
UNIVERSITY OF CALGARY

Floey, an Intermediate Language for Optimizing Compilers

by

Ning Tang

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

July, 2008

c© Ning Tang 2008



THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a thesis entitled “Floey, an Intermediate Language for Optimiz-

ing Compilers” submitted by Ning Tang in partial fulfillment of the requirements for the

degree of Master of Science.

Supervisor, Dr. J. Robin Cockett
Department of Computer Science

Dr. Rob Simmonds
Department of Computer Science

Dr. Laurence E. Turner
Department of Electrical & Com-
puter Engineering

Date

ii



Abstract

In modern optimizing compilers, linear human-readable text representation of a program

is first transformed into an abstract syntax tree that represents the structure of that program.

Abstract syntax tree is then transformed into intermediate representation (IR), based on

which compiler optimizations are accomplished. The optimized IR is sent to the code

generator and finally translated into assembly or machine code. Research on IRs has been

focused on how they can be designed to facilitate compiler optimizations or more effective

code generation on specific architecture.

This thesis presents a mid-level intermediate language, called Floey. In a Floey pro-

gram, control flowgraphs are separated into different tree-like structures called control

expressions. Different control expressions are connected by entries.

On Floey, a machine independent optimization, called the reduction algorithm, is im-

plemented. By comparing the reduction algorithm to various conventional optimizations,

we argue that not only Floey facilities compiler optimization design, it also provides a

cleaner and uniform perspective on compiler optimizations in general.

iii



Acknowledgements

It is a great pleasure to thank the many people who made this thesis possible.

I wish to thank my supervisor, Dr. Robin Cockett. He is not only a wonderful mentor,

working with me day and night all these years, but also a good friend, from whom I have

so much to learn beyond the contents of this thesis.

Thank you to my proof-readers, Xiuzhan Guo and Brian Redmond.

Thank you to Pieter Hofstra for helping me on Category Theory.

Thank you to Brett Giles and Sean Nichols for helping me on LATEX and Haskell.

I would also like to thank all my friends in Calgary for being there with me through

out the good times and the difficult ones.

My special thanks go Ying Wang, my Baobao, for being the motivation and inspiration

of my life.

Lastly, and most importantly, I wish to thank my parents, Riming Tang and Meixiu

Liu, for their selfless support and the sacrifices they have made since the day I was born.

iv



Dedicated to my wonderful parents, Riming Tang and Meixiu Liu, and to my lovely

girlfriend Ying Wang.

v



Table of Contents

Approval Page ii

Abstract iii

Acknowledgements iv

Table of Contents vi

1 Introduction 1
1.1 Intermediate representation in optimizing compilers . . . . . . . . . . . . 1
1.2 Control flow graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Limitations and motivations . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Introduction to Floey 10
2.1 Floey overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Data declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Control operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Control expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.1 Exit statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.2 Return statements . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.3 Control statements . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.4 Case statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.5 Assignment statements . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.6 Loop expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Type system of Floey 27
3.1 Floey type system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 The inference rules for expressions . . . . . . . . . . . . . . . . 28
3.1.2 The inference rules for control expressions . . . . . . . . . . . . 29
3.1.3 The inference rules for functions and control operations . . . . . 32

3.2 Equalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Basic equalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Decision equalities . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Consequences of decision equalities . . . . . . . . . . . . . . . . 38

vi



3.2.4 Loop equalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.5 Consequences of loop equalities . . . . . . . . . . . . . . . . . . 44

4 Control normal form for Floey programs 54
4.1 Normalizing expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Constant folding . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.2 Expression expansion . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.3 Expression collection . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Normalizing variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.1 Static single assignment form . . . . . . . . . . . . . . . . . . . 58
4.2.2 Copy and constant propagation . . . . . . . . . . . . . . . . . . . 60

4.3 Normalizing the entry structure . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.1 Entry renaming . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.2 Local entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.3 Entry promotion . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.4 Entry collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.5 Entry binding reduction . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Normalizing loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.1 Loop renaming . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.2 Infinite loop reduction . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.3 Unlooping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.4 Loop binding reduction . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.5 Loop amalgamation . . . . . . . . . . . . . . . . . . . . . . . . 70

5 The Reduction Algorithm for Floey Programs 71
5.1 Repeat reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Overview of repeat reduction algorithm . . . . . . . . . . . . . . 72
5.1.2 Exit and return statements . . . . . . . . . . . . . . . . . . . . . 73
5.1.3 Control statements . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.4 Case statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.5 Assignment statements . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.6 Loop expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 The reduction algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.1 Overview of reduction algorithm . . . . . . . . . . . . . . . . . . 79
5.2.2 Identify semi-essentials . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.3 Pulling up decisions . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.4 Idempotent reduction . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.5 Elimination factoring . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.6 Loop reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Invariant code removal . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

vii



5.3.1 Overview of invariant code removal . . . . . . . . . . . . . . . . 98
5.3.2 Pulling out semi-essentials from loop . . . . . . . . . . . . . . . 100
5.3.3 Pulling out arbitrary loop invariant decisions . . . . . . . . . . . 102
5.3.4 Flipping loop headers . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Conclusion 107
6.1 Floey intermediate language . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Optimizations in control normalization . . . . . . . . . . . . . . . . . . . 109

6.2.1 Constant folding . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2.2 Static Single Assignment form . . . . . . . . . . . . . . . . . . . 109
6.2.3 Copy and constant propagations . . . . . . . . . . . . . . . . . . 110
6.2.4 Unreachable code elimination . . . . . . . . . . . . . . . . . . . 111

6.3 Optimizations in the repeat reduction and the reduction algorithm . . . . 111
6.3.1 Common sub-expression elimination . . . . . . . . . . . . . . . 112
6.3.2 If simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.3 Partial dead code elimination . . . . . . . . . . . . . . . . . . . . 113

6.4 Loop related optimizations . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.4.1 Loop dead elimination . . . . . . . . . . . . . . . . . . . . . . . 116
6.4.2 Loop invariant code motion . . . . . . . . . . . . . . . . . . . . 117
6.4.3 Loop unswitching . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4.4 Loop unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4.5 Loop interchange . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A Floey Grammar 121
A.1 Floey Header: FloeyHeader . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.2 Floey program: Floey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.3 Floey Definitions: FloeyDefs . . . . . . . . . . . . . . . . . . . . . . . . 121

A.3.1 Data declaration: FloeyData . . . . . . . . . . . . . . . . . . . . 122
A.3.2 Array declaration: FloeyArray . . . . . . . . . . . . . . . . . . . 123
A.3.3 Control operation definition: FloeyControl . . . . . . . . . . . . 123
A.3.4 Function definition: FloeyFun . . . . . . . . . . . . . . . . . . . 124

A.4 Entry and control expression: ConExp Entries . . . . . . . . . . . . . . . 125
A.4.1 Entry: Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.4.2 Control expression: ConExp . . . . . . . . . . . . . . . . . . . . 125

A.5 Expression: Exp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B Source Code 128
B.1 Data structures used in the Floey compiler . . . . . . . . . . . . . . . . . 128
B.2 Normalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.3 Repeat reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

viii



B.4 The reduction algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 141
B.5 Invariant code removal . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

ix



List of Tables

1.1 Irreducible control flow graphs . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Loop invariant code motion modifies basic block structures . . . . . . . . 8

2.1 An example of Floey entries . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 The inference rules for expressions . . . . . . . . . . . . . . . . . . . . . 28
3.2 The inference rules for control expressions . . . . . . . . . . . . . . . . . 29
3.3 The inference rules for functions and control operations . . . . . . . . . . 33

4.1 Expression expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Expression collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Static Single Assignment form . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Copy and constant propagation . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Entry promotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 Reducing infinite loops . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7 Unlooping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.8 Removing unused or unchanged loop variables . . . . . . . . . . . . . . 69
4.9 Loop amalgamation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Repeat reduction on control statements . . . . . . . . . . . . . . . . . . . 74
5.2 Repeat reduction on case statements . . . . . . . . . . . . . . . . . . . . 76
5.3 Common sub-expression elimination . . . . . . . . . . . . . . . . . . . . 77
5.4 Repeat reduction on case and assignment statements . . . . . . . . . . . . 78
5.5 Semi-essentials with different branch variables . . . . . . . . . . . . . . 82
5.6 Pulling up semi-essentials . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.7 Idempotent reduction on multiple decisions . . . . . . . . . . . . . . . . 87
5.8 Idempotent reduction on unary decisions . . . . . . . . . . . . . . . . . . 88
5.9 The reduction algorithm on assignments . . . . . . . . . . . . . . . . . . 90
5.10 Another example of the reduction algorithm . . . . . . . . . . . . . . . . 90
5.11 Pushing unary decisions into loops . . . . . . . . . . . . . . . . . . . . . 91
5.12 Pushing multiple decisions into loops . . . . . . . . . . . . . . . . . . . 92
5.13 Invariant decision left in loop . . . . . . . . . . . . . . . . . . . . . . . . 93
5.14 Potential semi-essentials . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.15 Invariant code removal . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.16 Pulling out semi-essentials from loops . . . . . . . . . . . . . . . . . . . 101
5.17 Pulling out arbitrary invariant decisions . . . . . . . . . . . . . . . . . . 103
5.18 Flipping loop headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1 Partial dead code elimination . . . . . . . . . . . . . . . . . . . . . . . . 114

x



6.2 Loop dead elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3 Loop dead elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.4 Loop invariant code motion . . . . . . . . . . . . . . . . . . . . . . . . . 118

xi



List of Figures

1.1 Structure of modern optimizing compilers . . . . . . . . . . . . . . . . . 2
1.2 Control Flow Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Floey program structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 A typical Floey program . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Floey data declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 List of polymorphic type “a” . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Floey function definition . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 A recursive function to calculate the GCD . . . . . . . . . . . . . . . . . 15
2.7 Floey control operation definition . . . . . . . . . . . . . . . . . . . . . 16
2.8 Illegal cyclic entry calls . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.9 A function to calculate the GCD using iteration . . . . . . . . . . . . . . 19

5.1 Repeat reduction algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Repeat reduction algorithm on loop expressions . . . . . . . . . . . . . . 78
5.3 The reduction algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4 Identify semi-essentials from a control expression . . . . . . . . . . . . . 81
5.5 Pulling up semi-essentials . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6 Idempotent reduction algorithm . . . . . . . . . . . . . . . . . . . . . . 86
5.7 The elimination factor algorithm . . . . . . . . . . . . . . . . . . . . . . 89
5.8 The modified elimination factor algorithm . . . . . . . . . . . . . . . . . 94
5.9 Loop reduction algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.10 Invariant code removal algorithm . . . . . . . . . . . . . . . . . . . . . . 98
5.11 Pulling out semi-essentials from loop . . . . . . . . . . . . . . . . . . . . 100
5.12 Pulling out all loop invariant code . . . . . . . . . . . . . . . . . . . . . 102

xii



Chapter 1

Introduction

This thesis introduces a language, called Floey, which is an intermediate representation

designed to facilitate the implementation of compiler optimizations. The Floey language

is essentially a flow diagram language for reducible flow graphs. However, it is organized

around extended blocks and, thus, Floey expressions are trees, on which optimization tech-

niques are generally simpler to implement. An optimization technique for Floey programs,

the reduction algorithm, is presented. The implementation of the reduction algorithm on

Floey programs provides a different and more uniform perspective on compiler optimiza-

tions which we hope may be of benefit to the design of optimizing compilers in general.

Section 1.1 gives a general introduction to the structure of optimizing compilers and

the role of intermediate representations in compiler designs. Section 1.2 introduces the

concept of control flow graph. The limitations of the control flow graph based approaches

and the motivations of our work are discussed in section 1.3. The general organizations of

the thesis is present in section 1.4.

1.1 Intermediate representation in optimizing compilers

In modern optimizing compilers [Aho et al., 2007; Appel, 1998; Muchnick, 1997], linear

human-readable text representation of a program is first transformed into an abstract syn-

tax tree that represents the structure of that program. The syntactic and semantic checking

are both done in this phase. These steps are generally categorized as the “front end” of the

1



2

String of characters
��

Scanner

String of tokens
��

Parser

Abstract syntax tree
��

Semantic checker

Intermediate representation
��

Optimizer

Intermediate representation
��

Code generator

Assembly or machine code

��

Figure 1.1: Structure of modern optimizing compilers

compiling process. In the output of the “front end”, the abstract syntax tree is transformed

into intermediate representation (IR), based on which compiler optimizations are ac-

complished. The optimized IR is then sent to the code generator, regarded as the back end

of compilers, and is finally translated into assembly or machine code. A general structure

of optimizing compilers is given in figure 1.1 (more detailed discussions in [Muchnick,

1997]).

From figure 1.1, we can see that IRs are the data structures that optimizers work on.

There is an obvious advantage of this design: IRs ease the task of implementing compilers

with multiple front ends and back ends, as all the front ends have a uniform target, while

all the back ends have a uniform source. No matter how many front ends and back ends



3

a compiler has, each optimization is only implemented once on a specific IR. Moreover,

a compiler can use different IRs for different optimizations it performs. For example in

the compilers of GNU Compiler Collection (GCC), there are three different IRs: Register

Transfer Language (RTL), GENERIC and GIMPLE [Novillo, 2003, 2004], each of these

are useful for the implementation of specific compiler optimizations. All the transforma-

tions between different IRs are done in the optimizer, which can be seen as a black box

from other parts of compiler.

Intermediate representations are often vaguely categorized into three abstract levels:

high-level, mid-level and low-level. The higher the level is, the closer the IR is to the

source program. The lower the level is, the more architecture dependent and more closely

it resembles machine code (or assembly). High-level and mid-level IRs often facili-

tates machine independent optimizations, for example common sub-expression elimina-

tion [Cocke, J., 1970; Ullman, 1972] and dead code elimination [Aho et al., 2007]. While

on low-level IRs, instruction level optimizations are easier to implement, for example the

instruction selection [Aho and Johnson, 1976] and register allocation [Briggs, P., 1992].

Research on IRs has been focused on how they can be designed to facilitate com-

piler optimizations or more effective code generation on specific architecture [Click and

Paleczny, 1995; Wells, 2004]. In this thesis, we introduce a mid-level intermediate lan-

guage, called Floey, and present a machine independent optimization on Floey, called the

reduction algorithm. We wish to show how Floey can be used to assist in the implementa-

tion of compiler optimizations, and how it may provide a cleaner organization for compiler

optimization designs in general.



4

1.2 Control flow graphs

Most compiler optimizations rely on control flow information, which is often expressed as

Control Flow Graph (CFG). A control flow graph is a directed flow graph with program

statements as nodes and program execution flows as arrows. Two artificial nodes, called

“begin” and “end”, are often added into a CFG indicating the begin and the end of the

program. Figure 1.2 shows a typical CFG of a computer program. Every node other than

the “begin” and the “end” represents a statement in the program. The statements are linked

by directed arrows as execution flow. For instance, after executing S1, S2 will be executed

(assuming S1 terminates). After S3, either S4 or S6 will be executed (again assuming S3

terminates).

There is a special kind of CFGs, called reducible CFG, that attract the most attention

in programming language research, as these CFGs have various properties that facilitate

optimization [Hecht and Ullman, 1974]. There are several equivalent definitions of re-

ducible CFG. Here we will use the definition based on collapsing (see [Aho et al., 2007;

Hecht, 1977] for other definitions). A control flow graph is reducible if and only if re-

peated application of the following two actions yields a CFG with only one node [Hecht,

1977], otherwise it is called an irreducible or nonreducible CFG.

• T1: Let G be a flow graph and let (w,w) be an arrow of G. T1 is the removal of this

arrow.

• T2: Let G be a flow graph, and let y not be the initial node and have a single prede-

cessor, x. T2 is the replacement of x, y and (x,y) by a single node z. Predecessors

of x become predecessors of z. Successors of x or y become successors of z.



5

�� ��
�� ��begin

���� ��
�� ��S1

���� ��
�� ��S2

��

GF

��

�� ��
�� ��S3

||zzzzzzzzz

""DDDDDDDDD

�� ��
�� ��S4

��

�� ��
�� ��S6

||zzzzzzzzz

  @@@@@@@

�� ��
�� ��S5

@A
//

�� ��
�� ��S7

""DDDDDDDDD

�� ��
�� ��S9

~~~~~~~~~

�� ��
�� ��S8

BC

EDoo

BC
oo

�� ��
�� ��end

Figure 1.2: Control Flow Graph

The CFG in figure 1.2 is reducible, while the ones in table 1.1 are irreducible. Although

all irreducible CFGs can be converted into reducible one, the transformation may cause

possible code size explosion (see [Hecht, 1977]). “Structured” programming languages

allow only programs with reducible CFGs. Common control-flow constructs, such as if-

then-else, while do, and repeat-until generate reducible CFGs; it is the arbitrary goto

that may generate irreducible CFGs. All CFGs in Floey are reducible.

There are three important structures in CFG that concern the design of Floey: basic



6

���� ��
�� ��S1

~~~~~~~~~

  @@@@@@@

�� ��
�� ��S2 22

�� ��
�� ��S3

rr

���� ��
�� ��S1

��

GF

@A
//

�� ��
�� ��S2

���� ��
�� ��S3

���� ��
�� ��S4

��

BC

EDoo

a b

Table 1.1: Irreducible control flow graphs

blocks, extended basic blocks, and loops.

• A basic block is a sequence of consecutive statements in which execution flow

enters at the beginning and leaves at the end without possibility of branching except

at the end [Aho et al., 2007]. In other words, once the first statement in a basic block

is executed, all other statements in that basic block will always be executed in order.

The sequences {S1, S2},{S3},{S4, S5},{S6},{S7},{S8} and {S9} in figure 1.2 are

basic blocks.

• An extended basic block is a connected collection of nodes in CFG such that all

nodes except for the first one have only one predecessor, i.e. a tree structure of

statements. The first node either has multiple predecessors or has the “begin” node

as its predecessor. {S1, S2}, {S3, S6, S7, S9}, {S4, S5} and {S8} are the extended



7

basic blocks in 1.2.

• A loop is a strongly connected component in a CFG. A strongly connected com-

ponent in a directed graph is a set of nodes such that every node can reach all other

nodes in the set. In reducible CFGs, any loop has a loop header that dominates all

other nodes in the loop. A node x is said to dominate node y only if every path from

the “begin” to y includes x. {S3, S6, S7, S8, S9} is the only loop in 1.2, with S3 as

the loop header.

1.3 Limitations and motivations

Although Control Flow Graphs are widely used in the design of compiler optimization

algorithms, we believe there are some limitations to this approach, which not only affect

the efficiency of the optimization algorithms but make the implementation difficult as well.

• Many aggressive compiler optimizations heavily modify the structure of CFG. As

shown in table 1.2, the loop invariant code motion [Neel and Amirchahy, 1975]

creates a loop pre-header (S5) above the original loop. This code manipulation

modifies the basic block structure, as the basic block of S1 should now include S5.

Changes like this in the CFG require frequent reanalysis of the structure, which is

costly and difficult to manage.

• Most local level optimizations are based on the basic blocks, as the simple structure

makes the design and implementation easier. However, we believe that the extended

basic blocks deserve more attention in compiler optimization designs. Since it is

often the joint points, the nodes with more than one predecessors, in CFGs that



8

�� ��
�� ��S1

���� ��
�� ��S2

~~~~~~~~~

  @@@@@@@

�� ��
�� ��S3

�� ��
�� ��S4

EDoo

�� ��
�� ��S1

���� ��
�� ��S5

���� ��
�� ��S2

~~~~~~~~~

  @@@@@@@

�� ��
�� ��S3

�� ��
�� ��S4

EDoo

a b

Table 1.2: Loop invariant code motion modifies basic block structures

introduce subtleties and not the branching structure (of extended basic blocks). Most

basic block optimizations can be easily extended to extended basic blocks.

To overcome these limitations of CFSs, a new intermediate representation, called Floey

(chapter 2), is introduced in this thesis. Floey programs are divided into basic structures

called control expressions. Each of these control expressions represents an extended block

(possibly with loops). Different control expressions in a CFG are linked together by the

entries. Floey allows compiler optimizations to be implemented on control expression,

which is a significantly larger unit than a basic block. On the global level, entries pro-

vide uniformed interfaces between control expressions which makes global optimizations

easier to design and to implement (although this beyond the scope of this thesis).

An optimization technique for Floey programs, called the reduction algorithm (chapter

5), is presented in this thesis. In Floey, all programs are first converted in control normal

form (chapter 4), which is a canonical form for Floey program. The normalized programs

are then optimized by the reduction algorithm. The algorithm first eliminates all repeated



9

computations in control expression. It then tries to delay every statement in a control

expression in order to remove unnecessary ones. In the last step, invariants in loops are

eliminated. We believe the reduction algorithm has several advantages over conventional

optimization techniques as it gives a uniform structure to the optimizing process. From

the design and implementation of the reduction algorithm, we also argue that the structure

of Floey facilitates these optimizations (chapter 6).

1.4 Organization

The thesis is organized as follows. Chapter 2 provides a detailed introduction to the Floey

intermediate language. The type system of Floey is introduced in chapter 3. Chapter 4

discusses the control normal form of Floey programs. An optimization technique imple-

mented in Floey, called the reduction algorithm, is introduced in chapter 5. Chapter 6

compares the optimizations on Floey to the conventional approaches and concludes the

thesis.



Chapter 2

Introduction to Floey

This chapter presents an overview of Floey language. The structure, constructs and syntax

of Floey programs are illustrated with examples. The chapter is organized as follows. Sec-

tion 2.1 gives an overview of the Floey language, while each of the rest sections introduces

one construct in Floey.

2.1 Floey overview

Floey is a typed intermediate representation language designed to facilitate compiler op-

timizations. Floey programs are well-structured flow diagrams which have been broken

down into extended basic blocks and loops. This allows standard local compiler optimiza-

tions on basic blocks, extended basic blocks and loops to be applied more easily.

Floey : main : mainFun
F loeyDef s

F loeyDef s : F loeyDa ta F loeyDef s
| FloeyFun F loeyDef s
| F l o e y C o n t r o l F loeyDef s

Figure 2.1: Floey program structure

Figure 2.1 gives the structure of a Floey program, which begins with a main function

specification followed by a sequence of FloeyDefs. The function specified by mainFun is

the starting point of the program. Each of the FloeyDefs can be either a data declaration,

FloeyData, a function definition, FloeyFun, or a control operation definition, FloeyControl.

10



11

Each function or control operation definition can also contain local FloeyDefs together with

a well-structured flow diagram, expressed as a control expression with a series of entries.

Control expressions are the basic units of Floey programs, each of which is essentially a

tree structure with loops.

The program shown in figure 2.2 demonstrates Floey program structure. At the top

level, there is one data declaration and one function definition, calGrade, which is the main

function of the program. The function takes in the mid-term, final-term and bonus question

score of a student and calculates his or her final grade. In calGrade, there are two local

function and control operation definitions. getFinal calculates the final score based on the

mid-term and final-term score. The result of getFinal is assigned to variable final and is

used in the control expression from line 29 to line 33. If a student correctly answered

the bonus question, he or she has ten bonus score added to the final score. That score is

passed to entry printGrade as a actual parameter. Based on the output of getGrade, a letter

grade will be returned if a student has passed. Otherwise, the function returns an integer,

which stands for the score in short for passing the course.

The following sections will explain in detail the different Floey constructs.

2.2 Data declarations

Floey has various built-in data types, such as: the boolean type, Bool, the integer type,

Int , the real number type, Real, and the character type, Char. These types can be used in

Floey programs without declaration. Moreover, programmers can declare new data types

as global or local types.

