. The category of sets with a relation, SetRel, is an example of a (non-symmetric)

linearly distributive category. In this category, an object is a set with a rela-

tion, e.g., (X,R) where R ⊆ X × X and a morphism for two sets X and Y

with two relations R and S is (X,R) α //(Y, S), i.e., xRy =⇒ α(x)Rα(y).

Here, the tensor, ⊗ is defined as (X,R)⊗ (Y, S) = (X
∐
Y,R

∐
S), e.g.,

and the par, ⊕ is defined as (X,R)⊕ (Y, S) = (X
∐
Y,X×Y ∪ (R

∐
S)), e.g.,
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The units for the two tensors (⊗ and ⊕) are the same, i.e., > = ⊥ = (Ø,Ø).

To see that linear distributions hold, consider the linear distribution, d⊗⊕ :

X ⊗ (Y ⊕ Z)→ (X ⊗ Y )⊕ Z.

X ⊗ (Y ⊕ Z) = X ⊗ (Y
∐
Z, Y × Z ∪ (R2

∐
R3))

= (X
∐

(Y
∐
Z), R1

∐
(Y × Z ∪ (R2

∐
R3)))

(X ⊗ Y )⊕ Z = (X
∐
Y,R1

∐
R2)⊕ Z

= ((X
∐
Y )

∐
Z, (X

∐
Y )× Z ∪ (R1

∐
R2

∐
R3))

Here, X
∐

(Y
∐
Z) ⊆ (X

∐
Y )

∐
Z. So now we have to check that R1

∐
(Y ×

Z ∪ (R2

∐
R3)) → (X

∐
Y ) × Z ∪ (R1

∐
R2

∐
R3). As A

∐
(B ∪ C) ⊆ B ∪

(A
∐
C), so we can write R1

∐
(Y ×Z∪(R2

∐
R3))→ Y ×Z∪(R1

∐
R2

∐
R3).

Then by applying second injection, σ1 : Y → X
∐
Y , we get (X

∐
Y ) × Z ∪

(R1

∐
R2

∐
R3). Thus, linear distributions hold which satisfy all the coherence

conditions. SetRel is a mix category [?] as ⊥ = >. So it is rather special

linearly distributive category.

2.10 Circuit diagrams for linearly distributive categories

Joyal and Street used string diagrams [21] to express maps in tensor categories and in [6]

this was developed further to express the connection between proof theory and linearly
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Figure 2.1: Typed circuit

distributive categories. A typed circuit is constructed from a set of types and a set of

components. A component is a black box which has a number of typed input and output

ports to which variables or wires are attached to connect these components together. The

wires must have the same type as the ports which they connect. Figure 2.1 shows an example

of a typed circuit in which a component f has two input ports of type A and B respectively

and two output ports of type E and F respectively. Attached to the input ports are wires

X1 and X2 (of type A and B respectively), attached to the output ports are wires Z1 and Z2

(of type E and F respectively). The circuit expression is then written as [X1, X2]f [Z1, Z2].

Two circuit expressions can be plugged together to form a new circuit expression: this is

indicated by juxtaposing the expressions. For example, [X2, X3]f [Y1, Z1, Y5, Z2][X1, Z2, X4, Z1]

g[Y2, Y3, Y4] is the circuit shown in Figure 2.2; this is a “non-planar” circuit as there are cross-

ing wires. In a “planar” circuit, wires are not allowed to cross.

Circuits for linearly distributive categories, which have two tensorial structures, ⊗ and

⊕, were introduced in [5]. These circuits are constructed from components S, as discussed

above, with ports typed by positive multiplicative linear formulae based on a set of atomic

types P. These formulae may be defined as: (i) A is a formula such that A ∈ P, (ii) A⊗B

and A⊕B are formulae if A and B are formulae, and (iii) > and ⊥ are formulae.
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Figure 2.2: Circuit composition

The circuits for linearly distributive categories have special components, called “links”

to represent the tensor and par structures [6]. These are:

[A,B]⊗ I[A⊗B] ⊗-introduction

[A⊗B]⊗ E[A,B] ⊗-elimination

[A,B]⊕ I[A⊕B] ⊕-introduction

[A⊕B]⊕ E[A,B] ⊕-elimination

[ ]>I[>] unit introduction

[A,>]>E[A] unit elimination

[ ]⊥E[⊥] counit introduction

[A]⊥I[A,⊥] counit elimination

The graphical representation of these links are shown in Figure 2.3 where (⊗E) and (⊕I)

are “switchable” links following Girard. Proof theoretically, the (⊗I) and (⊗E) links are

introduction and elimination rules for the tensor (⊗). Dually, the (⊕I) and (⊕E) links are
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Figure 2.3: Introduction and elimination rules for ⊗, ⊕, >, ⊥

introduction and elimination rules for the cotensor (⊕).

To build a legal circuit one must construct it following the judgement rules of the type

theory which determine what is a valid proof. A criterion for being a legal circuit was

introduced by Girard [16]: it says that a circuit is valid if for any choice of “switch settings”

for the switchable links the circuit remains acyclic and connected; this means once any

switching is chosen there will be exactly one way to get from one component to any other.

However, as a test, Girard’s correctness criterion is not efficient because if the number of
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non-switching components is n, then there are 2n switchings which are possible and have to

be tested for acyclicity and connectedness. A more efficient procedure, introduced by Danos

and Regnier [15], for determining the validity of a circuit uses “sequentialization”. A circuit

with ⊗ and ⊕ is called sequential if it can be reduced to a single sequent box by applying

a series of reduction rules [6]: having such a reduction is equivalent to showing that it is a

valid proof. Figure 2.4 shows the sequentialization procedure: the reduction rules allow one

to “box” the non-switchings links and components, to combine boxes (cut rule), and to “eat”

switching links. In [6], it is shown that a sequential circuit, called a proof net, corresponds

to the morphisms of a linearly distributive category.

The determination of the equivalence of proof nets can be organized as a rewriting system

in which there are three types of rules: reductions, expansions, and equivalences, shown in

Figure 2.5. The reduction rules simplify the circuits while the expansion rules expand wires

to “express their type” that is until their type is atomic. The equivalences are concerned

with the unit links. All these rewrites are only valid, however, if they transform a legal

circuit into a legal circuit.

As there is a correspondence between proof nets and linearly distributive categories, the

coherence equations for linearly distributive categories can be represented using proof nets.

For example, consider the coherence equation for linearly distributive categories which is

a⊗ (1⊗ d⊗⊕) d⊗⊕ = d⊗⊕ (a⊗ ⊕ 1). Then the validity of this equation can be obtained by using

the reduction and expantion rules of (⊗, ⊕)-circuits which are discussed in Figure 2.5. We

shall use this technique extensively in the sequel. The circuit diagrams for left side and

right side of the equation a⊗ (1 ⊗ d⊗⊕) d⊗⊕ = d⊗⊕ (a⊗ ⊕ 1) are shown in Figure 2.6 and 2.7

respectively. In Figure 2.6, the elimination rule for ⊗ is applied. In Figure 2.7, at first we

applied the elimination rule for ⊕ then we applied the elimination rule for ⊗. Finally, we

get the same resulting circuit diagram from Figure 2.6 and 2.7.
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Figure 2.4: Sequentialization Procedure
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Figure 2.5: Reduction, expansion, and equivalence rules for ⊗, ⊕, >, ⊥
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Figure 2.6: Circuit diagram for a⊗ (1⊗ d⊗⊕) d⊗⊕

Figure 2.7: Circuit diagram for d⊗⊕ (a⊗ ⊕ 1)
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2.11 Monoidal functors

Suppose X and Y are monoidal categories. A monoidal functor is defined as a functor F

between two monoidal categories X and Y with two natural tranformations:

m⊗ : F (A)⊗ F (B)→ F (A⊗B)

m> : > → F (>)

which must satisfy the following two coherence conditions:

(m> ⊗ 1) m⊗ F (l⊗) = l⊗

a⊗ (1⊗m⊗) m⊗ = (m⊗ ⊗ 1) m⊗ F (a⊗)

We can also express the above two equations diagrammatically which are as follows:

>⊗ F (A)

l⊗
��

m>⊗1// F (>)⊗ F (A)

m⊗
��

F (A) F (>⊗ A)
F (l⊗)

oo

(F (A)⊗ F (B))⊗ F (C)

m⊗⊗1

��

a⊗ // F (A)⊗ (F (B)⊗ F (C))

1⊗m⊗
��

F (A⊗B)⊗ F (C)

m⊗
��

F (A)⊗ F (B ⊗ C)

m⊗
��

F ((A⊗B)⊗ C)
F (a⊗) // F (A⊗ (B ⊗ C))

For a symmetric monoidal functor, there is another coherence condition which must be

satisfied.

m⊗ F (c⊗) = c⊗ m⊗

F (A)⊗ F (B)

c⊗
��

m⊗ // F (A⊗B)

F (c⊗)
��

F (B)⊗ F (A)
m⊗ // F (B ⊗ A)

Dually, a comonoidal functor, F̄ : X→ X is a functor with two natural transformations
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n⊕ : F̄ (A⊕B)→ F̄ (A)⊕ F̄ (B)

n⊥ : F̄ (⊥)→ ⊥

In this case, the following two coherence conditions must be satisfied.

F̄ (l−1
⊕ ) n⊕ (n⊥ ⊕ 1) = l−1

⊕

n⊕ (n⊕ ⊕ 1) a⊕ = F̄ (a⊕) n⊕ (1⊕ n⊕)

F̄ (A)

l−1
⊕

��

F̄ (l−1
⊕ )

// F̄ (⊥⊕ A)

n⊕
��

⊥⊕ F̄ (A) F̄ (⊥)⊕ F̄ (A)
n⊥⊕1

oo

F̄ ((A⊕B)⊕ C)

F̄ (a⊕)
��

n⊕ // F̄ (A⊕B)⊕ F̄ (C)

n⊕⊕1

��
F̄ (A⊕ (B ⊕ C))

n⊕
��

(F̄ (A)⊕ F̄ (B))⊕ F̄ (C)

a⊕
��

F̄ (A)⊕ F̄ (B ⊕ C)
1⊕n⊕// F̄ (A)⊕ (F̄ (B)⊕ F̄ (C))

Examples:

• A monoidal functor for which m⊗ and m> are isomorphisms is said to be a

strict monoidal or iso-monoidal functor.

• Any functor between categories with coproducts is monoidal when we regard

the tensor as being the coproduct such that for any objects A ∈ X and B ∈

Y, F (A) + F (B)
〈F (σ0)|F (σ1)〉 //F (A+B). Dually any functor between categories

with products is comonoidal.

2.12 Circuit diagrams for monoidal functors

Graphically, one may represent functors using functor boxes. Cockett and Seely introduced

a calculus of “functor boxes” in [14] to analyze the structure of linear functors (discussed in
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the next section) by using circuits. If f is a component that takes an input A and produces

an output B, then we can apply a functor box F on the component f . The input of the

functor box will be F (A) and the output will be F (B). If f has more inputs then we have

to use tensor (⊗) or par (⊕) links before applying functor box. Figure 2.8 shows a simple

functor box and a monoidal functor box. The wire leaves the functor box through a port

which is called principal port and it is denoted by a circle. If we have two functor boxes, then

the top box can be pushed down into the bottom box. Figure 2.9 shows this box-eats-box

rule.

Figure 2.8: Simple functor box and monoidal functor box

For a functor F to be monoidal, we know that there must be two natural transformations

m⊗ and m>. Figure 2.10 shows the circuit diagrams for m⊗ and m>. For m⊗, component

f is replaced by a link (⊗I) which has two inputs A and B and one output A ⊗ B and

for m>, component f is replaced by a link (>I) which has no inputs and one output >.

Similarly for comonoidal functors, the circuit diagrams for n⊕ and n⊥ are shown in Figure

2.11 where links (⊕E) and (⊥E) are used for n⊕ and n⊥ respectively. The principal port is

located at the top of the functor box for comonoidal functors to create a distinction between

commonoidal and monoidal functors.
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Figure 2.9: Box-eats-box rule

Figure 2.10: Circuit diagrams for m⊗ and m>
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Figure 2.11: Circuit diagrams for n⊕ and n⊥

The cohrence conditions for monoidal functors (Section 2.11) can be represented by circuit

diagrams. Here one coherence condition is considered which is a⊗ (1 ⊗m⊗) m⊗ = (m⊗ ⊗

1) m⊗ F (a⊗). The circuit diagrams for the left-side and the right-side of this equation are

shown in Figure 2.12 and Figure 2.13.

In Figure 2.12, the circuit reduction rule for ⊗ is applied. Then, the resulting diagram

is obtained after applying box-eats-box rule. In Figure 2.13, at first box-eats-box rule is

applied to the first two functor boxes, then this rule is applied again. Inside the box, the

circuit reduction rule for ⊗ is applied. Finally, after applying the circuit reduction rule for

⊗, we get the resulting diagram which is the same as the resulting diagram of Figure 2.12.

2.13 Linear functors

Cockett and Seely introduced the notion of linear functors between linearly distributive

categories [14] to express the common linear structures such as exponentials and additives.

In this thesis, linear functors play a very important role because they gives the basic building
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Figure 2.12: Circuit diagrams for a⊗ (1⊗m⊗) m⊗

Figure 2.13: Circuit diagrams for (m⊗ ⊗ 1) m⊗ F (a⊗)
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block for data or protocols in concurrent communication which we shall use to build further

linear functors. Note that, protocols can be built on functors which are not linear.

Suppose X and Y are linearly distributive categories. Then a linear functor is a tuple

(F⊗, F⊕, v
R
⊗, v

L
⊗, v

R
⊕, v

L
⊕) where

• F⊗ : X→ Y is a monoidal functor on ⊗;

• F⊕ : X→ Y is a comonoidal functor on ⊕;

• The four natural transformations are as follows:

vR⊗ : F⊗(A⊕B)→ F⊕(A)⊕ F⊗(B)

vL⊗ : F⊗(A⊕B)→ F⊗(A)⊕ F⊕(B)

vR⊕ : F⊗(A)⊗ F⊕(B)→ F⊕(A⊗B)

vL⊕ : F⊕(A)⊗ F⊗(B)→ F⊕(A⊗B)

These natural transformations are called “linear strengths” satisfying several coherence con-

ditions which are discussed in Appendix B.

Sometimes we shall denote F⊗ by F and F⊕ by F̄ to save space.

Example:

A functor F : 1 → X, from the one-object-one-arrow category 1 to a linearly distributive

categoryX, preserves all the structure of a linear functor. The one-object-one-arrow category

1 is a linearly distributive category where 1⊗ 1 := 1, 1⊕ 1 := 1. A linear functor F : 1→ X

determines a linear Frobenius algebra in X. Setting F⊗(1) := A⊗ and F⊕(1) := A⊕ then the

functor implies the presence of the following maps.

A⊗ ⊗ A⊗ = F⊗(1)⊕ F⊗(1)
m⊗ //F⊗(1⊗ 1) = A⊗ (multiplication)

A⊕ = F⊕(1⊕ 1)
n⊕ //F⊕(1)⊕ F⊕(1) = A⊕ ⊕ A⊕ (comultiplication)
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A⊗ ⊗ A⊕ = F⊗(1)⊕ F⊕(1)
vR
⊕ //F⊕(1⊗ 1) = A⊕ (linear Frobenius maps)

A⊕ ⊗ A⊗ = F⊕(1)⊕ F⊗(1)
vL
⊕ //F⊕(1⊗ 1) = A⊕ (linear Frobenius maps)

A⊗ = F⊗(1⊕ 1)
vR
⊗ //F⊕(1)⊕ F⊗(1) = A⊕ ⊕ A⊗ (linear Frobenius maps)

A⊗ = F⊗(1⊕ 1)
vL
⊗ //F⊗(1)⊕ F⊕(1) = A⊗ ⊕ A⊕ (linear Frobenius maps)

> m> //F⊗ (unit of multiplication)

F⊕
n⊥ //⊥ (counit of comultiplication)

2.14 Circuit diagrams for linear functors

Linear functors consist of monoidal and comonoidal functors. So the linear functor boxes

will have both monoidal and comonoidal components. Figure 2.14 shows the linear functor

boxes where compononent f is inside the functor boxes which has many inputs and many

outputs.

Figure 2.14: Linear functor boxes with monoidal and comonoidal components

In Figure 2.14, at the left-hand of diagram, the functor F is applied to all the input wires

but at the bottom, the functor F is attached only to the middle output wire that leaves

through the principal port which is denoted by a circle. The position of the principal port
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is therefore important. The dual situation is shown in the right-hand of diagram of Figure

2.14 where the F̄ functor is on the rightmost input wire at the top that leaves through the

principal port which is denoted by a circle while at the bottom of the box, F̄ functor is

applied to all the output wires.

The four “linear strengths” can be represented by linear functor boxes which are shown

in Figure 2.15. For vR⊗ and vL⊗, component f is replaced by the link (⊕E) which has one

input A⊕B and two outputs A and B; then F functor is applied at the top of the boxes in

both cases while F is passing through the principal ports at the bottom right and bottom

left of the functor boxes respectively. On the other hand, for vR⊕ and vL⊕, component f is

replaced by the link (⊗I) which has two inputs A and B and one output A ⊗ B; then at

the top of the boxes, functor F̄ is applied to the right and the left input wires respectvely

passing through the principal ports, indicated by circles while F̄ functor is applied at the

bottom of the boxes in both cases.
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Figure 2.15: Functor boxes for linear strengths
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Chapter 3

Linear Actegories and their Two Actions

This chapter describes linear actegories and provides a proof of the first main result of this

thesis which is Theorem 3.3.2. Section 3.1 presents the definition of a linear actegory and

Section 3.2 presents the circuit representation for linear actegories. In Section 3.3, Theorem

3.3.2 is stated and proved: it says the actions defined in a linear actegory have the structure

of a parameterized linear functor. This is used as a basic building block for producing

protocols.

3.1 Linear Actegories

A linear actegory [8] is a linearly distributive category with a monoidal category that acts

on it both covariantly and contravariantly. Suppose A = (A, ∗, I, a∗, l∗, r∗, c∗) is a symmetric

monoidal category. A (symmetric) linear A-actegory consists of the following data.

• A symmetric linearly distributive category X.

• Two functors ◦ : A×X → X and • : Aop ×X → X such that A ◦ is the

parameterized left adjoint of A• . So the adjunction can be written as (n, e) :

A ◦ ` A • where the unit and counit are denoted by nA,X : X → A • (A ◦X)

and eA,X : A ◦ (A •X)→ X.
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• The following natural isomorphisms in X for all A,B ∈ A and X, Y ∈ X:

u◦ : I ◦X → X,

u• : X → I •X,

a∗◦ : (A ∗B) ◦X → A ◦ (B ◦X),

a∗• : A • (B •X)→ (A ∗B) •X,

a◦⊗ : A ◦ (X ⊗ Y )→ (A ◦X)⊗ Y,

a•⊕ : (A •X)⊕ Y → A • (X ⊕ Y ).

• The following natural morphisms in X for all A,B ∈ A and X, Y ∈ X:

d◦⊕ : A ◦ (X ⊕ Y )→ (A ◦X)⊕ Y,

d•⊗ : (A •X)⊗ Y → A • (X ⊗ Y ),

d◦• : A ◦ (B •X)→ B • (A ◦X).

• The following natural transformations (or isomorphisms) from the symmetries

of ∗, ⊗, and ⊕:

a∗
′
◦ : (A ∗B) ◦X → B ◦ (A ◦X),

a∗
′
• : B • (A •X)→ (A ∗B) •X,

a◦⊗′ : A ◦ (X ⊗ Y )→ X ⊗ (A ◦ Y ),

a•⊕′ : X ⊕ (A • Y )→ A • (X ⊕ Y ),

d◦⊕′ : A ◦ (X ⊕ Y )→ X ⊕ (A ◦ Y ),

d•⊗′ : X ⊗ (A • Y )→ A • (X ⊗ Y ).

The above data must satisfy a large number of coherence conditions listed in Appendix A.

Below are the coherence conditions which will be used in Section 3.3 for proving Proposition
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3.3.1 and Theorem 3.3.2 are collected. The rest of the coherence conditions are listed in

Appendix A and are obtained by applying the symmetries.

This data has several symmetries [8]. The main source of symmetry is a basic duality,

obtained by reversing the arrows, swapping ⊗ and ⊕, > and ⊥, ◦ and •. In addition,

symmetries are also obtained by reversing the ∗, the ⊗, and the ⊕. All of these symmetries

are preserved by the coherences of a linear actegory.