A data declaration consists of the specification of a type constructor and its term con-



12

1 main : c a l G r a d e
2

3 −−da ta d e c l a r a t i o n s
4 data PF = P ass ed ( Char )
5 | F a i l e d ( I n t )
6

7 fun c a l G r a d e ( x , y : Real , bonus : Bool ) : PF
8 {
9 −−a c o n t r o l o p e r a t i o n d e f i n i t i o n

10 def g e t G r a d e ( s c o r e : Rea l ) [ a , b , c , d ( I n t ) ]
11 {
12 begin
13 case s c o r e >=85 of
14 [ True . e x i t a
15 | F a l s e .
16 case s c o r e >=70 of
17 [ True . e x i t b
18 | F a l s e .
19 case s c o r e >=60 of
20 [ True . e x i t c
21 | F a l s e . e x i t d(60− s c o r e ) ] ] ]
22 }
23 −−a f u n c t i o n d e f i n i t i o n
24 fun g e t F i n a l ( a , b : Rea l ) : Rea l
25 {
26 begin re turn ( a ∗0 .4+ b ∗ 0 . 6 ) / 2
27 }
28 −−a c o n t r o l e x p r e s s i o n
29 begin
30 f i n a l <− g e t F i n a l ( x , y ) .
31 case bonus of
32 [ True .
33 f i n a l <− f i n a l + 1 0 .
34 e x i t p r i n t G r a d e ( f i n a l )
35 | F a l s e . e x i t p r i n t G r a d e ( f i n a l ) ]
36 −−an e n t r y
37 entry p r i n t G r a d e ( x : Rea l )
38 {
39 begin
40 g e t G r a d e ( x ) of
41 [ a . re turn Pa ss ed ( ’A’ )
42 | b . re turn Pa ss ed ( ’B ’ )
43 | c . re turn Pa ss ed ( ’C ’ )
44 | d ( d i f f ) . re turn F a i l e d ( d i f f ) ]
45 }
46 }

Figure 2.2: A typical Floey program



13

structors. Each type constructor and term constructor starts with an upper case letter. The

syntax for data declaration, FloeyData, is as follows. Here T is the type constructor, which

FloeyDa ta :
data T a1 . . . an1 = Cons1 ( T11 , . . . ,T1m1 )

. . .
| Consn2 ( Tn21 , . . . ,Tn2mn2

)

Figure 2.3: Floey data declaration

is the identifier of that type. Cons1 to Consn2 are the term constructors. a1 to an1 are the

type arguments for T, each of which starts with lower case letters indicating a polymor-

phic type. Each term constructor Consi can also have term arguments: Ti1 to Timi, each

of which can either be a built-in type, a user defined type of a polymorphic type from the

type arguments a1 to an1 . For example: In figure 2.4, List is the new type constructor being

data L i s t a = Cons ( a , ( L i s t a ) )
| N i l

Figure 2.4: List of polymorphic type “a”

declared. a is a polymorphic type argument. Cons and Nil are the term constructors with

their argument type specified. Nil is a unit type with no argument, while Cons has two

arguments, one of which is a recursive use of type List a. When List a is used in Floey

programs, the type a can be specified. For example: List Int , List ( List a).

The data type PF in figure 2.2 (line 3 to line 5) gives an example of data declaration.

Some more examples of data declarations:

−−Pre−d e f i n e d boo lean t y p e

data Bool = True

| F a l s e



14

−−L i s t o f boo lean

data B L i s t = BCons ( Bool , B L i s t )

| BNil

−−Tree o f l i s t o f boo lean

data B L i s t T r e e = Branch ( BLi s tT ree , B L i s t T r e e )

| Leaf ( B L i s t )

2.3 Functions

A function in Floey takes in a list of arguments and returns a value of certain type. Each

function can have local data declarations, which are only visible inside the function. One

can also define local functions or control operations inside a function. At the end of each

function, there must be a control expression with a series of entries, which constitute the

control flow graph of that function.

A function definition begins with the keyword fun followed by an identifier, a list of

arguments in braces and a return type separated by colons. The identifier must start with

a lower case letter. An empty parameter list is permitted: and braces can be omitted in

that case. The structure of a function definition, FloeyFun, is as follows. where id is the

FloeyFun :
fun i d ( a1 : T1 , . . . , an1 : Tn1 ) : T
{

FloeyDef s
begin
E
entry e1(. . .){. . .}
. . .
entry en6(. . .){. . .}

}

Figure 2.5: Floey function definition



15

identifier of the function. Each ai is an argument of type Ti. The function returns a value

of type T.

In Floey, basic operations on integer, real numbers and boolean values are built-in.

These operations are also functions and can be used without definition.

Both calGrade and getFinal in figure 2.2 are examples of function definition. Another

example is as follows.

1 fun gcd ( a , b : I n t ) : I n t
2 {
3 begin
4 case b==0 −>
5 [ True . re turn a
6 | F a l s e . re turn ( gcd ( b , a mod b ) ) ]
7 }

Figure 2.6: A recursive function to calculate the GCD

As a function returns a single type, function calls can be used as (sub-)expressions.

For example final <−getFinal(x,y) (line 28 in figure 2.2) is an assignment from expression

of a function call to a variable. Line 4 in figure 2.6 uses b==0, an equal operation, as the

expression in a case statement.

2.4 Control operations

In Floey, a control operation definition has a very similar structure to that of a function

definition. The difference is that instead of returning a result of a single type, a control

operation may return one of the branch specifications that are specified in its definition.

A branch specification is a branch name together with a list of arguments of certain

types. Branch names start with lower case letters, for instance d( Int ) in figure 2.2. Branch



16

specifications are used as labels to which the program execution can jump. In a control

operation definition, an exit statement (see section 2.6.1) can return to any one of the

branch specifications of that control operation thereby completing its execution. In control

statements (see section 2.6.3), where control operations are used, branch specifications are

bound to the control expressions which must be executed should the branch be returned

from the control operation.

The structure of a control operation definition, FloeyControl, is as follows.

F l o e y C o n t r o l :
def i d ( a1 : T1 , . . . , an1 : Tn1 ) [ s1 , . . . , sn2 ]
{

FloeyDef s
begin
E
entry e1(. . .){. . .}
. . .
entry en7(. . .){. . .}

}

Figure 2.7: Floey control operation definition

Here def is the keyword for control operation definition followed by id, an identifier

which must start with a lower case letter. Each ai is an argument of type Ti and s1 to

sn is the list of branch specifications this control operation may return. The body of the

control operation, enclosed between a pair of curly brackets, is similar to that of a function.

getGrade (line 10 to line 22 in figure 2.2) is an example of control operation definition.

Note that since a control operation can return a variant type, the result of a control op-

eration cannot be assigned to variables and therefore cannot be used as functions. Control

operations can be used in control statements (see section 2.6.3), for example on line 40 to

44 in figure 2.2.



17

2.5 Entries

Entries are program fragments that are used to link control expressions. In Floey, control

flow can jump from one control expression to another either by calling a control operation

or a function, or by exiting to an entry using exit statements (see section 2.6.1). Entries

are the general interface for the non-cyclic joint points of the control flow graphs.

The declaration of an entry starts with the keyword entry followed by an identifier,

which starts with a lower case letter, and binding list with expected types. The syntax for

entries is as follows.

entry e n i d ( a1 : T1 , . . . , an1 : Tn1 )

{

E

entry en1 ( . . . ){ . . .}

. . .

entry enn2 ( . . . ){ . . .}

}

Here en id is the identifier of the entry. Each ai is a binding of type Ti. Variable values are

passed through entries via bindings. E is the control expression contained in the entry. en1

to enn2 are the subsidiary entries. printGrade (line 37 to line 45 in figure 2.2) is an example

of entry. Following is another example.

Both functions in table 2.1 return the larger integer of the two inputs. The program in

2.1.b uses an entry to capture the joint point in that execution flow and potentially avoids

code duplication. It is a simple example but does demonstrate how entries can be used as

the joint points for the control flow graph.

Note that cyclic entry calls are not allowed in Floey. Instead, such structures must be



18

fun max ( x , y : I n t ) : I n t
{

begin
case x<y −>
[ True . re turn y
| F a l s e . re turn x
]

}

fun max ( x , y : I n t ) : I n t
{

begin
case x<y −>
[ True . e x i t foo ( y )
| F a l s e . e x i t foo ( x )
]
entry foo ( a : I n t )
{ re turn a}

}
a b

Table 2.1: An example of Floey entries

entry gcd ( a , b : I n t )
{

b==0 −>
[ True . re turn a
| F a l s e .

t <− b .
b <− a mod b .
a <− t .
e x i t gcd ( a , b ) ]

}

Figure 2.8: Illegal cyclic entry calls

expressed as loop expressions (see section 2.6.6). The example in figure 2.5 presents an

illegal cyclic entry call. The function performs an iteration without using loop expression.

As the statement exit gcd(a ,b) cyclically jumps back to the header of the entry it is in.

Direct or indirect cyclic entry calls in Floey are prohibited and are picked up in the se-

mantic checking and reported as errors. The reason for this design is to clearly distinguish

loop headers from other joint points in Floey programs. In Floey, entries are designed

to contain control expressions, which are extended basic blocks with loops (see section

2.6). Cyclic entries are looping structures, and so are included as loop expressions. This

(together with entry normalization, see section 4.3) ensures entries are only used for the



19

purpose for which they were designed.

2.6 Control expressions

Control expressions are the basic units of Floey program. Each of them describes the flow

graph of a program fragment. A series of these control expressions, enclosed in different

entries, control operations, or functions describe complete flow graphs of the program.

Line 13 to line 22, line 30 to 35 in figure 2.2 are both examples of control expression.

The following example shows a control expression with a loop in it.

loop g c d l o o p ( a<−x , b<−y )
{

case b==0 −>
[ True . re turn a
| F a l s e .

t <− b .
b <− a mod b .
a <− t .
e x i t g c d l o o p ( a , b ) ]

}

Figure 2.9: A function to calculate the GCD using iteration

The rest of this section will explain in detail the six constructs of control expressions:

exit statement (section 2.6.1), return statement (section 2.6.2), control statement (section

2.6.3), case statement (section 2.6.4), assignment statement (section 2.6.5) and loop ex-

pression (section 2.6.6).

2.6.1 Exit statements

Exit statements terminate the execution a control expression and redirect the program to

an entry, a loop expression (see section 2.6.6) or a branch specification of the enclosing



20

control operation definition. Exit statements are the leaves of the tree-like structure of

control expressions. An exit statement alone is a control expression. The syntax of an exit

statement is:

e x i t i d ( e1 , . . . , en )

An exit statement starts with the keyword exit , followed by the identifier id of the entry,

loop expression or branch specification and a list of expressions as parameters, (e1,. . .,en),

enclosed by a pair of braces (braces can be omitted when the expression list is empty).

Type checking ensures these expressions match the expected argument types.

In Floey, an expression is either:

• a variable: x, y

• a constant: 12, True, ’A’

• a function, applied to expressions: gcd(x,y), getFinal (a ,b)+10, Cons(10,Nil)

An example of an exit statement in figure 2.2 is exit printGrade ( final ). Here printGrade

is the entry identifier and final is the expression passed to the entry. In the entry interface,

entry printGrade (x:Real), the parameter x is expected to be a real number. If final matches

the type Real, x will be initialized to that value and can be used in the control expression in

printGrade.

exit gcd loop(a ,b) (in figure 2.9) is another example of an exit statement. Here gcd loop

is a loop identifier, while (a ,b) is the list of expressions passed to the loop. Execution will

be redirected to the loop header loop gcd loop(a<−x,b<−y).

Note that if there are entries or loops with the same identifier in different scopes, the

entry or loop in the closest scope to the exit statement will be called. For example in the



21

following example, the exit statement on line 7 exits to the entry on line 8 and 9. True will

be returned as the result.

1 fun foo ( ) : Bool

2 {

3 begin

4 e x i t a

5 entry a

6 {

7 e x i t b

8 entry b

9 { re turn True }

10 }

11 entry b

12 { re turn F a l s e

13 }

14 }

2.6.2 Return statements

Return statements terminate the execution of control expressions and return result of the

current function redirecting the program to where the function is called. Return statements

are leaves of control expression structure within functions. A return statement alone is a

control expression. The syntax of a return statement is as follows.

re turn e

Here e is the expression that is returned. return Passed(‘A’) and return (a∗0.4+b∗0.6)/2 in

figure 2.2 are both examples of return statements.



22

2.6.3 Control statements

In Floey, a control statement is a branching statement which controls the execution flow

redirecting it to one of its branches. A control statement consists of a control operation call

and a series of branches that bind subsidiary control expressions. Based on the result of the

control operation called, which is a branch call, program control flow selects that branch

with the induced branch bindings and continue with the subsidiary control expression. The

syntax of a control statement is as follows.

con op ( e1 , . . . , en1 ) of

[ b1 ( v11 , . . . , v1m1 ) . E1

| . . .

| bn2 ( vn21 , . . . , vn2mn2
) . En2 ]

Here con op is the control operation applied to expressions e1,. . .,en1 . Each bi is a branch

name, where variables vi1,. . .,vimi
are bound in the control expression Ei by the binding

operation, “ .”. Branches in the same control statement are enclosed by a pair of square

brackets and separated by slashes, “ |”.

Consider the following example of control statement from figure 2.2. The control

operation getGrade returns grades if this student passed. Otherwise, grade d will be returned

together with, diff , the extra score required to pass the course. diff is then bound in its

subsidiary control expression, return Fail ( diff ), where it can be used.

g e t G r a d e ( x ) of

[ a . re turn Pa ss ed ( ’A’ )

| b . re turn Pa ss ed ( ’B ’ )

| c . re turn Pa ss ed ( ’C ’ )

| d ( d i f f ) . re turn F a i l e d ( d i f f ) ]



23

2.6.4 Case statements

Case statements are special control statements that have the “case” control operation. The

“case” control operation takes in one expression as argument and returns a constructor of

the type of that expression. Similarly to control statements, case statements are also the

branching structures in Floey program. A case statement directs program execution flow

to one of its branches, based on the returned constructor. The syntax for a case statement

is as follows.

case exp of

[ Cons1 ( v11 , . . . , v1m1 ) . E1

. . .

| Consn ( vn1 , . . . , vnmn ) . En ]

Here case is the keyword for the “case” control operation. It is followed by an expression,

exp, and a series of branches that bind subsidiary control expressions. Each Consi is a

type constructor with its arguments vi1 to vim. These variables will be bound in Ei, the

control expressions follows, by the binding operations, written as “ .”. Branches in the

same control statement are enclosed by a pair of square brackets and separated by slashes,

“ |”.

In the following example, the function first returns the first element of a list of integers.

The control expression in the function body is a case statement that has two branches. If x

is Nil, an empty list, 0 is returned. Otherwise, the constructor argument i will be returned.

1 fun f i r s t ( x : L i s t I n t ) : I n t

2 {

3 begin

4 case x of



24

5 [ Cons ( i , j ) . re turn i

6 | N i l . re turn 0

7 ]

8 }

2.6.5 Assignment statements

The syntax for assignment statements is as follows.

v <− exp .

E

Here v is a variable and exp is an expression. v is assigned to the value of exp, by the

assignment sign, “<−”, and is bound in the control expression E that follows, by the

binding operator, “ .”.

Above is a standard definition of assignments. However, internally in Floey, assign-

ments are viewed from a different perspective, as they are essentially special unary deci-

sions with no branching and one branch variable. Thus in Floey, assignments are repre-

sented as case statements with a special “#Assign” constructor. The above assignment is

translated into the following statement.

case exp of

[# Ass ign ( v ) . E ]

Here the branch variable, v, can be of any type that exp returns and is bound in E. This

translation simplifies the internal data structure and more importantly makes the i imple-

mentation of optimizations in chapter 4 and 5 more uniform.



25

2.6.6 Loop expressions

Loop expressions are the only legitimate “looping” structure in Floey. They have similar

structure to entries. The syntax for loop expressions is as follows.

loop i d ( y1<−x1 , . . . , yn1<−xn1 )

{

E

entry en1 ( . . . ){ . . .}

. . .

entry enn2 ( . . . ){ . . .}

}

Here loop id (y1<−x1,. . .,yn1<−xn1 ) is the loop header, which starts with the keyword “loop”,

followed by the identifier of the loop id and a list of loop bindings. The loop identifiers are

used in exit statements whenever control flow jumps back to the loop header. Enclosed in

a pair of curly brackets is the loop body, a control expression E together with a series of

subsidiary entries entry1 to entryn2 . The control expression in figure 2.9 is an example of

loop expression.

Each loop binding is a variable paired up with an expression separated by the assign-

ment symbol, such as x<−exp. Here x is a bound variable of the loop and exp is called

an initialization expression. When the loop is executed for the first time, x is initially as-

signed to exp. Thus the initialization works just like an assignment on first iteration. When

the execution flow is redirected back to the loop header by exit statements in that loop

body, the bound variables are updated to the values of the arguments in exit statements.

The flow diagrams which correspond to legal Floey programs must be reducible. This

means loop headers dominate their loop bodies. In other words, control flow can only



26

enter a loop through the loop header. Any attempt to jump from outside of a loop to a

subsidiary entry to that loop will cause semantic checking stage to report an error.



Chapter 3

Type system of Floey

A type theoretic description of Floey is provided in this chapter. The chapter starts with

the introduction of the static type system for Floey in section 3.1. Examples of proofs in

this type system are given to illustrate how the type system works on real Floey programs.

Section 3.2 discusses the equalities which govern the manipulation of Floey control ex-

pressions.

3.1 Floey type system

This section presents a static type system for Floey, which guided the design of the Floey

type checker. The system consists of a set of inference rules, which are also called judge-

ments. Each inference rule has a premise and a conclusion. The following is a typical

inference rule:
Γ ` t : T

Γ |= return t : {return(T )} return

Here Γ ` t : T is the premise and Γ |= return t : {return(T )} is the conclusion. Γ is the

context that consists of typed variables. Note that we introduced two types of sequent: `

is used in sequents for expressions, and |= is used in sequents for control expressions. We

also use Γ ` t1, . . . , tn as the short hand for Γ ` t1, . . . ,Γ ` tn.

The inference rules are categories into three groups: inference rules for expressions,

inference rules for control expressions, and the ones for definitions of functions and control

operations. The following subsections explain the inference rules in detail.

27



28

3.1.1 The inference rules for expressions

The rules for Floey expressions are given in table 3.1.

Γ ` t1 : T1, . . . , tn : Tn f : F(T1, . . . , Tn → T )

Γ ` f(t1, . . . , tn) : T expression

Γ ` t : T Γ, y : T ` t′ : T ′
Γ ` t′[t/y] cut

Table 3.1: The inference rules for expressions

The basic rule for an expression is as follows.

Γ ` t1 : T1, . . . , tn : Tn f : F(T1, . . . , Tn → T )

Γ ` f(t1, . . . , tn) : T
expression

Here F is the declarations of all functions (see section 3.1.3) that are visible at the point

where this rule is applied. If the terms, t1, . . . , tn, match the expected types for arguments,

T1, . . . , Tn, of function f . We can construct of new expression, that is the function f

applied to terms t1, . . . , tn, which returns type T .

In the Floey type checker, the arguments of a function are first type checked. All

resulting types will be then used to match the types of the function arguments. If all

these type checking steps succeed, the whole expression results in the return type of that

function. Otherwise, type checking fails and type errors will be output.

Moreover, all expressions in Floey should satisfy the following cut rule.

Γ ` t : T Γ, y : T ` t′ : T ′
Γ ` t′[t/y]

cut



29

3.1.2 The inference rules for control expressions

The inference rules for constructing Floey control expressions are given in table 3.2. Each

of the first five rules focuses on one Floey construct, while the last one includes entries

into the type system

Γ ` t1 : T1, . . . , tn : Tn b(T1, . . . , Tn)

Γ |= exit b(t1, . . . , tn) : {b} exit
Γ ` t : T

Γ |= return t : {return(T )} return

Γ ` t1 : T1, . . . , tn : Tn Γ, x̃i : ∆i |= ei : Bi g : G(T̃ → {bi(∆i)}i∈I)

Γ |= g(t1, . . . , tn)→ [bi(x̃i).ei]i∈I :
⋃
Bi

control

Γ ` t :: C a1 . . . an Γ, x̃i : ∆i |= ei : Bi data C a1 . . . an = {Ci(∆i)}i∈I

Γ |= case t→ [Ci(x̃i).ei]i∈I :
⋃
Bi

case

Γ ` t1 : T1, . . . , tn : Tn Γ |= e : B
⋃
{id(T1, . . . , Tn)}

Γ |= loop id(x1 ← t1 : T1, . . . , xn ← tn : Tn){e} : B loop expression

ỹ : Γ |= e : B
⋃
{b(∆)} x̃ : ∆ |= e′ : B′

ỹ : Γ |= e entry b(x̃){e′} : B
⋃
B′ control expression cut rule

Γ ` t : X Γ, x : X |= e : B
Γ |= e[t/x] : B expression cut rule

Table 3.2: The inference rules for control expressions

• Exit statement

The type of an exit statement is given by the following rule.

Γ ` t1 : T1, . . . , tn : Tn b(T1, . . . , Tn)

Γ |= exit b(t1, . . . , tn) : {b} exit



30

The symbol b is either an entry, a loop or a branch specification. The type checker

type-checks all expressions, t1, . . . , tn, that are passed to the exit statement. Not

only should these expression be correctly typed, but also their types should match

the expected argument types, T1, . . . , Tn. If all these checks succeed, the singleton

set consisting of the branch identifier {b} will be returned: this is the type of the exit

statement. The following is a proof of the statement on line 35 from figure 2.2.

Γ ` final :Real printGrade : B(x:Real)

Γ |= exit printGrade ( final :Real) : {printGrade} exit

• Return statement

The type of a return statement is given by the following rule.

Γ ` t : T
Γ |= return t : {return(T )} return

The type checker first type-checks the expression t. A type T will be returned if t

is successfully checked. And the return statement has the type {return(T )}. The

following is a proof of the statement on line 27 in figure 2.2.

Γ ` a : Real Γ ` 0.4 : Real
Γ ` a∗0.4 : Real

Γ ` b : Real Γ ` 0.6 : Real
Γ ` b∗0.6 : Real

Γ ` (a∗0.4+b∗0.6) : Real Γ ` 2 : Real
Γ ` (a∗0.4+b∗0.6)/2 : Real

Γ |= return (a∗0.4+b∗0.6)/2 : {return(Real)} return

• Control statement

The type of a control statement is given by the following rule.

Γ ` t1 : T1, . . . , tn : Tn Γ, x̃i : ∆i |= ei : Bi g : G(T̃ → {bi(∆i)}i∈I)

Γ |= g(t1, . . . , tn)→ [bi(x̃i).ei]i∈I :
⋃
Bi

control



31

Here g is a control operation that can be found in the control operation declarations,

represented by G. The Floey type checker type-checks the expressions, which are

applied to the control operation g. These expressions, t1, . . . , tn, are expected to

match the argument types, T1, . . . , Tn. In each branch, branch variables, x̃i, should

be of the expected types, ∆i, and are bound to the control expression in that branch,

ei. The type of a control statement is the union of the types of the control expressions

in its branches.

• Case statement

The type of a case statement is as follows.

Γ ` t :: C a1 . . . an Γ, x̃i : ∆i |= ei : Bi data C a1 . . . an = {Ci(∆i)}i∈I

Γ |= case t→ [Ci(x̃i).ei]i∈I :
⋃
Bi

case

Here C is a data type that is already declared. The expression t as well as the

branch constructors Ci should match the type of C. If these type-checking steps

succeed, the branch variables, x̃i, of the expected types ∆, are bound to the control

expression, ei. The type of a case statement is the union of the types of the control

expressions in its branches.

• Loop expression

The type of a loop expression is given in the following rule.

Γ ` t1 : T1, . . . , tn : Tn Γ |= e : B
⋃
{id(T1, . . . , Tn)}

Γ |= loop id(x1 ← t1, . . . , xn ← tn){e} : B
loop expression

The initialization expressions in the bindings, t1, . . . , tn, are type-checked. The type

of a loop expression is the type of the control expression in its loop body, without

the loop label.



32

• Entry

In Floey, entries are designed as the interfaces for control expressions (section 2.5).

In the type system, entries are presented by the following cut rule.

ỹ : Γ |= e : B
⋃
{b(∆)} x̃ : ∆ |= e′ : B′

ỹ : Γ |= e entry b(x̃){e′} : B
⋃
B′

control expression cut rule

When a control expression exits to an entry, the entry can be included in the control

expression by applying this cut rule. The type of the resulting structure is the union

of the type of the control expression, without the entry label, and the type of the

control expression inside the entry.

• Expression cut

Using the expression cut rule below, one can substitute a variable by another one of

the same type in a control expression.

Γ ` t : X Γ, x : X |= e : B
Γ |= e[t/x] : B

expression cut rule

3.1.3 The inference rules for functions and control operations

Type checking functions and control operations are more complicated in Floey, as func-

tions and control operations in a scope are allowed to be defined in arbitrary order, which

means that use of a function or a control operation can happen before it is defined. To

resolve this issue, we separate the declarations of functions and control operations (i.e. the

introduced symbol and its type) from their body. When a function or control operation call

is encountered, its declaration is used to type check uses. The type checking of its body,

on the other hand, may be delayed to the point when the declarations used in the body are

available to the type checker.



33

{}|{} {}|{} empty axiom

F|G  O|D
f : T̃ → T,F|G  O|D fun weakening

F|G  O|D
F|g : T̃ → B,G  O|D control weakening

F|G  O|D Γ `F ,G t : T

F|G  {Γ ` t : T} ∪ O|D discharging expression obligation

F|G  O|D Γ |=F ,G e : B
F|G  {Γ |= e : B} ∪ O|D discharging control expression obligation

f : T̃ → T,F|G  {Γ |= e : {return(T )}} ∪ O|D
F|G  O|fun f(T̃ ) : T{e} ∪ D function definition

F|g : T̃ → B,G  {Γ |= e : B} ∪ O|D
F|G  O|def g(T̃ )[B]{e} ∪ D control definition

Table 3.3: The inference rules for functions and control operations

The inference rules for type checking functions and control operations in Floey are

given in table 3.3. These rules actually just model type checking in a single scope: as local

function and control operation definitions are allowed in Floey, the Floey type checker, in

practice, also have to handle these scoping issue. A typical predicate for type checking

functions and control operations is as follows.

F|G  O|D

Here F and G are sets of function and control operation declarations, which may or may



34

not have been type checked. O is the set of (type checking) obligations where functions

and control operations are possibly used. D is the set of definitions of functions and control

operations.

Type checking begins with F and G consisting of only the pre-defined primitive func-

tions and control operations, and empty O and D. When type checking in a scope, all the

function and control operation definitions in the scope are first collected and added into

D. Using two rules below, definitions can be removed from D. Their interfaces are added

into F or G, and the obligations formed by their bodies of are added into O.

f : T̃ → T,F|G  {Γ |= e : {return(T )}} ∪ O|D
F|G  O|fun f(T̃ ) : T{e} ∪ D

function definition

F|g : T̃ → B,G  {Γ |= e : B} ∪ O|D
F|G  O|def g(T̃ )[B]{e} ∪ D

control definition

At this stage, D is empty and F and G contain all the declarations in the scope. The

obligations in O need to be type checked based on the information held in F and G. The

following two discharging rules allow one to remove obligations fromO and to type check

them by applying the inference rules in section 3.1.1 and 3.1.2 .

F|G  O|D Γ `F ,G t : T

F|G  {Γ ` t : T} ∪ O|D
discharging expression obligation

F|G  O|D Γ |=F ,G e : B
F|G  {Γ |= e : B} ∪ O|D

discharging control expression obligation

Once all the obligations have been removed from O, one can apply the following weak-

ening rules to F and G, in order to delete the declarations in them. As the rules allows

declarations which do not occur in O to be deleted from F and G.

F|G  O|D
f : T̃ → T,F|G  O|D

fun weakening



35

F|G  O|D
F|g : T̃ → B,G  O|D

control weakening

Should all the type checking steps succeed, F , G,O andD will all end up empty, as shown

in the empty axiom below.

{}|{} {}|{}
empty axiom

3.2 Equalities

This section discusses the equalities that hold for Floey control expressions. These equal-

ities are used to govern the transformation steps discussed in chapter 4 and 5, ensuring the

code modifications are valid.

The section is organized as follows. Section 3.2.1 introduces the basic equality of

control expressions and its properties. Section 3.2.2 discusses the three equalities of deci-

sions: idempotence, transposition and repetition. The important consequences of decision

equalities are give in section 3.2.3. While section 3.2.4 focuses on loop equalities: loop

binding weakening, infinite loops, loop unrolling, loop motion and loop splitting, the con-

sequences of which are discussed in section 3.2.5.

3.2.1 Basic equalities

An equality of control expressions has the form:

e1 =Γ e2 : B

where Γ is the context of the equality and B is the type of the two control expressions.

Γ ` e1 : B must be a valid control inference rule as must Γ ` e2 : B.



36

The following are the three basic properties of equality: reflexivity, symmetry and

transitivity.

Γ ` e : B
e =Γ e : B reflexive

e1 =Γ e2 : B
e2 =Γ e1 : B symmetric

e1 =Γ e2 : B, e2 =Γ e3 : B
e1 =Γ e3 : B transitive

Other than the above basic properties, the following substitution property should also

hold for equalities. It says that after substituting two equal variables, t1 and t2, for x in

control expression e1 and e2, the equality between the two control expressions still hold.

e1 =x:X,Γ e2 : B t1 =Γ t2 : X

e1[t1/x] =Γ e2[t2/x] : B substitution

3.2.2 Decision equalities

This section introduces the equalities of decisions (without loops) and how they are used

in the optimization algorithms. The equalities are: assignment expansion, idempotence,

transposition and repetition.

• Assignment expansion

x := s . q(t̃)→ [bi(ỹi).e]i∈I =Γ q(t̃[s/x])→ [bi(ỹi).e]i∈I (3.1)

The equality states that an assignment from s to x can be removed by substituting x

for s in the decision that follows. Note that this is not a general equality and is only

valid under the condition that x is only used in the terms t̃. The equality is only used



37

to justify the code manipulation in expression expansion (section 4.1.2), in which

the above condition is always true.

• Idempotence

q(x̃)→ [bi(x̃i).e]i∈I =Γ e|q(x̃) (3.2)

The equality states that if the control expressions in each branch of a decision is the

same, and the binding bi(x̃i) does not capture any variable in e as all variables used

in e come from the context Γ. Then the decision can be replaced by e provided the

control operation q(x̃) terminates. In Floey, the only case that a control operation or

a function does not terminate is when it contains an infinite looping.

This equality is used extensively in the reduction algorithm (section 5.2) to remove

computational steps (in idempotent reduction, see section 5.2.4).

• Transposition

q1(x̃)→ [bi(x̃i).q2(ỹ)→ [bj(ỹij).eij[x̃i/x̃ij]]j∈J ]i∈I (3.3)

=Γ q2(ỹ)→ [bj(ỹj).q1(x̃)→ [bi(x̃ij).eij[ỹj/ỹij]]i∈I ]j∈J

This equality says that if the same decision q2(ỹ) occurs in every branch of another

decision, and all the variables ỹ used in that decision come from the context Γ, rather

than from binding bi(x̃i), they can be exchanged.

• Repetition

q(x̃)→ [b1(x̃1).e1 | . . . | bi(x̃i).q(x̃)→ [bj(x̃′j).e
′
j]1≤j≤n | . . . | bn(x̃n).en]

=Γ q(x̃)→ [b1(x̃1).e1 | . . . | bi(x̃i).e
′
i[x̃i/x̃′i] | . . . | bn(x̃n).en] (3.4)



38

This equality says that whenever two nested decisions have the same control opera-

tion with same binding for their parameters, they return the same branch constructor.

The inner decision can be then omitted by selecting the control expression below that

branch constructor, where an appropriate substitution [x̃i/x̃′i] of bound variables is

required.

The repetition equality is fundamental to the repeat reduction algorithm (section

5.1), although in Floey, additional constructs must be considered (such as case state-

ments, assignment statements and data types).

3.2.3 Consequences of decision equalities

This section discusses some important consequences of the decision equalities introduced

in section 3.2.2. These consequences are used to justify code manipulations in various

optimizations as well as to prove some consequences discussed later in section 3.2.5.

• Pulling up semi-essentials

Transposition equality gives the important property that semi-essentials in control

expressions without loops can be pulled up to the root. A semi-essential decision in

control expression e, or a semi-essential in short, is a decision q that occurs in every

path from the root to the exits and doesn’t use any bound variable produced by other

decisions.

When pulling up semi-essentials to the root of control expression, transposition is

used to exchange decisions, until the semi-essential reaches the root.

• Pulling up arbitrary decisions



39

When pulling up an arbitrary decision, which is not a semi-essential, to the root of

a control expression, idempotence equality is also needed as shown in the following

example.

This is the orginal control expression where q3(z̃) is not a semi-essential.

q1(x̃)
b11(x̃1)

uukkkkkkkkkkkkkkkkk
b12(x̃2)

((QQQQQQQQQQQQQQQ

q2(ỹ)
b21(ỹ1)

}}{{{{{{{{{ b22(ỹ2)

##GGGGGGGG
q3(z̃)

b31(z̃2)

}}{{{{{{{{ b32(z̃3)

!!CCCCCCCC

_ _�
�

�
�

_ _e1 q3(z̃)
b31(z̃4)

zzvvvvvvvvv b32(z̃5)

$$HHHHHHHHH
e2 e3

e4 e5

The first step of pulling up q3(z̃) is to introduce it above e1 using idempotence equal-

ity (3.2). Note that the idempotence used here is an equality only if q3(z̃) terminates.

However, as this consequence is only used in justifying repeat reduction in general

form (see the consequence deep repetition below), where q3(z̃) is a repetition and

has occurred before, in this case the termination of q3(z̃) introduced by idempotence

doesn’t have any effect. The equality thus holds.



40

q1(x̃)
b11(x̃1)

uukkkkkkkkkkkkkkkkk
b12(x̃2)

((QQQQQQQQQQQQQQQ

q2(ỹ)
b21(ỹ1)

{{wwwwwwww b22(ỹ2)

##GGGGGGGG
q3(z̃)

b31(z̃2)

}}{{{{{{{{ b32(z̃3)

!!CCCCCCCC

_ _ _�
�

�
�

_ _ _
q3(z̃)

b31(z̃1)

||zzzzzzzz b32(z̃′
1)

$$HHHHHHHHH

_ _ _�
�

�
�

_ _ _
q3(z̃)

b31(z̃4)

��

b32(z̃5)

$$HHHHHHHHH
e2 e3

e1 e1 e4 e5

Transpose q3(z̃) above q2(ỹ), using transposition (3.3).

q1(x̃)
b11(x̃1)

xxppppppppppp
b12(x̃2)

%%KKKKKKKKK

_ _ _�
�

�
�

_ _ _
q3(z̃)

b31( ˜z31)

xxppppppppppp
b32( ˜z32)

��

_ _ _�
�

�
�

_ _ _
q3(z̃)

b31(z̃2)

yysssssssssss
b32(z̃3)

!!CCCCCCCC

q2(ỹ)
b21(ỹ1)

xxppppppppppp
b22(ỹ2)
��

q2(ỹ)

b21(ỹ1)

��

b22(ỹ2)

&&NNNNNNNNNNN
e2 e3

e1[z̃31/z̃1] e4[z̃31/z̃4] e1[z̃32/z̃1] e5[z̃32/z̃5]

Transpose q3(z̃) to the root, using transposition (3.3).



41

q3(x̃)
b31( ˜z′

31)

yysssssssss b32( ˜z′
32)

%%KKKKKKKKK

q1(x̃)
b11(x̃1)

xxqqqqqqqqqqq
b12(x̃2)
��

q1(x̃)
b11(x̃1)

yytttttttttt
b12(x̃2)

&&MMMMMMMMMM

q2(ỹ)
b21(ỹ1)

xxqqqqqqqqqqq
b22(ỹ2)
��

e2[z̃′31/z̃2] q2(ỹ)
b21(ỹ1)

zztttttttttt
b22(ỹ2)

$$JJJJJJJJJJ e3[z̃′32/z̃3]

e1[z̃′31/z̃1] e4[z̃′31/z̃4] e1[z̃′32/z̃1] e5[z̃′32/z̃5]

The above demonstrates the sequence of manipulations needed to pull an arbitrary

decision to the root of a control expression.

• Deep repetition

The general form of repeat reduction allows decisions to be separated by many inter-

mediate decisions. Using the consequence of pulling up arbitrary decisions, a deep

repetition can be first reduced to an immediate repetition. The repetitive decision is

then eliminated as shown in the following example.

This is the original control expression, where q1(x̃) is a deep repetition:

q1(x̃)
b11(x̃1)

{{wwwwwwww b12(x̃2)

##GGGGGGGG

q2(ỹ)
b21(ỹ1)

{{wwwwwwww b22(ỹ2)

##GGGGGGGGG
q3(z̃)

b31(z̃2)

��

b32(z̃3)

&&NNNNNNNNNNNNN

_ _ _�
�

�
�

_ _ _
q1(x̃)

b11(x̃3)

||yyyyyyyy b12(x̃4)

$$HHHHHHHHH
e1 e2 e3

e4 e5



42

Pull q1(x̃) above q2(ỹ), using the consequence of pulling up arbitrary decisions.

q1(x̃)
b11(x̃1)

{{wwwwwwww
b12(x̃2)

%%KKKKKKKKK

_ _ _�
�

�
�_ _ _

q1(x̃)
b11(x̃′

3)

{{wwwwwwww b12(x̃′
4)

##GGGGGGGG
q3(z̃)

b31(z̃2)

��

b32(z̃3)

##HHHHHHHHHH

q2(ỹ)
b21(ỹ1)

zzttttttttt
b22(ỹ2)

##FFFFFFFFFF
q2(ỹ)

b21(ỹ1)

��

b22(ỹ2)

$$JJJJJJJJJJ
e2 e3

e4[x̃′3/x̃3] e1 e5 e1[x̃1/x̃3]

Apply repetition equality (3.4) to q1(x̃).

q1(x̃)
b11(x̃1)

{{wwwwwwww b12(x̃2)

##GGGGGGGG

q2(ỹ)
b21(ỹ1)

yyttttttttt
b22(ỹ2)

##GGGGGGGGG
q3(z̃)

b31(z̃2)

��

b32(z̃3)

!!CCCCCCCC

e4[x̃1/x̃3] e1 e2 e3

The above demonstrates the sequence of code manipulations needed to verify deep

repeat reduction.

3.2.4 Loop equalities

This section introduces the five equalities of control expression of loops which are used in

this thesis: loop binding weakening, infinite loops, loop unrolling, loop motion and loop

splitting.



43

• Loop binding weakening

loop id(x1 ← t1, . . . , xn ← tn, z ← s){e[exit id(y1, . . . , yn, z)/exit id(y1, . . . , yn)]}

=Γ loop id(x1 ← t1, . . . , xn ← tn){e[s/z]} (3.5)

A loop binding is unchanged if in all exit statements jumping to the loop header

the same variable is returned. This equality states that if a loop binding is neither

changed or used in the loop, the binding can be eliminated from loop header with

necessary variable substitution in loop body.

This equality is used in loop binding reduction, where all unchanged or unused loop

bindings are removed (section 4.4.4).

• Infinite loops

loop id(xi ← ti)i∈I{e} =Γ loop id(){exit id()} : ∅ (3.6)

A loop expression can be identified as an infinite loop, if all branches of in the loop

body jump back to the loop header, that is there is no exit pointing to outside of the

loop. Such infinite loops can be identified in type checking as the loop body has the

type of ∅. All the loop bindings of an infinite loops can be removed with the loop

body being replace by a simple exit statement jumping back to the loop header.

This equality verifies the code modification of infinite invariant code removal (sec-

tion 4.4.2) in loop normalization.

• Loop unrolling

loop id(xi ← ti)i∈I{e} (3.7)

=Γ e[ti/xi]i∈I [loop id(xi ← wi)i∈I{e}/exit id(wi)i∈I ]



44

The equality says that the first iteration of a loop can be unrolled by pulling the loop

body out of loop and replacing each exit statement that jumps to the loop header

with the actual loop expression. Free bindings substitute for loop bindings in e.

As loop expressions start at the second iteration as the original one, necessary free

binding substitution [wi/ti]i∈I is applied to address that.

• Loop motion

loop id(xi ← ti)i∈I{q(x̃)→ [bj(yj).ej]j∈J} (3.8)

=Γ q(x̃)→ [bj(yj).loop id(xi ← ti)i∈I{ej}]j∈J

The equality says that if the first decision in the loop body is not dependent on loop

header as all variable x̃ come from context Γ, it can be moved out of the loop.

• Loop splitting

loop id(xi ← ti)i∈I{e[exit id(ỹ)/exit id’(ỹ)]} (3.9)

=Γ loop id(xi ← ti)i∈I{loop id’(xi ← xi)i∈I{e}}

This equality states an arbitrary way of splitting a loop expression into a nested

looping structure of two headers. The newly generated outer loop has the same

header of the original one. The free loop bindings of the inner loop all come from

the local loop bindings of the original loop.

3.2.5 Consequences of loop equalities

This section focuses on several important consequences of the loop equalities. These

consequences are used to verify various code manipulations used in loop normalization

(section 4.4), loop reduction (section 5.2.6), and invariant code removal (section 5.3).



45

• Unlooping

Unlooping algorithm removes a loop expression, which has no exit statement jump-

ing back to the loop header, with its loop body (see section 4.4.3). The elimination

such loop expression is just a special case of loop unrolling, when the substitution

[loop id(xi ← wi)i∈I{e}/exit id(wi)i∈I ] never takes place and the loop expression is

removed.

• Pulling out semi-essentials from loops

The optimization that pulls semi-essentials out of loops (section 5.3.2) can be veri-

fied by using a sequence of transpositions (3.3) and a loop motion (3.8). All semi-

essentials in a loop can be first pulled to the root in loop body (given by transposi-

tion). They can be then be pulled out of loop expressions (given by loop motion).

The following is an example of this manipulation.

This is the original control expression, where q2(w̃) is a semi-essential in the loop.

loop id(ỹ ← z̃)

��
q1(x̃)

b11( ˜x11)
��

b12( ˜x12)

''NNNNNNNNNNN

_ _ _�
�

�
�

_ _ _
q2(w̃)

b21(w̃21)

xxqqqqqqqqqqq
b22(w̃22)

��

_ _ _�
�

�
�

_ _ _
q2(w̃)

b21(w̃23)

��

b22(w̃24)

""EEEEEEEE

e1

@A

GF //

e2 e3 e4

Transpose (3.3) q2(w̃) to the root of the loop body.



46

loop id(ỹ ← z̃)

��_ _ _�
�

�
�_ _ _

q2(w̃)

b21(w̃1)
��

b22(w̃2)

((QQQQQQQQQQQQQQ

q1(x̃)
b11( ˜x11)

vvmmmmmmmmmmmmm

b12( ˜x12)

��

q1(x̃)

b11( ˜x11)

��

b12( ˜x12)

''OOOOOOOOOOOO

e1[w̃1/w̃21]
@A

GF //

e3[w̃1/w̃23] e2[w̃2/w̃22] e4[w̃2/w̃24]

Move q2(w̃) out of the loop (given by loop motion 3.8).

q2(w̃)

b21(w̃1)

��

b22(w̃2)

((RRRRRRRRRRRRRR

loop id(ỹ ← z̃)

��

loop id(ỹ ← z̃)

��
q1(x̃)

b11( ˜x11)

vvmmmmmmmmmmmmm

b12( ˜x12)

��

q1(x̃)

b11( ˜x11)

��

b12( ˜x12)

((QQQQQQQQQQQQQ

e1[w̃1/w̃21]
@A

GF //

e3[w̃1/w̃23] e2[w̃2/w̃22] e4[w̃2/w̃24]

• Deep repetition for loops

The above together with deep repetition, can be used to justify repeat reduction

through a loop. If a decision in a loop is a repetition of another one outside the loop,

it must be an invariant decision of the loop and can be pulled to the top of the loop

body then loop motion can be used to pull it out of the loop. The repetition can then

be eliminated by deep repetition.

This is used in the repeat reduction to eliminate deep repetitions in loops (section

5.1).



47

• Pushing decisions into loops

The code modification of pushing an invariant decision into a loop, which is used in

the reduction algorithm (section 5.2), can be justified by using loop motion equality

(3.8) and unlooping as shown in the following example.

q(x̃) is the invariant decision to be pushed into the loop.

_ _ _�
�

�
�

_ _ _
q(x̃)

b1(x̃1)

xxppppppppppp
b2(x̃2)

  BBBBBBBB

loop id(ỹ ← z̃)

��

e2

e1

@A
GF //

Apply unlooping on e2.

q(x̃)
b1(x̃1)

xxppppppppppp
b2(x̃2)

&&NNNNNNNNNNN

_ _ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _ _

loop id(ỹ ← z̃)

��

_ _ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _ _

loop id(ỹ ← z̃)

��
e1

@A
GF //

e2

Transpose q(x̃) below the loops by using loop motion (3.8).

loop id(ỹ ← z̃)

��
q(x̃)

b1(x̃1)

xxqqqqqqqqqqqq
b2(x̃2)

&&MMMMMMMMMMMM

e1

@A

GF //

e2



48

• Binding renaming

In loop reduction (5.2.6), independent loop headers are pulled up in the hope that

new semi-essentials can be found. During the course of identifying these so called

potential semi-essentials (see section 5.2.6 for definition), loop bound variables that

are initialized the same need to be renamed th same. The binding renaming equality

justifies this manipulation.

This is the original control expression, with two independent loops id1 and id2.

q(x̃)
b1(x̃1)

xxppppppppppp
b2(x̃2)

&&NNNNNNNNNNN

_ _ _ _ _ _ _ _�

�

�

�_ _ _ _ _ _ _ _
loop id1(ỹ ← t̃)

��

loop id2(z̃ ← t̃)

��
e1

@A
GF //

e2

BC
EDoo

The loop header of id1 is first pulled up to the root, given by the consequence of

pushing decisions into loops.

loop id1(ỹ ← t̃)

��
q(x̃)

b1(x̃1)

xxrrrrrrrrrrrr
b2(x̃2)

))RRRRRRRRRRRRRRR

e1

@A

GF //

_ _ _ _ _ _ _ _�

�

�

�
_ _ _ _ _ _ _ _
loop id2(z̃ ← t̃)

��
e2

BC
EDoo

In the loop header of id2, t is substituted by y, as y is initialized to t in loop id1. Also

since two loops are independent, when execution flow enters loop id2, it will never



49

be directed to loop id1, the bound variable of id1 is only initialized once.

loop id1(ỹ ← t̃)

��
q(x̃)

b1(x̃1)

xxqqqqqqqqqqqq
b2(x̃2)

))RRRRRRRRRRRRRRRR

e1

@A

GF //

_ _ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _ _
loop id2(z̃ ← ỹ)

��
e2

BC
EDoo

Bound variable substitution is applied in loop id2.

loop id1(ỹ ← t̃)

��
q(x̃)

b1(x̃1)

xxqqqqqqqqqqqq
b2(x̃2)

))RRRRRRRRRRRRRRRR

e1

@A

GF //

_ _ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _ _
loop id2(ỹ ← ỹ)

��
e2[ỹ/z̃]

BC
EDoo

Finally, the loop header of id2 is pulled up. As variable y is also used in e1, substi-

tution of y to y is applied but makes no real difference to e1.

loop id1(ỹ ← t̃)

��
loop id2(ỹ ← ỹ)

��
q(x̃)

b1(x̃1)

wwooooooooooooo
b2(x̃2)

''OOOOOOOOOOOOO

e1[ỹ/ỹ]
@A

GF //

e2[ỹ/z̃]
BC

EDoo



50

• Loop flipping

In invariant code removal, nested loop headers are flipped in order to pull out more

semi-essentials from loops (section 5.3.4). This loop flipping algorithm uses the

loop binding weakening (3.5) and loop splitting (3.9).