Symmetries: The following diagram links symmetry and the associativity of the action:

A ◦ (X ⊗ Y )

A◦c⊗

��

a◦⊗ // (A ◦X)⊗ Y

c⊗

��
A ◦ (Y ⊗X)

a◦⊗′ // Y ⊗ (A ◦X)

a◦⊗ c⊗ = (A ◦ c⊗) a◦⊗′ (3.1)

Unit and associativity: The following diagrams commute for unit and associativity:

(A ∗ I) ◦X

r∗◦X

��

a∗◦ // A ◦ (I ◦X)

A◦u◦xxppppppppppp

A ◦X

a∗◦ A ◦ u◦ = r∗ ◦X (3.2)

A •X

l
−1
∗ •X

��

u• // I • (A •X)

a∗•xxpppppppppp

(I ∗ A) •X

u• a
∗
• = l−1

∗ •X (3.3)

A ◦ (>⊗ Y )

A◦l⊗

��

a◦⊗′ // >⊗ (A ◦ Y )

l⊗wwooooooooooo

A ◦ Y

a◦⊗′ l⊗ = A ◦ l⊗ (3.4)
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Unit and distributivity: The following diagrams link unit and distributivity:

X ⊗ Y

u•

��

u•⊗Y // (I •X)⊗ Y

d•⊗wwppppppppppp

I • (X ⊗ Y )

(u• ⊗ Y ) d•⊗ = u• (3.5)

I ◦ (X ⊗ Y )

u◦

��

a◦⊗ // (I ◦X)⊗ Y

u◦⊗Ywwppppppppppp

X ⊗ Y

a◦⊗ (u◦ ⊗ Y ) = u◦ (3.6)

Associativity: The following diagrams commute for associativity:

A • (B • (C •X))

a∗•

��

A•a∗• // A • ((B ∗ C) •X)

a∗•

��
(A ∗ (B ∗ C)) •X

a
−1
∗ •X

��
(A ∗ B) • (C •X)

a∗• // ((A ∗ B) ∗ C) •X

(A • a∗•) a∗• (a−1
∗ •X) = a∗• a

∗
• (3.7)

(A ∗ B) ◦ (Y ⊗X)

a◦⊗′

��

a∗◦ // A ◦ (B ◦ (Y ⊗X))

A◦a◦⊗′

��
A ◦ (Y ⊗ (B ◦X))

a◦⊗′

��
Y ⊗ ((A ∗ B) ◦X)

Y⊗a∗◦ // Y ⊗ (A ◦ (B ◦X))

a∗◦ (A ◦ a◦⊗′) a◦⊗′ = a◦⊗′ (Y ⊗ a∗◦) (3.8)
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Distributivity and associativity: The following diagrams commute for distributivity and
associativity:

Y ⊗ (A • (B •X))

Y⊗a∗•

��

d•⊗′ // A • (Y ⊗ (B •X))

A•d•⊗′

��
A • (B • (Y ⊗X))

a∗•

��
Y ⊗ ((A ∗ B) •X)

d•⊗′ // (A ∗ B) • (Y ⊗X)

d•⊗′ (A • d•⊗′) a∗• = (Y ⊗ a∗•) d•⊗′ (3.9)

((A •X)⊗ Y )⊗ Z

a⊗

��

d•⊗⊗Z // (A • (X ⊗ Y ))⊗ Z

d•⊗

��
A • ((X ⊗ Y )⊗ Z)

A•a⊗

��
(A •X)⊗ (Y ⊗ Z)

d•⊗ // A • (X ⊗ (Y ⊗ Z))

Z ⊗ (X ⊗ (A • Y ))

a
−1
⊗

��

Z⊗d•⊗′ // Z ⊗ (A • (X ⊗ Y ))

d•⊗′

��
A • (Z ⊗ (X ⊗ Y ))

A•a−1
⊗

��
(Z ⊗X)⊗ (A • Y )

d•⊗′ // A • ((Z ⊗X)⊗ Y )

(X ⊗ (A • Y ))⊗ Z

a⊗

��

d•⊗′⊗Z // (A • (X ⊗ Y ))⊗ Z

d•⊗

��
X ⊗ ((A • Y )⊗ Z)

X⊗d•⊗

��

A • ((X ⊗ Y )⊗ Z)

A•a⊗

��
X ⊗ (A • (Y ⊗ Z))

d•⊗′ // A • (X ⊗ (Y ⊗ Z))

(d•⊗ ⊗ Z) d•⊗ (A • a⊗) = a⊗ d
•
⊗ (3.10)

(Z ⊗ d•⊗′) d•⊗′ (A • a−1
⊗ ) = a−1

⊗ d•⊗′ (3.11)

(d•⊗′ ⊗ Z) d•⊗ (A • a⊗) = a⊗ (X ⊗ d•⊗) d•⊗′ (3.12)
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(A • (X ⊗ Y ))⊗ (B • Z)

d•⊗′

��

d•⊗ // A • ((X ⊗ Y )⊗ (B • Z))

A•d•⊗′

��
B • ((A • (X ⊗ Y ))⊗ Z)

B•d•⊗

��

A • (B • ((X ⊗ Y )⊗ Z))

a∗•

��
B • (A • ((X ⊗ Y )⊗ Z))

a∗
′
• // (A ∗ B) • ((X ⊗ Y )⊗ Z)

d•⊗ (A • d•⊗′) a∗• = d•⊗′ (B • d•⊗) a∗
′

• (3.13)

Unit and counit: The following diagrams link unit and counit:

I ◦X

u◦

��

I◦u• // I ◦ (I •X)

eI,X

yyssssssssss

X

(I ◦ u•) eI,X = u◦ (3.14)

A ◦ ((A •X)⊗ Y )

a◦⊗

��

A◦d•⊗ // A ◦ (A • (X ⊗ Y ))

eA,X⊗Y

��
(A ◦ (A •X))⊗ Y

eA,X⊗Y // X ⊗ Y

(A ◦ d•⊗) eA,X⊗Y = a◦⊗ (eA,X ⊗ Y ) (3.15)

In linear actegories, originally the ∗ is just a symmetric tensor (⊗) but here it is a

cartesian product (×).

3.2 Circuit diagrams for linear actegories

In this section we describe the circuit rules for linear actegories. These circuit rules are

discussed in [8]. Figures 3.1 - 3.6 show the circuit introduction, elimination, reduction and

expansion rules for ◦, •, and ∗. In Figures 3.7, 3.8 and 3.9, copy rule, box-elimination rule

and box-eats-box rule are shown. Copy rule takes one input and produces two copies of that
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input. Box-eats-box rule combines two functor boxes where we pushed the top box inside

the bottom box and box-elimination rule eliminates functor box by connecting wires. Figure

3.10 shows the circuit diagrams for a∗◦, a
•
⊕, a∗•, and a◦⊗ and Figure 3.11 shows the circuit

representation of d◦⊕, d•⊗, and d◦•.

Figure 3.1: Circuit introduction and elimination rules for ◦

Figure 3.2: Circuit elimination rule for •

We can prove equalites in linear actegories using the circuit rules of linear actegories and

linearly distributive categories (discussed in Section 2.10). Consider the coherence condition

(A ◦ d•⊗) d◦• (B • a◦⊗′) = a◦⊗′ d
•
⊗. In Figure 3.12 and Figure 3.13 the left-hand side and the

right-hand side of this coherence condition are shown. In Figure 3.12 we apply the circuit

Figure 3.3: Circuit introduction and elimination rules for ∗
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Figure 3.4: Circuit reduction and expansion rule for ◦

Figure 3.5: Circuit expansion rule for •
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Figure 3.6: Circuit reduction and expansion rules for ∗

Figure 3.7: Copy rule

Figure 3.8: Box-elimination rule
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Figure 3.9: Box-eats-box rule

Figure 3.10: Circuit diagrams of a∗◦, a
•
⊕, a∗• and a◦⊗
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Figure 3.11: Circuit diagrams of d◦⊕, d•⊗, and d◦•

reduction rule for ⊗, and then we get the resulting diagram. In Figure 3.13 the circuit

reduction rule for ◦ is applied first, and then the box-eats-box rule. After that, inside the

box, we apply the box-elimination rule, and then the circuit reduction rule for ⊗. Finally,

we get the resulting diagram which is equivalent to the resulting diagram of Figure 3.12.

3.3 Actions and linear functors

In this chapter, our main goal is to show that the two actions of linear actegories provide a

parameterized linear functor. To prove this we first have to show that A • is a monoidal

functor and dually, A ◦ is a comonoidal functor. Then we have to show that there exist

linear strengths between the two functors, A• and A◦ , satisfying the coherence conditions

which are discussed in the definition of linear functor (Section 2.13).

Proposition 3.3.1. A • is a monoidal functor (dually, A ◦ is a comonoidal functor).
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Figure 3.12: Circuit diagram for (A ◦ d•⊗) d◦• (B • a◦⊗′)

Figure 3.13: Circuit diagram for a◦⊗′ d
•
⊗
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Proof. For a functor to be monoidal, there are two natural transformations:

m⊗ : (A •X)⊗ (A • Y )→ A • (X ⊗ Y )

m> : > → (A • >)

These natural tranformations must satisfy two equations.

l⊗ = (m> ⊗ 1) m⊗ (A • l⊗)

a⊗ (1⊗m⊗) m⊗ = (m⊗ ⊗ 1) m⊗ (A • a⊗)

To prove these two equations hold, we have to define m⊗ and m>. Figure 3.14 and Figure

3.15 show the defining diagrams of m⊗ and m> respectively.

(A •X)⊗ (A • Y )

d•⊗
��

m⊗ // A • (X ⊗ Y )

A • (X ⊗ (A • Y ))
A•d•⊗′ // A • (A • (X ⊗ Y ))

a∗• // (A ∗ A) • (X ⊗ Y )

∆•1

OO

Figure 3.14: Defining diagram of m⊗

>
u•

��

m> // A • >

1 • >
!•>

::ttttttttt

Figure 3.15: Defining diagram of m>

Validity of the first equation, l⊗ = (m>⊗1)m⊗ (A•l⊗), is shown in Figure 3.16 where each

of the numbered cells commute for the following reasons: (1) uses equation (3.5), (2) uses

the naturality of d•⊗′ , (3) and (4) use equation (3.13), (5) commutes because of the naturality

of d•⊗, (6) uses equation (3.3), (7) commutes by the naturality of a∗
′
• , (8) commutes by the

combination of ∆ with (! ∗ 1), (9) commutes because of bullet(•) functor.
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Validity of the second equation, a⊗ (1 ⊗ m⊗) m⊗ = (m⊗ ⊗ 1) m⊗ (A • a⊗), is shown

in Figure 3.17 where (1) commutes because of equation (3.10), (2), (3), (4), (7) and (14)

commute by the naturality of d•⊗, (8) commutes by equation (3.12), (5), (9) and (15) commute

by the naturality of d•⊗′ , (6), (13) and (16) commute because of the naturality of a∗•, (11) and

(12) use bullet(•) functor, (17) uses associativity of ∆. Validity of diagram (10) is shown in

Figure 3.18. In Figure 3.18, (1) uses the naturality of d•⊗′ , (2) commutes by equation (3.11),

(3), (5) and (8) use the naturality of a∗•, (4) commutes by equation (3.9), (6) commutes by

equation (3.7), (7) and (9) use bullet(•) functor.

>⊗ (A • S)

(10)

(11)

(1) (3)(2)

(5)(4)d•⊗′

��

l⊗

��

u•

��

u•⊗1 // (1 • >)⊗ (A • S)

d•⊗
ttttttttttt

yyttttttttttt
d•⊗′

��

!•1⊗1 // (A • >)⊗ (A • S)

d•⊗′

��

d•⊗ // A • (>⊗ (A • S))

A•d•⊗′

��
1 • (>⊗ (A • S))

1•d•⊗′

��

A • ((1 • >)⊗ S)

1•d•⊗

��

1•(!•1⊗1) // A • ((A • >)⊗ S)

1•d•⊗

��

A • (A • (>⊗ S))

a∗•

��
1 • (A • (>⊗ S))

(6) a∗•
JJJJJJJJJJJJ

%%JJJJJJJJJJJJ

A • (1 • (>⊗ S))

(7) (8)a∗
′
•

��

1•(!•(1⊗1)) // A • (A • (>⊗ S))
a∗
′
• // (A ∗ A) • (>⊗ S)

∆•1

��
A • (>⊗ S)

(9)A•l⊗

��

u•

OO

l
−1
∗ •1

// (1 ∗ A) • (>⊗ S)

(!∗1)•(1⊗1)iiiiiiiiiiiiiiiiiiii

44iiiiiiiiiiiiiiiiiiii

l∗•1
// A • (>⊗ S)

A•l⊗

rrfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

A • S

Figure 3.16: Validity of l⊗ = (m> ⊗ 1) m⊗ (A • l⊗)
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A • (X ⊗ (A • (Y ⊗ (A • Z))))

(1)

1•d•⊗′ //

1•(1⊗(1•d•⊗′ ))

��

A • (A • (X ⊗ (Y ⊗ (A • Z))))

(2)

1•(1•a−⊗1)
//

1•(1•(1⊗d•⊗′ ))

��

A • (A • ((X ⊗ Y )⊗ (A • Z)))

(3)1•(1•d•⊗′ )

��

a∗• // (A ∗ A) • ((X ⊗ Y )⊗ (A • Z))

1•d•⊗′

��

A • (X ⊗ (A • (A • (Y ⊗ Z))))

(4)1•(1⊗a∗•)

��

1•d•⊗′ // A • (A • (X ⊗ (A • (Y ⊗ Z))))

1•(1•d•⊗′ )

��
A • (A • (A • (X ⊗ (Y ⊗ Z))))

(5)1•a∗•

��

1•(1•(1•a−⊗1))
// A • (A • (A • (((X ⊗ Y )⊗ Z))))

(6)1•a∗•

��

a∗• // I

a∗•

��
A • (X ⊗ ((A ∗ A) • (Y ⊗ Z)))

1•d•⊗′ // A • ((A ∗ A) •X ⊗ (Y ⊗ Z))

(7)

1•(1•a−⊗1)
//

1
>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>

A • ((A ∗ A) • ((X ⊗ Y )⊗ Z))

(8)1•(1•a⊗)

��

a∗• // (A ∗ (A ∗ A)) • ((X ⊗ Y )⊗ Z)

(9)

a
−
∗ 1•1 //

1•a⊗
=================

��=================

N

1•a⊗

��
((A ∗ A) ∗ A) • (X ⊗ (Y ⊗ Z))

a∗•1

��
A • ((A ∗ A) •X ⊗ (Y ⊗ Z))

a∗• // (A ∗ (A ∗ A)) • (X ⊗ (Y ⊗ Z))

Figure 3.18: Validity of diagram (10) from Figure 3.17
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In this way, we have shown A • is a monoidal functor. Dually, A ◦ is a comonoidal

functor.

Theorem 3.3.2. A • and A ◦ have the structure of a parameterized linear functor.

Proof. We already showed in proposition 3.3.1 that A • is a monoidal functor (and A ◦

is a comonoidal functor). It remains to show that the linear strengths between these two

functors fulfill the coherence conditions.

For a linear functor, the four natural transformations we seek, called “linear strengths”,

are:

vR⊗ : A • (X ⊕ Y )→ (A ◦X)⊕ (A • Y )

vL⊗ : A • (X ⊕ Y )→ (A •X)⊕ (A ◦ Y )

vR⊕ : (A •X)⊗ (A ◦ Y )→ A ◦ (X ⊗ Y )

vL⊕ : (A ◦X)⊗ (A • Y )→ A ◦ (X ⊗ Y )

The defining diagrams for vR⊕ and vR⊗ are shown in Figure 3.19 and Figure 3.20. Similarly,

we can define the others two linear strengths, vL⊕ and vL⊗ by using symmetry.

(A •X)⊗ (A ◦ Y )

a◦
−1

⊗′

��

vR
⊕ // A ◦ (X ⊗ Y )

A ◦ ((A •X)⊗ Y )

A◦d•⊗

��
A ◦ (A • (X ⊗ Y )) ∆◦1// (A ∗ A) ◦ (A • (X ⊗ Y ))

a∗◦ // A ◦ (A ◦ (A • (X ⊗ Y )))

A◦e

OO

Figure 3.19: Defining diagram for vR⊕
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A • (X ⊕ Y )

n

��

vR
⊗ // (A ◦X)⊕ (A • Y )

A • (A ◦ (A • (X ⊕ Y )))

A•d◦•

��
A • (A • (A ◦ (X ⊕ Y )))

a∗•

��
(A ∗ A) • (A ◦ (X ⊕ Y ))∆•1 // A • (A ◦ (X ⊕ Y ))

A•d◦⊕ // A • ((A ◦X)⊕ Y )

a•
−1

⊕′

OO

Figure 3.20: Defining diagram for vR⊗

From the definition of linear functor, we know that linear strengths satisfy several coher-

ence conditions. In order to prove this theorem, we will check three coherence conditions.

The first one is l−1
⊗ (m> ⊗ 1) vR⊕ = A ◦ l−1

⊗ which creates a link between l−1
⊗ , m> and vR⊕.

All the other forms of this coherence condition are obtained by symmetries. The second

coherence condition is (m⊗ ⊗ 1) vR⊕ (A ◦ a⊗) = a⊗ (1⊗ vR⊕) vR⊕ which creates a link between

m⊗, vR⊕ and a⊗: the other forms of this coherence condition are generated by symmetries.

The third coherence condition is a⊗ (1⊗ vL⊕) vR⊕ = (vR⊕ ⊗ 1) vL⊕ (A ◦ a⊗) which establishes a

link between a⊗, vL⊕ and vR⊕: the symmetries generate all the other forms of this coherence

condition.
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Now we will prove that the first coherence condition, l−1
⊗ (m> ⊗ 1) vR⊕ = A ◦ l−1

⊗ holds.

>⊗ (A ◦ S)
m>⊗1// (A • >)⊗ (A ◦ S)

vR
⊕ // A ◦ (>⊗ S)

A ◦ S

l−1
⊗

OO

A◦l−1
⊗jjjjjjjjjjjjjjjjjjj

55jjjjjjjjjjjjjjjjj

To verify l−1
⊗ (m> ⊗ 1) vR⊕ = A ◦ l−1

⊗ , we have to use the defining diagram of m> and

vR⊕. Figure 3.21 shows the validity of this coherence condition. In this figure, (1), (2) and

(8) commute by tensor (⊗) functor, (4) and (12) commute because of the naturality of a◦
−1

⊗′ ,

(5) uses equation (3.8), (6) commutes by the naturality of a∗◦, (7) uses the naturality of

a◦⊗, (9) commutes because of the dinaturality of e (See Section 2.6), (10) commutes by the

functoriality of circle (◦), (13) uses equation (3.4) and (14) uses equation (3.14). Validity of

(3) and (11) are shown in Figure 3.22 and Figure 3.23 respectively.

In Figure 3.22, (1) and (4) commute by the tensor (⊗) functor, (2), (7) and (8) commute

by the naturality of a◦
−1

⊗′ , (3) commutes because of circle (◦) functor, (5) uses equation (3.8),

(6) commutes by the naturality of a∗◦, (9) commutes because of the naturality of a◦⊗ and (10)

commutes by equation (3.15).

In Figure 3.23, (1) commutes by the combination of ∆ with (1∗!), (2) uses equation (3.2),

(3) uses equation (3.6), (4) commutes by the naturality of a∗◦, (5) commutes because of the

naturality of a◦⊗. So we proved the coherence condition, l−1
⊗ (m> ⊗ 1) vR⊕ = A ◦ l−1

⊗ .
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>⊗ (A ◦ S)

(13) (12)

(1) (2)

a◦
−1
⊗′

��

u•⊗1 //

u•⊗(∆◦1)
GGGGGGGGG

##GGGGGGGGG1⊗(∆◦1)

��

(1 • >)⊗ (A ◦ S)
(!•1)⊗1 //

1⊗(∆◦1)

��

(A • >)⊗ (A ◦ S)

a◦
−1
⊗′ // A ◦ ((A • >)⊗ S)

A◦d•⊗

��
>⊗ ((A ∗ A) ◦ S)

(4)

u•⊗1//

a◦
−1
⊗′

��

(1 • >)⊗ ((A ∗ A) ◦ S)

(5)a◦
−1
⊗′

��

1⊗a∗◦// (1 • >)⊗ (A ◦ (A ◦ S)) (3)

a◦
−1
⊗′

��

A ◦ (A • (>⊗ S))

∆◦1

��
(A ∗ A) ◦ (>⊗ S)

(11)

(6)

1◦(u•⊗1)//

a∗◦

��

(A ∗ A) ◦ ((1 • >)⊗ S)

a∗◦

��

A ◦ ((1 • >)⊗ (A ◦ S))

1◦a◦
−1
⊗′

yyyyyyyy

||yyyyyyyy

(A ∗ A) ◦ (A • (>⊗ S))

a∗◦

��
A ◦ (A ◦ (>⊗ S))

(7)1◦a◦⊗

��

1◦(1◦(u•⊗1))// A ◦ (A ◦ ((1 • >)⊗ S))

1◦a◦⊗

��

A ◦ (A ◦ (A • (>⊗ S)))

A◦e

��

A ◦ ((A ◦ >)⊗ S)

(8)

1◦((1◦u•)⊗1)//

1◦((!◦1)⊗1)

��

A ◦ ((A ◦ (1 • >))⊗ S)

(9)1◦((!◦1)⊗1)

��

1◦((1◦(!•1))⊗1) // A ◦ ((A ◦ (A • >))⊗ S)

1◦(e⊗1)
FFFFFFFFF

""FFFFFFFFF

A ◦ (>⊗ S)

(10)

∆◦1

FF

A◦l⊗

��

1◦(u−1
◦ ⊗1)// A ◦ ((1 ◦ >)⊗ S)

1◦(u◦⊗1)

44
1◦((1◦u•)⊗1)// A ◦ ((1 ◦ (1 • >))⊗ S)

1◦(e⊗1) // A ◦ (>⊗ S)

A ◦ S

(14)

l
−1
⊗

AA

A◦l−1
⊗

66

Figure 3.21: Validity of l−1
⊗ (m> ⊗ 1) vR⊕ = A ◦ l−1

⊗
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(1 • >)⊗ (A ◦ S)
(!•1)⊗1 //

(1)1⊗(∆◦1)

��

(A • >)⊗ (A ◦ S)

1⊗(∆◦1)

��

(2)

a◦
−1
⊗′ // A ◦ ((A • >)⊗ S)

(3)

A◦d•⊗

��

∆◦1v
vvvvvvvvvvv

{{vvvvvvvvvvvv

(1 • >)⊗ ((A ∗ A) ◦ S)

(4)

(!•1)⊗1 //

1⊗a∗◦

��

(A • >)⊗ ((A ∗ A) ◦ S)

(5)

a◦
−1
⊗′ //

1⊗a∗◦

��

(A ∗ A) ◦ ((A • >)⊗ S)

(A∗A)◦d•⊗

HHHHHHHHHHH

##HHHHHHHHHHH

a∗◦

��

A ◦ (A • (>⊗ S))

∆◦1

��
(1 • >)⊗ (A ◦ (A ◦ S))

(7)

(!•1)⊗1 //

a◦
−1
⊗′

��

(A • >)⊗ (A ◦ (A ◦ S))

a◦
−1
⊗′

��

(A ∗ A) ◦ (A • (>⊗ S))

(6)

(10)

a∗◦

��
A ◦ ((1 • >)⊗ (A ◦ S))

(8)1◦a◦
−1
⊗′

��

1◦((!•1)⊗1) //

��

A ◦ ((A • >)⊗ (A ◦ S))

1◦a◦
−1
⊗′ // A ◦ (A ◦ ((A • >)⊗ S))

1◦(1◦d•⊗)
//

1◦a◦⊗

��

A ◦ (A ◦ (A • (>⊗ S)))

A◦e

��

A ◦ (A ◦ ((1 • >)⊗ S))

1◦a◦⊗

��

1◦(1◦((!•1)⊗1))

66

A ◦ ((A ◦ (1 • >))⊗ S)

(9)

1◦((1◦(!•1))⊗1)
// A ◦ ((A ◦ (A • >))⊗ S)

1◦(e⊗1) // A ◦ (>⊗ S)

Figure 3.22: Validity of diagram (3) from Figure 3.21
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A ◦ (>⊗ S)
∆◦1 //

(1)

(2)

r
−1
∗ ◦1

KKKKKKKKKKKK

%%KKKKKKKKKKKK

1◦u−1
◦

8888888888888888888

��8888888888888888888

1◦(u−1
◦ ⊗1)

��

(A ∗ A) ◦ (>⊗ S)

a∗◦

��

(1∗!)◦1
llllllllllllllllll

uullllllllllllllllll

(A ∗ 1) ◦ (>⊗ S)

a∗◦

��

(4)

A ◦ (1 ◦ (>⊗ S))

(3)

(5)1◦a◦⊗
ssssssssssss

yyssssssssssss

A ◦ (A ◦ (>⊗ S))
1◦(!◦1)

oo

1◦a◦⊗

��
A ◦ ((1 ◦ >)⊗ S) A ◦ ((A ◦ >)⊗ S)

1◦((!◦1)⊗1)
oo

Figure 3.23: Validity of diagram (11) from Figure 3.21

Now we have to show that the second coherence condition, (m⊗ ⊗ 1) vR⊕ (A ◦ a⊗) =

a⊗ (1⊗ vR⊕) vR⊕ holds.