When flipping two loop headers, the bindings should be independent, that is in the

following example, ỹ1 ∩ z̃2 = ∅ and ỹ1 ∩ ỹ2 = ∅.

_ _ _ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _ _ _

loop id1(ỹ1 ← z̃1)

��_ _ _ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _ _ _

loop id2(ỹ2 ← z̃2)

��
q(x̃)

b1(x̃1)

wwooooooooooooo
b2(x̃2)

''OOOOOOOOOOOOO

e1

@A

GF //

e2

BC

EDoo

Weaken the loop bindings (3.5).

_ _ _ _ _ _ _ _ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _
loop id1(z̃2 ← z̃2, ỹ1 ← z̃1)

��_ _ _ _ _ _ _ _ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _ _ _ _ _ _ _ _

loop id2(ỹ2 ← z̃2, ỹ1 ← ỹ1)

��
q(x̃)

b1(x̃1)

ssgggggggggggggggggggggggg

b2(x̃2)
��

e1[exit id(z̃2, t̃1)/exit id(t̃1)]
@A

GF //

e2[exit id(t̃2, ỹ1)/exit id(t̃2)]
BC

EDoo



51

Amalgamate the loops by using loop splitting (3.9).

_ _ _ _ _ _ _ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _ _ _ _ _ _ _
loop id(ỹ1 ∪ ỹ2 ← z̃1 ∪ z̃2)

��
q(x̃)

b1(x̃1)

ssgggggggggggggggggggggggg

b2(x̃2)
��

e1[exit id(z̃2, t̃1)/exit id(t̃1)]
@A

GF //

e2[exit id(t̃2, ỹ1)/exit id(t̃2)]
BC

EDoo

Split the loop again (3.9)

_ _ _ _ _ _ _ _ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _
loop id2(z̃1 ← z̃1, ỹ2 ← z̃2)

��_ _ _ _ _ _ _ _ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _
loop id1(ỹ1 ← z̃1, ỹ2 ← ỹ2)

��
q(x̃)

b1(x̃1)

ssgggggggggggggggggggggggg

b2(x̃2)
��

e1[exit id(t̃1, ỹ2)/exit id(t̃1)]
@A

GF //

e2[exit id(z̃1, t̃2)/exit id(t̃2)]
BC

EDoo

Remove the unchanged bindings (3.5).

loop id2(ỹ2 ← z̃2)

��
loop id1(ỹ1 ← z̃1)

��
q(x̃)

b1(x̃1)

wwooooooooooooo
b2(x̃2)

''OOOOOOOOOOOOO

e1

@A

GF //

e2

BC

EDoo

• Pulling out arbitrary invariant decision

The algorithm of pulling out an arbitrary invariant decision (section 5.3.3) can be

verified by the unrolling equality (3.7) and deep repetition for loops, as shown in the

following example.



52

In this loop expression, the decision q2(x̃) is a loop semi-essential but not a semi-

essential.

_ _ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _ _

loop id(ỹ ← z̃)

��
q1(ỹ)

b11(ỹ1)

wwppppppppppp
b12(ỹ2)

&&LLLLLLLLLLLL

q2(x̃)

b21(x̃1)

��

b22(x̃2)

''OOOOOOOOOOOOO
e3

e1

@A

GF //

e2

Unroll the loop expression (3.7).

q1(z̃)
b11(ỹ1)

wwooooooooooooo
b12(ỹ2)

%%JJJJJJJJJ

q2(x̃)

b21(x̃1)
��

b22(x̃2)

''OOOOOOOOOOOO e3[z̃/ỹ]

e1[z̃/ỹ]

��

e2[z̃/ỹ]

loop id(ỹ ← x̃′)

��
q1(ỹ)

b11(ỹ1)

wwpppppppppppp
b12(ỹ2)

''OOOOOOOOOOOOOO

_ _ _�
�

�
�

_ _ _
q2(x̃)

b21(x̃1)

��

b22(x̃2)

''OOOOOOOOOOOOO
e3

e1

@A

GF //

e2

Eliminate the deep repetition q2(x̃) (given by deep repetition for loops) of in the



53

loop.

q1(z̃)
b11(ỹ1)

wwooooooooooooo
b12(ỹ2)

%%JJJJJJJJJ

q2(x̃)

b21(x̃1)

��

b22(x̃2)

''OOOOOOOOOOOO e3[z̃/ỹ]

e1[z̃/ỹ]

��

e2[z̃/ỹ]

loop id(ỹ ← x̃′)

��
q1(ỹ)

b11(ỹ1)

xxpppppppppppp b12(ỹ2)

((PPPPPPPPPPPPPP

e1

@A

GF //

e3



Chapter 4

Control normal form for Floey programs

This chapter discusses a normal form for Floey programs, called control normal form,

which is designed to facilitate the optimizations of chapter 5. On programs in control

normal form, implementing compiler optimizations becomes easier as a number of book-

keeping issues concerned with variable scopes and naming have been brought to heel. The

optimizing algorithms described in the next chapter are all based on the programs being in

control normal form.

The Floey control normal form includes the following aspects:

• normalized expressions (section 4.1): constants are folded and expression are ex-

panded to atomic operations

• normalized variables (section 4.2): every variable is uniquely defined and variable

to variable and constant to variable assignments are removed

• normalized entries (section 4.3): every entry is uniquely named and put in the high-

est possible scope level in topological order; uniquely used entries are collected and

unreachable ones are discarded; unused bindings are removed from entries

• normalized loops (section 4.4): every loop is uniquely named; infinite loops and

loops that do not have any cyclic calls are identified and removed; unused or un-

changed loop bindings are removed

The rest of this chapter will discuss how to convert Floey programs into the control normal

54



55

form.

4.1 Normalizing expressions

This section discusses the basic normalizations that will facilitate the optimizations on

expressions, such as common sub-expression elimination [Cocke, J., 1970], constant and

copy propagation [Callahan et al., 1986, 2004; Vanbroekhoven et al., 2003; Wegman and

Zadeck, 1991] and more generally the repeat reduction algorithm (section 5.1).

4.1.1 Constant folding

A constant expression is an expression with constant operands, which can be evaluated at

compile time. Constant folding [Muchnick, 1997] replaces these expressions in a program

by evaluating them to their constant values. For example the expression in the return

statement, return (3+4∗7), will be folded and converted to return 31.

In Floey, constant folding is implemented in the expression expansion phase (section

4.1.2). An expression is first constant folded and then split into atomic assignment instruc-

tions.

By moving such evaluations into compile time, the efficiency of resulting code at run

time is improved. Furthermore, folding constant expressions in assignment generates con-

stant assignments, which allows further constant propagation (section 4.2.2).

4.1.2 Expression expansion

Expression expansion splits complex expressions into multiple assignment instructions.

Each added instruction is an “atomic” operation with an assignment to a temporary vari-



56

able. The result of expression expansion facilitates common sub-expression elimination

[Cocke, J., 1970] and more generally the repeat reduction algorithm (section 5.1).

re turn ( ( a ∗0 .4+ b ∗ 0 . 6 ) / 2 . 0 )

t 1 <− a ∗ 0 . 4 .
t 2 <− b ∗ 0 . 6 .
t 3 <− t 1 + t 2 .
t 4 <− t 3 / 2 . 0 .
re turn t 4

a b

Table 4.1: Expression expansion

The example in table 4.1 demonstrates the effect of expression expansion on a return

statement from figure 2.2. The return statement is expanded to a series of atomic assign-

ment statements followed by a return statement acting on a variable. New temporaries are

introduced by expression expansion and uniquely named in order to avoid name clashes.

The expression expansion algorithm first traverses the whole control expression to find the

largest existing subscript i associated with t. On the second traversal, it expands expres-

sions and subscripts newly generated temporaries starting from i+ 1.

4.1.3 Expression collection

Expression collection is not a normalization, but rather a process that reverses expres-

sion expansion and remove unnecessary assignments in order to generate more readable

Floey programs. It collects assignments to variables which are used only once, back into

the expression where they are used. For example, applying expression collection to the

expanded code in table 4.1.b will result in the single return statement in 4.1.a.

Expression collection not only improves the readability of code, but also facilitates

instruction selection [Appel, 1998] or other tree based algorithms on expressions [Sethi



57

and Ullman, 1970]. Given larger expressions, the instruction selection phase has an better

basis from which to generate efficient assembly code. Furthermore, if a variable is used

only once, storing its value in a register brings no gain to the code as it does not avoid any

re-computation but may increase the register pressure.

With no other code modification applied, every temporary introduced by the expression

expansion is used strictly once. Therefore, if expression collection is applied right after

expression expansion, it reverses the effect of expression expansion, cleaning up those

temporaries introduced by expression expansion. However, the application of other opti-

mizations may prevent this reversion, and some new temporaries can be left in resulting

code.

The following example shows how the application of common sub-expression elim-

ination (see section 5.1 on repeat reduction) may prevent expression collection from re-

moving all temporaries introduced by expression expansion. In table 4.1.3.c, after the

repeat reduction, t1 is used three times and should be kept in the result, as it avoids repeat

computations and therefore improves the code efficiency.

4.2 Normalizing variables

This section discusses the normalizations into static single assignment form. This arranges

that each variable has a unique place of definition. At the same time we discuss constant

and copy propagation.



58

Original Expression expansion Repeat reduction Expression collection

case 3∗z>x of
[ True .

re turn 3∗ z / 2
| F a l s e .

re turn 3∗ z +10
]

t 1<−3∗z .
t 2<− t 1>x .
case t 2 of
[ True .

t 3<−3∗z .
t 4<− t 3 / 2 .
re turn t 4

| F a l s e .
t 5<−3∗z .
t 6<− t 5 +10 .
re turn t 6

]

t 1<−3∗z .
t 2<− t 1>x .
case t 2 of
[ True .

t 4<− t 1 / 2 .
re turn t 4

| F a l s e .
t 6<− t 1 +10 .
re turn t 6

]

t 1<−3∗z .
case t 1>x of
[ True .

re turn t 1 / 2
| F a l s e .

re turn t 1+10
]

a b c d

Table 4.2: Expression collection

4.2.1 Static single assignment form

Static single assignment form (SSA) [Cytron et al., 1991], is an intermediate representa-

tion that is used in many optimizing compilers, such as GCC [Novillo, 2003, 2004] and

SUIF [Stanford SUIF Compiler Group, 1994]. The essential property of SSA form is that

whenever a variable is defined it is given a unique name. This means that if two variables

have the same name they must also have the same value. Converting program into SSA

form makes the bookkeeping issues for variable much simpler and improves the efficiency

of optimization algorithms. Many compiler optimization algorithms are SSA form based

[Chow et al., 1997; Gerlek et al., 1995; Sastry and Ju, 1998; VanDrunen and Hosking,

2004]. In Floey, the implementations of repeat reduction (section 5.1) and the reduction

algorithm (section 5.2) also benefit from the simplicity of SSA form.

In Floey, the conversion to SSA form is accomplished by simply renaming each vari-

able in every definition, including loop bindings, uniquely (see section 6.2.2). Similar to

section 4.1.2, the unique variable names are generated by subscripting them with unique



59

numbers. The following example in table 4.3 shows how a control expression is converted

to SSA form.

fun foo ( i : I n t ) : I n t
{

begin
x <− i ∗ 2 .
x <− x − 1 0 .
loop l p ( x<−x )
{

case x > 0 of
[ True .

y <− x ∗ 4 .
re turn y

| F a l s e .
y <− x ∗ (−1) .
e x i t l p ( y ) ]

}
}

fun foo ( i : I n t ) : I n t
{

begin
x1 <− i ∗ 2 .
x2 <− x1 − 1 0 .
loop l p ( x3<−x2 )
{

case x3 > 0 of
[ True .

y4 <− x3 ∗ 4 .
re turn y4

| F a l s e .
y5 <− x3 ∗ (−1) .
e x i t l p ( y5 ) ]

}
}

Table 4.3: Static Single Assignment form

Floey programs must be normalized before they are passed to the optimization algo-

rithms in the next chapter. Therefore in the later sections, we shall generally assume that

every variable has a unique place of definition (i.e. the program is in SSA form).

To maintain the readability of the resulting code, it is desirable to keep the variable

names as close to the original ones as possible. To this end, after optimizations are done,

the Floey compiler reverses the variable renaming process and converts the SSA program

back to original form, as long as it does not cause name clash. The reversal is accomplished

by removing the subscripts.

For the purpose of readability of this document, we tend to avoid using SSA form in

most examples but to manually name all variables differently, so no variable reassignment

can occur.



60

4.2.2 Copy and constant propagation

There are two optimizing processes that can be applied in the normalization phase to elim-

inate redundant variable assignments: copy propagation and constant propagation [Calla-

han et al., 1986, 2004; Vanbroekhoven et al., 2003; Wegman and Zadeck, 1991]. If the

expression on the right hand side of an assignment statement is a variable or a constant,

the statement is called a copy assignment or a constant assignment respectively. In the

copy/ constant propagation process, the variable x in a copy or constant assignment, x<−y,

is substituted by y in the control expression that follows. As Floey code is first converted

into SSA form prior to copy/ constant propagation, no variable re-assignment can happen

to x or y (if it is a variable). This means the substitution will continue till the end of the

control expression. x is then never used and the assignment can be thus removed.

1 fun foo ( a : Rea l ) : Rea l
2 {
3 begin
4 case f of
5 [ True .
6 x <− 3 / a .
7 y <− x .
8 re turn y − 7
9 | F a l s e .

10 x <− 9 .
11 y <− x .
12 re turn y ∗ a / x
13 ]
14 }

fun foo ( a : Rea l ) : Rea l
{

begin
case f of
[ True .

x <− 3 / a .
re turn x − 7

| F a l s e . re turn 9 ∗ a / 9
]

}

a b

Table 4.4: Copy and constant propagation

For example, the copy assignment on line 7 in table 4.4.a is removed, as it is a copy

assignment. x is substituted for y in the statement: return y−7. The constant assignment



61

on line 10 is removed, and x is substituted by integer 9. This substitution makes the

assignment on line 11 another constant assignment and so can be removed.

4.3 Normalizing the entry structure

The entry structure normalization is a preparatory process for the reduction algorithm

(section 5.2). This process moves entries to the highest possible scope level and puts

them in topologically sorted order. At the same time, it collects uniquely used entries

and removes the unreachable ones. The resulting Floey code has normalized and simpler

entry structures, which allows a much simpler implementation of further normalizations

or optimizations.

4.3.1 Entry renaming

In order to avoid name clashes on entries during code manipulation, especially during en-

try promotion (section 4.3.3), the Floey compiler first renames all entries uniquely. Sim-

ilar to the approach used in section 4.2.1, the entry renaming is accomplished by adding

uniquely numbered subscripts, after which the entry identifiers in exit statements are up-

dated accordingly.

Entry renaming is applied in the beginning of entry normalization and is reversed after

optimizations. The reversal is accomplished by removing the added subscripts and updat-

ing exit statements accordingly, as long as it does not cause entry name clashed on local

scope level.

Again, for the readability of this document, we shall not show the entry renaming

process in most examples by arranging to start with that each entry is uniquely named.



62

4.3.2 Local entries

An entry B is local to an entry or loop A if it can re-direct the execution back to A. Notice

that since cyclic entry calls are prohibited in Floey, an entry cannot be local to another

entry. Local entries thus are the entries in a loop which (indirectly) exit back to the loop

header. For example, en1 in table 4.5 is a local entry to loop lp, as it has an exit statement

jumping to the header of loop lp. On the other hand, en2 is a non-local entry to loop lp, as

it does not directly or indirectly jump back to the loop header.

Identifying such local entries can be accomplished by the use of the dependency graph

of that loop. In each function, control operation, entry or loop, a dependency graph of

subsidiary entries, x1,. . .,xn, can be generated. Each entry xi is represented as a node in

the graph. An arrow from xi to xj is present if and only if there is an exit statement in

entry xi jumping to entry xj . The root of the dependency graph is the control expression

that transitively calls these entries.

All local entries much directly or indirectly call the root. Therefore in the reversed

dependency graph, local entries are those nodes that are reachable from the root. Thus, a

traversal from the root in the reversed dependency graph identifies all local entries. The

rest of the subsidiary entries are then non-local entries to that loop.

4.3.3 Entry promotion

Entry promotion recursively moves entries to the highest possible level and sorts them in

the topological order. The resulting Floey code has a flattened and topologically sorted

entry structure.

The entry promotion algorithm starts from the deepest level of the entry hierarchy and

recursively works towards higher levels. On each level, the algorithm first identifies all



63

main : p romote
fun promote ( x : I n t ) : I n t
{

begin
loop l p ( y<−x )
{

e x i t en1 ( y )
entry en1 ( a : I n t )
{

case a<100 of
[ True . e x i t l p ( a ∗2)
| F a l s e . e x i t en2 ( a , 1 )
]

}
entry en2 ( x , y : I n t )
{ e x i t ou t1 ( x )}

}
entry ou t1 ( x : I n t )
{ e x i t ou t3 ( x )}
entry ou t2
{ e x i t ou t3 ( 0 )}
entry ou t3 ( x : I n t )
{ re turn x}

}

main : p romote
fun promote ( x : I n t )
{

begin
loop l p ( y<−x )
{

e x i t en1 ( y )
entry en1 ( a : I n t )
{

case a<100 of
[ True . e x i t l ( a ∗2)
| F a l s e . e x i t en2 ( a )
]

}
}
entry ou t3 ( x : I n t )
{ re turn x}
entry ou t1 ( x : I n t )
{ e x i t ou t3 ( x )}
entry en2 ( x : I n t )
{ e x i t ou t1 ( x )}

}

a b

Table 4.5: Entry promotion

local subsidiary entries (see section 4.3.2) and moves the rest to one higher level. After

that, entry promotion topologically sorts the remaining subsidiary entries on that level.

When pulling an entry to the upper level, entry renaming (see section 4.3.1) ensures no

entry name clash occurs.

As discussed in section 4.3.2, an entry cannot be local to another entry. As the result,

after entry promotion, an entry will be either moved to the top level of a function or control

operation, or it will be stuck in a loop to which it is local. There is therefore no nested

entry structure left in the resulting code. For example, in table 4.5.a, entry en1 is a local

entry to loop lp and cannot be promoted. While en2 is a non-local entry to lp and is moved



64

up to the level of function promote.

As topologically sorted entry structure is desirable for the implementation of reduction

algorithm (section 5.2). Given the dependency graph, the topological sorting algorithm

based on depth first search [Corman et al., 1990] is used to sort all subsidiary entries in the

reserve order that they are executed. During the topological sorting of entries, unreachable

entries, which are the unreachable nodes from the root in the dependency graph, can also

be eliminated. As the topological sorting algorithm is based on depth first search, by the

end of the sorting, unreachable entries will not have been traversed and can be discarded.

Table 4.5.b illustrates the effect of topological sorting: entry out3, out1 and en are sorted

in the new order as en is executed before out1 and out3. Entry out2 is unreachable and is

thus removed from the result. The process of eliminating unreachable entries is similar to

the compiler optimization of eliminating unreachable code [Aho et al., 2007] (see section

6.2.4 for more discussion).

4.3.4 Entry collection

Entry collection collects the entries that are only called once by exit statements. The

dependency graph discussed in section 4.3.2 can be used to recognize such entries: an

entry with only one incoming arrow in the dependency graph is uniquely used. After a

uniquely called entry en is identified, entry collection replaces the exit statement that exits

to en with the control expression in en. As entry collection is applied after entry promotion

is done, there are no subsidiary entries left in en.

After entry collection, all entries left in Floey programs are used in the way that they

are designed to: they are the interface for joint points in control flow graph. The resulting

Floey programs have fewer entries and larger control expressions, which not only reduces



65

the overhead of entry calling but, more importantly, it improves the effect of optimizations

on the resulting code as most Floey program optimizations (chapter 5) are designed to act

locally on control expressions rather than globally across entries.

Entry collection is similar to the conventional inline expansion [Chang and Hwu,

1989], which replaces function calls by the code of that routine. By only collecting

uniquely used entries, entry collection will not result in a code size explosion. For the

simplicity, in the examples presented we generally skip entry collection.

4.3.5 Entry binding reduction

If a local binding is never used in a entry, it should be removed from the binding list.

Binding reduction in an entry not only reduce the use of variables in that entry, it may

also affect the variable liveness of the exits that jump to it, as the exit statements to that

entry may also then be reduced. It is desirable to apply the entry binding reduction in the

topological sorted order after entry promotion (section 4.3.3), as variable reduction in an

entry can precipitate variable reduction in entries which exit to that entry.

Given a topologically sorted list of entries, in the reserve execution order, entry bind-

ing reduction is applied to each entry in the order. In each entry, two traversals are per-

formed. In the first traversal, variable use information is collected and is used to identify

and remove the unused bindings from entry interface. Such binding modifications are

recorded in a list of entry identifiers paired with their updated bindings. In the second

traversal, whenever an exit statement is encountered, for which the bindings of the entry

it is jumping to has been changed, the parameters of the removed bindings in the entry

will be removed from the exit statement. Entry binding reduction stops at the root of the

dependency graph (the control expression in the local level).



66

For example in table 4.5.b, the local binding y is never used and thus removed. The

exit statement in entry en1 that exits to en2 is thus updated.

4.4 Normalizing loops

Since loop expressions are special entry structures that allow cyclic calls, entry struc-

ture normalizations also applies to loop expressions. In this section, we discuss three

loop normalizations that handle the special cyclic feature of loops expressions and further

normalize them. Loop normalizations are applied after loop expressions are first entry

normalized.

The scenarios discussed in the following sections can be present in the original source

code but more often they are generated by optimization steps, such as repeat reduction

(section 5.1).

4.4.1 Loop renaming

In the reduction algorithm (see section 5.2.6), independent loop headers are pulled up to

the root of control expressions. In order to avoid loop name clashes, the first step of loop

normalization is to rename each loop in a control expression uniquely. Similar algorithm

to entry renaming (section 4.3.1) is applied to accomplish this task.

4.4.2 Infinite loop reduction

A loop expression with no return statement or exit statement jumping to outside the loop

is an infinite loop, as the only way an iteration can end is by jumping outside the loop.

Loop normalization traverses the loop body, through subsidiary entries, to identify infinite



67

loops. Assuming Floey programs do not have side effect - which is the assumption in this

thesis - an infinite loop is equivalent to non-termination. Such loop expressions can be

reduced by removing all bindings and subsidiary entries. The control expression in the

loop body is replaced by a simple exit statement jumping back to the loop header with no

actual parameters.