((A •X)⊗ (A • Y ))⊗ (A ◦ Z)

m⊗⊗1

��

a⊗ // (A •X)⊗ ((A • Y )⊗ (A ◦ Z))

1⊗vR
⊕

��
(A • (X ⊗ Y ))⊗ (A ◦ Z)

vR
⊕

��

(A •X)⊗ (A ◦ (Y ⊗ Z))

vR
⊕

��
A ◦ ((X ⊗ Y )⊗ Z)

A◦a⊗ // A ◦ (X ⊗ (Y ⊗ Z))

If we use the defining diagram of m⊗ and vR⊕ then the above coherence requirement

becomes the commutative diagram of Figure 3.24. But this diagram is unmanageable to

prove using categorical commuting diagrams. In order to make the proof manageable we

shall resort to circuit diagram proofs.
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((A •X)⊗ (A • Y ))⊗ (A ◦ Z)

d•⊗⊗1
//

a⊗

��

(A • (X ⊗ (A • Y )))⊗ (A ◦ Z)

(A•d•⊗′ )⊗1
// (A • (A • (X ⊗ Y )))⊗ (A ◦ Z)

a∗•⊗1// ((A ∗ A) • (X ⊗ Y ))⊗ (A ◦ Z)
(∆•1)⊗1 // (A • (X ⊗ Y ))⊗ (A ◦ Z)

a◦
−1
⊗′

��
(A •X)⊗ ((A • Y )⊗ (A ◦ Z))

1⊗a◦
−1
⊗′

��

A ◦ ((A • (X ⊗ Y ))⊗ Z)

A◦d•⊗

��
(A •X)⊗ (A ◦ ((A • Y )⊗ Z))

1⊗(A◦d•⊗)

��

A ◦ (A • ((X ⊗ Y )⊗ Z))

∆◦1

��
(A •X)⊗ (A ◦ (A • (Y ⊗ Z)))

1⊗(∆◦1)

��

(A ∗ A) ◦ (A • ((X ⊗ Y )⊗ Z))

a∗◦

��
(A •X)⊗ ((A ∗ A) ◦ (A • (Y ⊗ Z)))

1⊗a∗◦

��

A ◦ (A ◦ (A • ((X ⊗ Y )⊗ Z)))

A◦e

��
(A •X)⊗ (A ◦ (A ◦ (A • (Y ⊗ Z))))

1⊗(A◦e)

��

A ◦ ((X ⊗ Y )⊗ Z)

A◦a⊗

��
(A •X)⊗ (A ◦ (Y ⊗ Z))

a◦
−1
⊗′ // A ◦ ((A •X)⊗ (Y ⊗ Z))

A◦d•⊗ // A ◦ (A • (X ⊗ (Y ⊗ Z)))
∆◦1// (A ∗ A) ◦ (A • (X ⊗ (Y ⊗ Z)))

a∗◦// A ◦ (A ◦ (A • (X ⊗ (Y ⊗ Z))))
A◦e // A ◦ (X ⊗ (Y ⊗ Z))

Figure 3.24: Validity of (m⊗ ⊗ 1) vR⊕ (A ◦ a⊗) = a⊗ (1⊗ vR⊕) vR⊕
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Figure 3.25: Circuit Diagram of m⊗ for •

To prove the coherence condition, (m⊗ ⊗ 1) vR⊕ (A ◦ a⊗) = a⊗ (1 ⊗ vR⊕) vR⊕ using circuit

diagrams, first we need circuit diagrams for m⊗ and vR⊕: these are shown in Figure 3.25 and

Figure 3.26 respectively.

In Figure 3.25, the input for m⊗ is (A • X) ⊗ (A • Y ) and the output is A • (X ⊗ Y ).

We first apply box-eats-box rule for the first two functor boxes and also for the last two

functor boxes. Then we apply box-elimination rule inside of these. After that, we use circuit

reduction rule for ∗ and box-eats-box rule. Finally, after applying box-elimination rule, we

get the resulting diagram.

In Figure 3.26, the input for vR⊕ is (A •X)⊗ (A ◦ Y ) and the output is A ◦ (X ⊗ Y ). At

the first step, we apply circuit reduction rule for ◦, then we apply circuit reduction rules for

⊗ and ◦. Finally, we apply box-elimination rule.

Now, we can draw the circuit diagram for (m⊗⊗1) vR⊕ (A◦a⊗) = a⊗ (1⊗ vR⊕) vR⊕. Figure

3.27 shows the circuit diagram for (m⊗⊗1) vR⊕ (A◦a⊗) (left side of the coherence condition).

Here we use the circuit diagram for m⊗ and vR⊕. First we apply the circuit reduction rules
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Figure 3.26: Circuit Diagram for vR⊕

for ⊗ and ◦, then the box-elimination rule. Finally, we get the resulting diagram by the

reassociation of ∆ and the circuit reduction rule for ⊗.

Figure 3.28 shows the circuit diagram for a⊗ (1 ⊗ vR⊕) vR⊕ (right side of the coherence

condition). Here we use the circuit diagram for vR⊕. We apply the circuit reduction rule for

⊗. Then by applying the circuit reduction rule for ⊗ and ◦, we get the resulting digram which

is the same as Figure 3.27. So the coherence condition (m⊗⊗1) vR⊕ (A◦a⊗) = a⊗ (1⊗vR⊕) vR⊕

holds.
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Figure 3.27: Circuit Diagram for [(m⊗ ⊗ 1) vR⊕ (A ◦ a⊗)]

Figure 3.28: Circuit Diagram for [a⊗ (1⊗ vR⊕) vR⊕]
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Finally, we will check the third coherence condition, a⊗ (1⊗vL⊕) vR⊕ = (vR⊕⊗1) vL⊕ (A◦a⊗).

((A •X)⊗ (A ◦ Y ))⊗ (A • Z)

a⊗
��

vR
⊕⊗1

// (A ◦ (X ⊗ Y ))⊗ (A • Z)

vL
⊕

��
(A •X)⊗ ((A ◦ Y )⊗ (A • Z))

1⊗vL
⊕

��

A ◦ ((X ⊗ Y )⊗ Z)

A◦a⊗
��

(A •X)⊗ (A ◦ (Y ⊗ Z))
vR
⊕ // A ◦ (X ⊗ (Y ⊗ Z))

We shall verify this coherence condition by using circuit diagrams. In this case, we need

the circuit diagram for vR⊕ that we discussed in Figure 3.26. We also need the circuit diagram

for vL⊕ which is shown in Figure 3.29. In this figure, we apply circuit reduction rule for ◦

first, then we apply circuit reduction rules for ⊗ and ◦. Finally, we apply box-elimination

rule and get the resulting diagram for vL⊕. Here, the input is (A ◦ X) ⊗ (A • Y ) and the

output is A ◦ (X ⊗ Y ).

Figure 3.29: Circuit Diagram for vL⊕
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Figure 3.30: Circuit Diagram for [a⊗ (1⊗ vL⊕) vR⊕]

To verify the coherence condition, a⊗ (1⊗vL⊕) vR⊕ = (vR⊕⊗1) vL⊕ (A◦a⊗), the circuit diagram

for a⊗ (1⊗ vL⊕) vR⊕ is shown in Figure 3.30 and the circuit diagram for (vR⊕ ⊗ 1) vL⊕ (A ◦ a⊗)

is shown in Figure 3.31.

In Figure 3.30, we use the circuit diagrams for vL⊕ and vR⊕. We apply the circuit reduction

rule for ⊗ first, then after applying the circuit reduction rules for ⊗ and ◦, we get the

resulting diagram.

In Figure 3.31, we also use the circuit diagrams for vL⊕ and vR⊕. Here we first apply the

circuit reduction rules for ⊗ and ◦. Then we apply the circuit reduction rules for ◦ and ⊗.

Finally, we apply the circuit reduction rule for ⊗ and we get the resulting diagram which is

the same as the resulting diagram of Figure 3.30.
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Figure 3.31: Circuit Diagram for [(vR⊕ ⊗ 1) vL⊕ (A ◦ a⊗)]

So, the coherence condition, a⊗ (1⊗ vL⊕) vR⊕ = (vR⊕ ⊗ 1) vL⊕ (A ◦ a⊗) holds.

Thus, every linear A-actegory gives rise to a family of linear functors, A ◦ and A • ,

A ∈ A, where A • is a monoidal functor, A ◦ is a comonoidal functor and the linear

strengths exist between these two functors which satisfy the coherence conditions.
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Chapter 4

Fixed Points of Linear Functors

In this chapter, the fixed point of a linear functor is defined. This provides a very basic source

of communication protocols for the concurrent world which have nice structural properties.

Protocols, in general, are produced by considering inductive and coinductive data in linear

actegories. As a linear functor is a pair of functors, the fixed point of a linear functor is also

expected to be a pair of functors: the pair is supplied by the inductive datatype built on the

comonoidal functor and the coinductive datatype on the monoidal functor. This pair then

itself forms a linear functor pair, which is the second main result of this thesis, Theorem

4.5.1. It shows that the fixed point of a linear functor is itself a linear functor.

The chapter starts by describing the initial and final algebras [19] which correspond to

inductive and coinductive datatypes [10], [11], [23] respectively and the more sophisticated

circular definitions for datatypes [13]. We examine some properties of these datatypes in

Section 4.1-4.3.

4.1 Algebra definition of inductive and coinductive datatype

Given an endo-functor F : X→ X, an F -algebra consists of an object A ∈ X together with

a morphism a : F (A)→ A. It is called initial if for any F -algebra b : F (B)→ B, there is a

unique morphism f : A→ B such that the following diagram commutes.

F (A)

F (f)

��

a // A

f

��
F (B)

b
// B

Dually, a F -coalgebra, c : C → F (C) is called final if for every coalgebra d : D → F (D),
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there is a unique morphism g : C → D such that the following diagram commutes.

C

g

��

c // F (C)

F (g)

��
D

d
// F (D)

Initial algebras and final coalgebras [19] are equivalently known as inductive and coin-

ductive datatypes in “set-like” and sequential settings as they can be constructed inductively

and coinductively respectively. An inductive datatype for an endo-functor F : X→ X is an

object µx.F (x) with a map cons : F (µx.F (x))→ µx.F (x) such that given any object A ∈ X

and a map f : F (A) → A, there exists a unique fold map such that the following diagram

commutes.

F (µx.F (x))

F (fold(f))

���
�
�

cons // µx.F (x)

fold(f)

���
�
�

F (A)
f

// A

Dually, a coinductive datatype for F is an object νx.F (x) with a map dest : νx.F (x)→

F (νx.F (x)) such that given any object A ∈ X and a map f : A → F (A), there exists a

unique unfold map such that the following diagram commutes.

A

unfold(f)

���
�
�

f // F (A)

F (unfold(f))

���
�
�

νx.F (x) dest // F (νx.F (x))

Both the inductive and the coinductive datatypes of an endo-functor F are fixed points

of F in the following sense.

Lemma 2. (See [19]) If F : X→ X is a functor for which µx.F (x) exists then cons :

F (µx.F (x)) → µx.F (x) is an isomorphism, i.e., F (µx.F (x)) ∼= µx.F (x) and (dually) if

νx.F (x) exists then dest : νx.F (x) → F (νx.F (x)) is an isomorphism, i.e., νx.F (x) ∼=

F (νx.F (x)).
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Proof. In order to show that cons is an isomorphism, we have to produce an inverse function.

It is the unique map h in the following diagram:

F (µx.F (x))

F (h)

��

cons // µx.F (x)

h
��

F (F (µx.F (x)))
F (cons) //

F (cons)
��

F (µx.F (x))

cons

��
F (µx.F (x)) cons

// µx.F (x)

In this diagram, by the uniqueness property of inductive datatype, we have h cons =

1µx.F (x). It then remains to show cons h = 1F (µx.F (x)). But we have cons h = F (h) F (cons) =

F (h cons) = F (1µx.F (x)) = 1F (µx.F (x)) where we again use the fact that h cons = 1µx.F (x).

We could prove νx.F (x) ∼= F (νx.F (x)) dually.

When F has an inductive datatype, we call µx.F (x) the least fixed point of F . On the

other hand, if F has a coinductive datatype then νx.F (x) is called the greatest fixed point

of F .

Parameterized functors give rise to parameterized datatypes [23]. Consider a parameter-

ized functor F : Y × X → X. By fixing the first argument of F , we get FA : X → X for

each object A ∈ Y. So the fixed point of FA is a parametric fixed point of F at A. This is

µx.F (A, x), the least fixed point of FA, which satisfies the following universal diagram for

any other F -algebra f : F (A,X)→ X:.

F (A, µx.F (A, x))

F (1,fold(f))
���
�
�

cons // µx.F (A, x)

fold(f)

���
�
�

F (A,X)
f

// X

Setting
←−
F A = µx.F (A, x), we next show that this parameterization is functorial (following

[13]), i.e., identities and composition are preserved. In order to prove this, we shall use
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the uniqueness property: given two maps m,n : µx.F (A, x) → Z if we want to show that

m = n it suffices to show that for a fixed k : F (A,Z) → Z, m = fold(k) and n = fold(k).

If cons m = F (1,m) k, then by uniqueness of fold(k) we have m = fold(k). Similarly, if

cons n = F (1, n) k, then by uniqueness of fold(k) we have n = fold(k). This means, m = n.

Lemma 3. If F : Y × X → X is a functor such that for each object A ∈ Y, there exists

←−
F A ∈ X, the least fixed point of FA, then A 7→

←−
F A : Y → X forms a functor.

Proof. Given a map f : A → B, one can define f : A → B 7→
←−
F (f) :

←−
F A →

←−
F B such that

←−
F (f) is the unique fold map determined by the following diagram:

F (A,
←−
F A)

F (1,
←−
F (f))

���
�
�

cons //←−F A

←−
F (f)

���
�
�

F (A,
←−
F B)

F (f,1)// F (B,
←−
F B)

cons //←−F B

The above diagram is the defining diagram of
←−
F . First we check that identities are

preserved: if f = 1A, then f : A→ A 7→
←−
F (f) :

←−
F A →

←−
F A such that the following diagram

commutes:

F (A,
←−
F A)

F (1,
←−
F (f)

��

cons //←−F A

←−
F (f)

��

F (A,
←−
F A)

cons //←−F A

From the above diagram, we have F (1,
←−
F (f)) cons = cons

←−
F (f). By replacing

←−
F (f)

with the identity, it follows that
←−
F (1A) = 1←−

F (A)
.

It remains to show that composition is preserved. This means

A
f //B

g //C 7→
←−
F A

←−
F (f) //←−F B

←−
F (g) //←−F C = A

fg//C 7→
←−
F A

←−
F (fg) //←−F C

We want to show that
←−
F (f)

←−
F (g) =

←−
F (fg). To achieve this it suffices to show that both

maps satisfy the same universal property.
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First, we have to show that for a fixed k,
←−
F (f)

←−
F (g) = fold k.

F (A,
←−
F A)

(1)F (1,
←−
F (f)

���
�
�

cons //←−F A

←−
F (f)

���
�
�

F (A,
←−
F B)

(2)F (1,
←−
F (f))

���
�
�

F (f,1)// F (B,
←−
F B)

(3)F (1,
←−
F (f))

���
�
�

cons //←−F B

←−
F g

���
�
�

F (A,
←−
F C)

F (f,1)// F (B,
←−
F C)

F (g,1) // F (C,
←−
F C)

cons //←−F C

In this diagram, (1) and (3) commute by the defining diagram of
←−
F (f) and (2) commutes

because of the functorialty of F . So we get
←−
F (f)

←−
F (g) = fold[F (f, 1) F (g, 1) cons] where,

k = F (f, 1) F (g, 1) cons.

Next we have to show that for a fixed k,
←−
F (fg) = fold k.

F (A,
←−
F A)

F (1,
←−
F (fg))

���
�
�

cons //←−F A

←−
F (fg)

���
�
�

F (A,
←−
F C)

F (fg,1)// F (C,
←−
F C)

cons //←−F C

This diagram commutes by the defining diagram of
←−
F . Here,

←−
F (fg) = fold[F (fg, 1) cons]

= fold[F (f, 1)F (g, 1) cons] (as F preserves composition). Thus,
←−
F (f)

←−
F (g) =

←−
F (fg).

4.2 Circular definition of inductive and coinductive datatype

There is an alternative method of defining the universal property of inductive and coinductive

data which uses the notion of a circular combinator; the idea was used by Varmo Vene [29]

and Luigi Santocanale [26], [27]. A circular combinator for an endofunctor F : X → X

over D is an assignment.

A
f // D

F (A)
c[f ] // D

c[ ]

75



which given a map, f : A → D, delivers a new map c[f ] : F (A) → D such that the

following implication of commutative triangles holds:

A

f ��@@@@@@@
h // A′

f ′~~}}}}}}}

D

⇒ F (A)

c[f ] ""EEEEEEEE

F (h) // F (A′)

c[f ′]||yyyyyyyy

D

The inductive datatype µx.F (x) with its constructor cons : F (µx.F (x))→ µx.F (x) may

then be defined as having the following universal property: for any circular combinator c [ ] of

F over D, there exists a unique map µa.c[a], the “circular fold map”; such that the following

diagram commutes.

F (µx.F (x))

c[µa.c[a]]

��

cons //µx.F (x)

µa.c[a]
wwooooooooooooo

D

Dually, the coinductive datatype νx.F (x) with its destructor dest : νx.F (x)→ F (νx.F (x))

may then be defined as having the following universal property: for any cocircular combi-

nator c [ ] of F under D, there exists a unique map νb.c[b], the “circular unfold map”; such

that the following diagram commutes.

D

c[νb.c[b]]
��

νb.c[b] //νx.F (x)

destwwooooooooooo

F (νx.F (x))

Lemma 4. (See [13]) Circular combinators for F over D correspond precisely to F -algebras

on D. Given an F -algebra f : F (D) → D one obtains a circular combinator, cf [ ] and

conversely, given a circular combinator c[ ] one obtains an F -algebra, c[1D] : F (D)→ D.

Proof. If f : F (D) → D is an F -algebra, then a circular combinator, cf [g] is defined as

follows:
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A
g // D

F (A)
F (g) // F (D)

f // D

cf

So cf [g] = F (g)f and the following implication holds.

A

g
��@@@@@@@
h // A′

g′~~}}}}}}}

D

⇒ F (A)

cf [g]

��

F (g)
HHH

##HHH

F (h) // F (A′)

F (g′)
vvv

zzvvv

cf [g′]

~~

F (D)

f

��
D

Conversely, a circular combinator, c[ ] defines an F -algebra as follows:

D
1 // D

F (D)
c[1D] // D

c

So c = cc[1D]. Note that cf [1] = f .

Proposition 4.2.1. (See [13]) The algebraic definition and the circular definition of datatypes

are equivalent.

Proof. Given µx.F (x) satisfying the algebra definition of an inductive datatype, we must

show it satisfies the circular definition of the datatype. If µx.F (x) is an inductive datatype,

then for any F -algebra f : F (D)→ D the following diagram commutes.

F (µx.F (x))

F (fold(f))

��

cons // µx.F (x)

fold(f)

��
F (D)

f
// D

From this diagram, we get F (fold(f))f = cons (fold(f)). Given a circular combinator c[ ]

of F over D one may extract an algebra f = c[1D] : F (D) → D. Then we get µa.c[a] =

fold(f) and the following circular diagram:
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µx.F (x)

fold(f) $$HHHHHHHHH

fold(f) // D

1����������

D

⇒ F (µx.F (x))

c[fold(f)]
%%KKKKKKKKKKK

F (fold(f)) // F (D)

f||yyyyyyyy

D

Thus, fold(f) satisfies the properties required by the unique induced circular map µa.c[a].

Conversely, if µx.F (x) holds the circular definition of an inductive datatype, then it must

satisfy the algebra definition. Given an F -algebra f : F (D) → D one can define a circular

combinator c[ ] such that

F (µx.F (x))

c[h]
NNNN

''NNNNNNF (h)

��

cons // µx.F (x)

h

��
F (D)

f
// D

Here, h = µa.c[a] and c[h] = F (h)f as c[ ] is a combinator.

4.3 Circular rules

We may formulate datatypes type theoretically using circular rules in a manner which is

reminiscent of the way one writes a recursive program. Given a map, f : X → D, having

a circular combinator says that one can derive a map F (X) → D: this says there exists a

unique circular fold : µx.F (x) → D map. The following scheme shows the derivation of a

circular fold map where the object D is fixed but f and X can vary.

∀X f : X → D

X → D
F (X)→ D

µx.F (x)→ D
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For cons : F (µx.F (x))→ µx.F (x), if a map, f : X → F (µx.F (x)) is given, then we can

derive cons[f ] as follows:

X
f // F (µx.F (x))

X
cons[f ]// µx.F (x)

Similarly, we get a unique circular unfold : D → νx.F (x) map if for a given map,

f : D → X, it is possible to derive a map, D → F (X) by applying a cocircular combinator.

The derivation of a circular unfold map is as follows:

∀X f : D → X

D → X
D → F (X)

D → νx.F (x)

For dest : νx.F (x) → F (νx.F (x)), given a map, f : F (νx.F (x)) → X, one can derive

dest[f ] as follows:

F (νx.F (x))
f // X

νx.F (x)
dest[f ] // X

For example, consider the set of natural numbers, N with zero : 1→ N and succ : N→ N

constructors. Then for the functor of natural numbers, 1 + , we get the following map:

1 +N
[zero,succ] //N

such that the following diagram commutes.

1 +N

1+f
��

[zero,succ] // N

f

��
1 + U

[u,h]
// U
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The above map forms an inductive datatype which uses the property of the coproduct

structure. So the datatype for natural numbers is written as:

data nat→ N = zero : 1→ N

| succ : N→ N

The above diagram can be expressed as follows:

1

1

zero // N

f

��

N

f

��

succoo

1 u
// U U

h
oo

By using the circular combinator, we get

∀X X `f U

1 `u U X `fh U
1 +X ` U

N `g U

Here, g gives the circular fold map for natural numbers.

For the list functor, L(A) = µx.1 +A× x, the constructor is [nil, cons] : 1 +A×L(A)→

L(A) which satisfies the following universal property:

1 + (A× L(A))

1+(1×f)
��

[nil,cons]// L(A)

f

��
1 + (A×B)

[u,h]
// B

The datatype for finite lists may be defined by the form of its fold map:

data L(A)→ C = nil : 1→ C

| cons : A× C → C
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To get the types of the constructors, one can replace C by L(A). Then the constructors

for list will be:

nil : 1→ L(A)

cons : A× L(A)→ L(A)

Here the nil constructor produces an empty list and the cons constructor prepends

an element of type A to a list of type L(A) to produce a list. For example, [1, 2, 3] =

cons(1, cons(2, cons(3, nil()))).

As the list datatype uses the coproduct structure the above universal property for list

can be written diagrammatically as:

1

1

nil // L(A)

f

��

A× L(A)

1×f
��

consoo

1 u
// B A×B

h
oo

Using the circular definition,

∀X A×X `f B

1 `u B A×X `fh B
1 + A×X ` B

L(A) `g B

As an example of fold on list, we can consider length function that returns an integer as

the length of a finite list and we can write it as:

len(y) = {nil 7→ zero | cons y ys 7→ succ(len ys)}

where y refers to the first element of a list while ys refers to the rest of the elements of a list.

In Section 4.5, the circular definition is used to get fixed points in linearly distributive

categories. In this case, we want the following circular fold map where Γ is the context.
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∀X Γ, X ` ∆

Γ, X ` ∆

Γ, F (X) ` ∆
c[ ]

Γ, µx.F (x) ` ∆

In the algebra definition of fold, we have to specify an algebra, f : F (A)→ A, in order to

obtain a unique fold map µx.F (x) → A. In the circular definition, we just need to have an

inference between maps rather than an explicit algebra. These two definitions are equivalent

in the basic setting, as proven above. However, in the presence of contexts this equivalence

breaks down. In the linearly distributive case one needs to have a circular combinator in

a particular two-sided context. When the linearly distributive category has duals (i.e., it

is ∗-autonomous) then it is possible to manipulate the context out of the way: however, in

general, a linearly distributive category need not be ∗-autonomous so that the circular form

of the definition becomes essential.

Explicitly, consider the ∗-autonomous case. One is allowed to flip formulae from left side

to right side and from right side to left side of sequents by “negating” it. Thus:

X,Γ ` ∆

Γ ` X∗,∆

Γ ` X,∆
X∗,Γ ` ∆

This means that in a ∗-autonomous category, from a circular combinator, one can still

recover an algebra. Given a circular combinator:

Γ, X ` ∆

Γ, F (X) ` ∆
c[ ]

we get the following circular fold map in a ∗-autonomous category.
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∀X X ` Γ∗,∆

X ` Γ∗,∆

Γ, X ` ∆

Γ, F (X) ` ∆
c[ ]

F (X) ` Γ∗,∆

µx.F (x) ` Γ∗,∆

Γ, µx.F (x) ` ∆

However, in a linearly distributive setting, we can not express the passage above because

a linearly distributive category does not allow flipping of formulae. So, the only way to

express this is to use circular rules.

4.4 Fixed point of a monoidal functor

Suppose F : Y ×X → X is a parameterized monoidal functor that takes a pair of objects

(Y,X) to X, where Y ∈ Y and X ∈ X, and a pair of morphisms (f, g) : (Y,X) → (Y ′, X ′)

to g, where f : Y → Y ′ and g : X → X ′. If νx.F (Y, x) is the greatest fixed point of F ,

then Y 7→ νx.F (Y, x) : Y → X. Let
−→
F = νx.F ( , x). Dually, the least fixed point of F is

µx.F (Y, x) which can be written as
←−
F = µx.F ( , x).

Given a map, f : A → B,
−→
F (f) :

−→
F (A) →

−→
F (B) is the unique unfold map which is

determined by

−→
F (A)

−→
F (f) %%LLLLLLLLLL

dest // F (A,
−→
F (A))

F (f,1)// F (B,
−→
F (A))

F (1,
−→
F (f))

��−→
F (B) dest

// F (B,
−→
F (B))

This diagram is the defining diagram of
−→
F .

Given two maps h and k where h, k : X →
−→
F (A). In order to prove that h = k, it

suffices to show that for a fixed g : X → F (A,X), h = unfold(g) and k = unfold(g). If
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h dest = g F (1, h) then; by uniqueness of unfold(g), we have h = unfold(g). Similarly, if

k dest = g F (1, k) then; by uniqueness of unfold(g), we have k = unfold(g). So h = k. In

Proposition 4.4.1 this property is used to prove that the two maps are equal.

Proposition 4.4.1. The greatest fixed point
−→
F of a monoidal functor F is monoidal.

Proof. For the greatest fixed point
−→
F of a monoidal functor F to be monoidal there must

be the following two natural transformations:

−→m :
−→
F (A)⊗

−→
F (B)→

−→
F (A⊗B)

−→m> : > →
−→
F (>)

which will satisfy two equations:

(−→m> ⊗ 1) −→m
−→
F (l⊗) = l⊗

a⊗ (1⊗−→m) −→m = (−→m ⊗ 1) −→m
−→
F (a⊗)

So in order to prove that
−→
F is a monoidal functor, we have to show that the following two

diagrams commute.

>⊗
−→
F (A)

l⊗
��

−−→m>⊗1 // −→F (>)⊗
−→
F (A)

−→m
��−→

F (A)
−→
F (>⊗ A)

−→
F (l⊗)oo

(
−→
F (A)⊗

−→
F (B))⊗

−→
F (A)

−→m⊗1
��

a⊗ // −→F (A)⊗ (
−→
F (B)⊗

−→
F (C))

1⊗−→m
��−→

F (A⊗B)⊗
−→
F (C)

−→m
��

−→
F (A)⊗

−→
F (B ⊗ C)

−→m
��−→

F ((A⊗B)⊗ C) −→
F (a⊗)

// −→F (A⊗ (B ⊗ C))
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We start by defining −→m and −→m>.

−→
F (A)⊗

−→
F (B)

−→m **TTTTTTTTTTTTTTTT

dest⊗dest// F (A,
−→
F (A))⊗ F (B,

−→
F (B))

m⊗ // F (A⊗B,
−→
F (A)⊗

−→
F (B))

F (1,−→m)
��−→

F (A⊗B) dest
// F (A⊗B,

−→
F (A⊗B))

>
−−→m>

��

m> // F (>,>)

F (1,−−→m>)
��−→

F (>) dest
// F (>,

−→
F (>))

Now we will check the first equation, (−→m> ⊗ 1) −→m
−→
F (l⊗) = l⊗. To prove this equa-

tion holds, it suffices to show that for a fixed g, (−→m> ⊗ 1) −→m
−→
F (l⊗) = unfold(g) and

l⊗ = unfold(g). The diagram for (−→m> ⊗ 1) −→m
−→
F (l⊗) = unfold(g) is shown in Figure

4.1. In this figure, cell (1) commutes by tensor (⊗) functor, cell (2) commutes because

of the defining diagram of −→m>, cell (3) commutes by the naturality of m⊗, cell (4) and

(6) commute by the functoriality of F , cell (5) commutes because of the defining dia-

gram of −→m and cell (7) commutes by the defining diagram of
−→
F . So we get [(−→m> ⊗

1) −→m
−→
F (l⊗)] dest = [(m>⊗dest) m⊗ F (l⊗, 1)]F (1, [(−→m>⊗1) −→m

−→
F (l⊗)]). Then by uniqueness

of unfold, (−→m> ⊗ 1) −→m
−→
F (l⊗) = unfold[(m> ⊗ dest) m⊗ F (l⊗, 1)].

The diagram for l⊗ = unfold(g) is shown in Figure 4.2. In this figure, cell (1) commutes

by the naturality of l⊗, cell (2) commutes because F is monoidal, cell (3) commutes by

the functoriality of F . So we get, l⊗ dest = [(m> ⊗ dest) m⊗ F (l⊗, 1)] F (1, l⊗). Then by

uniqueness of unfold, l⊗ = unfold[(m> ⊗ dest) m⊗ F (l⊗, 1)].

Now we will show that the second equation, a⊗ (1⊗−→m) −→m = (−→m ⊗ 1) −→m
−→
F (a⊗) holds.

To prove this equation holds, it suffices to show that for a fixed g, a⊗ (1⊗−→m) −→m = unfold(g)

and (−→m⊗1) −→m
−→
F (a⊗) = unfold(g). In Figure 4.3, the diagram for a⊗ (1⊗−→m) −→m = unfold(g)

is shown. In this figure, cell (1) commutes by the naturality of m⊗, cell (2) and (3) commute

because of tensor (⊗) functor, cell (4) commutes because F is monoidal, validity of cell (5) is
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>⊗
−→
F (A)

(1)

1⊗dest //

−−→m>⊗1

��

>⊗ F (A,
−→
F (A))

(2)

m>⊗1//

−−→m>⊗1

��

F (>,>)⊗ F (A,
−→
F (A))

(3)

m⊗ //

F (1,
−−→m>)⊗1

��

F (>⊗ A,>⊗
−→
F (A))

(4)

F (l⊗,1)
//

F (1,
−−→m>⊗1)

��

F (A,>⊗
−→
F (A))

F (1,
−−→m>⊗1)

��
−→
F (>)⊗

−→
F (A)

(5)

1⊗dest//

−→m

��

−→
F (>)⊗ F (A,

−→
F (A))

dest⊗1// F (>,
−→
F (>))⊗ F (A,

−→
F (A))

m⊗ // F (>⊗ A,
−→
F (>)⊗

−→
F (A))

(6)

F (l⊗,1)
//

F (1,−→m)

��

F (A,
−→
F (>)⊗

−→
F (A))

F (1,−→m)

��
−→
F (>⊗ A)

(7)

dest //

−→
F (l⊗)

��

F (>⊗ A,
−→
F (>⊗ A))

F (l⊗,1)
// F (A,

−→
F (>⊗ A))

F (1,
−→
F (l⊗))

��
−→
F (A)

dest // F (A,
−→
F (A))

Figure 4.1: (
−→m> ⊗ 1) −→m

−→
F (l⊗) = unfold(g)

>⊗
−→
F (A)

l⊗

��

(1)

1⊗dest// >⊗ F (A,
−→
F (A))

l⊗
TTTTTTTTTTTTT

**TTTTTTTTTTTTT

m>⊗1// F (>,>)⊗ F (A,
−→
F (A))

(2)

m⊗ // F (>⊗ A,>⊗
−→
F (A))

(3)

F (l⊗,1)
//

F (l⊗,l⊗)

��

F (A,>⊗
−→
F (A))

F (1,l⊗)

{{wwwwwwwwwwwwwww

−→
F (A)

dest // F (A,
−→
F (A))

Figure 4.2: l⊗ = unfold(g)

shown in Figure 4.4, cell (6) commutes by the defining diagram of −→m. So, a⊗ (1⊗−→m) −→m =

unfold[((dest ⊗ dest) ⊗ 1) (m⊗ ⊗ 1) (1 ⊗ dest) m⊗]. In Figure 4.4, cell (1), (2), (4) and (6)

commute because of tensor (⊗) functor, cell (3) commutes by the defining diagram of −→m,

cell (5) commutes by the naturality of m⊗.

The diagram for (−→m ⊗ 1) −→m
−→
F (a⊗) = unfold(g) is shown in Figure 4.5. In this figure,

cell (1) and (4) commute because of the defining diagram of −→m, cell (2) commutes because

of tensor (⊗) functor, cell (3) commutes by the naturality of m⊗, cell (5) commutes by the

defining diagram of
−→
F . So (−→m ⊗ 1) −→m

−→
F (a⊗) = unfold[((dest ⊗ dest) ⊗ 1) (m⊗ ⊗ 1) (1 ⊗

dest) m⊗].
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(
−→
F (A)⊗

−→
F (B))⊗

−→
F (C)

(4)(1)

(dest⊗dest)⊗1//

a⊗

��

(dest⊗dest)⊗dest

KKKKKKKKKKKK

%%KKKKKKKKKKKK

(F (A,
−→
F (A))⊗ F (B,

−→
F (B)))⊗

−→
F (C)

(2) (3)

m⊗⊗1
//

1⊗dest

��

F (A⊗ B,
−→
F (A)⊗

−→
F (B))⊗ F (C,

−→
F (C))

1⊗dest // F (A⊗ B,
−→
F (A)⊗

−→
F (B))⊗ F (C,

−→
F (C))

m⊗// F ((A⊗ B)⊗ C, (
−→
F (A)⊗

−→
F (B))⊗

−→
F (C))

F (a⊗,a⊗)

��

(F (A,
−→
F (A))⊗ F (B,

−→
F (B)))⊗ F (C,

−→
F (C))

a⊗

��

m⊗⊗1gggggggggggggggggggggggg

33gggggggggggggggggggggggg

−→
F (A)⊗ (

−→
F (B)⊗

−→
F (C))

(5)1⊗−→m

��

dest⊗(dest⊗dest)// F (A,
−→
F (A))⊗ (F (B,

−→
F (B))⊗ F (C,

−→
F (C)))

1⊗m⊗// F (A,
−→
F (A))⊗ F (B ⊗ C,

−→
F (B)⊗

−→
F (C))

m⊗ // F (A⊗ (B ⊗ C),
−→
F (A)⊗

−→
F (B ⊗ C))

F (1,1⊗−→m)

��
−→
F (A)⊗

−→
F (B ⊗ C)

(6)−→m

��

dest⊗dest // F (A,
−→
F (A))⊗ F (B ⊗ C,

−→
F (B ⊗ C))

m⊗ // F (A⊗ (B ⊗ C),
−→
F (A)⊗

−→
F (B ⊗ C))

F (1,−→m)

��
−→
F (A⊗ (B ⊗ C))

dest // F (A⊗ (B ⊗ C),
−→
F (A⊗ (B ⊗ C)))

Figure 4.3: a⊗ (1⊗−→m) −→m = unfold(g)

87



−→
F (A)⊗ (

−→
F (B)⊗

−→
F (C))

(1)

(3)

dest⊗(dest⊗dest) //

1⊗−→m

��

1⊗(dest⊗dest)
IIIIIIIIIII

$$IIIIIIIIIII

F (A,
−→
F (A))⊗ (F (B,

−→
F (B))⊗ F (C,

−→
F (C)))

(2)

1⊗m⊗// F (A,
−→
F (A))⊗ F (B ⊗ C,

−→
F (B)⊗

−→
F (C))

1⊗F (1,−→m)

��

m⊗ // F (A⊗ (B ⊗ C),
−→
F (A)⊗

−→
F (B ⊗ C))

F (1,1⊗−→m)

��

(4) (5)

−→
F (A)⊗ (F (B,

−→
F (B))⊗ F (C,

−→
F (C)))

dest⊗1qqqqqqqqqqqqq

88qqqqqqqqqqqqq

1⊗m⊗ // −→F (A)⊗ F (B ⊗ C,
−→
F (B)⊗

−→
F (C))

dest⊗1ppppppppppppp

88ppppppppppppp

1⊗F (1,−→m)
qqqqqqqqqqqqq

xxqqqqqqqqqqqqq

−→
F (A)⊗ F (B ⊗ C,

−→
F (B ⊗ C))

dest⊗1
VVVVVVVVVVVVVVVVVVVVVVVV

++VVVVVVVVVVVVVVVVVVVVVVVV

−→
F (A)⊗

−→
F (B ⊗ C)

(6)1⊗destvvvvvvvvvvv

::vvvvvvvvvvv

dest⊗dest // F (A,
−→
F (A))⊗ F (B ⊗ C,

−→
F (B ⊗ C))

m⊗ // F (A⊗ (B ⊗ C),
−→
F (A)⊗

−→
F (B ⊗ C))

Figure 4.4: Validity of diagram (5) from Figure 4.3
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(
−→
F (A)⊗

−→
F (B))⊗

−→
F (C)

(1)

(dest⊗dest)⊗1//

−→m⊗1

��

(F (A,
−→
F (A))⊗ F (B,

−→
F (B)))⊗

−→
F (C)

m⊗⊗1
// F (A⊗ B,

−→
F (B ⊗ C))⊗

−→
F (C)

(2)

1⊗dest//

F (1,−→m)⊗1

��

F (A⊗ B,
−→
F (B ⊗ C))⊗ F (C,

−→
F (C))

(3)

m⊗//

F (1,−→m)⊗1

��

F ((A⊗ B)⊗ C, (
−→
F (A)⊗

−→
F (B))⊗

−→
F (C))

F (1,−→m⊗1)

��
−→
F (A⊗ B)⊗

−→
F (C)

(4)

dest⊗1 //

−→m

��

F (A⊗ B,
−→
F (A⊗ B))⊗

−→
F (C)

1⊗dest// F (A⊗ B,
−→
F (A⊗ B))⊗ F (C,

−→
F (C))

m⊗ // F ((A⊗ B)⊗ C,
−→
F (A⊗ B)⊗

−→
F (C))

F (1,−→m)

��
−→
F ((A⊗ B)⊗ C)

(5)

dest //

−→
F (a⊗)

��

F ((A⊗ B)⊗ C,
−→
F ((A⊗ B)⊗ C))

F (a⊗,
−→
F (a⊗))

��
−→
F (A⊗ (B ⊗ C))

dest // F (A⊗ (B ⊗ C),
−→
F (A⊗ (B ⊗ C)))

Figure 4.5: (−→m ⊗ 1) −→m
−→
F (a⊗) = unfold(g)
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Thus, the greatest fixed point
−→
F of a monoidal functor F is monoidal as it satisfies all

the conditions to become a monoidal functor.

4.5 Fixed point of a linear functor

Given a parameterized linear functor, F : Y ×X→ X, Proposition 4.4.1 suggests that one

may be able to construct from the coinductive fixed point of the monoidal part of F ,
−→
F ,

and the inductive fixed point of the comonoidal part of F ,
←−
F , a linear functor. The next

theorem shows that this does happen by exhibiting the linear strengths and proving they

satisfy the required coherence conditions.

Theorem 4.5.1. The fixed point of a linear functor is linear.

Proof. In previous section, we proved
−→
F is monoidal (and dually,

←−
F is comonoidal). It

remains to prove that (i) the linear strengths exist; (ii) they are natural and (iii) they satisfy

several coherence conditions.

We know that a linear functor has four linear strengths, vR⊕, vL⊕, vR⊗, and vL⊗ (See Section

2.13). In order to prove that linear strengths exist, first we will show that vR⊕ : F (A)⊗F̄ (B)→

F̄ (A⊗B) exists. Then we will show that vR⊗ : F (A⊕B)→ F̄ (A)⊕F (B) exists. The others

two linear strengths, vL⊕ and vL⊗ can be obtained by symmetries.

By using fixed point of (co)monoidal functor, the linear strength, vR⊕ will be −→v R
⊕ :
−→
F (A)⊗

←−
F (B) →

←−
F (A ⊗ B). To check that −→v R

⊕ exists and it is unique fold map, we have to use

circular combinator c[ ]. Given a circular combinator c[ ] for F̄ over D, there exists a unique

←−
f such that the following diagram commutes.

F̄ (
←−
F )

c[
←−
f ]

��

cons //←−F

←−
f}}zzzzzzzzz

D
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So
←−
f exists if there is a combinator c[ ] (over F̄ )

A→ D
F̄ (A)→ D

c[ ]

We get fixed points if and only if we have circular combinators. Given h, k :
←−
F → D. To

show that h = k, it suffices to show that cons h = c[h] and cons k = c[k] where h and k are

both unique. Then by uniqueness of
←−
f , we have h =

←−
f and k =

←−
f . Circular combinator is

easily constructable by using proof box. To show that −→v R
⊕ map exists, we have the following

proof box:

∀X
−→
F (A)⊗X `f

←−
F (A⊗B)

A⊗B `1 A⊗B
−→
F (A)⊗X `f

←−
F (A⊗B)

F̄ (A⊗B,
−→
F (A)⊗X) `F̄ (1,f) F̄ (A⊗B,

←−
F (A⊗B))

F̄ (A⊗B,
−→
F (A)⊗X) `F̄ (1,f) cons

←−
F (A⊗B)

F (A,
−→
F (A))⊗ F̄ (B,X) `vR

⊕ F̄ (1,f) cons

←−
F (A⊗B)

−→
F (A)⊗ F̄ (B,X) `(dest⊗1) vR

⊕ F̄ (1,f) cons

←−
F (A⊗B)

−→
F (A)⊗

←−
F (B) `−→v R

⊕

←−
F (A⊗B)

So there exists −→v R
⊕. It is the unique fold map such that (1 ⊗ cons) −→v R

⊕ = c[−→v R
⊕] =

(dest⊗ 1) vR⊕ F̄ (1,−→v R
⊕) cons. As −→v R

⊕ gives natural transformation, so we have to check the

following diagram commutes.

−→
F (A)⊗

←−
F (B)

−→
F (a)⊗

←−
F (b)

��

−→v R
⊕ //←−F (A⊗B)

←−
F (a⊗b)

��−→
F (A′)⊗

←−
F (B′) −→v R

⊕

//←−F (A′ ⊗B′)

To show that −→v R
⊕
←−
F (a⊗ b) = (

−→
F (a)⊗

←−
F (b)) −→v R

⊕, it suffices to show that they are both
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equal to the fold map. That means it suffices to find a combinator b[ ] such that

(1⊗ cons) −→v R
⊕
←−
F (a⊗ b) = b[−→v R

⊕
←−
F (a⊗ b)] (4.1)

(1⊗ cons) (
−→
F (a)⊗

←−
F (b)) −→v R

⊕ = b[(
−→
F (a)⊗

←−
F (b)) −→v R

⊕] (4.2)

Validity of equation 4.1 is shown in Figure 4.6. In this figure, the upper part commutes

because of the defining diagram of −→v R
⊕ [as −→v R

⊕ is unique such that (1⊗ cons) −→v R
⊕ = (dest⊗

1) vR⊕ F̄ (1,−→v R
⊕) cons]. The lower part commutes because of the defining diagram of

←−
F .

Here, the combinator is b[−→v R
⊕
←−
F (a⊗ b)] = (dest⊗ 1) vR⊕ F̄ (1,−→v R

⊕) F̄ (a⊗ b,
←−
F (a⊗ b)) cons.

So we get from the Figure 4.6, (1 ⊗ cons) −→v R
⊕
←−
F (a ⊗ b) = b[−→v R

⊕
←−
F (a ⊗ b)] = (dest ⊗

1) vR⊕ F̄ (1,−→v R
⊕) F̄ (a⊗ b,

←−
F (a⊗ b)) cons.

The diagram for equation 4.2 is shown in Figure 4.7. In this figure, there are six cells

where (2) and (5) commute because vR⊕ gives natural transformation, (1) commutes by the

defining diagram of
←−
F , (6) commutes because −→v R

⊕ is unique, (4) commutes because of tensor

(⊗) functor and validity of cell (3) is shown in Figure 4.8 where, (1) and (2) commutes because

of the tensor (⊗) functor and (3) commutes because of the defining diagram of
←−
F . So we

get, (1⊗ cons) (
−→
F (a)⊗

←−
F (b)) −→v R

⊕ = b[(
−→
F (a)⊗

←−
F (b)) −→v R

⊕] = (dest⊗ 1) vR⊕ F̄ (a⊗ b,
−→
F (a)⊗

←−
F (b)) F̄ (1,−→v R

⊕) cons.