This process not only reduce the code size of infinite loops, it also provides extra possi-

bilities for other optimizations. The infinite loop in table 4.6.a for example, is normalized

as shown in 4.6.b. As variable x on line 5 is never used after loop normalization, the

assignment can be eliminated in idempotent reduction (section 5.2.4).

main : foo
fun foo ( a : I n t ) : I n t
{

begin
x<−a ∗2 .
loop l p ( y<−x ) {

case y<0 of
[ True . e x i t l p ( y +1)
| F a l s e . e x i t l p ( y−1)
]

}
}

1 main : foo
2 fun foo ( a : I n t ) : I n t
3 {
4 begin
5 x<−a ∗2 .
6 loop l p ( ) {
7 e x i t l p
8 }
9 }

a b

Table 4.6: Reducing infinite loops

4.4.3 Unlooping

A loop expression whose body has no exit statement jumping back to the loop header is

not a looping structure and the loop header can be removed. Such loop expressions can

be identified easily after entry promotion (section 4.3.3), when all the resulting subsidiary

entries left in a loop expression are reachable local entries. In case there is any subsidiary



68

entry left, the loop expression must be a looping structure. Otherwise, loop reduction

traverses the control expression in loop body and identifies those exit statements that jump

directly back to the loop header. If no such exit statement exists, the loop expression is not

a looping structure and can be removed. The loop expression is replaced by the control

expression in the loop body with loop bound variables substituted with their initialization

expressions.

main : foo
fun foo ( a : I n t ) : I n t
{

begin
x<−a ∗2 .
loop l p ( y<−x ) {

case y<0 of
[ True . re turn −y
| F a l s e . re turn y
]

}
}

main : foo
fun foo ( a : I n t ) : I n t
{

begin
x<−a ∗2 .
case x<0 of
[ True . re turn −x
| F a l s e . re turn x
]

}

a b

Table 4.7: Unlooping

The loop lp in table 4.7 doesn’t have any exit statements jumping back to its header. It

is replaced by the control expression in its loop body with y being substituted with x.

4.4.4 Loop binding reduction

Loop binding reduction is designed to remove all unused or unchanged bindings. A min-

imized list of binding allows loop reduction to employ more effective loop invariant code

motion (discussed in section 5.3.2) to further optimize the loop.

Similarly to the ones in entries, unused bindings are those local bindings that are never

used anywhere in a loop. These bindings can simply be removed from the binding list



69

without modifying the loop body. Unchanged bindings are the local bindings that are

used in a loop but their values are never altered during iterations. That is, in every exit

statement jumping back to the loop header, the actual parameter of a local binding is

its bound variable or initialization expression. Removing unchanged bindings from loops

requires that the bound variables are substituted by their initialization expressions, as these

variables can be used in the loop. A first traversal of the loop body, through subsidiary

loop l p ( x’<−x , y’<−y ) {
case x’<0 of
[ True .

e x i t re turn x ’
| F a l s e .

e x i t l p ( x ’ , y ’−1)
]

}

loop l p ( ) {
case x<0 of
[ True . re turn x
| F a l s e . e x i t l p
]

}

a b

Table 4.8: Removing unused or unchanged loop variables

entries, can identify all unused and unchanged loop variables. If all local bindings are

used or changed, the original loop expression is returned unchanged. Otherwise, unused

and unchanged variables are removed accordingly. In the second traversal, exit statements

that jump back to the loop header should be modified, as the loop interface has been

changed. Actual parameters in respective positions will be removed. Such modifications

may produce unused bindings in subsidiary entries, which requires entry binding reduction

being applied again to these them.

In the example shown in table 4.8, loop variable x is unchanged and y is unused. Both

bindings are removed with necessary variable substitution been applied. For another ex-

ample on loop binding reduction, see table 5.15.



70

4.4.5 Loop amalgamation

In Floey, two directly nested loop expressions, that is their loop headers are next to each

other, can be amalgamated if the following conditions are satisfied. Bound variables of

the outer loop are assigned, one on one, to bound variables of the inner loop, and none of

them are used in the loop body.

Original Reduced
fun foo ( x , y : Bool ) : I n t
{

begin
loop i d 1 ( t 1<−y )
{

loop i d 2 ( t 2<− t 1 )
{

case t 2 of
[ True . re turn 1
| F a l s e .

case x of
[ True .

e x i t i d 1 ( t 2 +1)
| F a l s e .

e x i t i d 2 ( t 2 ∗2)
]

]
}

}
}

fun foo ( x , y : Bool ) : I n t
{

begin
loop i d 2 ( t 2<−y )
{

case t 2 of
[ True . re turn 1
| F a l s e .

case x of
[ True .

e x i t i d 2 ( t 2 +1)
| F a l s e .

e x i t i d 2 ( t 2 ∗2)
]

]
}

}

a b

Table 4.9: Loop amalgamation

For example, here in table 4.9.a, t1 is assigned to t2 in the binding of loop id2 and is

never used in the loop body. Loop id1 is then amalgamated with id2. Program results in a

simpler form.



Chapter 5

The Reduction Algorithm for Floey Programs

The purpose of this chapter is to describe the reduction algorithm for Floey programs.

The algorithm has three main components: repeat reduction, reduction, and invariant code

removal. The organization of these algorithms follow the organization of the decision tree

optimization [Cockett and Herrera, 1990]. The new aspects concern how variables and

loops are integrated into this algorithm.

Repeat reduction (section 5.1) looks for repeated calculations and, thus, not only in-

cludes common subexpression elimination but also the removal of conditional statements

whose outcome is already known. The reduction algorithm (section 5.2) then more ag-

gressively tries to remove code which unnecessarily lengthens some execution paths. Fi-

nally invariant code removal (section 5.3) tries to remove invariant code from the loops.

Throughout this chapter, we assume Floey programs have already been converted into

control normal form (see chapter 4).

5.1 Repeat reduction

A basic step in decision tree reduction [Cockett and Herrera, 1990] and code optimiza-

tion is to eliminate common subexpressions and repeated decisions. For Floey the repeat

reduction algorithm removes both the re-computation of expressions and of control opera-

tions. Thus common sub-expression and branches which will not be executed are removed

at this stage.

71



72

The repeat reduction algorithm for Floey programs will be explained progressively in

the following sections. Section 5.1.1 gives an overview of repeat reduction on non-looping

control expression constructs, the details of which are discussed from section 5.1.2 to

section 5.1.5. Finally repeat reduction for loop expressions is discussed in section 5.1.6.

5.1.1 Overview of repeat reduction algorithm

1 r e p e a t r e d u c e : L i s t ( Choice ) × Cexp −> Cexp
2 r e p e a t r e d u c e chs ( e x i t b ( t̃ ) ) = e x i t b ( t̃ )
3 r e p e a t r e d u c e chs ( q ( t̃ ){ bi ( ṽi ) . cexp i}i∈I ) =
4 i f ( q ( t̃ ) , bj(ṽ)) ∈ chs then r e p e a t r e d u c e chs cexp j [ṽ/ṽj ]
5 e l s e q ( t̃ ){ bi ( ṽi ) . ( r e p e a t r e d u c e ( q ( t̃ ) , bi ( ṽi ) ) : chs cexp i )} i∈I

Figure 5.1: Repeat reduction algorithm

The repeat reduction algorithm on non-looping programs is given in figure 5.1. Repeat

reduction on loop expression is similar but involves local entries, which is discussed in

section 5.1.6. In figure 5.1, exit b(t̃) stands for an exit statement or a return statement, as

they are treated the same in the repeat reduction. On line 3, q(t̃){bi(ṽi).cexpi}i∈I stands for

a decision in Floey (control statements, case statements and assignments). Here q(t̃) is the

control operation in that decision (note that case statements have the special “case” control

operations, while assignments are treated internally as unary case statements, see section

2.6), which is followed by the branches. In each branch i, cexpi is the control expression

that follows the branch binding, bi(ṽi).

The repeat reduction algorithm produces a repeat reduced control expression from a

control expression and an execution history. The execution history is held as a list of

choices. Each choice is a control operation call paired up with a branch binding. A

control operation call is a control operation applied to its arguments. The arguments are



73

expressions in general, however, in control normalized Floey code, these arguments can

only be variables or constants (see expression expansion in section 4.1.2). Every decision

in Floey programs starts with a control operation call, based on the result of which the

execution is directed to one of the branches that follow. The list of choices, thus, holds

the history of control operations and their branch bindings, which indicate the path the

execution has chosen through these control operations. Assuming control operations and

functions in Floey are all pure (with no side-effect), repeated uses of a control operation

call should return the same branch binding, which will be selected by repeat reduction.

Program efficiency can gain from avoiding re-computations of such repetitions. Program

size can also be reduced as the branches that cannot be reached are removed.

Repeat reduction algorithm does a recursive traversal of control expressions, during

which the execution history is passed and updated. Whenever a decision with a repeated

control operation call is encountered, the branch with the same branch binding as the one

found in the execution history is selected.

Following sections discuss the implementations of the algorithm on different Floey

control expression constructs. Examples are also provided to demonstrate the effects of

repeat reduction.

5.1.2 Exit and return statements

As Floey programs have been control normalized, the expressions in exit or return state-

ments must either be constants or variables. There can be no repetition of computation in

these statements as there is no computation in them. Exit and return statements are left

unchanged by repeat reduction (line 2 in figure 5.1).



74

5.1.3 Control statements

When a control statement is encountered, the repeat reduction searches for its control

operation call, q(t̃), in the execution history. In case a choice, (q(t̃),bj(ṽ)), is found, the

control statement is then replaced with cexpj[ṽ/ṽj] (line 4 in figure 5.1). That is the control

expression which follows bj(ṽj) with the variables ṽj substituted by ṽ. The traversal then

continue on to the resulting control expression.

Otherwise, if the control operation is not found in the history, the traversal moves on

to each control expression in the branches of that control statement, with a new choice

(q(t̃),bi(ṽi)) added for the traversal on branch i.

1 main : r e p e a t
2 def foo ( x : Bool ) [ a ( I n t ) , b ( I n t ) ]
3 {
4 begin
5 case x of
6 [ True . e x i t a ( 1 )
7 | F a l s e . e x i t b ( 0 ) ]
8 }
9 fun r e p e a t ( x : Bool ) : I n t

10 {
11 begin
12 foo ( x ) of
13 [ a ( y ) .
14 foo ( x ) of
15 [ a ( z ) . re turn z
16 | b ( z ) . re turn 0
17 ]
18 | b ( y ) .
19 foo ( x ) of
20 [ a ( z ) . re turn 0
21 | b ( z ) . re turn z
22 ]
23 ]
24 }

main : r e p e a t
def foo ( x : Bool ) [ a ( I n t ) , b ( I n t ) ]
{

begin
case x of
[ True . e x i t a ( 1 )
| F a l s e . e x i t b ( 0 ) ]

}
fun r e p e a t ( x : Bool ) : I n t
{

begin
foo ( x ) of
[ a ( y ) . re turn y
| b ( y ) . re turn y

]
}

a b

Table 5.1: Repeat reduction on control statements



75

The example in table 5.1 demonstrates the effect of repeat reduction on control state-

ments. On line 14 and 19 in table 5.1.a, the result of foo(x) can be determined by its

previous occurrence. As foo(x) on line 14 is in the branch of a(y), the choice (foo(x ), a(y))

must be found in the history. Repeat reduction then selects the branch a(z), substitutes y

for z. A similar repetition appears on line 19.

5.1.4 Case statements

As the control expression is in control normal form, when a case statement is encountered,

its argument is either a constant or a variable. Whenever an argument in a case statement

is a constant constructor or a variable which can be found in the history, repeat reduction

is able to predict the branch that the execution will take. In the former case, the branch that

starts with the same constructor is selected. In the latter case, repeat reduction algorithm

searches in the history for the assigned value of the variable, which should be in the special

form: (case(exp),#Assign(v)) . Here exp is the expression that the variable v is assigned to.

#Assign is the special constructor used in assignments (see section 2.6.5). If such choice

is found and the expression exp is a constructor, the branch with that constructor will

be selected by repeat reduction with necessary variable substitutions. The traversal then

moves on to the resulting control expression.

Otherwise, if none of the above conditions is satisfied, the traversal continues on to

each control expression in the branches of that case statement. In the traversal on each

branch i, a new choice, (case(bi(ṽi)),#Assign(v)), is added to the execution history.

The example in table 5.2 demonstrates the effect of repeat reduction on case state-

ments. When the traversal comes to the case statement on line 8 in 5.2.a, a choice

(case(SS(a )),# Assign(x)) is found in the history. The branch that starts with SS(b) is then



76

1 main : r e p e a t
2 data SF a = SS ( a )
3 | FF
4 fun r e p e a t ( x : SF I n t ) : I n t {
5 begin
6 case x of
7 [ SS ( a ) .
8 case x of
9 [ SS ( b ) . re turn b

10 | FF . re turn 0
11 ]
12 | FF .
13 case SF ( 1 ) of
14 [ SS ( d ) . re turn d
15 | FF . re turn 0
16 ]
17 ]
18 }

main : r e p e a t
data SF a = SS ( a )

| FF
fun r e p e a t ( x : SF I n t ) : I n t {

begin
case x of
[ SS ( a ) . re turn a
| FF . re turn 1
]

}

a b

Table 5.2: Repeat reduction on case statements

selected, b is substituted by a in return b. The expression SS(1) on line 13 is a constant

constructor. Repeat reduction selects the branch with SS(d) and substitutes d with 1 in

return d.

5.1.5 Assignment statements

As the result of expression expansion (see section 4.1.2), all calculations on expressions

are moved into assignment statements. It is, thus, on the assignments that common sub-

expressions are detected.

An assignment, internally, is stored as a special case statement with unary branch:

case(exp){#Assign(v ). cexp}. When an assignment is encountered, the repeat reduction looks

in the history for a choice in the form: (case(exp),#Assign( t )) . The existence of such a

choice in the history means that the expression exp is already assigned to another variable



77

Original Control normal form Repeat reduction

fun comsub ( a : I n t ) : I n t
{

begin
x<−5∗a .
x<−x +1 .
y<−5∗a .
z<−6∗(y + 2 ) .
re turn ( y + 2 ) / 4

}

1 fun comsub ( a : I n t ) : I n t
2 {
3 begin
4 x1<−5∗a .
5 x2<−x1 +1 .
6 y3<−5∗a .
7 t 1<−y3 +2 .
8 z4<−6∗ t 1 .
9 t 3<−y3 +2 .

10 t 4<− t 3 / 4 .
11 re turn t 4

12 }

fun comsub ( a : I n t ) : I n t
{

begin
x1<−5∗a .
x2<−x1 +1 .
t 1<−x1 +2 .
z4<−6∗ t 1 .
t 4<− t 1 / 4 .
re turn t 4

}

a b c

Table 5.3: Common sub-expression elimination

v. To avoid re-computation, the assignment is replaced by cexp[ t /v], the control expression

that follows with t substituted for v. If the expression in an assignment is not found the

history, repeat reduction adds a new choice into the history: (case(exp),#Assign(v)) and

moves on to control expression cexp. In table 5.3.b, since the expression 5 ∗ 8 on line 5 is

already computed, x1 is substituted for y3 in the control expression that follows. Due to the

application of expression expansion, the re-computation common sub-expressions y3+2 on

line 6 and line 8 is recognized and avoided. The result is shown in 5.3.c.

Example in table 5.4 demonstrates the effect of repeat reduction in a control expression

with both assignments and case statements. When processing the case statement on line

7 in 5.4.a, a choice (SS(a),#Assign(x)) is found in the history and used to select the branch

with binding SS(b). The expression on line 13 results to SS(a) after variable substitution

and is later replaced by x. When the traversal comes to the assignment on line 11, a choice

(SS(c),y) is found in the history, which means the assignment is removed with z being

substituted to y in return z.



78

1 main : r e p e a t
2 data SF a = SS ( a )
3 | FF
4 fun r e p e a t ( a : I n t , y : SF I n t ) : L i s t {
5 begin
6 x<−SS ( a ) .
7 case x of
8 [ SS ( b ) .
9 case y of

10 [ SS ( c ) .
11 z<−SS ( c ) .
12 re turn z
13 | FF . re turn SS ( b )
14 ]
15 | FF . re turn FF
16 ]
17 }

main : r e p e a t
data SF a = SS ( a )

| FF
fun r e p e a t ( a : I n t , y : SF I n t ) : L i s t {

begin
x<−SS ( a ) .
case y of
[ SS ( c ) .

re turn y
| FF .

re turn x
]

}

a b

Table 5.4: Repeat reduction on case and assignment statements

5.1.6 Loop expressions

1 r e p e a t r e d u c e : L i s t ( Choice ) × Cexp −> Cexp
2 r e p e a t r e d u c e chs ( loop i d ( b i n d i n g s ) {body } )
3 = loop i d ( b i n d i n g s ) { r e p e a t b o d y chs body}
4

5 r e p e a t b o d y : L i s t ( Choice ) × ( Cexp , L i s t ( E n t r y ) ) −> ( Cexp , L i s t ( E n t r y ) )
6 r e p e a t b o d y chs ( cexp , { entry i d i ( b i n d i n g s i ) {bodyi}}i∈I )
7 = ( r e p e a t r e d u c e chs cexp ,
8 { entry i d i ( b i n d i n g s i ) { ( r e p e a t b o d y [ ] bodyi )}} i∈I )

Figure 5.2: Repeat reduction algorithm on loop expressions

When a loop expression is encountered, repeat reduction goes into the loop body and

repeat reduces it. In figure 5.2, repeat body is used to accomplish that.

repeat body applies repeat reduction on the control expression and on the subsidiary

entries in the loop body. The execution history is passed to repeat reduce on the control

expression, while repeat body on entries receive empty list as input. That is because history



79

information cannot be simply passed into entries, because for an entry, there can be more

than one exit statement that jumps to it.

5.2 The reduction algorithm

The reduction algorithm in its original form is a decision tree optimization technique

[Cockett and Herrera, 1990], which here is applied to achieve compiler optimizations.

Each case statement or control statement in Floey is a decision with multiple choices,

while assignment statements can be seen as decisions with only one choice. It is therefore

natural to apply decision tree manipulations to Floey programs, although the manipula-

tions are now constrained by variable bindings and must be extended to handle loops.

The organization of this section is as follows: section 5.2.1 gives an overview of the

reduction algorithm, the main components of which are discussed through section 5.2.2

to section 5.2.5. Finally, section 5.2.6 presents the loop reduction algorithm, an extended

version of the reduction algorithm that is designed to further reduce loops.

5.2.1 Overview of reduction algorithm

In essence, the reduction algorithm optimize a control expression by removing unneces-

sary decisions. As a result, program performance can be improved as some execution paths

may be reduced. The algorithm can be broken down to four major components: identifying

semi-essentials in a control expression (section 5.2.2), pulling up semi-essentials (section

5.2.3), idempotent reduction (section 5.2.4), and elimination factoring (section 5.2.5). It

recursively pushes decisions in control expression down, by identifying and pulling up

semi-essential decisions. When a decision is pushed down until it is immediately above



80

leaves (exit or return statements), it has the opportunity to be idempotent reduced. This

reduces the length of an execution path and, thus, gives potential improvement in effi-

ciency. If any statement is successfully idempotent reduced after the “pulling-up” of a

semi-essential, elimination factoring will keep the resulting control expression. Other-

wise, the control expression rolls back to the previous form before that semi-essential was

pulled up.

1 r e d u c e : Cexp −> Cexp
2 r e d u c e cexp = r e d u c t i o n ( r e p e a t r e d u c e cexp )
3

4 r e d u c t i o n : Cexp −> Cexp
5 r e d u c t i o n ( e x i t b ( t̃ ) ) = e x i t b ( t̃ )
6 r e d u c t i o n ( q ( t̃ ){ bi ( ṽi ) . cexp i}i∈I ) = i f v then t
7 e l s e q ( t̃ ){ bi ( ṽi ) . cexp ’ i}i∈I

8 where cexp ’ i = r e d u c t i o n cexp i

9 ( v , t ) = e l i m i n a t i o n f a c t o r q ( t̃ ){ bi ( ṽi ) . cexp ’ i}i∈I

10 r e d u c t i o n ( loop i d ( b i n d i n g s ) {body } )
11 = loop i d ( b i n d i n g s ) { r e d u c t i o n b o d y body}
12

13 r e d u c t i o n b o d y : ( Cexp , L i s t ( E n t r y ) ) −> ( Cexp , L i s t ( E n t r y ) )
14 r e d u c t i o n b o d y ( cexp , { entry i d i ( b i n d i n g s i ) {bodyi}}i∈I )
15 = ( r e d u c t i o n cexp , { entry i d i ( b i n d i n g s i ) { r e d u c t i o n b o d y bodyi}}i∈I )

Figure 5.3: The reduction algorithm

The pseudo code of the reduction algorithm is given in figure 5.3. As a preliminary

step of the reduction algorithm, repeat reduction is first applied to the control expression.

The resulting control expression is then sent to the procedure reduction , which produces a

reduced control expression. The algorithm does a traversal on the given control expres-

sion. exit b(t̃) on line 5 stands for leaf statements of the control expression, which are

left unchanged. When a loop expression is encountered (line 10), the loop header is un-

changed. The traversal moves on to the loop body and reduces it. Whenever a decision is

encountered (line 6), each control expression in its branches is first reduced (line 8). The



81

elimination factor algorithm is then used trying to reduce the decision as a whole (line 9).

If it succeeded, the reduced decision is returned. Otherwise, the decision with reduced

branches is returned.

The following subsections will explain the four major components of the reduction

algorithm in details.

5.2.2 Identify semi-essentials

Identifying semi-essentials (see section 3.2.3 for the definition) in a control expression is

an important step in the reduction algorithm, so that these semi-essentials can be pulled

up to the root (section 5.2.3), which may allow potential idempotent reductions (section

5.2.4).

Semi-essentials in decision trees are the decisions that occur in every path from the

root to the leaves. When identifying semi-essentials in a control expression, however, one

needs to ensure that the semi-essentials do not use any branch variables bound by other

decisions.

1 g e t s e m i e s s e n t i a l s : L i s t ( S t r i n g ) × Cexp −> L i s t ( S t r u c t )
2 g e t s e m i e s s e n t i a l s v a r s ( e x i t b ( t̃ ) ) = ∅
3 g e t s e m i e s s e n t i a l s v a r s q ( t̃ ){ bi ( ṽi ) . cexp i}i∈I

4 = de fn
⋃

(
⋂
{ g e t s e m i e s s e n t i a l s ( v a r s ++ ṽi) cexp i}i∈I )

5 where de fn = i f t̃
⋂

v a r s ==∅ then q ( t̃ ){ bi(ṽi)}i∈I e l s e ∅
6 g e t s e m i e s s e n t i a l s v a r s ( loop i d ( l o c a l i ← f r e e i ) i∈I { cexp e n t r i e s } )
7 = g e t s e m i e s s e n t i a l s ( v a r s ++ ( l o c a l i ) i∈I ) cexp

Figure 5.4: Identify semi-essentials from a control expression

The algorithm of identifying semi-essentials in a control expression is given in figure

5.2.2. The procedure get semi essentials returns a list of structures of semi-essentials from

a list of strings together with a control expression. A structure is a control operation call



82

associated with its branch constructors. The returning list of structures can then be used

to pull semi-essentials up and reconstruct the control expression (see figure 5.7 and figure

5.3.1). The algorithm does a depth first traversal on a control expression, during which the

list of strings is used for collecting defined variables.

On line 2, exit b(t̃) stands for the leaf statements. As none of them can be a semi-

essential, an empty list is return.

When a decision is encountered (line 3), the algorithm first checks the variables used

in the decision. If it does not use any variable that is defined earlier in the traversal, its

structure is added into the list. For a multiple decision, the semi-essentials beneath it is

the intersection of semi-essentials in each branch.