We know that linear strengths satisfy a large number of coherence conditions. In order

to prove this theorem first we will check the coherence condition, (m⊗ ⊗ 1) vR⊕ F̄ (a⊗) =

a⊗ (1⊗ vR⊕) vR⊕ which links m⊗, vR⊕, and a⊗. The other forms of this coherence condition are

obtained by symmetries. Then we will check the coherence condition, (vR⊕ ⊗ 1) vL⊕ F̄ (a⊗) =

a⊗ (1⊗vL⊕) vR⊕, which creates a link between a⊗, vL⊕ and vR⊕. The symmetries generate all the

other forms of this coherence condition. Finally, we will prove that the coherence condition,

(vR⊗⊗1) d⊕⊗ (1⊕m⊗) = m⊗ F (d⊕⊗) vR⊗ holds which links m⊗, d⊕⊗, and vR⊗. All the other forms

of this coherence condition are generated by symmetries.
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−→
F (A)⊗ F̄ (B,

←−
F (B))

dest⊗1

��

1⊗cons // −→F (A)⊗
←−
F (B)

−→v R⊕

��
F (A,

−→
F (A))⊗ F̄ (B,

←−
F (B))

vR⊕

��

←−
F (A⊗ B)

←−
F (a⊗b)

��

F̄ (A⊗ B,
−→
F (A)⊗

←−
F (B))

F̄ (1,−→v R⊕)

��
F̄ (A⊗ B,

←−
F (A⊗ B))

cons

??~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

F̄ (a⊗b,
←−
F (a⊗b))

��
F̄ (A′ ⊗ B′,

←−
F (A′ ⊗ B′))

cons
// ←−F (A′ ⊗ B′)

Figure 4.6: Validity of equation 4.1

Now we will prove that the coherence condition (m⊗ ⊗ 1) vR⊕ F̄ (a⊗) = a⊗ (1 ⊗ vR⊕) vR⊕

holds. If we use the fixed point of (co)monoidal functor, then the coherence condition will

be

(−→m ⊗ 1) −→v R
⊕
←−
F (a⊗) = a⊗ (1⊗−→v R

⊕) −→v R
⊕.

(
−→
F (A)⊗

−→
F (B))⊗

←−
F (C)

−→m⊗1
��

a⊗ // −→F (A)⊗ (
−→
F (B)⊗

←−
F (C))

1⊗−→v R
⊕

��−→
F (A⊗B)⊗

←−
F (C)

−→v R
⊕

��

−→
F (A)⊗

←−
F (B ⊗ C)

−→v R
⊕

��←−
F ((A⊗B)⊗ C)

←−
F (a⊗) //←−F (A⊗ (B ⊗ C))

We have to show that the above diagram commutes. It suffices to show that they are

both equal to the fold map. This means it suffices to find a combinator u[ ] such that

((1⊗ 1)⊗ cons) a⊗ (1⊗−→v R
⊕) −→v R

⊕ = u[a⊗ (1⊗−→v R
⊕) −→v R

⊕] (4.3)

((1⊗ 1)⊗ cons) (−→m ⊗ 1) −→v R
⊕
←−
F (a⊗) = u[(−→m ⊗ 1) −→v R

⊕
←−
F (a⊗)] (4.4)
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−→
F (A)⊗ F̄ (B,

←−
F (B))

(1)dest⊗1

��

1⊗F̄ (1,
←−
F (b))

JJJJJJJJJJ

%%JJJJJJJJJJ

1⊗cons // −→F (A)⊗
←−
F (B)

1⊗
←−
F (b)

��
F (A,

−→
F (A))⊗ F̄ (B,

←−
F (B))

(2)

F (a,1)⊗F̄ (b,1)
JJJJJJJJJJ

%%JJJJJJJJJJvR⊕

��

−→
F (A)⊗ F̄ (B,

←−
F (B′))

(3)

1⊗F̄ (b,1)// −→F (A)⊗ F̄ (B′,
←−
F (B′))

(4)−→
F (a)⊗1

��

1⊗cons// −→F (A)⊗
←−
F (B′)

−→
F (a)⊗1

��
F̄ (A⊗ B,

−→
F (A)⊗

←−
F (B))

F̄ (a⊗b,1)

��

F (A′,
−→
F (A))⊗ F̄ (B′,

←−
F (B))

(5)

F (1,
−→
F (a))⊗F̄ (1,

←−
F (b))

��

vR⊕
tttttttttt

yytttttttttt

−→
F (A′)⊗ F̄ (B′,

←−
F (B′))

(6)

dest⊗1
uuuuuuuu

zzuuuuuuuuuuuuu

1⊗cons// −→F (A′)⊗
←−
F (B′)

−→v R⊕

��

F̄ (A′ ⊗ B′,
−→
F (A)⊗

←−
F (B))

F̄ (1,
−→
F (a)⊗

←−
F (b))

JJJJJJJJJJ

%%JJJJJJJJJJ

F (A′,
−→
F (A′))⊗ F̄ (B′,

←−
F (B′))

vR⊕

��
F̄ (A′ ⊗ B′,

−→
F (A′)⊗

←−
F (B′))

F̄ (1,−→v R⊕)
// F̄ (A′ ⊗ B′,

←−
F (A′ ⊗ B′))

cons // ←−F (A′ ⊗ B′)

Figure 4.7: Validity of equation 4.2

Validity of equation 4.3 is shown in Figure 4.9 where (1) and (2) commute by the natural-

ity of a⊗, (3) and (8) commute because
−→
vR⊕ is unique, (4) commutes by the definition of linear

functor, (6) commutes because of tensor (⊗) functor, (5) and (7) commute because vR⊕ gives

natural transformaton. So we get, ((1⊗1)⊗ cons) a⊗ (1⊗−→v R
⊕) −→v R

⊕ = u[a⊗ (1⊗−→v R
⊕) −→v R

⊕] =

(dest⊗ dest)⊗ 1 m⊗ ⊗ 1 vR⊕ F̄ (a⊗, a⊗) F̄ (1, 1⊗−→v R
⊕) F̄ (1,−→v R

⊕) cons.

Validity of equation 4.4 is shown in Figure 4.10. In this figure, (1) and (2) commute

by the defining diagram of −→m, (3) commutes because −→v R
⊕ is unique, (4) commutes because

vR⊕ gives natural transformation and (5) commutes by the defining diagram of
←−
F . Thus,

((1⊗ 1)⊗ cons) (−→m ⊗ 1) −→v R
⊕
←−
F (a⊗) = u[(−→m ⊗ 1) −→v R

⊕
←−
F (a⊗)] = ((dest⊗ dest)⊗ 1) (m⊗ ⊗

1) vR⊕ F̄ (1,−→m ⊗ 1) F̄ (1,−→v R
⊕) F̄ (a⊗,

←−
F (a⊗)) cons.
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−→
F (A)⊗ F̄ (B,

←−
F (B))

dest⊗1

��

1⊗F̄ (1,
←−
F (b))// −→F (A)⊗ F̄ (B,

←−
F (B′))

(1)

dest⊗1

||xxxxxxxxxxxxxxxxxxxxxxxx

1⊗F̄ (b,1)// −→F (A)⊗ F̄ (B′,
←−
F (B′))

dest⊗1
ssssssssssssssssssssss

yyssssssssssssssssssssss

−→
F (a)⊗1// −→F (A′)⊗ F̄ (B′,

←−
F (B′))

dest⊗1

��

(3)

(2)F (A,
−→
F (A))⊗ F̄ (B,

←−
F (B))

1⊗F̄ (1,
←−
F (b))

��
F (A,

−→
F (A))⊗ F̄ (B,

←−
F (B′))

1⊗F̄ (b,1)

��
F (A,

−→
F (A))⊗ F̄ (B′,

←−
F (B′))

F (a,1)⊗1// F (A′,
−→
F (A))⊗ F̄ (B′,

←−
F (B′))

F (1,
−→
F (a))⊗1 // F (A′,

−→
F (A′))⊗ F̄ (B′,

←−
F (B′))

Figure 4.8: Validity of diagram (3) from Figure 4.7

Now we have to show that the coherence condition, (vR⊕ ⊗ 1) vL⊕ F̄ (a⊗) = a⊗ (1⊗ vL⊕) vR⊕

holds. Using the fixed point of (co)monoidal functor, we can write this equation as:

(−→v R
⊕ ⊗ 1) −→v L

⊕
←−
F (a⊗) = a⊗ (1⊗−→v L

⊕) −→v R
⊕

.

(
−→
F (A)⊗

←−
F (B))⊗

−→
F (C)

−→v R
⊕⊗1

��

a⊗ // −→F (A)⊗ (
←−
F (B)⊗

−→
F (C))

1⊗−→v L
⊕

��←−
F (A⊗B)⊗

−→
F (C)

−→v L
⊕

��

−→
F (A)⊗

←−
F (B ⊗ C)

−→v R
⊕

��←−
F ((A⊗B)⊗ C)

←−
F (a⊗) //←−F (A⊗ (B ⊗ C))

We have to show that the above diagram commutes. It suffices to show that they are

both equal to the fold map. This means it suffices to find a combinator v[ ] such that

((1⊗ cons)⊗ 1) a⊗ (1⊗−→v L
⊕) −→v R

⊕ = v[a⊗ (1⊗−→v L
⊕) −→v R

⊕] (4.5)

((1⊗ cons)⊗ 1) (−→v R
⊕ ⊗ 1) −→v L

⊕
←−
F (a⊗) = v[(−→v R

⊕ ⊗ 1) −→v L
⊕
←−
F (a⊗)] (4.6)

The diagram for equation 4.5 is shown in Figure 4.11. In this figure, (1) and (2) commute

by the naturality of a⊗, (5) commutes by the naturality of vL⊕, (6) commutes because of tensor

(⊗) functor, (3) commutes because −→v L
⊕ is unique, (8) commutes because −→v R

⊕ is unique, (4)
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commutes from the definition of linear functor and (7) commutes because vR⊕ gives natural

transformaton.

The diagram for equation 4.6 is shown in Figure 4.12 where (1) and (4) commute because

of tensor (⊗) functor, (2) commutes because −→v R
⊕ is unique, (3) commutes by the naturality of

vR⊕, (5) commutes because −→v L
⊕ is unique, (6) commutes because vL⊕ is natural transformaton

and (7) commutes by the defining diagram of
←−
F .

Now we will show that the coherence condition, (vR⊗ ⊗ 1) d⊕⊗ (1 ⊕m⊗) = m⊗ F (d⊕⊗) vR⊗

holds. Before going to the proof of this coherence condition, first we have to check that

the linear strength, vR⊗ : F (A ⊕ B) → F̄ (A) ⊕ F (B) exists. If we use fixed point of a (co)

monoidal functor then we can write −→v R
⊗ :
−→
F (A⊕ B)→

←−
F (A)⊕

−→
F (B). To check that −→v R

⊗

map exists and it is the unique unfold map, we have to use circular combinator d[ ]. Given

a circular combinator d[ ] for F over D, there exists a unique
−→
f such that the following

diagram commutes.

D

d[
−→
f ]

��

−→
f //−→F

dest}}{{{{{{{{{

F (
−→
F )

So
−→
f exists if there is a combinator d[ ] (over F )

D → A
D → F (A)

d[ ]

We get fixed points if and only if we have circular combinators. Given h, k : D →
−→
F , we

have to show that h = k. It suffices to show that h dest = d[h] and k dest = d[k] where h

and k are both unique. Then by uniqueness of
−→
f , we have h =

−→
f and k =

−→
f .

In order to show that −→v R
⊗ exists, we have the following proof box:
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∀X
−→
F (A⊕B) `f

←−
F (A)⊕X

A⊕B `1 A⊕B
−→
F (A⊕B) `f

←−
F (A)⊕X

F (A⊕B,
−→
F (A⊕B)) `F (1,f) F (A⊕B,

←−
F (A)⊕X)

−→
F (A⊕B) `dest F (1,f) F (A⊕B,

←−
F (A)⊕X)

−→
F (A⊕B) `dest F (1,f) vR

⊗
F̄ (A,

←−
F (A))⊕ F (B,X)

−→
F (A⊕B) `dest F (1,f) vR

⊗ (cons⊕1)

←−
F (A)⊕ F (B,X)

−→
F (A⊕B) `−→v R

⊗

←−
F (A)⊕

−→
F (B)

So there exists −→v R
⊗. It is unique unfold map such that

−→v R
⊗ (1⊕ dest) = d[−→v R

⊗] = dest F (1,−→v R
⊗) vR⊗ (cons⊕ 1)

Now we can check the coherence condition, (vR⊗⊗ 1) d⊕⊗ (1⊕m⊗) = m⊗ F (d⊕⊗) vR⊗. Using

the fixed point of a (co)monoidal functor, we can write (−→v R
⊗⊗1) d⊕⊗ (1⊕−→m) = −→m

−→
F (d⊕⊗) −→v R

⊗.

−→
F (A⊕B)⊗

−→
F (C)

−→m
��

−→v R
⊗⊗1

// (
←−
F (A)⊕

−→
F (B))⊗

−→
F (C)

d⊕⊗
��−→

F ((A⊕B)⊗ C)

−→
F (d⊕⊗)

��

←−
F (A)⊕ (

−→
F (B)⊗

−→
F (C))

1⊕−→m
��−→

F (A⊕ (B ⊗ C))
−→v R
⊗ //←−F (A)⊕

−→
F (B ⊗ C)

So we have to show that the above diagram commutes. It suffices to show that they both

equal to unfold map this means it suffices to find a combinator x[ ] such that

(−→v R
⊗ ⊗ 1) d⊕⊗ (1⊕−→m) (1⊕ dest) = x[(−→v R

⊗ ⊗ 1) d⊕⊗ (1⊕−→m)] (4.7)

−→m
−→
F (d⊕⊗) −→v R

⊗ (1⊕ dest) = x[−→m
−→
F (d⊕⊗) −→v R

⊗] (4.8)

The diagram for equation 4.7 is shown in Figure 4.13. In this figure, (1) and (3) commute

because of tensor (⊗) functor, (2) commutes because −→v R
⊗ is unique, (4) commutes by the
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naturality of m⊗, (5) commutes by the naturality of d⊕⊗, (7) commutes because of the defining

diagram of −→m and validity of diagram (6) is shown in Figure 4.14. In this Figure 4.14, (1) and

(8) commute by the naturality of vR⊗, (2) commutes because of tensor (⊗) functor, (3) and

(5) commute by the naturality for d⊕⊗, (4) commutes from the definition of linear functor, (6)

commutes because of the naturality of m⊗ and (7) commutes by par (⊕) functor. Validity

of equation 4.8 is shown in Figure 4.15. Here (1) commutes by the defining diagram of −→m,

(2) commutes by the defining diagram of
−→
F and (3) commutes because −→v R

⊗ is unique. So if

a linear functor has a linear fixed point then it is linear.
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(
−→
F (A)⊗

−→
F (B))⊗ F̄ (C,

←−
F (C))

(2)

(1⊗1)⊗cons //

(dest⊗dest)⊗1

��

a⊗ZZZZZZZZZZZZZZZZZZZZZZ

,,ZZZZZZZZZZZZZZZZZZZZZZ

(
−→
F (A)⊗

−→
F (B))⊗

←−
F (C)

(1) a⊗

��
−→
F (A)⊗ (

−→
F (B)⊗ F̄ (C,

←−
F (C)))

1⊗(dest⊗1)

��

1⊗(1⊗cons) // −→F (A)⊗ (
−→
F (B)⊗

←−
F (C))

(3)

1⊗−→v R⊕

��

(F (A,
−→
F (A))⊗ F (B,

−→
F (B)))⊗ F̄ (C,

←−
F (C))

m⊗⊗1

��

a⊗ // F (A,
−→
F (A))⊗ (F (B,

−→
F (B))⊗ F̄ (C,

←−
F (C)))

(5)

(6)

1⊗vR⊕

��

−→
F (A)⊗ (F (B,

−→
F (B))⊗ F̄ (C,

←−
F (C)))

dest⊗(1⊗1)oo

1⊗vR⊕

��
F (A⊗ B,

−→
F (A)⊗

−→
F (B))⊗ F̄ (C,

←−
F (C))

(4)

vR⊕

��

F (A,
−→
F (A))⊗ F̄ (B ⊗ C,

−→
F (B)⊗

←−
F (C))

vR⊕

��

1⊗F̄ (1,−→v R⊕)

JJJJJJJJJJJJJJ

$$JJJJJJJJJJJJJJ

−→
F (A)⊗ F̄ (B ⊗ C,

−→
F (B)⊗

←−
F (C))

(7)

dest⊗1oo

1⊗F̄ (1,−→v R⊕)

��
−→
F (A)⊗ F̄ (B ⊗ C,

←−
F (B ⊗ C))

dest⊗1

��
(8)

1⊗cons // −→F (A)⊗
←−
F (B ⊗ C)

−→v R⊕

��

F̄ (((A⊗ B)⊗ C), ((
−→
F (A)⊗

−→
F (B))⊗

←−
F (C)))

F̄ (a⊗,a⊗)
UUUUUUUUUU

**UUUUUUUUUU

F (A,
−→
F (A)⊗ F̄ (B ⊗ C,

←−
F (B ⊗ C))

vR⊕

��
F̄ ((A⊗ (B ⊗ C)), (

−→
F (A)⊗ (

−→
F (B)⊗

←−
F (C)))

F̄ (1,1⊗−→v R⊕)
// F̄ ((A⊗ (B ⊗ C)), (

−→
F (A)⊗

←−
F (B ⊗ C)))

F̄ (1,−→v R⊕)
// F̄ ((A⊗ (B ⊗ C)),

←−
F (A⊗ (B ⊗ C)))

cons // ←−F (A⊗ (B ⊗ C))

Figure 4.9: Validity of equation 4.3
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(
−→
F (A)⊗

−→
F (B))⊗ F̄ (C,

←−
F (C))

(1⊗1)⊗cons //

(dest⊗dest)⊗1

��

−→m⊗1
VVVVVVVVVVVVV

++VVVVVVVVVVVVV

(
−→
F (A)⊗

−→
F (B))⊗

←−
F (C)

(1) −→m⊗1

��
(F (A,

−→
F (A))⊗ F (B,

−→
F (B)))⊗ F̄ (C,

←−
F (C))

m⊗⊗1

��

−→
F (A⊗ B)⊗ F̄ (C,

←−
F (C))(2)

(4)

(3)

dest⊗1

��

1⊗cons // −→F (A⊗ B)⊗
←−
F (C)

−→v R⊕

��

F (A⊗ B,
−→
F (A)⊗

−→
F (B))⊗ F̄ (C,

←−
F (C))

vR⊕

��

F (1,−→m)⊗F̄ (1,1) // F (A⊗ B,
−→
F (A⊗ B))⊗ F̄ (C,

←−
F (C))

vR⊕
qqqqqqqqqqqqqqqqq

xxqqqqqqqqqqqqqqqqqF̄ (((A⊗ B)⊗ C), ((
−→
F (A)⊗

−→
F (B))⊗

←−
F (C)))

F̄ (1,−→m⊗1)

��
F̄ (((A⊗ B)⊗ C), (

−→
F (A⊗ B)⊗

←−
F (C)))

F̄ (1,−→v R⊕)

��
F̄ (((A⊗ B)⊗ C),

←−
F ((A⊗ B)⊗ C))

(5)F̄ (a⊗,
←−
F (a⊗))

��

cons // ←−F ((A⊗ B)⊗ C)

←−
F (a⊗)

��
F̄ ((A⊗ (B ⊗ C)),

←−
F (A⊗ (B ⊗ C)))

cons // ←−F (A⊗ (B ⊗ C))

Figure 4.10: Validity of equation 4.4
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(
−→
F (A)⊗ F̄ (B,

←−
F (B)))⊗

−→
F (C)

(2)

(1⊗cons)⊗1 //

(dest⊗1)⊗dest

��

a⊗ZZZZZZZZZZZZZZZZZZZZZZ

,,ZZZZZZZZZZZZZZZZZZZZZZ

(
−→
F (A)⊗

←−
F (B))⊗

−→
F (C)

(1) a⊗

��
−→
F (A)⊗ (F̄ (B,

←−
F (B))⊗

−→
F (C))

1⊗(1⊗dest)

��

1⊗(cons⊗1) // −→F (A)⊗ (
←−
F (B)⊗

−→
F (C))

(3)

1⊗−→v L⊕

��

(F (A,
−→
F (A))⊗ F̄ (B,

←−
F (B)))⊗ F (C,

−→
F (C))

vR⊕⊗1

��

a⊗ // F (A,
−→
F (A))⊗ (F̄ (B,

←−
F (B))⊗ F (C,

−→
F (C)))

(5)

(6)

1⊗vL⊕

��

−→
F (A)⊗ (F̄ (B,

←−
F (B))⊗ F (C,

−→
F (C)))

dest⊗(1⊗1)oo

1⊗vL⊕

��
F̄ (A⊗ B,

−→
F (A)⊗

←−
F (B))⊗ F (C,

−→
F (C))

(4)

vL⊕

��

F (A,
−→
F (A))⊗ F̄ (B ⊗ C,

←−
F (B)⊗

−→
F (C))

vR⊕

��

1⊗F̄ (1,−→v L⊕)

JJJJJJJJJJJJJJ

$$JJJJJJJJJJJJJJ

−→
F (A)⊗ F̄ (B ⊗ C,

←−
F (B)⊗

−→
F (C))

(7)

dest⊗1oo

1⊗F̄ (1,−→v L⊕)

��
−→
F (A)⊗ F̄ (B ⊗ C,

←−
F (B ⊗ C))

dest⊗1

��
(8)

1⊗cons // −→F (A)⊗
←−
F (B ⊗ C)

−→v R⊕

��

F̄ (((A⊗ B)⊗ C), ((
−→
F (A)⊗

←−
F (B))⊗

−→
F (C)))

F̄ (a⊗,a⊗)
UUUUUUUUUU

**UUUUUUUUUU

F (A,
−→
F (A)⊗ F̄ (B ⊗ C,

←−
F (B ⊗ C))

vR⊕

��
F̄ ((A⊗ (B ⊗ C)), (

−→
F (A)⊗ (

←−
F (B)⊗

−→
F (C)))

F̄ (1,1⊗−→v L⊕)
// F̄ ((A⊗ (B ⊗ C)), (

−→
F (A)⊗

←−
F (B ⊗ C)))