Original Control normal form
main : p u l l
data TF = T ( I n t )

| F ( I n t )
fun p u l l ( x , y : TF ) : I n t
{

begin
case x of
[ T ( a ) .

case y of
[ T ( a ) . re turn a
| F ( a ) . re turn a
]

| F ( a ) .
case y of
[ T ( a ) . re turn a
| F ( a ) . re turn a
]

]
}

1 main : p u l l
2 data TF = T ( I n t )
3 | F ( I n t )
4 fun p u l l ( x , y : TF ) : I n t
5 {
6 begin
7 case x of
8 [ T ( a1 ) .
9 case y of

10 [ T ( a2 ) . re turn a2

11 | F ( a3 ) . re turn a3

12 ]
13 | F ( a4 ) .
14 case y of
15 [ T ( a5 ) . re turn a5

16 | F ( a6 ) . re turn a6

17 ]
18 ]
19 }

a b

Table 5.5: Semi-essentials with different branch variables

It is worth noting that in the intersection calculation, different branch variables in the



83

structures do not affect their equivalence. Consider the example in table 5.5. After control

normalization, all variable are renamed differently in 5.5.b. Despite of having different

branch variables, structures (y{T(a2),F(a3)}) and (y{T(a5),F(a6)}) are considered to be equal

in the intersection and the case statements on line 9 and 14 are considered to be semi-

essentials.

The looping structure in Floey requires careful consideration. When a loop expression

in encountered (line 6), the traversal moves into the loop body looking for semi-essentials.

Although loop headers can also be semi-essential to a control expression, it may not be

desirable to pull loop headers to the root of that control expression. As such code manip-

ulation may result in including more code in loops, critical parts of any program, and may

in general affect the program performance. We therefore avoid identifying loop headers as

semi-essentials. However, in section 5.2.6, a more aggressive approach called loop reduc-

tion is presented. It includes pulling loop headers up for potential optimizations and thus

requires extra effort (see section 5.3) to clean up invariant code introduced into the loops.

5.2.3 Pulling up decisions

Once all semi-essentials in a control expression are identified, given by the consequence

shown in section 3.2.3, they can be pulled up to the root of the control expression without

changing the output of the program, This “pulling-up” manipulation is used both in the

reduction algorithm (section 5.2.1) and in invariant code removal (section 5.3).

Figure 5.5 presents the algorithm of pulling up a semi-essential in a control expres-

sion. Given a semi-essential in a control expression, the pull up procedure reconstructs a

new control expression, in which that semi-essential is moved to the root. The algorithm

consists of two basic steps: copying the semi-essential to the root and then removing the



84

1 p u l l u p : S t r u c t × Cexp −> Cexp
2 p u l l u p q ( t̃ ){ bi ( ṽi )} i∈I cexp
3 = q ( t̃ ){ bi ( ṽi ) . ( b r a n c h r e d u c e ( q ( t̃ ) , bi ( ṽi ) ) cexp )} i∈I

4

5 b r a n c h r e d u c e : Choice × Cexp −> Cexp
6 b r a n c h r e d u c e ( q ( t̃ ) , b ( ṽ ) ) ( e x i t b ’ ( ṽ′ ) ) = e x i t b ’ ( ṽ′ )
7 b r a n c h r e d u c e ( q ( t̃ ) , b ( ṽ ) ) q ’ ( t̃′ ){ bi ( ṽi ) . cexp i}i∈I =
8 i f q ( t̃)==q ’ ( t̃′ ) and bk==b then b r a n c h r e d u c e ( q ( t̃ ) , b ( ṽ ) ) cexpk [ ṽ/ṽk ]
9 e l s e q ’ ( t̃′ ){ bi ( ṽi ) . ( b r a n c h r e d u c e ( q ( t̃ ) , b ( ṽ ) ) cexp i )} i∈I

10 b r a n c h r e d u c e ( q ( t̃ ) , b ( ṽ ) ) ( loop i d ( b i n d i n g s ) { cexp e n t r i e s } )
11 = loop i d ( b i n d i n g s ) { ( b r a n c h r e d u c e ( q ( t̃ ) , b ( ṽ ) ) cexp ) e n t r i e s }

Figure 5.5: Pulling up semi-essentials

repetition introduced in the control expression.

The first step is accomplished by attaching the original control expression to each of

the branches of the given structure (see line 3). Shown in table 5.6.a is the result of such

manipulation from the program in table 5.5.b. The structure (case y,{T(a2),F(a3)}) has been

pulled up to the root.

In the second step, a procedure called branch reduce is designed to remove all the

repetitions introduced by the previous step. As shown in table 5.6.a, case statements on

line 11, 16, 24 and 29 are repeated decisions. Although an application of repeat reduction

can eliminate such repetitions, it is unnecessary. Since the input control expression is

already repeat reduced, the only repetitions introduced by the pulling up process are the

repetitions of the semi-essential being pulled up. Such repetitions is eliminated by branch

reduction, a simplified version of repeat reduction, which only aims at reducing repeated

computation of one specific decision. As shown in table 5.6.b, repeated branches on case

statements have been eliminated. Necessary variable substitutions are also done in branch

reduction to handle the issue of different branch variables in semi-essentials. In table 5.6.b,

a5 is substituted for a2, and a6 is substituted for a3 in the return statements.



85

Pulling up Branch reduction
1 main : p u l l
2 data TF = T ( I n t )
3 | F ( I n t )
4 fun p u l l ( x , y : TF ) : I n t
5 {
6 begin
7 case y of
8 [ T ( a2 ) .
9 case x of

10 [ T ( a1 ) .
11 case y of
12 [ T ( a2 ) . re turn a2

13 | F ( a3 ) . re turn a3

14 ]
15 | F ( a4 ) .
16 case y of
17 [ T ( a5 ) . re turn a5

18 | F ( a6 ) . re turn a6

19 ]
20 ]
21 | F ( a3 ) .
22 case x of
23 [ T ( a1 ) .
24 case y of
25 [ T ( a2 ) . re turn a2

26 | F ( a3 ) . re turn a3

27 ]
28 | F ( a4 ) .
29 case y of
30 [ T ( a5 ) . re turn a5

31 | F ( a6 ) . re turn a6

32 ]
33 ]
34 ]
35 }

data TF = T ( I n t )
| F ( I n t )

fun semi ( x , y : TF ) : I n t
{

begin
case y of
[ T ( a2 ) .

case x of
[ T ( a1 ) . re turn a2

| F ( a4 ) . re turn a2

]
| F ( a3 ) .

case x of
[ T ( a1 ) . re turn a3

| F ( a4 ) . re turn a3

]
]

]
}

a b

Table 5.6: Pulling up semi-essentials



86

5.2.4 Idempotent reduction

Given by the idempotence equality stated in section 3.2.2, a decision should be removed if

all the branches that follow it are the same and never use the branch variables produced by

the decision, because no matter which branch is executed the control expression outputs

the same result. This optimization is called idempotent reduction, which is the basic

step in the reduction algorithm where improvements are achieved. Because the reduction

algorithm repeatedly pushes decisions down by pulling up semi-essentials, idempotent

only applies when a decision is pushed immediately above leaves.

1 i d e m r e d u c e : Cexp −> ( Bool , Cexp )
2 i d e m r e d u c e ( e x i t b ( t̃ ) ) = ( F a l s e , e x i t b ( t̃ ) )
3 i d e m r e d u c e q ( t̃ ){ bi ( ṽi ) . cexp i}i∈I =
4 i f ∀j, k ∈ I cexp j== cexpk ==( e x i t b ( ṽ ) ) and ṽ

⋂
ṽj == ṽ

⋂
ṽk == ∅

5 then ( True , cexp1 )
6 e l s e ( F a l s e , q ( t̃ ){ bi ( ṽi ) . cexp i}i∈I )

Figure 5.6: Idempotent reduction algorithm

The algorithm of idempotent reduction is given in figure 5.6. idem reduce returns the

resulting control expression together with a boolean value, which indicates the success of

idempotent reduction.

On line 2 and line 4, exit b(ṽ) stands for leaf statements, as they are treated the same

in the idempotent reduction. All leaf statements (exit and return statements) are left un-

changed (line 2).

When a decision is encountered (line 3), it will be idempotent reduced only if all the

following conditions satisfy: the control expressions that follow it are the same leaves

and do not use any of the branch variables produced by the decision. Table 5.7 gives an

example of an idempotent reduction on a case statement. As case statement is followed



87

main : idem
fun idem ( x : I n t ) : I n t
{

begin
case x>0 of
[ True . re turn x
| F a l s e . re turn x
]

}

main : idem
fun idem ( x : I n t ) : I n t
{

begin
return x

}

a b

Table 5.7: Idempotent reduction on multiple decisions

by the same return statements, it is removed. Table 5.8 illustrates the effect of idempotent

reduction on unary decisions. The assignment is first removed, which makes the control

statement idempotent and is thus removed.

5.2.5 Elimination factoring

Elimination factoring is the core of the reduction algorithm. The idea of elimination fac-

toring is to pull semi-essentials up to the root of control expression and detect successful

idempotent reductions. Given any successful idempotent reduction, the resulting control

expression is optimized and thus should be kept. The algorithm is given in figure 5.7.

Elimination factoring takes in a control expression and produces a control expression

together with a boolean value, which indicates whether an idempotent reduction has been

possible. In the reduction algorithm (figure 5.3), this returned boolean value is checked,

and if it is true, the returned control expression will be kept in the reduction algorithm.

Otherwise the original control expression is returned.

On leaf statements, no idempotent reduction is possible and the original control ex-

pression is returned with a false boolean value.



88

main : idem
def foo ( ) [ a ( I n t ) ]
{

begin
return a ( 1 )

}
fun idem ( ) : I n t
{

begin
foo ( ) of
[ a ( v ) .

x<−3∗5.
re turn 1

]
}

main : idem
def foo ( ) [ a ( I n t ) ]
{

begin
return a ( 1 )

}
fun idem ( ) : I n t
{

begin
return 1

}

a b

Table 5.8: Idempotent reduction on unary decisions

Given a decision applied to leaf values, if idempotent reduction applies the resulting

control expression is returned with a true boolean value. Otherwise, the decision cannot

be idempotent reduced. However, it may still be reduced if it contains semi-essentials, that

is the get semi essentials procedure (section 5.2.2) returns a non-empty list of structures.

By applying pull up procedure (section 5.2.3), the first semi-essential is pulled to the

root of the newly generated control expression. The selection of which semi-essential to

be pulled up in this step does not matter. Other semi-essentials will be pulled up by the

recursions of elimination factoring (see line 10). The order of these semi-essentials being

pulled up makes no difference to the final optimizing effect [Cockett and Herrera, 1990].

In the new control expression, elimination factoring recursively applies to each branch.

If any fi is successfully reduced, the new control expression is returned with the branches

being replaced by the elimination factored arguments.

The example in table 5.9 illustrates the effect of the reduction algorithm on two assign-



89

1 e l i m i n a t i o n f a c t o r : Cexp −> ( Bool , Cexp )
2 e l i m i n a t i o n f a c t o r ( e x i t b ( ṽ ) ) = ( F a l s e , e x i t b ( ṽ ) )
3 e l i m i n a t i o n f a c t o r q ( t̃ ){ bi ( ṽi ) . cexp i}i∈I =
4 case i d e m r e d u c e q ( t̃ ){ bi ( ṽi ) . cexp i}i∈I of
5 ( True , cexp ) → ( True , cexp )
6 ( F a l s e , cexp ) → case g e t s e m i e s s e n t i a l s [ ] cexp of
7 [ ] → ( F a l s e , cexp )
8 ( q ’ ( t̃′ ){ bi ( ṽi )} i∈I ) : r e s t → do
9 q ’ ( t̃′ ){ bi ( ṽi ) . cexp i}i∈I ← p u l l u p ( q ’ ( t̃′ ){ bi ( ṽi )} i∈I ) cexp

10 { ( f i , cexp ’ i )} i∈I ← { e l i m i n a t i o n f a c t o r cexp i}i∈I

11 i f any { f i}i∈I then ( True , q ’ ( t̃′ ){ bi ( ṽi ) . cexp ’ i}i∈I )
12 e l s e ( F a l s e , cexp )

Figure 5.7: The elimination factor algorithm

ments. During the recursive traversal of the reduction algorithm, the assignment, z<−x∗2

is first pushed down. As the variable z is used in both return statements, no idempotent

reduction can be applied and the control expression rolls back to the original form. The

assignment, y<−x+1 is then pushed further down. When it reaches the return statements

(5.9.b), idempotent reduction applies and removes it from one branch, where the variable

y is not used. The reduced control expression is returned (5.9.c).

Table 5.10 gives another example of the reduction algorithm. The original program in

5.10.a cannot be optimized by the reduction algorithm. However, after variable normaliza-

tion (copy propagation in particular), the re-computation of expression x+1 is recognized

and removed by repeat reduction (5.10.b). The result is then further optimized by the

idempotent reduction (5.10.c). This example shows how normalization and repeat reduc-

tion work as the preliminary steps for the reduction algorithm.



90

main : ex1
fun ex1 ( x : I n t ) : I n t {

begin
y<−x +1 .
z<−x ∗2 .
case x<0 of
[ True .

re turn y∗z
| F a l s e .

re turn z
]

}

main : ex1
fun ex1 ( x : I n t ) : I n t {

begin
z<−x ∗2 .
case x<0 of
[ True .

y<−x +1 .
re turn y∗z

| F a l s e .
y<−x +1 .
re turn z

]
}

main : ex1
fun ex1 ( x : I n t ) : I n t {

begin
z<−x ∗2 .
case x<0 of
[ True .

y<−x +1 .
re turn y∗z

| F a l s e .
re turn z

]
}

a b c

Table 5.9: The reduction algorithm on assignments

Original Normalized and repeat reduced Reduced
1 main : ex2
2 fun ex2 ( x : I n t ) : I n t {
3 begin
4 y<−x .
5 z<−y +1 .
6 case z<0 of
7 [ True .
8 w<−x +1 .
9 re turn w

10 | F a l s e .
11 re turn z
12 ]
13 }

1 main : ex2
2 fun ex2 ( x : I n t ) : I n t {
3 begin
4 z<−x +1 .
5 case z<0 of
6 [ True .
7 re turn z
8 | F a l s e .
9 re turn z

10 ]
11 }

1 main : ex2
2 fun ex2 ( x : I n t ) : I n t {
3 begin
4 z<−x +1 .
5 re turn z
6 }

a b c

Table 5.10: Another example of the reduction algorithm



91

5.2.6 Loop reduction

In general, pushing code into loops is not desirable as larger loop bodies may reduce

program efficiency. However, in the reduction algorithm, pushing decisions into loops (by

pulling up loop headers) can potentially make gains, as potentially more reductions can be

found on larger loop bodies.

Original Pulling up loop header Reduced

fun foo ( x : I n t ) : I n t
{

begin
y<−x ∗2 .
loop i d ( t<−x )
{

case t <0 of
[ True .

case x>0 of
[ True . re turn x
| F a l s e . re turn y
]

| F a l s e .
e x i t i d ( t +1)

]
}

}

fun foo ( x : I n t ) : I n t
{

begin
loop i d ( t<−x )
{

y<−x ∗2 .
case t <0 of
[ True .

case x>0 of
[ True . re turn x
| F a l s e . re turn y
]

| F a l s e .
e x i t i d ( t +1)

]
}

}

fun foo ( x : I n t ) : I n t
{

begin
loop i d ( t<−x )
{

case t <0 of
[ True .

case x>0 of
[ True . re turn x
| F a l s e .

y<−x ∗2 .
re turn y

]
| F a l s e .

e x i t i d ( t +1)
]

}
}

a b c

Table 5.11: Pushing unary decisions into loops

The example in table 5.11 shows how pushing an unary decision into loop enable for

further optimizations. The assignment y<−x∗2 is pushed into the loop expression and

becomes the root of the loop body in 5.11.b. After applying the reduction algorithm on

the body, the assignment is moved to the branch above the only use of variable y. The

program performance may improve as y<−x∗2 is not involved in the iterations and is only

executed if y is used, while in the original code the assignment is always executed once.



92

Original Pulling up loop headers Reduced
fun foo ( x , y : Bool ) : I n t
{

begin
case x of
[ True .

loop i d 1 ( t 1<−y )
{

case t 1 of
[ True . re turn 1
| F a l s e .

e x i t i d 1 ( t 1 +1)
]

}
| F a l s e .

loop i d 2 ( t 2<−y )
{

case t 2 of
[ True . re turn 1
| F a l s e .

e x i t i d 2 ( t 2 ∗2)
]

}
]

}

fun foo ( x , y : Bool ) : I n t
{

begin
loop i d 1 ( t 1<−y )
{

loop i d 2 ( t 2<−y )
{

case x of
[ True .

case t 1 of
[ True . re turn 1
| F a l s e .

e x i t i d 1 ( t 1 +1)
]

| F a l s e .
case t 2 of
[ True . re turn 1
| F a l s e .

e x i t i d 2 ( t 2 ∗2)
]

]
}

}
}

fun foo ( x , y : Bool ) : I n t
{

begin
loop i d 1 ( t 1<−y )
{

loop i d 2 ( t 1<− t 1 )
{

case t 1 of
[ True . re turn 1
| F a l s e .

case x of
[ True .

e x i t i d 1 ( t 1 +1)
| F a l s e .

e x i t i d 2 ( t 1 ∗2)
]

]
}

}
}

a b c

Table 5.12: Pushing multiple decisions into loops

Table 5.12 gives another example, in which program performance benefits from push-

ing a multiple decision into loops. The case statement on the expression x is pushed into

two independent loops below it (see 5.12.b). The enlarged loop body is further optimized

in 5.12.c, after the variable substitution of t1 to t2. The case statement disappears on one

branch due to idempotent reduction (section 5.2.4).

It is worth noting that although pushing decision into loops may allow more thorough

optimizations, it has one drawback: the result may have more invariant decisions in loops.

As shown in table 5.13, the assignment, y<−x+2, is pushed into the loop and disappears in



93

Original Pulling up loop header Reduced
fun foo ( x : I n t ) : I n t
{

begin
y<−x ∗2 .
loop i d ( t<−x )
{

case t <0 of
[ True .

case x>0 of
[ True . re turn x
| F a l s e .

e x i t i d ( y+ t )
]

| F a l s e .
e x i t i d ( t +1)

]
}

}

fun foo ( x : I n t ) : I n t
{

begin
loop i d ( t<−x )
{

y<−x ∗2 .
case t <0 of
[ True .

case x>0 of
[ True . re turn x
| F a l s e .

e x i t i d ( y+ t )
]

| F a l s e .
e x i t i d ( t +1)

]
}

}

fun foo ( x : I n t ) : I n t
{

begin
loop i d ( t<−x )
{

case t <0 of
[ True .

case x>0 of
[ True . re turn x
| F a l s e .

y<−x ∗2 .
e x i t i d ( y+ t )

]
| F a l s e .

e x i t i d ( t +1)
]

}
}

a b c

Table 5.13: Invariant decision left in loop

one branch. It is, however, left in another branch and becomes loop invariant, which may

adversely affect the program performance. This problem is resolved in a subsequent step

by removing all loop invariant code (see section 5.3.3). Therefore, in the end, pushing

decisions into loops, when some gain can be made will be beneficial.

In the reduction algorithm as discussed so far, these optimizations are not secured

as decisions are never pushed through loop headers. In this section, we present a more

aggressive version of the reduction algorithm, called the loop reduction algorithm, which

does secure these gains. The loop reduction algorithm first uses all the techniques in the

reduction algorithm to reduce a control expression. On top of that, it pushes decisions into

loops in order to make further optimization, just as in the examples shown in table 5.11

and 5.12. However, there is an extra subtlety involved: further optimizing the enlarged



94

loop bodies may often require identifying the decisions which we call potential semi-

essentials. Potential semi-essentials are the decisions that become semi-essentials, when

certain loop variables are identified. For example in table 5.12.b, after the identification of

t1 and t2, the case statements on t1 in the loop become semi-essentials and can be pulled

up to the root.

1 e l i m i n a t i o n f a c t o r ’ : Cexp −> ( Bool , Cexp )
2 e l i m i n a t i o n f a c t o r ’ cexp = ( v , cexp ’ )
3 where ( bs , v , cexp ’ ) = l o o p r e d u c e [ ] cexp

Figure 5.8: The modified elimination factor algorithm

In the loop reduction algorithm, the algorithms discussed from section 5.2.1 to section

5.2.4 can be reused, as all the adjustments made are in the elimination factoring. The

modified elimination factoring is present in figure 5.8. Here elimination factor ’ keeps the

same interface as elimination factor (see figure 5.7), so that it can be used to replace elimi-

nation factoring in the reduction algorithm (see figure 5.3). The loop reduction procedure,

loop reduce, is used to optimize the input control expression. The control expression that

results from loop reduction will be returned with a boolean value, which indicates loop

reduction has actually occured. If a gain is made, the resulting control expression will be

kept, otherwise the original control expression is returned unchanged.

The loop reduction algorithm is present in figure 5.9. The function takes in a list of

bindings, with a control expression. Both List (Bind) in the input and output are used to hold

the loop bindings. If there is any gain made by the loop reduction, the resulting control

expression will be returned with a true boolean value. Otherwise, the unchanged control

expression is returned with a false value.

The loop reduction algorithm from line 1 to 11 is similar to elimination factoring (see



95

1 l o o p r e d u c e : L i s t ( Bind ) × Cexp −> ( L i s t ( Bind ) , Bool , Cexp )
2 l o o p r e d u c e bs ( e x i t b ( ṽ ) ) = ( bs , F a l s e , e x i t b ( ṽ ) )
3 l o o p r e d u c e bs0 q ( t̃ ){ bk ( ṽk ) . cexpk}k∈K =
4 case i d e m r e d u c e q ( t̃ ){ bk ( ṽk ) . cexpk}k∈K of
5 ( True , cexp ) → ( bs0 , True , cexp )
6 ( F a l s e , cexp ) → case g e t s e m i e s s e n t i a l s [ ] cexp of
7 ( q ’ ( t̃′ ){ bi ( ṽi )} i∈I ) : r e s t → do
8 q ’ ( t̃′ ){ bi ( ṽi ) . cexp i}i∈I ← p u l l u p ( q ’ ( t̃′ ){ bi ( ṽi )} i∈I ) cexp
9 { ( bs i , f i , cexp ’ i )} i∈I ← { l o o p r e d u c e bs i−1 cexp i}i∈I

10 i f any { f i}i∈I then ( bs i , True , q ’ ( t̃′ ){ bi ( ṽi ) . cexp ’ i}i∈I )
11 e l s e ( bs0 , F a l s e , cexp )
12 [ ] → case ( p u l l l o o p cexp ) of
13 cexp ’ → l o o p r e d u c e bs0 cexp ;
14 cexp → case ( g e t p o t e n t i a l s e m i bs0 cexp ) of
15 [ ] → ( bs0 , F a l s e , cexp )
16 [ ( d e f i i , s ubs i ) ] i∈I → do
17 f o r e a c h ( d e f i i , s ubs i ) do
18 ( bs i , vi , cexp i ) ← l o o p r e d u c e bs0 ( p u l l u p d e f i i ( cexp [ subs i ] ) )
19 i f vi then return ( bs i , True , cexp i )
20 re turn ( bs0 , F a l s e , cexp )
21 l o o p r e d u c e bs ( loop i d ( b i n d i n g s ) ) { ( cexp , e n t r i e s )} =
22 i f v then ( bs ’ , True , ( loop i d ( updateBS b i n d i n g s bs ’ ) ) { ( cexp ’ , e n t r i e s ) } )
23 e l s e ( bs , F a l s e , ( loop i d ( b i n d i n g s ) { ( cexp , e n t r i e s ) } ) )
24 where ( bs ’ , v , cexp ’ ) = l o o p r e d u c e ( bs ++ b i n d i n g s ) cexp

Figure 5.9: Loop reduction algorithm

figure 5.7). An idempotent reduction is first applied. If it fails, a semi-essential (if any) is

pulled up to the root of current control expression. Loop reduction continues recursively

to the branches of the newly generated control expression.

It is from line 12, in case that there is no semi-essential found, that the loop reduction

makes further optimizations. Function, pull loop , is used to pull up all loop headers which

are independent of the branch variables above them, to the root of the control expression.

By doing so, more decisions are included in the loops, which may allow further optimiza-

tion of the loop bodies. If any loop header is pulled up, loop reduction continues on in the

newly constructed control expression. Otherwise, the algorithm tries to identify and pull



96

Pulled up loops Possible reductions
fun foo ( x , y : Bool ) : I n t
{

begin
loop i d 1 ( y1<−y , y2<−y )
{

loop i d 2 ( y3<−y , y4<−y )
{

case x of
[ True .

case y1 of
[ True .

case y2 of
[ True . re turn 1
| F a l s e . re turn 2
]

| F a l s e .
case y2 of
[ True . re turn 3
| F a l s e . e x i t i d 1 ( y2 , y1 )
]

]
| F a l s e .

case y3 of
[ True .

case y4 of
[ True . re turn 4
| F a l s e . re turn 3
]

| F a l s e .
case y4 of
[ True . re turn 2
| F a l s e . e x i t i d 2 ( y4 , y3 )
]

]
]

}
}

}

fun foo ( x , y : Bool ) : I n t
{

begin
loop i d 1 ( y1<−y , y2<−y )
{

loop i d 2 ( y2<−y , y1<−y )
{

case y1 of
[ True .

case y2 of
[ True .

case x of
[ True . re turn 1
| F a l s e . re turn 4
]

| F a l s e .
case x of
[ True . re turn 2
| F a l s e . re turn 2
]

]
| F a l s e .

case y2 of
[ True .

case x of
[ True . re turn 3
| F a l s e . re turn 3
]

| F a l s e .
case x of
[ True . e x i t i d 1 ( y2 , y1 )
| F a l s e . e x i t i d 2 ( y1 , y2 )
]

]
]

}
}

}
a b

Table 5.14: Potential semi-essentials



97

up the potential semi-essentials in the control expression. The function, get potential semi ,

is used to collect the structures of these potential semi-essentials, together with the nec-

essary substitutions for each one. Loop bindings are added into List (Bind) when loop

reduction goes pass a loop header (see line 24). When a reduced loop body is returned, the

bindings of that loop is updated according to the returned List (Bind) (see line 22). For ex-

ample in table 5.12, after the case statements being identified as potential semi-essentials,

the variable t2 is substituted by t1 in the List (Bind). And the binding of loop id2 is updated

accordingly.

Note that different combinations of variable substitutions may provide different op-

portunities for reductions. Incorrect selection of variable substitution can block further

reductions. As shown in table 5.14.a, there are two possible combinations of substitu-

tions: t1 for t3 and t2 for t4, or t1 for t4 and t2 for t3. Only the latter one will lead to

the result in 5.14.b and enable further idempotent reductions. To address this issue, the

loop reduction algorithm tries every element in the list that get potential semi returns, until

a reduction is made. This is perhaps not the optimal solution, but it is guaranteed to find a

reduction if there is any in all possibilities.

5.3 Invariant code removal

In this section, we present an algorithm that focuses on removing all invariant code from

loops. An invariant variable of a loop is a variable which is not altered during the itera-

tions of the loop. Any decision that is based on invariant variables of a loop or constants is

called an invariant decision and is referred to as “invariant code” of that loop. Invariant

decisions may be present in original source programs but often will be introduced by the



98

loop reduction algorithm (see section 5.2.6).

The section is organized as follows. Section 5.3.1 gives an overview of the invariant

code removal algorithm, the three phases of which is discussed in section 5.3.2, 5.3.3 and

5.3.4.

5.3.1 Overview of invariant code removal

As loops are critical parts of any program, removing invariant code from loops can sig-

nificantly improve program performance. As the outcomes of the invariant decisions of a

loop will not change during the iterations, it is thus desirable to move these decisions out

of the loop in order to avoid repeated computation on them. In Floey, the invariant code

removal algorithm is designed to remove all invariant code from loop expressions.

1 i n v a r i a n t c o d e r e m o v a l : Cexp −> Cexp
2 i n v a r i a n t c o d e r e m o v a l ( e x i t b ( ṽ ) ) = e x i t b ( ṽ )
3 i n v a r i a n t c o d e r e m o v a l ( q ( t̃ ){ bi ( ṽi ) . cexp i}i∈I ) =
4 q ( t̃ ){ bi ( ṽi ) . i n v a r i a n t c o d e r e m o v a l cexp i}i∈I

5 i n v a r i a n t c o d e r e m o v a l ( loop i d b i n d i n g ( cexp , e n t r i e s ) ) = do
6 cexp ’ ← i n v a r i a n t c o d e r e m o v a l cexp
7 case cexp ’ of
8 loop id ’ b i n d i n g ’ ( cexp ’ , e n t r i e s ’ ) → do
9 i f c a n F l i p b i n d i n g b i n d i n g ’ then do

10 f l i p p e d ← loop i d b i n d i n g ( cexp ’ , e n t r i e s ++ e n t r i e s ’ )
11 case i n v a r i a n t c o d e r e m o v a l f l i p p e d of
12 loop i d → re turn newloop
13 f l i p p e d ’ → re turn loop id ’ b i n d i n g ’ ( f l i p p e d ’ , [ ] )
14 e l s e re turn newloop
15 → re turn newloop
16 where newloop = do
17 exp ’ ’ ← p u l l o u t s e m i ( loop i d b i n d i n g ( cexp ’ , e n t r i e s ) )
18 re turn ( p u l l a l l i n v a r i a n t s cexp ’ ’ )

Figure 5.10: Invariant code removal algorithm

The pseudo code for the invariant code removal algorithm is given in figure 5.3.1. It

returns a control expression with all invariant code removed from loop expressions. The



99

algorithm does a traversal on a control expression. When a loop expression is encountered,

the invariant decisions in it are pulled out in three steps: all semi-essential decisions are

first pulled out (line 17), other invariant decisions are then pulled out (line 18), and finally

nested loop headers are flipped if necessary (line 8 to 14).

1 main : i n v a r i a n t r e m o v a l
2 def foo ( x , y , z : I n t ) [ a , b , c , d ]
3 {
4 begin
5 e x i t a
6 }
7 fun i n v a r i a n t r e m o v a l ( t : I n t ) : I n t
8 {
9 begin

10 loop l p a ( x<−t )
11 {
12 loop l p b ( y<−t , z<−t )
13 {
14 loop l p c ( t ’<− t )
15 {
16 v <− w + 1 .
17 u <− t ∗ 2 .
18 foo ( v , x , z ) of
19 [ a . re turn 1
20 | b . e x i t l p a ( v )
21 | c . e x i t l p b ( v∗u , z )
22 | d .
23 t ’’<− t ’ ∗ 1 0 .
24 e x i t l p c ( t ’ ’ )
25 ]
26 }
27 }
28 }
29 }

1 main : i n v a r i a n t r e m o v a l
2 def foo ( x , y , z : I n t ) [ a , b , c , d ]
3 {
4 begin
5 e x i t a
6 }
7 fun l o o p r e p e a t ( t : I n t ) : I n t
8 {
9 begin

10 v <− w + 1 .
11 loop l p a ( x<−t )
12 {
13 foo ( v , x , t ) of
14 [ a . re turn 1
15 | b . e x i t l p a ( v )
16 | c . loop l p b { e x i t l p b }
17 | d . loop l p c { e x i t l p c }
18 ]
19 }
20 }

a b

Table 5.15: Invariant code removal

By pulling up loop invariant, loop expressions are progressively pushed down as their

bodies become smaller. As shown in 5.15, all three loop expressions are pushed down and



100

producing smaller bodies.

Note that in control normal form, all subsidiary entries of a loop expression are reach-

able local entries and topologically sorted with minimal binding list. We can also assume

that local entries of loop expressions have first been optimized. The process of optimizing

entries is omitted for simplicity.

The following sections discuss the three steps of invariant code removal in details.

5.3.2 Pulling out semi-essentials from loop

This section discusses a technique to pull out all semi-essentials (see section 3.2.3 for

definition) from a loop expression. This is the first step of the invariant code removal

algorithm (see line 17 in figure 5.3.1).

1 p u l l a l l s e m i : Cexp −> Cexp
2 p u l l a l l s e m i cexp = do
3 semis ← g e t s e m i e s s e n t i a l s [ ] cexp
4 p u l l u p s e m i s semi cexp
5

6 p u l l u p s e m i s : L i s t ( D e f i n i c a t i o n ) × Cexp −> Cexp
7 p u l l u p s e m i s ( x : xs ) cexp =
8 i f ( x : xs ) == [ ] then cexp
9 e l s e p u l l u p s e m i s xs ( p u l l u p x cexp )

Figure 5.11: Pulling out semi-essentials from loop

Given the transition equality (section 3.2.2), semi-essentials of a loop expression can

be pulled up to the root (above the loop header) without changing the meaning of the

program. In particular these semi-essentials are independent of the loop and are thus

invariant decisions. Figure 5.3.2 gives the algorithm of pulling out all semi-essentials

from a loop expression. It first identifies all semi-essentials in the loop expression by

calling get semi essentials (see figure 5.2.2). These semi-essentials are then pulled up to



101

the root by the function, pull up semis .

Original Pulled Reduced

main : foo
fun foo ( x , y : I n t ) : I n t
{

begin
loop l p ( a<−x , b<−y )
{

case x<b of
[ True .

c<−a +1 .
e x i t l p ( c , b )

| F a l s e .
re turn x

]
}

}

main : foo
fun foo ( x , y : I n t ) : I n t
{

begin
case x<y of
[ True .

loop l p 1 ( a<−x )
{

c<−a +1 .
e x i t l p 1 ( c )

}
| F a l s e .

loop l p 2 ( a<−x )
{

re turn x
}

]
}

main : loop
fun foo ( x , y : I n t ) : I n t
{

begin
case x<y of
[ True .

loop l p 1 ( a<−x )
{

c<−a +1 .
e x i t l p 1 ( c )

}
| F a l s e .

re turn x
]

}

a b c

Table 5.16: Pulling out semi-essentials from loops

Pulling an unary decision out of a loop will not change the program structure signif-

icantly, however, pulling out a branching decision will duplicate the loop structure down

each branch. However, each loop is smaller in size, as the branch reduction in the pro-

cedure pull up (section 5.2.3) guarantees that no repetition is added in the result. Table

5.16 gives another example of pulling out branching decisions. After pulling out the case

statement, shown in 5.16.b, despite the number of loop expressions being duplicated, the

loop bodies in each loop expression are reduced by the branch reduction. In 5.16, loop ex-

pression lp1 only has the loop body in the True branch, while lp2 has only the other branch.

In extreme cases, some resulting loops may not even have exit statement in the loop body.

Such loop expressions are removed altogether by the unlooping normalization (see section



102

4.4.3). For instance the loop lp2 is removed in this manner in table 5.16.c.

5.3.3 Pulling out arbitrary loop invariant decisions

Although all the semi-essentials of a loop expression are invariant code of that loop, not

all invariant code is semi-essential. This section introduces an algorithm that removes the

invariant decisions which are not semi-essential. The algorithm is used in the invariant

code removal algorithm, after all semi-essentials are removed from a loop expression (see

line 18 in figure 5.3.1).

1 p u l l a l l i n v a r i a n t s : Cexp −> Cexp
2 p u l l a l l i n v a r i a n t s ( e x i t b ( ṽ ) ) = e x i t b ( ṽ )
3 p u l l a l l i n v a r i a n t s ( q ( t̃ ){ bi ( ṽi ) . cexp i}i∈I ) =
4 q ( t̃ ){ bi ( ṽi ) . p u l l a l l i n v a r i a n t s cexp i}i∈I

5 p u l l a l l i n v a r i a n t s ( loop i d b i n d i n g ( cexp , e n t r i e s ) ) = u n r o l l cexp [ ]
6 where u n r o l l : Cexp × L i s t ( Choice ) −> Cexp
7 u n r o l l ( loop i d b i n d i n g ( cexp , e n t r i e s ) ) chs =
8 loop i d b i n d i n g ( cexp , e n t r i e s )
9 u n r o l l q ( t̃ ){ bi ( ṽi ) . cexp i}i∈I chs =

10 q ( t̃ ){ bi ( ṽi ) . ( u n r o l l cexp i chs ’ ) } i∈I

11 where chs ’ = i f i s I n v a r i a n t then ( ( q ( t̃ ) , bi ( ṽi ) ) : chs ) e l s e chs
12 u n r o l l ( e x i t b ( ṽ ) ) chs =
13 i f b == i d && chs != [ ] then do
14 l p = ( r e p e a t r e d u c e chs ( loop i d b i n d i n g [ ṽ / ẽ ] ( cexp , e n t r i e s ) ) )
15 re turn ( p u l l a l l i n v a r i a n t s l p )
16 e l s e = e x i t b ( ṽ )

Figure 5.12: Pulling out all loop invariant code

The pseudo code of this algorithm is given in figure 5.3.3. It traverses the loop body

to remove loop invariant decisions. Whenever a loop expression is encountered, the pro-

cedure unloop is used to unroll some iterations of the loop. unloop traverses the loop body

looking for invariant decisions. If a loop expression is encountered, it is left unchanged

(line 7). As the invariant code removal algorithm recursively reduces deeper loops first,



103

all inner loops are already optimized. When a decision is encountered, the unloop algo-

rithm goes on in each of its branches (line 9). If the decision is invariant, corresponding

choice will be added into the list chs. The list of choices holds all choices made on invari-

ant decisions along the traversal. Whenever an exit statement back to the loop header is

found, it is replaced by the loop under the condition that there are some invariant decisions

above it (line 13). That is, the list of choices is not empty. Repeat reduction is applied to

eliminate repetitions (held in the list of choices) in the newly generated loop, lp. Finally,

pull all invariants is then recursively called to optimize the resulting lp.

Original Unrolled Repeat reduced

fun foo ( x : I n t ) : I n t
{

begin
loop i d ( t<−x )
{

case t <0 of
[ True . re turn x
| F a l s e .

y<−x ∗2 .
e x i t i d ( t +y )

]
}

}

fun foo ( x : I n t ) : I n t
{

begin
case x<0 of
[ True . re turn x
| F a l s e .

y<−x ∗2 .
loop id ’ ( t<−x+y )
{

case t <0 of
[ True . re turn x
| F a l s e .

y<−x ∗2 .
e x i t id ’ ( t +y )

]
}

]
}

fun foo ( x : I n t ) : I n t
{

begin
case x<0 of
[ True . re turn x
| F a l s e .

y<−x ∗2 .
loop id ’ ( t<−x+y )
{

case t <0 of
[ True . re turn x
| F a l s e .

e x i t id ’ ( t +y )
]

}
]

}

a b c

Table 5.17: Pulling out arbitrary invariant decisions

The example in table 5.17 shows how an invariant decision is pulled out of a loop. The

code in 5.17.a results from the loop reduction (section 5.2.6) that pushes y<−x∗2 into the

loop expression. The assignment is left in one branch as an invariant decision but is not



104

semi-essential. The loop is first unrolled and becomes dead after exit id ( t+y) is replaced

(shown in 5.17.b). The repetition of y<−x∗2 is eliminated by repeat reduction (shown in

pull invariant 1.c). In the result, the assignment is not included in any iteration and will

only execute in one branch of the case statement.

5.3.4 Flipping loop headers

In the invariant code removal algorithm, if both of the techniques introduced in section

5.3.2 and 5.3.3 fail, it is still possible to pull out invariant code. In nested loop expressions,

a decision may use some bound variables defined in the binding of inner loops, which

blocks its opportunity of being pulled out of the outer loops. For example in table 5.18.a,

the assignment on line 14 uses variables y and z that are defined in the bindings of lp b and

lp c , which prevents it from being pulled out. By design, however, it can be pulled out of

lp a , as it does not use any bound variables defined in that loop header.

This problem is resolved in invariant code removal by flipping nested loop headers

(line 8 to 14 in figure 5.3.1). Two nested loop headers may be flipped if none of the bound

variables defined in the outer loop are used as the initialization expressions in the inner

loop. After flipping the loop headers, invariant code removal is applied to the newly gen-

erated inner loop body. If the flipping process makes some gain, that is some decisions

are pulled out of loops, the resulting Floey program will be returned. Otherwise, the loop-

ing structure is rolled back to its original form. As shown in table 5.18.b, the assignment

w <− y∗z is pulled out from loop lp a , after two flips of loop headers.

When flipping loop headers, local entries in these loops need to be reorganized. Local

entries in the outer level loop will be pushed deeper with its loop header. In the example

of table 5.18.b, entry en1 is pushed with lp a . Entries in deeper level are attached to the



105

1 main : f l i p l o o p
2 def foo ( x , y , z : I n t ) [ a , b , c , d , e ] {
3 begin
4 e x i t a
5 }
6 fun f l i p l o o p ( t : I n t ) {
7 begin
8 loop l p a ( x<−t )
9 {

10 loop l p b ( y<−t )
11 {
12 loop l p c ( z<−t )
13 {
14 w<−y∗z .
15 foo ( x , y , z ) of
16 [ a .
17 e x i t l p a (w)
18 | b .
19 e x i t l p b (w)
20 | c .
21 e x i t l p c (w)
22 | d .
23 e x i t en1 (w)
24 | e .
25 e x i t en2 (w)
26 ]
27 entry en2 ( x : I n t )
28 {
29 e x i t l p c ( x )
30 }
31 }
32 }
33 entry en1 ( x : I n t )
34 {
35 case x<0 of
36 [ True . e x i t l p a ( x )
37 | F a l s e . e x i t en2 ( x )
38 ]
39 }
40 }
41 }

main : f l i p l o o p
def foo ( x , y , z : I n t ) [ a , b , c , d , e ] {

begin
e x i t a

}
fun f l i p l o o p ( t : I n t ) {

begin
loop l p b ( y<−t )
{

loop l p c ( z<−t )
{

w<−y∗z .
loop l p a ( x<−t )
{

foo ( x , y , z ) of
[ a .

e x i t l p a (w)
| b .

e x i t l p b (w)
| c .

e x i t l p c (w)
| d .

e x i t en1 (w)
| e .

e x i t en2 (w)
]
entry en1 ( x : I n t )
{

case x<0 of
[ True . e x i t l p a ( x )
| F a l s e . e x i t en2 ( x )
]

}
entry en2 ( x : I n t )
{

e x i t l p c ( x )
}

}
}

}
}

a b

Table 5.18: Flipping loop headers



106

end of entry list on their levels. The reason is that entries on deeper levels may call the

outer level entries. This design maintains the topological order of entries. In table 5.18.b,

entry en2 remains in the deepest level and is placed after entry en1.



Chapter 6

Conclusion

In this chapter, we conclude the main contributions of the thesis by reviewing the design

of Floey and by comparing the optimizations in Floey to conventional approaches. The

comparison shows how Floey’s structure facilitates the design of optimizations, but also

shows the limitations of some optimizations discussed in this thesis.

The chapter starts by reviewing the Floey language and its contributions to compiler

designs in section 6.1. Section 6.2 compares basic optimizations used in control normal-

ization to conventional algorithms, while the reduction algorithm is discussed in section

6.3. Finally, section 6.4 focuses on loop related optimizations.

6.1 Floey intermediate language

As a fundamental area in Computer Science research, compiler construction, especially

compiler optimizations, have been studied extensively for decades [Allen and Cocke,

1971; Bacon et al., 1994; Padua and Wolfe, 1986] and have been a popular topic for

Computer Science texts [Aho et al., 2007; Appel, 1998; Corman et al., 1990; Ellis, 1986;

Muchnick, 1997]. Although a lot of great work has been accomplished, we feel that the

organization of the compiler optimizations is not very clear. For example in the classic

text [Aho et al., 2007], compiler optimizations are categorized into those based on ba-

sic blocks, those that are machine independent or those that are at the instruction level.

However, how these different optimizations are related is not explained. It is the same

107



108

in [Muchnick, 1997], where optimizations are categorized by their functionality, each op-

timization is explained in isolation so that the extent to which they are complete is also

not clear. In fact, these are the recognized sources on optimization, neither provides a

complete or systematic coverage.

In this thesis, a language for mid-level intermediate representation, called Floey, is in-

troduced (chapter 2). In Floey, programs are organized around control expressions which

are extended basic blocks with loops. Different control expressions are linked together by

the structure called entries. The Floey language is not only designed to facilitate machine

independent compiler optimizations, more importantly, we hope that from the design of

Floey and the reduction of programs therein, a clearer perspective on compiler optimiza-

tion emerges. The reduction algorithm and the invariant code removal have been imple-

mented (chapter 5). These optimizations have a similar effect to at least four different

conventional optimizations, which are rarely viewed as being related.

It is worth mentioning here the scope of our optimizations. As a project decision, we

decided to focus our design on control expressions, but not through different entries. Our

optimizations thus have smaller scope than the conventional global approaches that handle

entire control flow graph. However, entries in Floey provide uniform interfaces between

control expression, which allows one to extend our work on control expressions in order

to optimize through entries and therefore in the control flow graphs. This is one of the

future work of our project.

The following sections compare the optimizations applied to Floey to the conventional

approaches. These comparisons show the advantages of designing and implementing op-

timization algorithms on Floey, as well as some limitations in our work.



109

6.2 Optimizations in control normalization

This section relates the basic optimizations used in the control normalization phase (chap-

ter 4) to the conventional optimizations.

6.2.1 Constant folding

Constant folding used in the expression normalization (section 4.1.1) is the conventional

constant folding algorithm [Allen and Cocke, 1971]. It evaluates the operations on con-

stants and replaces them with their constant results.

6.2.2 Static Single Assignment form

Static single assignment form (SSA) [Cytron et al., 1991], is an intermediate representa-

tion that is used in many optimizing compilers, such as GCC [Novillo, 2003, 2004] and

SUIF [Stanford SUIF Compiler Group, 1994]. The essential property of SSA form is that

whenever a variable is defined it is given a unique name. This means that if two variables

have the same name they must also have the same value. Converting program into SSA

form makes the bookkeeping issues for variable much simpler and improves the efficiency

of optimization algorithms.

In general, the difficulty and the key step of converting a program viewed as a flow

graph to SSA form [Cytron and Gershbein, 1993; Cytron et al., 1991] is the placement

of φ function [Bilardi and Pingali, 1999, 2003; Sreedhar and Gao, 1995]. φ functions

are pseudo-assignments that are introduced at the join points, the nodes with multiple

predecessors in the program control flow graph. The conversion of a Floey program to

SSA form on the other hand, is much simpler as control expressions are tree-like structures



110

that do not have joint points except at loop headers, where all loop variables are reassigned

in a binding list. When converting Floey control expressions into SSA form, there is

therefore no need for φ functions. The conversion is accomplished by simply renaming

each variable in every definition, including loop bindings, uniquely.

6.2.3 Copy and constant propagations

Copy and constant propagations [Callahan et al., 1986, 2004; Vanbroekhoven et al., 2003;

Wegman and Zadeck, 1991] are the code transformations that, given an assignment of a

variable or a constant to a variable: x<−e, replace the later uses of x with e until the variable

is redefined. When the definition of x is no longer used in the code, the assignment can

be removed. Conventional copy and constant propagation need to handle the redefinitions

of variables and to determine whether x is dead. Joint points in Control Flow Graph also

requires extra analysis.

Implementing copy and constant propagations in Floey is much simpler, as Floey code

is first converted to control normal form, which includes Static Single Assignment form

(SSA). Value of variables cannot be altered after their definitions as there are no variable

reassignments of variables in SSA form. In Floey, variable substitutions for copy and con-

stant propagation always continues till the leaves of control expressions. The assignment

x<−e is then never used after the substitutions and so can always be removed. The tree-like

structure of control expression also simplifies the implementation as both propagations can

be implemented on a tree traversal.