F̄ (1,−→v R⊕)
// F̄ ((A⊗ (B ⊗ C)),

←−
F (A⊗ (B ⊗ C)))

cons // ←−F (A⊗ (B ⊗ C))

Figure 4.11: Validity of equation 4.5
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(
−→
F (A)⊗ F̄ (B,

←−
F (B)))⊗

−→
F (C)

(1⊗cons)⊗1 //

(dest⊗1)⊗dest

��

(dest⊗1)⊗1

**TTTTTTTTTTTTTTTTTTTTTTTT (
−→
F (A)⊗

←−
F (B))⊗

−→
F (C)

(2) −→v R⊕⊗1

��
(F (A,

−→
F (A))⊗ F̄ (B,

←−
F (B)))⊗ F (C,

−→
F (C))

vR⊕⊗1

��

(F (A,
−→
F (A))⊗ F̄ (B,

←−
F (B)))⊗

−→
F (C)

(1)

(1⊗1)⊗destoo
vR⊕⊗1

// F̄ (A⊗ B,
−→
F (A)⊗

←−
F (B))⊗

−→
F (C)

F̄ (1,−→v R⊕)⊗1
//

1⊗dest
eeeeeeeeeeeeeeeeeeee

rreeeeeeeeeeeeeeeeeeee(3)

F̄ (A⊗ B,
←−
F (A⊗ B))⊗

−→
F (C)

(6)

(5)

1⊗dest

��

cons⊗1 //

(4)

←−
F (A⊗ B)⊗

−→
F (C)

−→v L⊕

��

F̄ (A⊗ B,
−→
F (A)⊗

←−
F (B))⊗ F (C,

−→
F (C))

vL⊕

��

F̄ (1,−→v R⊕)⊗1
// F̄ (A⊗ B,

←−
F (A⊗ B))⊗ F (C,

−→
F (C))

vL⊕
gggggggggggggggggggggggggggggggggggg

ssggggggggggggggggggggggggggggggggggggF̄ (((A⊗ B)⊗ C), ((
−→
F (A)⊗

←−
F (B))⊗

−→
F (C)))

F̄ (1,−→v R⊕⊗1)

��
F̄ (((A⊗ B)⊗ C), (

←−
F (A⊗ B)⊗

−→
F (C)))

F̄ (1,−→v L⊕)

��
F̄ (((A⊗ B)⊗ C),

←−
F ((A⊗ B)⊗ C))

(7)F̄ (a⊗,
←−
F (a⊗))

��

cons // ←−F ((A⊗ B)⊗ C)

←−
F (a⊗)

��
F̄ ((A⊗ (B ⊗ C)),

←−
F (A⊗ (B ⊗ C)))

cons // ←−F (A⊗ (B ⊗ C))

Figure 4.12: Validity of equation 4.6
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−→
F (A⊕ B)⊗

−→
C

(2)−→v R⊗⊗1

��

dest⊗1
QQQQQQQQ

((QQQQQQQQ

dest⊗dest // F (A⊕ B,
−→
F (A⊕ B))⊗ F (C,

−→
F (C))

(3)

m⊗ //

F (1,−→v R⊗)⊗1

��

F (((A⊕ B)⊗ C),
−→
F (A⊕ B)⊗

−→
F (C))

F (1,−→v R⊗⊗1)
// F (((A⊕ B)⊗ C), ((

←−
F (A)⊕

−→
F (B))⊗

−→
F (C)))

F (d⊕⊗,d
⊕
⊗)

��

F (A⊕ B,
−→
F (A⊕ B))⊗

−→
F (C)

(1) 1⊗destkkkkkkkkkk

55kkkkkkkkkk

F (1,−→v R⊗)⊗1

��
F (A⊕ B,

←−
F (A)⊕

−→
F (B))⊗

−→
F (C)

vR⊗⊗1

��

1⊗dest// F (A⊕ B,
←−
F (A)⊕

−→
F (B))⊗ F (C,

−→
F (C))

(4)

(6)

m⊗iiiiiiiiiiiiiiiiiiiiiiiiiiii

44iiiiiiiiiiiiiiiiiiiiiiiiiiii

(
←−
F (A)⊕

−→
F (B))⊗

−→
F (C)

d
⊕
⊗

��

(1⊕dest)⊗1
QQQQQQQQ

((QQQQQQQQ

(F̄ (A,
←−
F (A))⊕ F (B,

−→
F (B)))⊗

−→
F (C)

(cons⊕1)⊗1

��

F ((A⊕ (B ⊗ C)), (
←−
F (A)⊕ (

−→
F (B)⊗

−→
F (C))))

F (1,1⊕−→m)

��
(
←−
F (A)⊕ F (B,

−→
F (B)))⊗

−→
F (C)(5)

d
⊕
⊗

��

F ((A⊕ (B ⊗ C)),
←−
F (A)⊕

−→
F (B ⊗ C))

vR⊗

��
←−
F (A)⊕ (

−→
F (B)⊗

−→
F (C))

1⊕−→m

��

1⊕(dest⊗1)// ←−F (A)⊕ (F (B,
−→
F (B))⊗

−→
F (C))

1⊕(1⊗dest)

��

F̄ (A,
←−
F (A))⊕ F (B ⊗ C,

−→
F (B ⊗ C))

cons⊕1

��

←−
F (A)⊕ (F (B,

−→
F (B))⊗ F (C,

−→
F (C)))

(7) 1⊕m⊗

��
←−
F (A)⊕ (F (B ⊗ C),

−→
F (B)⊗

−→
F (C))

1⊕F (1,−→m)
[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

--[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

←−
F (A)⊕

−→
F (B ⊗ C)

1⊕dest // ←−F (A)⊕ F (B ⊗ C,
−→
F (B ⊗ C))

Figure 4.13: Validity of equation 4.7
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F (A⊕ B,
←−
F (A)⊕

−→
F (B))⊗

−→
F (C)

(1)vR⊗⊗1

��

1⊗dest // F (A⊕ B,
←−
F (A)⊕

−→
F (B))⊗ F (C,

−→
F (C))

(4)

m⊗ //

vR⊗⊗1
iiiiiiiiiii

ttiiiiiiiiiii

F (((A⊕ B)⊗ C), ((
←−
F (A)⊕

−→
F (B))⊗

−→
F (C)))

F (d⊕⊗,d
⊕
⊗)

��

(F̄ (A,
←−
F (A))⊕ F (B,

−→
F (B)))⊗

−→
F (C)

(2)

(1⊕1)⊗dest//

(cons⊕1)⊗1

��

(F̄ (A,
←−
F (A))⊕ F (B,

−→
F (B)))⊗ F (C,

−→
F (C))

(3)(cons⊕1)⊗1

��

d
⊕
⊗ // F̄ (A,

←−
F (A))⊕ (F (B,

−→
F (B))⊗ F (C,

−→
F (C)))

1⊕m⊗

��

cons⊕(1⊗1)
������������������������

��������������������������

(
←−
F (A)⊕ F (B,

−→
F (B)))⊗

−→
F (C)

(5)

1⊗dest //

d
⊕
⊗

��

(
←−
F (A)⊕ F (B,

−→
F (B)))⊗ F (C,

−→
F (C))

d
⊕
⊗

��

F̄ (A,
←−
F (A))⊕ F (B ⊗ C,

−→
F (B)⊗

−→
F (C))

1⊕F (1,−→m)
MMMMMMMMMMMMMMMMM

&&MMMMMMMMMMMMMMMMM

cons⊕1

��

F ((A⊕ (B ⊗ C)), (
←−
F (A)⊕ (

−→
F (B)⊗

−→
F (C))))

(8)

vR⊗oo

F (1,1⊕−→m)

��
F ((A⊕ (B ⊗ C)), (

←−
F (A)⊕

−→
F (B ⊗ C)))

vR⊗

��
F̄ (A,

←−
F (A))⊕ F (B ⊗ C,

−→
F (B ⊗ C))

cons⊕1

��
←−
F (A)⊕ (F (B,

−→
F (B))⊗

−→
F (C))

1⊕(1⊗dest)// ←−F (A)⊕ (F (B,
−→
F (B))⊗ F (C,

−→
F (C)))

(6)

1⊕m⊗ // ←−F (A)⊕ F (B ⊗ C,
−→
F (B)⊗

−→
F (C))

(7)

1⊕F (1,−→m) // ←−F (A)⊕ F (B ⊗ C,
−→
F (B ⊗ C))

Figure 4.14: Validity of diagram (6) from Figure 4.8
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−→
F (A⊕ B)⊗

−→
F (C)

(1)−→m

��

dest⊗dest// F (A⊕ B,
−→
F (A⊕ B))⊗ F (C,

−→
F (C))

m⊗// F (((A⊕ B)⊗ C),
−→
F (A⊕ B)⊗

−→
F (C))

F (1,−→m)

��
−→
F ((A⊕ B)⊗ C)

(2)
−→
F (d⊕⊗)

��

dest // F (((A⊕ B)⊗ C),
−→
F ((A⊕ B)⊗ C))

F (d⊕⊗,
−→
F (d⊕⊗))

��
−→
F (A⊕ (B ⊗ C))

(3)

−→v R⊗

��

dest // F ((A⊕ (B ⊗ C)),
−→
F (A⊕ (B ⊗ C)))

F (1,−→v R⊗)

��
F ((A⊕ (B ⊗ C)),

←−
F (A)⊕

−→
F (B ⊗ C))

vR⊗

��
F̄ (A,

←−
F (A))⊕ F (B ⊗ C,

−→
F (B ⊗ C))

cons⊕1

��
←−
F (A)⊕

−→
F (B ⊗ C)

1⊕dest // ←−F (A)⊕ F (B ⊗ C,
−→
F (B ⊗ C))

Figure 4.15: Validity of equation 4.8

Thus, the fixed point of a linear functor satisfies all the conditions to be a linear functor.

The inductive and coinductive datatypes are the fixed points of linear functors that give

protocols in concurrent communication and Theorem 4.5.1 proves that the protocols which

are built on linear functors form a linear functor pair.
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Chapter 5

Conclusion and Future Work

This thesis proposed the categorical semantics of protocols as inductive and coinductive data

in the message passing world. We began with the definition of linear actegories, proposed

by Cockett and Pastro, which provides a categorical semantics for message passing. A linear

actegory consists of a linearly distributive category with a monoidal category that acts on it

both covariantly and contravariantly. In this thesis, first we proved that the contravariant

action of a linear actegory gives a monoidal functor. Dually, the covariant action gives

rise to a comonoidal functor. Then we proved that these two actions of a linear actegory

yield the structure of a linear functor. In order to prove this, we used the circuit diagrams

representation of the maps of a linear actegory.

Next we discussed fixed points and the significance of the circular definition to this work.

We then proved that the fixed point of a monoidal functor is monoidal, and dually the fixed

point of a comonoidal functor is comonoidal. Finally, it was shown that the fixed point of a

linear functor is itself a linear functor. This means protocols which are generated by linear

functors form a linear functor pair.

Future Work This thesis provided the technical details for the formulation of special pro-

tocols generated by linear functors. However, there are general protocols which are not built

on linear functors. In this thesis, we did not explore the properties of general protocols which

is left to future work. From the programming language perspective, it will be interesting to

have an implementation of the view of concurrent processes and their protocols suggested

by this work.
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Appendix A

Coherence Conditions for Linear Actegories

Linear actegories satisfy a large number of coherence conditions. In Section 3.1, we mentioned

some of the coherence conditions. Here we listed the rest of the coherence conditions which

are as follows:

Symmetries: The following diagrams must commute for symmetries.

A ◦ (X ⊗ Y )

A◦c⊗

��

a◦⊗ // (A ◦X)⊗ Y

c⊗

��
A ◦ (Y ⊗X)

a◦⊗′ // Y ⊗ (A ◦X)

Y ⊕ (A •X)

a•⊕′

��

c⊕ // (A •X)⊕ Y

a•⊕

��
A • (Y ⊕X)

A•c⊕ // A • (X ⊕ Y )

a◦⊗ c⊗ = (A ◦ c⊗) a◦⊗′ (A.1)

c⊕ a
•
⊕ = a•⊕′ (A • c⊕) (A.2)

A ◦ (X ⊕ Y )

A◦c⊕

��

d◦⊕ // (A ◦X)⊕ Y

c⊕

��
A ◦ (Y ⊕X)

d◦⊕′ // Y ⊕ (A ◦X)

Y ⊗ (A •X)

d•⊗′

��

c⊗ // (A •X)⊗ Y

d•⊗

��
A • (Y ⊗X)

A•c⊗ // A • (X ⊗ Y )

d◦⊕ c⊕ = (A ◦ c⊕) a◦⊕′ (A.3)

c⊗ d
•
⊗ = d•⊗′ (A • c⊗) (A.4)

Unit and associativity: The following diagrams must commute for unit and associativity.

(A ∗ I) ◦X

r∗◦X

��

a∗◦ // A ◦ (I ◦X)

A◦u◦xxppppppppppp

A ◦X

A •X

r
−1
∗ •X

��

A•u• // A • (I •X)

a∗•xxpppppppppp

(A ∗ I) •X

a∗◦ A ◦ u◦ = r∗ ◦X (A.5)

(A • u•) a∗• = r−1
∗ •X (A.6)
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(I ∗ A) ◦X

l∗◦X

��

a∗◦ // I ◦ (A ◦X)

u◦
xxppppppppppp

A ◦X

A •X

l
−1
∗ •X

��

u• // I • (A •X)

a∗•xxpppppppppp

(I ∗ A) •X

a∗◦ u◦ = l∗ ◦X (A.7)

u• a
∗
• = l−1

∗ •X (A.8)

A ◦ (X ⊗>)

A◦r⊗

��

a◦⊗ // (A ◦X)⊗>

r⊗
wwooooooooooo

A ◦X

A •X

A•r⊕

��

r⊕ // (A •X)⊕⊥

a•⊕wwooooooooooo

A • (X ⊕⊥)

A ◦ (>⊗ Y )

A◦l⊗

��

a◦⊗′ // >⊗ (A ◦ Y )

l⊗wwooooooooooo

A ◦ Y

A •X

A•l⊕

��

l⊕ // ⊥⊕ (A •X)

a•⊕′wwooooooooooo

A • (⊥⊕X)

a◦⊗ r⊗ = A ◦ r⊗ (A.9)

r⊕ a
•
⊕ = A • r⊕ (A.10)

a◦⊗′ l⊗ = A ◦ l⊗ (A.11)

l⊕ a
•
⊕′ = A • l⊕ (A.12)

Unit and distributivity: The following diagrams must commute for unit and distributivity.

A ◦X

r⊕

��

A◦r⊕ // A ◦ (X ⊕⊥)

d◦⊕wwooooooooooo

(A ◦X)⊕⊥

(A •X)⊗>

r⊗

��

d•⊗ // A • (X ⊗>)

A•r⊗wwooooooooooo

A •X

A ◦X

l⊕

��

A◦l⊕ // A ◦ (⊥⊕X)

d◦⊕′wwooooooooooo

⊥⊕ (A ◦X)

>⊗ (A • Y )

l⊗

��

d•⊗′ // A • (>⊗ Y )

A•l⊗wwooooooooooo

A • Y
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(A ◦ r⊕) d◦⊕ = r⊕ (A.13)

d•⊗ (A • r⊗) = r⊗ (A.14)

(A ◦ l⊕) d◦⊕′ = l⊕ (A.15)

d•⊗′ (A • l⊗) = l⊗ (A.16)

I ◦ (X ⊕ Y )

u◦

��

d◦⊕ // (I ◦X)⊕ Y

u◦⊕Ywwppppppppppp

X ⊕ Y

X ⊗ Y

u•

��

u•⊗Y // (I •X)⊗ Y

d•⊗wwppppppppppp

I • (X ⊗ Y )

I ◦ (Y ⊕X)

u◦

��

d◦⊕′ // Y ⊕ (I ◦X)

Y⊕u◦wwppppppppppp

Y ⊕X

Y ⊗X

u•

��

Y⊗u• // Y ⊗ (I •X)

d•⊗′wwppppppppppp

I • (Y ⊗X)

d◦⊕ (u◦ ⊕ Y ) = u◦ (A.17)

(u• ⊗ Y ) d•⊗ = u• (A.18)

d◦⊕′ (Y ⊕ u◦) = u◦ (A.19)

(Y ⊗ u•) d•⊗′ = u• (A.20)

I ◦ (X ⊗ Y )

u◦

��

a◦⊗ // (I ◦X)⊗ Y

u◦⊗Ywwppppppppppp

X ⊗ Y

X ⊕ Y

u•

��

u•⊕Y // (I •X)⊕ Y

a•⊕wwppppppppppp

I • (X ⊕ Y )

I ◦ (Y ⊗X)

u◦

��

a◦⊗′ // Y ⊗ (I ◦X)

Y⊗u◦wwppppppppppp

Y ⊗X

Y ⊕X

u•

��

Y⊕u• // Y ⊕ (I •X)

a•⊕′wwppppppppppp

I • (Y ⊕X)

a◦⊗ (u◦ ⊗ Y ) = u◦ (A.21)

(u• ⊕ Y ) a•⊕ = u• (A.22)

a◦⊗′ (Y ⊗ u◦) = u◦ (A.23)

(Y ⊕ u•) a•⊕′ = u• (A.24)
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I ◦ (A •X)

u◦

��

d◦• // A • (I ◦X)

A•u◦xxppppppppppp

A •X

A ◦X

u•

��

A◦u• // A ◦ (I •X)

d◦•xxpppppppppp

I • (A ◦X)

d◦• (A • u◦) = u◦ (A.25)

(A ◦ u•) d◦• = u• (A.26)

Associativity: The following diagrams must commute for associativity.

((A ∗ B) ∗ C) ◦X

a∗◦

��

a∗◦X // (A ∗ (B ∗ C)) ◦X

a∗◦

��
A ◦ ((B ∗ C) ◦X)

A◦a∗◦

��
(A ∗ B) ◦ (C ◦X)

a∗◦ // A ◦ (B ◦ (C ◦X))

A • (B • (C •X))

a∗•

��

A•a∗• // A • ((B ∗ C) •X)

a∗•

��
(A ∗ (B ∗ C)) •X

a
−1
∗ •X

��
(A ∗ B) • (C •X)

a∗• // ((A ∗ B) ∗ C) •X

(C ∗ (B ∗ A)) ◦X

a∗
′
◦

��

a
−1
∗ ◦X // ((C ∗ B) ∗ A) ◦X

a∗
′
◦

��
A ◦ ((C ∗ B) ◦X)

A◦a∗
′
◦

��
(B ∗ A) ◦ (C ◦X)

a∗
′
◦ // A ◦ (B ◦ (C ◦X))

A • (B • (C •X))

a∗
′
•

��

A•a∗
′
• // A • ((C ∗ B) •X)

a∗
′
•

��
((C ∗ B) ∗ A) •X

a∗•X

��
(B ∗ A) • (C •X)

a∗
′
• // (C ∗ (B ∗ A)) •X

(a∗ ◦X) a∗◦ (A ◦ a∗◦) = a∗◦ a
∗
◦ (A.27)

(A • a∗•) a∗• (a−1
∗ •X) = a∗• a

∗
• (A.28)

(a−1
∗ ◦X) a∗

′

◦ (A ◦ a∗′◦ ) = a∗
′

◦ a
∗′
◦ (A.29)

(A • a∗′• ) a∗
′

• (a∗ •X) = a∗
′

• a
∗′
• (A.30)

(A ∗ B) ◦ (C •X)

d◦•

��

a∗◦ // A ◦ (B ◦ (C •X))

A◦d◦•

��
A ◦ (C • (B ◦X))

d◦•

��
C • ((A ∗ B) ◦X)

C•a∗◦ // C • (A ◦ (B ◦X))

C ◦ (A • (B •X))

C◦a∗•

��

d◦• // A • (C ◦ B •X))

A•d◦•

��
A • (B • (C ◦X))

a∗•

��
C ◦ ((A ∗ B) •X)

d◦• // (A ∗ B) • (C ◦X)
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(B ∗ A) ◦ (C •X)

d◦•

��

a∗
′
◦ // A ◦ (B ◦ (C •X))

A◦d◦•

��
A ◦ (C • (B ◦X))

d◦•

��
C • ((B ∗ A) ◦X)

C•a∗
′
◦ // C • (A ◦ (B ◦X))

C ◦ (A • (B •X))

C◦a∗
′
•

��

d◦• // A • (C ◦ B •X))

A•d◦•

��
A • (B • (C ◦X))

a∗
′
•

��
C ◦ ((B ∗ A) •X)

d◦• // (B ∗ A) • (C ◦X)

a∗◦ (A ◦ d◦•) d◦• = d◦• (C • a∗◦) (A.31)

d◦• (A • d◦•) a∗• = (C ◦ a∗•) d◦• (A.32)

a∗
′

◦ (A ◦ d◦•) d◦• = d◦• (C • a∗′◦ ) (A.33)

d◦• (A • d◦•) a∗
′

• = (C ◦ a∗′• ) d◦• (A.34)

(A ∗ B) ◦ (X ⊗ Y )

a◦⊗

��

a∗◦ // A ◦ (B ◦ (X ⊗ Y ))

A◦a◦⊗

��
A ◦ ((B ◦X)⊗ Y )

a◦⊗

��
((A ∗ B) ◦X)⊗ Y

a∗◦⊗Y // (A ◦ (B ◦X))⊗ Y

(A ∗ B) ◦ (Y ⊗X)

a◦⊗′

��

a∗◦ // A ◦ (B ◦ (Y ⊗X))

A◦a◦⊗′

��
A ◦ (Y ⊗ (B ◦X))

a◦⊗′

��
Y ⊗ ((A ∗ B) ◦X)

Y⊗a∗◦ // Y ⊗ (A ◦ (B ◦X))

(B ∗ A) ◦ (X ⊗ Y )

a◦⊗

��

a∗
′
◦ // A ◦ (B ◦ (X ⊗ Y ))

A◦a◦⊗

��
A ◦ ((B ◦X)⊗ Y )

a◦⊗

��
((B ∗ A) ◦X)⊗ Y

a∗
′
◦ ⊗Y // (A ◦ (B ◦X))⊗ Y

(B ∗ A) ◦ (Y ⊗X)

a◦⊗′

��

a∗
′
◦ // A ◦ (B ◦ (Y ⊗X))

A◦a◦⊗′

��
A ◦ (Y ⊗ (B ◦X))

a◦⊗′

��
Y ⊗ ((B ∗ A) ◦X)

Y⊗a∗
′
◦ // Y ⊗ (A ◦ (B ◦X))

(A • (B •X))⊕ Y

a∗•⊕Y

��

a•⊕ // A • ((B •X)⊕ Y )

A•a•⊕

��
A • (B • (X ⊕ Y ))

a∗•

��
((A ∗ B) •X)⊕ Y

a•⊕ // (A ∗ B) • (X ⊕ Y )

Y ⊕ (A • (B •X))

Y⊕a∗•

��

a•⊕′ // A • (Y ⊕ (B •X))

A•a•⊕′

��
A • (B • (Y ⊕X))

a∗•

��
Y ⊕ ((A ∗ B) •X)

a•⊕′ // (A ∗ B) • (Y ⊕X)
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(A • (B •X))⊕ Y

a∗
′
• ⊕Y

��

a•⊕ // A • ((B •X)⊕ Y )

A•a•⊕

��
A • (B • (X ⊕ Y ))

a∗
′
•

��
((B ∗ A) •X)⊕ Y

a•⊕ // (B ∗ A) • (X ⊕ Y )

Y ⊕ (A • (B •X))

Y⊕a∗
′
•

��

a•⊕′ // A • (Y ⊕ (B •X))

A•a•⊕′

��
A • (B • (Y ⊕X))

a∗
′
•

��
Y ⊕ ((B ∗ A) •X)

a•⊕′ // (B ∗ A) • (Y ⊕X)

a∗◦ (A ◦ a◦⊗) a◦⊗ = a◦⊗ (a∗◦ ⊗ Y ) (A.35)

a∗◦ (A ◦ a◦⊗′) a◦⊗′ = a◦⊗′ (Y ⊗ a∗◦) (A.36)

a∗
′

◦ (A ◦ a◦⊗) a◦⊗ = a◦⊗ (a∗
′

◦ ⊗ Y ) (A.37)

a∗
′

◦ (A ◦ a◦⊗′) a◦⊗′ = a◦⊗′ (Y ⊗ a∗′◦ ) (A.38)

a•⊕ (A • a•⊕) a∗• = (a∗• ⊕ Y ) a•⊕ (A.39)

a•⊕′ (A • a•⊕′) a∗• = (Y ⊕ a∗•) a•⊕′ (A.40)

a•⊕ (A • a•⊕) a∗
′

• = (a∗
′

• ⊕ Y ) a•⊕ (A.41)

a•⊕′ (A • a•⊕′) a∗
′

• = (Y ⊕ a∗′• ) a•⊕′ (A.42)

A ◦ ((X ⊗ Y )⊗ Z)

A◦a⊗

��

a◦⊗ // (A ◦ (X ⊗ Y ))⊗ Z

a◦⊗⊗Z

��
((A ◦X)⊗ Y )⊗ Z

a⊗

��
A ◦ (X ⊗ (Y ⊗ Z))

a◦⊗ // (A ◦X)⊗ (Y ⊗ Z)

(A •X)⊕ (Y ⊕ Z)

a•⊕

��

a⊕ // ((A •X)⊕ Y )⊕ Z

a•⊕⊕Z

��
(A • (X ⊕ Y ))⊕ Z

a•⊕

��
A • (X ⊕ (Y ⊕ Z))

A•a⊕ // A • ((X ⊕ Y )⊕ Z)

A ◦ (Z ⊗ (X ⊗ Y ))

A◦a−1
⊗

��

a◦⊗′ // Z ⊗ (A ◦ (X ⊗ Y ))

Z⊗a◦⊗′

��
Z ⊗ (X ⊗ (A ◦ Y ))

a
−1
⊗

��
A ◦ ((Z ⊗X)⊗ Y )

a◦⊗′ // (Z ⊗X)⊗ (A ◦ Y )

(Z ⊕X)⊕ (A • Y )

a•⊕′

��

a
−1
⊕ // Z ⊕ (X ⊕ (A • Y ))

Z⊕a•⊕′

��
Z ⊕ (A • (X ⊕ Y ))

a•⊕′

��
A • ((Z ⊕X)⊕ Y )

A•a−1
⊕ // A • (Z ⊕ (X ⊕ Y ))
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a◦⊗ (a◦⊗ ⊗ Z) a⊗ = (A ◦ a⊗) (a◦⊗) (A.43)

a⊕ (a•⊕ ⊕ Z) a•⊕ = a•⊕ (A • a⊕) (A.44)

a◦⊗′ (Z ⊗ a◦⊗′) a−1
⊗ = (A ◦ a−1

⊗ ) a◦⊗′ (A.45)

a−1
⊕ (Z ⊕ a•⊕′) a•⊕′ = a•⊕′ (A • a−1

⊕ ) (A.46)

(A ∗ B) ◦ (X ⊗ Y )

a∗
′
◦

��

a∗◦ // A ◦ (B ◦ (X ⊗ Y ))

A◦a◦⊗′

��
B ◦ (A ◦ (X ⊗ Y ))

B◦a◦⊗

��

A ◦ (X ⊗ (B ◦ Y ))

a◦⊗

��
B ◦ ((A ◦X)⊗ Y )

a◦⊗′ // (A ◦X)⊗ (B ◦ Y )

(A •X)⊕ (B • Y )

a•⊕′

��

a•⊕ // A • (X ⊕ (B • Y ))

A•a•⊕′

��
B • ((A •X)⊕ Y )

B•a•⊕

��

A • (B • (X ⊕ Y ))

a∗•

��
B • (A • (X ⊕ Y ))

a∗
′
• // (A ∗ B) • (X ⊕ Y )

(A ∗ B) ◦ (X ⊗ Y )

a∗
′
◦

��

a∗◦ // A ◦ (B ◦ (X ⊗ Y ))

A◦a◦⊗

��
B ◦ (A ◦ (X ⊗ Y ))

B◦a◦⊗′

��

A ◦ ((B ◦X)⊗ Y )

a◦⊗′

��
B ◦ (X ⊗ (A ◦ Y ))

a◦⊗ // (B ◦X)⊗ (A ◦ Y )

(B •X)⊕ (A • Y )

a•⊕

��

a•⊕′ // A • ((B •X)⊕ Y )

A•a•⊕

��
B • (X ⊕ (A • Y ))

B•a•⊕′

��

A • (B • (X ⊕ Y ))

a∗•

��
B • (A • (X ⊕ Y ))

a∗
′
• // (A ∗ B) • (X ⊕ Y )

a∗◦ (A ◦ a◦⊗′) a◦⊗ = a∗
′

◦ (B ◦ a◦⊗) a◦⊗′ (A.47)

a•⊕ (A • a•⊕′) a∗• = a•⊕′ (B • a•⊕) a∗
′

• (A.48)

a∗◦ (A ◦ a◦⊗) a◦⊗′ = a∗
′

◦ (B ◦ a◦⊗′) a◦⊗ (A.49)

a•⊕′ (A • a•⊕) a∗• = a•⊕ (B • a•⊕′) a∗
′

• (A.50)

Distributivity and associativity: The following diagrams must commute for distributiv-
ity and associativity.

(A ∗ B) ◦ (X ⊕ Y )

d◦⊕

��

a∗◦ // A ◦ (B ◦ (X ⊕ Y ))

A◦d◦⊕

��
A ◦ ((B ◦X)⊕ Y )

d◦⊕

��
((A ∗ B) ◦X)⊕ Y

a∗◦⊕Y // (A ◦ (B ◦X))⊕ Y

(A ∗ B) ◦ (Y ⊕X)

d◦⊕′

��

a∗◦ // A ◦ (B ◦ (Y ⊕X))

A◦d◦⊕′

��
A ◦ (Y ⊕ (B ◦X))

d◦⊕′

��
Y ⊕ ((A ∗ B) ◦X)

Y⊕a∗◦ // Y ⊕ (A ◦ (B ◦X))
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(B ∗ A) ◦ (X ⊕ Y )

d◦⊕

��

a∗
′
◦ // A ◦ (B ◦ (X ⊕ Y ))

A◦d◦⊕

��
A ◦ ((B ◦X)⊕ Y )

d◦⊕

��
((B ∗ A) ◦X)⊕ Y

a∗
′
◦ ⊕Y // (A ◦ (B ◦X))⊕ Y

(B ∗ A) ◦ (Y ⊕X)

d◦⊕′

��

a∗
′
◦ // A ◦ (B ◦ (Y ⊕X))

A◦d◦⊕′

��
A ◦ (Y ⊕ (B ◦X))

d◦⊕′

��
Y ⊕ ((B ∗ A) ◦X)

Y⊕a∗
′
◦ // Y ⊕ (A ◦ (B ◦X))

(A • (B •X))⊗ Y

a∗•⊗Y

��

d•⊗ // A • ((B •X)⊗ Y )

A•d•⊗

��
A • (B • (X ⊗ Y ))

a∗•

��
((A ∗ B) •X)⊗ Y

d•⊗ // (A ∗ B) • (X ⊗ Y )

Y ⊗ (A • (B •X))

Y⊗a∗•

��

d•⊗′ // A • (Y ⊗ (B •X))

A•d•⊗′

��
A • (B • (Y ⊗X))

a∗•

��
Y ⊗ ((A ∗ B) •X)

d•⊗′ // (A ∗ B) • (Y ⊗X)

(A • (B •X))⊗ Y

a∗
′
• ⊗Y

��

d•⊗ // A • ((B •X)⊗ Y )

A•d•⊗

��
A • (B • (X ⊗ Y ))

a∗
′
•

��
((B ∗ A) •X)⊗ Y

d•⊗ // (B ∗ A) • (X ⊗ Y )

Y ⊗ (A • (B •X))

Y⊗a∗
′
•

��

d•⊗′ // A • (Y ⊗ (B •X))

A•d•⊗′

��
A • (B • (Y ⊗X))

a∗
′
•

��
Y ⊗ ((B ∗ A) •X)

d•⊗′ // (B ∗ A) • (Y ⊗X)

a∗◦ (A ◦ d◦⊕) d◦⊕ = d◦⊕ (a∗◦ ⊕ Y ) (A.51)

a∗◦ (A ◦ d◦⊕′) d◦⊕′ = d◦⊕′ (Y ⊕ a∗◦) (A.52)

a∗
′

◦ (A ◦ d◦⊕) d◦⊕ = d◦⊕ (a∗
′

◦ ⊕ Y ) (A.53)

a∗
′

◦ (A ◦ d◦⊕′) d◦⊕′ = d◦⊕′ (Y ⊕ a∗′◦ ) (A.54)

d•⊗ (A • d•⊗) a∗• = (a∗• ⊗ Y ) d•⊗ (A.55)

d•⊗′ (A • d•⊗′) a∗• = (Y ⊗ a∗•) d•⊗′ (A.56)

d•⊗ (A • d•⊗) a∗
′

• = (a∗
′

• ⊗ Y ) d•⊗ (A.57)

d•⊗′ (A • d•⊗′) a∗
′

• = (Y ⊗ a∗′• ) d•⊗′ (A.58)
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A ◦ ((B •X)⊗ Y )

a◦⊗′

��

A◦d•⊗ // A ◦ (B • (X ⊗ Y ))

d◦•

��
B • (A ◦ (X ⊗ Y ))

B•a◦⊗′

��
(B • A)⊗ (A ◦ Y )

d•⊗ // B • (X ⊗ (A ◦ Y ))

B ◦ (X ⊕ (A • Y ))

d◦⊕

��

B◦a•⊕′ // B ◦ (A • (X ⊕ Y ))

d◦•

��
A • (B ◦ (X ⊕ Y ))

A•d◦⊕

��
(B ◦X)⊕ (A • Y )

a•⊕′ // A • ((B ◦X)⊕ Y )

A ◦ (X ⊗ (B • Y ))

a◦⊗

��

A◦d•⊗′ // A ◦ (B • (X ⊗ Y ))

d◦•

��
B • (A ◦ (X ⊗ Y ))

B•a◦⊗

��
(A ◦X)⊗ (B • Y )

d•⊗′ // B • ((A ◦X)⊗ Y )

B ◦ ((A •X)⊕ Y )

d◦⊕′

��

B◦a•⊕ // B ◦ (A • (X ⊕ Y ))

d◦•

��
A • (B ◦ (X ⊕ Y ))

A•d◦⊕′

��
(A •X)⊕ (B ◦ Y )

a•⊕ // A • (X ⊕ (B ◦ Y ))

(A ◦ d•⊗) d◦• (B • a◦⊗′) = a◦⊗′ d
•
⊗ (A.59)

(B ◦ a•⊕′) d◦• (A • d◦⊕) = d◦⊕ a
•
⊕′ (A.60)

(A ◦ d•⊗′) d◦• (B • a◦⊗) = a◦⊗ d
•
⊗′ (A.61)

(B ◦ a•⊕) d◦• (A • d◦⊕′) = d◦⊕′ a
•
⊕ (A.62)

A ◦ (X ⊗ (Y ⊕ Z))

a◦⊗

��

A◦d⊗⊕ // A ◦ ((X ⊗ Y )⊕ Z)

d◦⊕

��
(A ◦ (X ⊗ Y ))⊕ Z

a◦⊗⊕Z

��
(A ◦X)⊗ (Y ⊕ Z)

d
⊗
⊕ // ((A ◦X)⊗ Y )⊕ Z

A ◦ (X ⊗ (Z ⊕ Y ))

a◦⊗

��

A◦d⊗
′
⊕ // A ◦ (Z ⊕ (X ⊗ Y ))

d◦⊕′

��
Z ⊕ (A ◦ (X ⊗ Y ))

Z⊕a◦⊗

��
(A ◦X)⊗ (Z ⊕ Y )

d
⊗′
⊕ // Z ⊕ ((A ◦X)⊗ Y )

A ◦ ((Y ⊕ Z)⊗X)

a◦⊗′

��

A◦d⊕
′
⊗ // A ◦ ((Y ⊗X)⊕ Z)

d◦⊕

��
(A ◦ (Y ⊗X))⊕ Z

a◦⊗⊕Z

��
(Y ⊕ Z)⊗ (A ◦X)

d
⊕′
⊗ // (Y ⊗ (A ◦X))⊕ Z

A ◦ ((Z ⊕ Y )⊗X)

a◦⊗′

��

A◦d⊕⊗ // A ◦ (Z ⊕ (Y ⊗X))

d◦⊕′

��
Z ⊕ (A ◦ (Y ⊗X))

Z⊕a◦⊗′

��
(Z ⊕ Y )⊗ (A ◦X)

d
⊕
⊗ // Z ⊕ (Y ⊗ (A ◦X))
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((A •X)⊕ Y )⊗ Z

d
⊕
⊗

��

a•⊕⊗Z // (A • (X ⊕ Y ))⊗ Z

d•⊗

��
A • ((X ⊕ Y )⊗ Z)

A•d⊕⊗
��

(A •X)⊕ (Y ⊗ Z)

a•⊕ // A • (X ⊕ (Y ⊗ Z))

Z ⊗ ((A •X)⊕ Y )

d
⊗′
⊕

��

Z⊗a•⊕ // Z ⊗ (A • (X ⊕ Y ))

d•⊗′

��
A • (Z ⊗ (X ⊕ Y ))

A•d⊗
′
⊕

��
(A •X)⊕ (Z ⊗ Y )

a•⊕ // A • (X ⊕ (Z ⊗ Y ))

(X ⊕ (A • Y ))⊗ Z

d
⊕′
⊗

��

a•⊕′⊗Z // (A • (X ⊕ Y ))⊗ Z

d•⊗

��
A • ((X ⊕ Y )⊗ Z)

A•d⊕
′
⊗

��
(X ⊗ Z)⊕ (A • Y )

a•⊕′ // A • ((X ⊗ Z)⊕ Y )

Z ⊗ (X ⊕ (A • Y ))

d
⊗
⊕

��

Z⊗a•⊕′ // Z ⊗ (A • (X ⊕ Y ))

d•⊗′

��
A • (Z ⊗ (X ⊕ Y ))

A•d⊗⊕
��

(Z ⊗X)⊕ (A • Y )

a•⊕′ // A • ((Z ⊗X)⊕ Y )

(A ◦ d⊗⊕) d◦⊕ (a◦⊗ ⊕ Z) = a◦⊗ d
⊗
⊕ (A.63)

(A ◦ d⊗′⊕ ) d⊗
′

⊕ (Z ⊕ a◦⊗) = a◦⊗ d
⊗′
⊕ (A.64)

(A ◦ d⊕′⊗ ) d◦⊕ (a◦⊗′ ⊕ Z) = a◦⊗′ d
⊕′
⊗ (A.65)

(A ◦ d⊕⊗) d◦⊕′ (Z ⊕ a◦⊗′) = a◦⊗′ d
⊕
⊗ (A.66)

(a•⊕ ⊗ Z) d•⊗ (A • d⊕⊗) = d⊕⊗ a
•
⊕ (A.67)

(Z ⊗ a•⊕) d•⊗′ (A • d⊗′⊕ ) = d⊗
′

⊕ a•⊕ (A.68)

(a•⊕′ ⊗ Z) d•⊗ (A • d⊕′⊗ ) = d⊕
′

⊗ a•⊕′ (A.69)

(Z ⊗ a•⊕′) d•⊗′ (A • d⊗⊕) = d⊗⊕ a
•
⊕′ (A.70)

A ◦ ((Y ⊕ Z)⊗X)

A◦d⊕⊗

��

a◦⊗ // (A ◦ (Y ⊕ Z))⊗X

d◦⊕⊗X

��
((A ◦ Y )⊕ Z)⊗X

d
⊕
⊗

��
A ◦ (Y ⊕ (Z ⊗X))

d◦⊕ // (A ◦ Y )⊕ (Z ⊗X)

A ◦ ((Y ⊕ Z)⊗X)

A◦d⊕
′
⊗

��

a◦⊗ // (A ◦ (Y ⊕ Z))⊗X

d◦⊕′⊗X

��
(Y ◦ (A⊕ Z))⊗X

d
⊕′
⊗

��
A ◦ ((Y ⊗X)⊕ Z)

d◦⊕′ // (Y ⊗X)⊕ (A ◦ Z)
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A ◦ (X ⊗ (Y ⊕ Z))

A◦d⊗
′
⊕

��

a◦⊗′ // X ⊗ (A ◦ (Y ⊕ Z))

X⊗d◦⊕

��
A ◦ (Y ⊕ (X ⊗ Z))

d
⊗′
⊕

��
A ◦ (Y ⊕ (X ⊗ Z))

d◦⊕ // (A ◦ Y )⊕ (X ⊗ Z)

A ◦ (X ⊗ (Y ⊕ Z))

A◦d⊗⊕

��

a◦⊗′ // X ⊗ (A ◦ (Y ⊕ Z))

X⊗d◦⊕′

��
X ⊗ (Y ⊕ (A ◦ Z))

d
⊗
⊕

��
A ◦ ((X ⊗ Y )⊕ Z)

d◦⊕′ // (X ⊗ Y )⊕ (A ◦ Z)

(A • Y )⊗ (Z ⊕X)

d•⊗

��

d
⊗
⊕ // ((A • Y )⊗ Z)⊕X

d•⊗⊕X

��
(A • (Y ⊗ Z))⊕X

a•⊕

��
A • (Y ⊗ (Z ⊕X))

A•d⊗⊕ // A • ((Y ⊗ Z)⊕X)

(Z ⊕X)⊗ (A • Y )

d•⊗′

��

d
⊕′
⊗ // (Z ⊗ (A • Y ))⊕X

d•⊗′⊕X

��
(A • (Z ⊗ Y ))⊕X

a•⊕

��
A • ((Z ⊕X)⊗ Y )

A•d⊕
′
⊗ // A • ((Z ⊗ Y )⊕X)

(A • Y )⊗ (X ⊕ Z)

d•⊗

��

d
⊗′
⊕ // X ⊕ ((A • Y )⊗ Z)

X⊕d•⊗

��
X ⊕ (A • (Y ⊗ Z))

a•⊕′

��
A • (Y ⊗ (X ⊕ Z))

A•d⊗
′
⊕ // A • (X ⊕ (Y ⊗ Z))

(X ⊕ Y )⊗ (A • Z)

d•⊗′

��

d
⊕
⊗ // X ⊕ (Y ⊗ (A • Z))

X⊕d•⊗′

��
X ⊕ (A • (Y ⊗ Z))

a•⊕′

��
A • ((X ⊕ Y )⊗ Z)

A•d⊕⊗ // A • (X ⊕ (Y ⊗ Z))

a◦⊗ (d◦⊕ ⊗X) d⊕⊗ = (A ◦ d⊕⊗) d◦⊕ (A.71)

a◦⊗ (d◦⊕′ ⊗X) d⊕
′

⊗ = (A ◦ d⊕′⊗ ) d◦⊕′ (A.72)

a◦⊗′ (X ⊗ d◦⊕) d⊗
′

⊕ = (A ◦ d⊗′⊕ ) d◦⊕ (A.73)

a◦⊗′ (X ⊗ d◦⊕′) d⊗⊕ = (A ◦ d⊗⊕) d◦⊕′ (A.74)

d⊗⊕ (d•⊗ ⊕X) a•⊕ = d•⊗ (A • d⊗⊕) (A.75)

d⊕
′

⊗ (d•⊗′ ⊕X) a•⊕ = d•⊗′ (A • d⊕′⊗ ) (A.76)

d⊗
′

⊕ (X ⊕ d•⊗) a•⊕′ = d•⊗ (A • d⊗′⊕ ) (A.77)

d⊕⊗ (X ⊕ d•⊗′) a•⊕′ = d•⊗′ (A • d⊕⊗) (A.78)
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A ◦ (X ⊕ (Y ⊕ Z))

d◦⊕

��

A◦a⊕ // A ◦ ((X ⊕ Y )⊕ Z)

d◦⊕

��
(A ◦ (X ⊕ Y ))⊕ Z

d◦⊕⊕Z

��
(A ◦X)⊕ (Y ⊕ Z)

a⊕ // ((A ◦X)⊕ Y )⊕ Z

((A •X)⊗ Y )⊗ Z

a⊗

��

d•⊗⊗Z // (A • (X ⊗ Y ))⊗ Z

d•⊗

��
A • ((X ⊗ Y )⊗ Z)

A•a⊗

��
(A •X)⊗ (Y ⊗ Z)

d•⊗ // A • (X ⊗ (Y ⊗ Z))

A ◦ ((Z ⊕ Y )⊗X)

d◦⊕′

��

A◦a−1
⊕ // A ◦ (Z ⊕ (Y ⊕X))

d◦⊕′

��
Z ⊕ (A ◦ (Y ⊕X))

Z⊕d◦⊕′

��
(Z ⊕ Y )⊕ (A ◦X)

a
−1
⊕ // Z ⊕ (Y ⊕ (A ◦X))

Z ⊗ (X ⊗ (A • Y ))

a
−1
⊗

��

Z⊗d•⊗′ // Z ⊗ (A • (X ⊗ Y ))

d•⊗′

��
A • (Z ⊗ (X ⊗ Y ))

A•a−1
⊗

��
(Z ⊗X)⊗ (A • Y )

d•⊗′ // A • ((Z ⊗X)⊗ Y )

(X ⊗ (A • Y ))⊗ Z

a⊗

��

d•⊗′⊗Z // (A • (X ⊗ Y ))⊗ Z

d•⊗

��
X ⊗ ((A • Y )⊗ Z)

X⊗d•⊗

��

A • ((X ⊗ Y )⊗ Z)

A•a⊗

��
X ⊗ (A • (Y ⊗ Z))

d•⊗′ // A • (X ⊗ (Y ⊗ Z))

(A ◦ a⊕) d◦⊕ (d◦⊕ ⊕ Z) = d◦⊕ a⊕ (A.79)

(d•⊗ ⊗ Z) d•⊗ (A • a⊗) = a⊗ d
•
⊗ (A.80)

(A ◦ a−1
⊕ ) d◦⊕′ (Z ⊕ d◦⊕′) = d◦⊕′ a

−1
⊕ (A.81)

(Z ⊗ d•⊗′) d•⊗′ (A • a−1
⊗ ) = a−1

⊗ d•⊗′ (A.82)

(d•⊗′ ⊗ Z) d•⊗ (A • a⊗) = a⊗ (X ⊗ d•⊗) d•⊗′ (A.83)

(A ∗ B) ◦ (X ⊕ Y )

a∗
′
◦

��

a∗◦ // A ◦ (B ◦ (X ⊕ Y ))

A◦d◦⊕′

��
B ◦ (A ◦ (X ⊕ Y ))

B◦d◦⊕

��

A ◦ (X ⊕ (B ◦ Y ))

d◦⊕

��
B ◦ ((A ◦X)⊕ Y )

d◦⊕′ // (A ◦X)⊕ (B ◦ Y )

(A • (X ⊗ Y ))⊗ (B • Z)

d•⊗′

��

d•⊗ // A • ((X ⊗ Y )⊗ (B • Z))

A•d•⊗′

��
B • ((A • (X ⊗ Y ))⊗ Z)

B•d•⊗

��

A • (B • ((X ⊗ Y )⊗ Z))

a∗•

��
B • (A • ((X ⊗ Y )⊗ Z))

a∗
′
• // (A ∗ B) • ((X ⊗ Y )⊗ Z)
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(A ∗ B) ◦ (X ⊕ Y )

a∗
′
◦

��

a∗◦ // A ◦ (B ◦ (X ⊕ Y ))

A◦d◦⊕

��
B ◦ (A ◦ (X ⊕ Y ))

B◦d◦⊕′

��

A ◦ ((B ◦X)⊕ Y )

d◦⊕′

��
B ◦ (X ⊕ (A ◦ Y ))

d◦⊕ // (B ◦X)⊕ (A ◦ Y )

(B • Z)⊗ (A • (X ⊗ Y ))

d•⊗

��

d•⊗′ // A • ((B • Z)⊗ (X ⊗ Y ))

A•d•⊗

��
B • (Z ⊗ (A • (X ⊗ Y )))

B•d•⊗′

��

A • (B • (Z ⊗ (X ⊗ Y )))

a∗•

��
B • (A • (Z ⊗ (X ⊗ Y )))

a∗
′
• // (A ∗ B) • (Z ⊗ (X ⊗ Y ))

a∗◦ (A ◦ d◦⊕′) d◦⊕ = a∗
′

◦ (B ◦ d◦⊕) d◦⊕′ (A.84)

d•⊗ (A • d•⊗′) a∗• = d•⊗′ (B • d•⊗) a∗
′

• (A.85)

a∗◦ (A ◦ d◦⊕) d◦⊕′ = a∗
′

◦ (B ◦ d◦⊕′) d◦⊕ (A.86)

d•⊗′ (A • d•⊗) a∗• = d•⊗ (B • d•⊗′) a∗
′

• (A.87)

A ◦ ((B •X)⊗ Y )

A◦d•⊗

��

a◦⊗ // (A ◦ (B •X))⊗ Y

d◦•⊗Y

��
A ◦ (B • (X ⊗ Y ))

d◦•

��

(B • (A ◦X))⊗ Y

d•⊗

��
B • (A ◦ (X ⊗ Y ))

B•a◦⊗ // B • ((A ◦X)⊗ Y )

A ◦ (Y ⊗ (B •X))

A◦d•⊗′

��

a◦⊗′ // Y ⊗ (A ◦ (B •X))

Y⊗d◦•

��
A ◦ (B • (Y ⊗X))

d◦•

��

Y ⊗ (B • (A ◦X))

d•⊗′

��
B • (A ◦ (Y ⊗X))

B•a◦⊗′ // B • (Y ⊗ (A ◦X))

B ◦ ((A •X)⊕ Y )

B◦a•⊕

��

d◦⊕ // (B ◦ (A •X))⊕ Y

d◦•⊕Y

��
B ◦ (A • (X ⊕ Y ))

d◦•

��

(A • (B ◦X))⊕ Y

a•⊕

��
A • (B ◦ (X ⊕ Y ))

A•d◦⊕ // A • ((B ◦X)⊕ Y )

B ◦ (Y ⊕ (A •X))

B◦a•⊕′

��

d◦⊕′ // Y ⊕ (B ◦ (A •X))

Y⊕d◦•

��
B ◦ (A • (Y ⊕X))

d◦•

��

Y ⊕ (A • (B ◦X))

a•⊕′

��
A • (B ◦ (Y ⊕X))

A•d◦⊕′ // A • (Y ⊕ (B ◦X))

a◦⊗ (d◦• ⊗ Y ) d•⊗ = (A ◦ d•⊗) d◦• (B • a◦⊗) (A.88)

a◦⊗′ (Y ⊗ d◦•) d•⊗′ = (A ◦ d•⊗′) d◦• (B • a◦⊗′) (A.89)

d◦⊕ (d◦• ⊕ Y ) a•⊕ = (B ◦ a•⊕) d◦• (A • d◦⊕) (A.90)

d◦⊕′ (Y ⊕ d◦•) a•⊕′ = (B ◦ a•⊕′) d◦• (A • d◦⊕′) (A.91)
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A ◦ ((B •X)⊕ Y )

A◦a•⊕

��

d◦⊕ // (A ◦ (B •X))⊕ Y

d◦•⊕Y

��
A ◦ (B • (X ⊕ Y ))

d◦•

��

(B • (A ◦X))⊕ Y

a•⊕

��
B • (A ◦ (X ⊕ Y ))

B•d◦⊕ // B • ((A ◦X)⊕ Y )

A ◦ (Y ⊕ (B •X))

A◦a•⊕′

��

d◦⊕′ // Y ⊕ (A ◦ (B •X))

Y⊕d◦•

��
A ◦ (B • (Y ⊕X))

d◦•

��

Y ⊕ (B • (A ◦X))

a•⊕′

��
B • (A ◦ (Y ⊕X))

B•d◦⊕′ // B • (Y ⊕ (A ◦X))

B ◦ ((A •X)⊗ Y )

B◦d•⊗

��

a◦⊗ // (B ◦ (A •X))⊗ Y

d◦•⊗Y

��
B ◦ (A • (X ⊗ Y ))

d◦•

��

(A • (B ◦X))⊗ Y

d•⊗

��
A • (B ◦ (X ⊗ Y ))

A•a◦⊗ // A • ((B ◦X)⊗ Y )

B ◦ (Y ⊗ (A •X))

B◦d•⊗′

��

a◦⊗′ // Y ⊗ (B ◦ (A •X))

Y⊗d◦•

��
B ◦ (A • (Y ⊗X))

d◦•

��

Y ⊗ (A • (B ◦X))

d•⊗′

��
A • (B ◦ (Y ⊗X))

A•a◦⊗′ // A • (Y ⊗ (B ◦X))

d◦⊕ (d◦• ⊕ Y ) a•⊕ = (A ◦ a•⊕) d◦• (B • d◦⊕) (A.92)

d◦⊕′ (Y ⊕ d◦•) a•⊕′ = (A ◦ a•⊕′) d◦• (B • d◦⊕′) (A.93)

a◦⊗ (d◦• ⊗ Y ) d•⊗ = (B ◦ d•⊗) d◦• (A • a◦⊗) (A.94)

a◦⊗′ (Y ⊗ d◦•) d•⊗′ = (B ◦ d•⊗′) d◦• (A • a◦⊗′) (A.95)

Unit and counit: The following diagrams must commute for unit and counit.

X

u•

��

nI,X // I • (I ◦X)

I•u◦yyssssssssss

I ◦X

I ◦X

u◦

��

I◦u• // I ◦ (I •X)

eI,X

yyssssssssss

X

I ◦ (I •X)

u◦

��

eI,X // X

u•
zzuuuuuuuuu

I •X

nI,X (I • u◦) = u• (A.96)

(I ◦ u•) eI,X = u◦ (A.97)

eI,X u• = u◦ (A.98)

X

nA,X

��

nA∗B,X // (A ∗ B) • ((A ∗ B) ◦X)

(A∗B)•a∗
′
◦

��

(A • (A ◦X))

A•nB,A◦X

��
A • (B • (B ◦ (A ◦X)))

a∗• // (A ∗ B) • (B ◦ (A ◦X))

(A ∗ B) ◦ (B • (A •X))

a∗◦

��

(A∗B)◦a∗
′
• // (A ∗ B) ◦ ((A ∗ B) •X)

eA∗B,X

��

A ◦ (B ◦ (B • (A •X)))

A◦eB,A•X

��
A ◦ (A •X)

eA,X // X
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nA∗B,X (A ∗B) • a∗′◦ = nA,X A • nB,A◦X (A.99)

(A ∗B) ◦ a∗′• eA∗B,X = a∗◦ A ◦ eB,A•X (A.100)

X ⊗ Y

nA,X⊗Y

��

nA,X⊗Y // A • (A ◦ (X ⊗ Y ))

A•a◦⊗

��
(A • (A ◦X))⊗ Y

d•⊗ // A • ((A ◦X)⊗ Y )

A ◦ ((A •X)⊕ Y )

d◦⊕

��

A◦a•⊕ // A ◦ (A • (X ⊕ Y ))

eA,X⊕Y

��
(A ◦ (A •X))⊕ Y

eA,X⊕Y // X ⊕ Y

Y ⊗X

Y⊗nA,X

��

nA,Y⊗X // A • (A ◦ (Y ⊗X))

A•a◦⊗′

��
Y ⊗ (A • (A ◦X))

d•⊗′ // A • (Y ⊗ (A ◦X))

A ◦ (Y ⊕ (A •X))

d◦⊕′

��

A◦a•⊕′ // A ◦ (A • (Y ⊕X))

eA,Y⊕X

��
Y ⊕ (A ◦ (A •X))

Y⊕eA,X // Y ⊕X

nA,X⊗Y (A • a◦⊗) = (nA,X ⊗ Y ) d•⊗ (A.101)

(A ◦ a•⊕) eA,X⊕Y = d◦⊕ (eA,X ⊕ Y ) (A.102)

nA,Y⊗X (A • a◦⊗′) = (Y ⊗ nA,X) d•⊗′ (A.103)

(A ◦ a•⊕′) eA,Y⊕X = d◦⊕′ (Y ⊕ eA,X) (A.104)

X ⊕ Y

nA,X⊕Y

��

nA,X⊕Y // A • (A ◦ (X ⊕ Y ))

A•d◦⊕

��
(A • (A ◦X))⊕ Y

a•⊕ // A • ((A ◦X)⊕ Y )

A ◦ ((A •X)⊗ Y )

a◦⊗

��

A◦d•⊗ // A ◦ (A • (X ⊗ Y ))

eA,X⊗Y

��
(A ◦ (A •X))⊗ Y

eA,X⊗Y // X ⊗ Y

Y ⊕X

Y⊕nA,X

��

nA,Y⊕X // A • (A ◦ (Y ⊕X))

A•d◦⊕′

��
Y ⊕ (A • (A ◦X))

a•⊕′ // A • (Y ⊕ (A ◦X))

A ◦ (Y ⊗ (A •X))

a◦⊗′

��

A◦d•⊗′ // A ◦ (A • (Y ⊗X))

eA,Y⊗X

��
Y ⊗ (A ◦ (A •X))

Y⊗eA,X // Y ⊗X

nA,X⊕Y (A • d◦⊕) = (nA,X ⊕ Y ) a•⊕ (A.105)

(A ◦ d•⊗) eA,X⊗Y = a◦⊗ (eA,X ⊗ Y ) (A.106)

nA,Y⊕X (A • d◦⊕′) = (Y ⊕ nA,X) a•⊕′ (A.107)

(A ◦ d•⊗′) eA,Y⊗X = a◦⊗′ (Y ⊗ eA,X) (A.108)
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Appendix B

Coherence Conditions for Linear Functors

For linear functors, there are four linear strengths satisfying the following coherence condi-

tions:

l−1
⊗ (m> ⊗ 1) vR⊕ = F̄ (l−1

⊗ )

r−1
⊗ (1⊗m>) vL⊕ = F̄ (r−1

⊗ )

The above two equations are shown in the following two diagrams:

F̄ (A)

F̄ (l−1
⊗ )

��

l−1
⊗ // >⊗ F̄ (A)

m>⊗1

��
F̄ (>⊗ A) F (>)⊗ F̄ (A)

vR
⊕

oo

F̄ (A)

F̄ (r−1
⊗ )

��

r−1
⊗ // F̄ (A)⊗>

1⊗m>
��

F̄ (A⊗>) F̄ (A)⊗ F (>)
vL
⊕

oo

vR⊗ (n⊥ ⊕ 1) l⊕ = F (l⊕)

vL⊗ (1⊕ n⊥) r⊕ = F (r⊕)

The diagrams of the above two equations are as follows:

F (⊥⊕ A)

vR
⊗

��

F (l⊕) // F (A)

F̄ (⊥)⊕ F (A)
n⊥⊕1 // ⊥⊕ F (A)

l⊕

OO
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F (A⊕⊥)

vL
⊗

��

F (r⊕) // F (A)

F (A)⊕ F̄ (⊥)
1⊕n⊥ // F (A)⊕⊥

r⊕

OO

F (a⊕) vR⊗ (1⊕ vR⊗) = vR⊗ (n⊕ ⊕ 1) a⊕

F (a⊕) vL⊗ (1⊕ n⊕) = vL⊗ (vL⊗ ⊕ 1) a⊕

(m⊗ ⊗ 1) vR⊕ F̄ (a⊗) = a⊗ (1⊗ vR⊕) vR⊕

(vL⊕ ⊗ 1) vL⊕ F̄ (a⊗) = a⊗ (1⊗m⊗) vL⊕

The above four coherence conditions can be represented by the following four diagrams:

F ((A⊕B)⊕ C)

vR
⊗

��

F (a⊕) // F (A⊕ (B ⊕ C))

vR
⊗

��
F̄ (A⊕B)⊕ F (C)

n⊕⊕1

��

F̄ (A)⊕ F (B ⊕ C)

1⊕vR
⊗

��
(F̄ (A)⊕ F̄ (B))⊕ F (C)

a⊕ // F̄ (A)⊕ (F̄ (B)⊕ F (C))

F ((A⊕B)⊕ C)

vL
⊗

��

F (a⊕) // F (A⊕ (B ⊕ C))

vL
⊗

��
F (A⊕B)⊕ F̄ (C)

vL
⊗⊕1

��

F (A)⊕ F̄ (B ⊕ C)

1⊕n⊕
��

(F (A)⊕ F̄ (B))⊕ F̄ (C)
a⊕ // F (A)⊕ (F̄ (B)⊕ F̄ (C))
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(F (A)⊗ F (B))⊗ F̄ (C)

a⊗
��

m⊗⊗1 // F (A⊗B)⊗ F̄ (C)

vR
⊕

��
F (A)⊗ (F (B)⊗ F̄ (C))

1⊗vR
⊕

��

F̄ ((A⊗B)⊗ C)

F̄ (a⊗)
��

F (A)⊗ F̄ (B ⊗ C)
vR
⊕ // F̄ (A⊗ (B ⊗ C))

(F̄ (A)⊗ F (B))⊗ F (C)

a⊗
��

vL
⊕⊗1

// F̄ (A⊗B)⊗ F (C)

vL
⊕

��
F̄ (A)⊗ (F (B)⊗ F (C))

1⊗m⊗
��

F̄ ((A⊗B)⊗ C)

F̄ (a⊗)
��

F̄ (A)⊗ F (B ⊗ C)
vL
⊕ // F̄ (A⊗ (B ⊗ C))

F (a⊕) vR⊗ (1⊕ vL⊗) = vL⊗ (vR⊗ ⊕ 1) a⊕

(vR⊕ ⊗ 1) vL⊕ F̄ (a⊗) = a⊗ (1⊗ vL⊕) vR⊕

Diagrammatically, the above two equations are as follows:

F ((A⊕B)⊕ C)

vL
⊗

��

F (a⊕) // F (A⊕ (B ⊕ C))

vR
⊗

��
F (A⊕B)⊕ F̄ (C)

vR
⊗⊕1

��

F̄ (A)⊕ F (B ⊕ C)

1⊕vL
⊗

��
(F̄ (A)⊕ F (B))⊕ F̄ (C)

a⊕ // F̄ (A)⊕ (F (B)⊕ F̄ (C))
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(F (A)⊗ F̄ (B))⊗ F (C)

a⊗
��

vR
⊕⊗1

// F̄ (A⊗B)⊗ F (C)

vL
⊕

��
F (A)⊗ (F̄ (B)⊗ F (C))

1⊗vL
⊕

��

F̄ ((A⊗B)⊗ C)

F̄ (a⊗)
��

F (A)⊗ F̄ (B ⊗ C)
vR
⊕ // F̄ (A⊗ (B ⊗ C))

(1⊗ vR⊗) d⊗⊕ (vR⊕ ⊕ 1) = m⊗ F (d⊗⊕) vR⊗

(vL⊗ ⊗ 1) d⊕⊗ (1⊕ vL⊕) = m⊗ F (d⊕⊗) vL⊗

(1⊗ vL⊗) d⊗⊕ (vL⊕ ⊕ 1) = vL⊕ F̄ (d⊗⊕) n⊕

(vR⊗ ⊗ 1) d⊕⊗ (1⊕ vR⊕) = vR⊕ F̄ (d⊕⊗) n⊕

In a diagrammatic way, the above four coherence conditions are as follows:

F (A)⊗ F (B ⊕ C)

m⊗

��

1⊗vR
⊗// F (A)⊗ (F̄ (B)⊕ F (C))

d⊗⊕
��

F (A⊗ (B ⊕ C))

F (d⊗⊕)

��

(F (A)⊗ F̄ (B))⊕ F (C)

vR
⊕⊕1

��
F ((A⊗B)⊕ C)

vR
⊗ // F̄ (A⊗B)⊕ F (C)

F (A⊕B)⊗ F (C)

m⊗

��

vL
⊗⊗1

// (F (A)⊕ F̄ (B))⊗ F (C)

d⊕⊗
��

F ((A⊕B)⊗ C)

F (d⊕⊗)

��

F (A)⊕ (F̄ (B)⊗ F (C))

1⊕vL
⊕

��
F (A⊕ (B ⊗ C))

vL
⊗ // F (A)⊕ F̄ (B ⊗ C)
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F̄ (A)⊗ F (B ⊕ C)

vL
⊕

��

1⊗vL
⊗// F̄ (A)⊗ (F (B)⊕ F̄ (C))

d⊗⊕
��

F̄ (A⊗ (B ⊕ C))

F̄ (d⊗⊕)
��

(F̄ (A)⊗ F (B))⊕ F̄ (C)

vL
⊕⊕1

��
F̄ ((A⊗B)⊕ C)

n⊕ // F̄ (A⊗B)⊕ F̄ (C)

F (A⊕B)⊗ F̄ (C)

vR
⊕

��

vR
⊗⊗1

// (F̄ (A)⊕ F (B))⊗ F̄ (C)

d⊕⊗
��

F̄ ((A⊕B)⊗ C)

F̄ (d⊕⊗)
��

F̄ (A)⊕ (F (B)⊗ F̄ (C))

1⊕vR
⊕

��
F̄ ((A⊗B)⊕ C)

n⊕ // F̄ (A⊗B)⊕ F̄ (C)

(1⊗ vL⊗) d⊗⊕ (m⊗ ⊕ 1) = m⊗ F (d⊗⊕) vL⊗

(vR⊗ ⊗ 1) d⊕⊗ (1⊕m⊗) = m⊗ F (d⊕⊗) vR⊗

(1⊗ n⊕) d⊗⊕ (vR⊕ ⊕ 1) = vR⊕ F̄ (d⊗⊕) n⊕

(n⊕ ⊗ 1) d⊕⊗ (1⊕ vL⊕) = vL⊕ F̄ (d⊕⊗) n⊕

The following four diagrams illustrates the above four equations:

F (A)⊗ F (B ⊕ C)

m⊗

��

1⊗vL
⊗// F (A)⊗ (F̄ (B)⊕ F̄ (C))

d⊗⊕
��

F (A⊗ (B ⊕ C))

F (d⊗⊕)

��

(F (A)⊗ F (B))⊕ F̄ (C)

m⊗⊕1

��
F ((A⊗B)⊕ C)

vL
⊗ // F̄ (A⊗B)⊕ F̄ (C)
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F (A⊕B)⊗ F (C)

m⊗

��

vR
⊗⊗1

// (F (A)⊕ F (B))⊗ F (C)

d⊕⊗
��

F ((A⊕B)⊗ C)

F (d⊕⊗)

��

F̄ (A)⊕ (F (B)⊗ F (C))

1⊕m⊗
��

F (A⊕ (B ⊗ C))
vR
⊗ // F̄ (A)⊕ F (B ⊗ C)

F (A)⊗ F̄ (B ⊕ C)

vR
⊕

��

1⊗n⊕// F (A)⊗ (F̄ (B)⊕ F̄ (C))

d⊗⊕
��

F̄ (A⊗ (B ⊕ C))

F̄ (d⊗⊕)
��

(F (A)⊗ F̄ (B))⊕ F̄ (C)

vR
⊕⊕1

��
F̄ ((A⊗B)⊕ C)

n⊕ // F̄ (A⊗B)⊕ F̄ (C)

F̄ (A⊕B)⊗ F (C)

vL
⊕

��

n⊕⊗1// (F̄ (A)⊕ F̄ (B))⊗ F (C)

d⊕⊗
��

F̄ ((A⊕B)⊗ C)

F̄ (d⊕⊗)
��

F̄ (A)⊕ (F̄ (C)⊗ F̄ (C))

1⊕vL
⊕

��
F̄ (A⊕ (B ⊗ C))

n⊕ // F̄ (A)⊕ F̄ (B ⊗ C)

In the symmetric case,

vR⊗ c⊕ = F (c⊕) vL⊗

F (A⊕B)

F (c⊕)

��

vR
⊗ // F̄ (A)⊕ F (B)

c⊕
��

F (B ⊕ A)
vL
⊗ // F (B)⊕ F̄ (A)
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