The scope of copy and constant propagation in Floey, however, is smaller than con-

ventional means as it is only applied to control expressions instead to the whole program

flow graph.



111

6.2.4 Unreachable code elimination

Unreachable code is the parts of a program that will never be executed. In a Control

Flow Graph (CFG), unreachable code are the unreachable nodes from the “begin” node.

The problem of recognizing unreachable code of a program then becomes the problem

of identifying unreachable nodes in the CFG of that program. By removing unreachable

code, programs result in smaller size, which require less resources. This also improves the

efficiency of control flow analysis. The optimization is usually called unreachable code

elimination [Aho et al., 2007].

In Floey, a CFG represents a function or control operation, which is broken down into

a control expressions and various entries. Each control expression, in control normal form

(section 4), is a tree-like structure with loops which may have reachable local entries.

Thus a control expression cannot contain unreachable code. It is the existence of the

unreachable entries in a function or a control operation that introduces unreachable code

into Floey. Those are the entries that are never directly or indirectly called by the control

expression in that function or control operation.

Unreachable code elimination is accomplished in the entry promotion phase (section

4.3.3), when entries are moved to the highest possible level and topologically sorted. At

the same time, all unused entries are identified and discarded. By applying entry promo-

tion to every entry in a CFG, all unreachable code in that CFG is eliminated.

6.3 Optimizations in the repeat reduction and the reduction algorithm

This section compares the optimizations achieved in the repeat reduction algorithm (sec-

tion 5.1) and the reduction algorithm (section 5.2) to three conventional optimizations:



112

common sub-expression elimination [Cocke, J., 1970; Ullman, 1972], if simplification

[Muchnick, 1997] and partial dead code elimination [Bodı́k and Gupta, 1997; Briggs and

Cooper, 1994; Dhamdhere, 1991; Feigen et al., 1994; Knoop et al., 1994].

6.3.1 Common sub-expression elimination

Common sub-expression elimination [Cocke, J., 1970; Ullman, 1972] removes the repe-

titions of computations on common sub-expressions. There are two versions of common

sub-expression elimination: a local version that applies to only basic blocks and global

version that applies to whole control flow graph.

In Floey, programs are first control normalized (chapter 4), in which complex expres-

sions are split into atomic instructions. Repeat reduction then eliminates repetitive compu-

tations on common sub-expressions. In the control normal form, since there is no variable

reassignment, the implementation of repeat reduction is much easier. Only one auxiliary

list is used to hold the history of variables with the expressions that they are assigned to.

As repeat reduction is applied to control expressions, which are extended basic blocks

with loops, its scope is larger than the local common sub-expression elimination but it

does not perform global common sub-expression elimination.

6.3.2 If simplification

Conditionals have long been considered as expensive operations, as modern architectures

are extremely sensitive to control flow changes [Yang et al., 2002]. In repeat reduction,

repeated decisions are reduced and removed with their unreachable branches. This is sim-

ilar to a branch optimization called “if simplification” [Muchnick, 1997], which optimizes

if-then-else conditional statements in the following four cases.



113

1. If either branch is empty, remove the corresponding branch and change the if-then-

else construct to a if-then construct.

2. If both branches are empty, remove the entire if statement.

3. If the condition is a constant, evaluate the condition and remove the unreachable

branch. If it is the only branch, remove the entire if statement.

4. If common sub-expressions occur in conditions of a if statement and a subsequent

dependent if statement, evaluate the latter condition when possible and replace the

if statement with the branch in the corresponding arm.

The first two cases simply cannot happen in Floey as no empty branch is allowed.

Repeat reduction (section 5.1) and idempotent reduction (section 5.2.4) cover the last two

cases in “if simplification”. Repeat reduction uses constant conditions or common sub-

expression condition to predict the direction of control flow on case and control statements.

While idempotent reduction eliminates those case or control statements whose branches

are the same.

One advantage of repeat reduction over “if simplification” is that it handles multiple

decisions on data types. “If simplification” only handles binary conditionals on boolean

conditions.

6.3.3 Partial dead code elimination

In conventional compiler texts, if a variable is defined but never used, it is said to be

dead. The assignment to these variables is then dead code and thus can be removed. The

optimization of removing this code is called dead code elimination [Aho et al., 2007].



114

When the definitions of the variables are only used in some branches of the Control Flow

Graph, they are are called partially dead. For example in table 6.1.a, variable y is dead

as it is never used, while x is only partially dead as it is used in one of the two branches.

Therefore, unlike the assignment to y that can be immediately removed (shown in table

6.1.b), assignment to x can only be removed from the branches that x is not used.

x<−a +1 .
y<−a ∗3 .
case a<0 of
[ True . re turn x
| F a l s e . re turn a
]

case a<0 of
[ True .

x<−a +1 .
re turn x

| F a l s e . re turn a
]

a b

Table 6.1: Partial dead code elimination

Identifying and eliminating partial dead code has been an active topic in compiler opti-

mization research. Various algorithms have been developed for partial dead code elimina-

tion [Bodı́k and Gupta, 1997; Briggs and Cooper, 1994; Dhamdhere, 1991; Feigen et al.,

1994; Knoop et al., 1992, 1994], many of which require modification of program control

flow structure.

One of the main objectives of the reduction algorithm (section 5.2) is to eliminate par-

tial dead code in control expressions. It is accomplished by progressively pushing every

decision further down in the control expression, by pulling up semi-essentials (section

5.2.3). Whenever a decision is dead on one branch, it is eliminated by idempotent re-

duction (section 5.2.4). Table 5.9 and 6.1 are both examples of how (partial) dead code

is eliminated by the reduction algorithm. Unlike the conventional approaches that focus

only on assignments, the reduction algorithm also moves and eliminates case and control



115

statements, as in Floey, these statements are all decisions. For example, the so called “an-

ticipated expression” in lazy code motion algorithm [Knoop et al., 1992] is the idea of

semi-essential but only on expressions. While pushing statements in the programs (even

into loops) are also applied by [Briggs and Cooper, 1994; Knoop et al., 1994], but only to

assignments. We believe the new perspective of Floey does give an edge to optimization

designed on it.

6.4 Loop related optimizations

As loops are the critical parts of most programs, any improvement to the loop execution

time can lead to significant benefit to program efficiency. To this end, many loop opti-

mization algorithms have been developed to reduce the size of loops and thus to reduce

the complexity in loops. In this section, we compare the loop related optimizations in

Floey to five conventional techniques.

Promoting non-local entries out of loops (section 4.3.3) and the reduction algorithm

in loops (section 5.2) have similar effects to loop dead elimination [Behera and Kumar,

2005]. In invariant code removal (section 5.3), the process of pulling semi-essentials out of

loops (section 5.3.2) is similar to two conventional optimizations: loop invariant code mo-

tion [Neel and Amirchahy, 1975] and loop unswitching [Allen and Cocke, 1971]. While

flipping loop headers is similar to loop interchange [Allen and Kennedy, 1984], although

it is for different purposes. The more aggressive restructuring modification that unrolls

loops in invariant code removal is similar to loop unrolling but for different purposes too

[Dongarra and Jinds, 1979; Ellis, 1986].



116

6.4.1 Loop dead elimination

main : l o o p d e a d
fun l o o p d e a d ( x : I n t ) : I n t {

begin
loop l p ( y<−x )
{

z<−y ∗2 .
case y>0 of
[ True . e x i t en ( z )
| F a l s e . e x i t l p ( y +10)
]
entry en ( x : I n t )
{

re turn x
}

}
}

main : l o o p d e a d
fun l o o p d e a d ( x : I n t ) : I n t {

begin
loop l p ( y<−x )
{

case y>0 of
[ True .

z<−y ∗2 .
e x i t en ( z )

| F a l s e . e x i t l p ( y +10)
]

}
entry en ( x : I n t )
{

re turn x
}

}
a b

Table 6.2: Loop dead elimination

Loop dead variables are the variables which are defined in a loop but never used in

the iterations of that loop. The values of loop dead variables may be altered during the

iterations but only the last one is used (outside the iteration). The optimization of pushing

the assignments to loop dead variables out of loop is called loop dead elimination [Behera

and Kumar, 2005; Shaw and Kumar, 2005].

The only case of loop dead code in Floey is the partially dead code which is only used

in the branches that are exiting the loop expression. For example in table 6.2.a, z is a loop

dead variable which is altered and used, but only in the non-local entry en. The reduction

algorithm in the loop body eliminates this partially dead code. As shown in table 6.2.b,

the assignment is pushed down to the branch exiting to entry en. This way, the assignment

avoids occurring in loop iterations.



117

main : l o o p d e a d
fun l o o p d e a d ( x : I n t ) : I n t {

begin
loop l p ( y<−x )
{

z<−y ∗2 .
e x i t en ( y , z )
entry en ( y , z : I n t )
{

case y>0 of
[ True . re turn z
| F a l s e . e x i t l p ( y +10)
]

}
}

}

Table 6.3: Loop dead elimination

However, as the reduction algorithm applies only to control expressions, loop dead

variables which could be eliminated through entry points can still be left in resulting code.

For instance the variable z in table 6.3 is loop dead variable but is not optimized by the

reduction algorithm. This can be resolved should one extends the reduction algorithm

through entries, as discussed in section 6.1.

6.4.2 Loop invariant code motion

The optimization that removes loop invariant code (see section 5.3 for definition) from

loops is called loop invariant code motion (also called loop invariant elimination) [Neel

and Amirchahy, 1975]. In this algorithm, all assignments to invariant variables of the loop

are moved into a manually created basic block called the “pre-header” that is inserted right

above the loop header. This design avoids dramatic changes of the control flow structure

during the process. However, loop invariant code motion does not guarantee a gain in



118

program performance. As shown in table 6.4.a, if y>0 is true, the assignment z<−x+1 is

never executed in the original code. While in 6.4.b, the assignment is always executed

once, which might reduce the efficiency of the resulting code.

main : foo
fun foo ( x : I n t ) : I n t {

begin
loop l p ( y<−x )
{

case y>0 of
[ True . re turn 1
| F a l s e .

z<−x +1 .
e x i t l p ( z )

]
}

}

main : foo
fun foo ( x : I n t ) : I n t {

begin
z<−x +1 .
loop l p ( y<−x )
{

case y>0 of
[ True . re turn 1
| F a l s e . e x i t l p ( z )
]

}
}

a b

Table 6.4: Loop invariant code motion

In Floey, invariant code removal pulls out semi-essentials from loop expressions (sec-

tion 5.3.2). When the semi-essentials are assignments, the optimization is similar to loop

invariant code motion. It moves all semi-essential assignments onto the top, above the

loop expression. Since semi-essentials in a loop expression are the invariant code that

occur in every path, pulling out only semi-essentials guarantees no added computation in

the resulting code.

The scope of Floey’s invariant code removal is smaller than loop invariant code motion

as it only applies to control expressions. But it has an advantage over invariant code

motion: it removes decisions which are not semi-essential (see section 6.4.4) from loops

with the guarantee that program efficiency is not decreasing.



119

6.4.3 Loop unswitching

Loop unswitching [Allen and Cocke, 1971] moves loop invariant conditional statements

out of loops, saving the overhead of the conditional branching in the loop, reducing the

loop size, and possibly increasing the potential parallelization of the program [Bacon et al.,

1994]. In invariant code removal (section 5.3), pulling out semi-essentials which are mul-

tiple decisions (case statements and control statements) from loop expressions (section

5.3.2), is similar to the loop unswitching.

Note that in conventional compiler optimization texts, loop unswitching is distin-

guished from loop invariant code motion, as the conditionals and assignments are gen-

erally considers as different constructs. And loop unswitching modifies program control

flow graph structure more aggressively as it produces smaller loops (see table 5.15.b).

However, Floey provides us the platform, in which both optimizations can be seen as be-

ing the same (section 5.3.2); conditionals and assignments in Floey are both the same

construct as they are decisions. Pulling up unary decisions out of loop thus is just a special

case of pulling out branching decisions. It is conceptually useful to see these optimization

as being the same as thus it helps in the organization of optimizations.

6.4.4 Loop unrolling

Loop unrolling (also called loop unwinding) is the optimization that reduces the number

of iterations of a loop by duplicating the iteration body [Dongarra and Jinds, 1979; El-

lis, 1986]. It may reduce the control overhead and can possibly increase the instruction

parallelism.

In invariant code removal, the code manipulation of pulling out arbitrary invariant

decisions (section 5.3.3) applies a similar idea to loop unrolling, but for different purposes.



120

It unrolls only the first iteration of loops, in order to remove invariant decisions from

iterations. By doing so, loop strength is reduced at the expense of possible code size

increase due to the duplication of loop bodies.

6.4.5 Loop interchange

Loop interchange [Allen and Kennedy, 1984; Wolfe, 1989] is the optimization that rear-

range the order of nested loops so as to enhance code performance in parallel or vector

machines.

In invariant code removal, loop headers are also flipped but only for the purpose of

pulling out more semi-essentials from loop expressions (section 5.3.4). Because a semi-

essential may be blocked by one loop header as it uses some of the bound variables in

the bindings of that header, but is not blocked by other ones. By flipping the order of

nested loop headers, the semi-essentials can be pulled out from the loops in which they

are independent.



Appendix A

Floey Grammar

A.1 Floey Header: FloeyHeader

F l o e y I m p o r t : I mp or t F l o e y I m p o r t |

Im po r t : import f i l e

A Floey file starts optionally by specifying other Floey files it imports. Floey compiler

will recursively collect all the imported files and tokenize them. The import information

will be removed once it is processed. Resulting tokens will be combined together and sent

to the Floey parser. The Floey parser therefore expects the token list of a complete and

legitimate Floey program.

A.2 Floey program: Floey

Floey : FloeyMain F loeyDef s

FloeyMain : mainfun ’ : ’ lower |

A Floey program starts by specifying the function at which the execution begins. This is

specified by FloeyMain and can take the following form.

m a i n f u n c t i o n : h e l l o w o r l d

When no main function is specified, the Floey file cannot be compiled into stand-alone

executable but can only be imported as a library.

A.3 Floey Definitions: FloeyDefs

121



122

FloeyDef s : F loeyDa ta F loeyDef s

| F l o e y A r r a y F loeyDef s

| F l o e y C o n t r o l F loeyDef s

| FloeyFun F loeyDef s

|

The main body of a Floey program consists of a list of Floey definitions, as defined by

FloeyDefs. Each Floey definition, FloeyDef, is either a data declaration, FloeyData, an array

declaration, FloeyArray, a control operation definition, FloeyControl, or a function definition,

FloeyFun.

A.3.1 Data declaration: FloeyData

FloeyDa ta : data upper P a r a L i s t ’= ’ C o n s L i s t

P a r a L i s t : l ower P a r a L i s t |

A Floey data declaration, FloeyData, starts with the key word data, followed by the name

and parameters of the type. The first letter of type name has to be in upper case, while

type variables start with lower a case letter. Type variables are used in polymorphic data

declarations. (e.g. List a, Tree a b)

C o n s L i s t : Cons MoreConsLis t

MoreConsLis t : ’ | ’ Cons MoreConsLis t |

Cons : uppe r T y p e L i s t

T y p e L i s t : ’ ( ’ TypeID MoreTypeLis t ’ ) ’ | ’ ( ’ ’ ) ’ |

MoreTypeLis t : ’ , ’ TypeID MoreTypeLis t h |

TypeID : uppe r moreType | l ower

moreTypeArg : TypeArg moreTypeArg |

TypeArg : ’ ( ’ TypeID ’ ) ’ | uppe r | l ower

After the “=” is the constructor list of that data declaration, ConsList. Constructors are



123

separated by “ |”. Each constructor consists of a name that begins with an upper case

letter, followed by a list of types, TypeList. The list of types specify the arguments types of

that constructor. For example the declaration of a list of polymorphic type is as follows.

data L i s t a = N i l

| Cons ( a , L i s t a )

A.3.2 Array declaration: FloeyArray

F l o e y A r r a y : array l ower Dims ’ : ’ TypeID

Dims : Dim MoreDims

MoreDims : Dim MoreDims |

Dim : ’ [ ’ i n t ’ ] ’

An array declaration FloeyArray consists of the key word array, the name that starts with

a lower case letter, the dimensions, Dims, and the type of array elements, TypeID. For

example a two dimensional array of lists of integer is declared as follows.

array b [ 1 0 ] [ 1 5 ] : L i s t I n t

A.3.3 Control operation definition: FloeyControl

F l o e y C o n t r o l : def l ower A r g L i s t B r a n c h S p e c L i s t ’{ ’ ProcBody ’} ’

A control operation definition consists of the keyword def, a name which starts with a

lower case letter, an argument list, ArgList, a branch specification list, BranchSpecList, and

the body of the control operation, ProcBody.

A r g L i s t : ’ ( ’ Arg MoreArgLis t ’ ) ’ | ’ ( ’ ’ ) ’ |

MoreArgLis t : ’ , ’ Arg MoreArgLis t |

Arg : lower MoreVarLis t ’ : ’ TypeID



124

An argument list, ArgList, consists a list of variable-type pairs. For example an argument x

of boolean and an argument y of the type: list of integer, is declared as follows.

( x : Bool , y : L i s t I n t )

However, if two or more consecutive arguments are of the same type, the type needs to

be input only once after the last variable. For example three arguments of list of boolean:

(x,y,z: List Bool)

B r a n c h S p e c L i s t : ’ [ ’ BranchSpec MoreBranchSpecLis t ’ ] ’ | ’ [ ’ ’ ] ’ |

MoreBranchSpecLis t : ’ , ’ BranchSpec MoreBranchSpecLis t |

BranchSpec : lower T y p e L i s t

A control operation returns a list of branch specifications enclosed by a pair of square

brackets, as defined by BranchSpecList. The syntax of a branch specification is very similar

to that of a constructor. The only difference is that a name for a branch specification starts

with a lower case letter. The different branch specifications are separated by commas.

ProcBody : F loeyDef s ConExp Entry

The main procedure body, ProcBody, consists of a list of local Floey definitions, FloeyDefs,

and a control expression with a list of entries, ConExp Entry. ConExp Entry is discussed in

the next section.

A.3.4 Function definition: FloeyFun

FloeyFun : fun l ower A r g L i s t ’ : ’ TypeID ’{ ’ ProcBody ’} ’

A Floey function, as defined by FloeyFun, differs from a Floey control operation, FloeyControl,

in that it returns a value of some type, indicated by TypeID, rather than a branch specifica-

tion.



125

A.4 Entry and control expression: ConExp Entries

C o n E x p E n t r i e s : main ConExp E n t r i e s | E n t r i e s

In Floey, each main code section, ConExp Entry, consists with a control expression and a list

of entries. ConExp Entry starts with the keyword main, followed by the control expression,

ConExp, and the entry list, Entries . In case the control expression is empty, the keyword

main should be omitted.

A.4.1 Entry: Entry

E n t r i e s : E n t r y E n t r i e s |

E n t r y : entry l ower A r g L i s t ’{ ’ ConExp Entry ’} ’

The entry list, as defined by Entries , is a (possibly empty) list of entries. Each entry, as

defined by Entry, starts with the keyword entry followed by the the entry name, a argument

list, ArgList, and a ConExp Entries enclosed my curly brackets. An entry name starts with a

lower case letter.

A.4.2 Control expression: ConExp

ConExp : e x i t l ower E x p L i s t

| re turn Exp

| case Exp of Branches

| l ower E x p L i s t of Branches

| l ower ”<−” Exp ’ . ’ ConExp

| loop l ower B i n d i n g L i s t ’{ ’ ConExp Entry ’} ’

|

A control expression, ConExp, is either an exit statement, a return statement, a case state-

ment, a control statement, an assignment, or a loop expression.



126

ExpList

E x p L i s t : ’ ( ’ Exp MoreExpLis t ’ ) ’ | ’ ( ’ ’ ) ’ |

MoreExpLis t : ’ , ’ Exp MoreExpLis t |

An ExpList is a comma separated list of expressions enclosed by a pair of braces. In case

the list is empty, the braces can be omitted as well.

Branches

Branches : ’ [ ’ lower V a r L i s t ’ . ’ ConExp R e s t b r a n c h e s ’ ] ’

| ’ [ ’ uppe r V a r L i s t ’ . ’ ConExp R e s t b r a n c h e s ’ ] ’

R e s t b r a n c h e s : ’ | ’ l ower V a r L i s t ’ . ’ ConExp R e s t b r a n c h e s

| ’ | ’ uppe r V a r L i s t ’ . ’ ConExp R e s t b r a n c h e s

|

Branches of case statements or control statements are enclosed in square brackets. Differ-

ent branches are separated by “ |”.

VarList

V a r L i s t : ’ ( ’ l ower MoreVarLis t ’ ) ’ | ’ ( ’ ’ ) ’ |

MoreVarLis t : ’ , ’ l ower MoreVarLis t |

In each branch, VarList is the list of variables that are bound to the following control ex-

pression, ConExp. Please note that, the Floey parser does not distinguish branches of case

statements from those of control statements. That is left to the semantic checking phase.

The reason for this design is that in semantic checking, the compiler would be able to

provide more useful feedback to assist debugging.

BindingList

B i n d i n g L i s t : ’ ( ’ B ind ing M o r e B i n d i n g L i s t ’ ) ’ | ’ ( ’ ’ ) ’ |

M o r e B i n d i n g L i s t : ’ , ’ B ind ing M o r e B i n d i n g L i s t |



127

Bind ing : lower ”<−” lower

A binding list, BindingList, is a list of variable pairs separated by commas. Each variable

pair, separated by “<−”, is a binding: bound variable on the left and free variable on the

right.

A.5 Expression: Exp

Exp : Exp ’+ ’ Exp | Exp ’− ’ Exp | Exp ’∗ ’ Exp | Exp ’ / ’ Exp

| Exp mod Exp | Exp ”&&” Exp | Exp ” | | ” Exp | Exp xor Exp

| Exp ”==” Exp | Exp ” !=” Exp | Exp ’< ’ Exp | Exp ’> ’ Exp

| Exp ”<=” Exp | Exp ”>=” Exp | ’− ’ ’ ( ’ Exp ’ ) ’

| l ower FunArgLi s t | upper E x p L i s t | ’ ( ’ Exp ’ ) ’ | Term

| l ower I n d i c e s

Term : ’− ’ Atom | Atom

Atom : i n t | r e a l | l ower | c h a r

FunArgLi s t : ’ ( ’ Exp MoreExpLis t ’ ) ’ | ’ ( ’ ’ ) ’

I n d i c e s : Index M o r e I n d i c e s

M o r e I n d i c e s : Index M o r e I n d i c e s |

Index : ’ [ ’ Exp ’ ] ’

An expression, as defined by Exp, can simply be an integer, a real number, a variable, a

character, or an array element. It can also be any function or constructor applied to other

expressions. Please note any identifier for variables, arrays or functions starts with a lower

case letter, while an identifier for constructor starts with an upper case letter.



Appendix B

Source Code

B.1 Data structures used in the Floey compiler

{−Floey program−}

data Floey = Floey S t r i n g [ TypeDec ] [ ArrayDec ] [ Def ]

d e r i v i n g ( Eq )

{− f u n c t i o n or c o n t r o l o p e r a t i o n d e f i n i t i o n−}

data Def = Def S t r i n g [ Arg ] [ Spec ] Proc

d e r i v i n g Eq

type Arg = ( Str ing , TypeID ) −−argument

type Spec = ( Str ing , [ TypeID ] ) −−branch s p e c i f i c a t i o n

type Proc = ( [ TypeDec ] , [ ArrayDec ] , [ Def ] , Body )

type Body = ( ConExp , [ E n t r y ] )

{−da ta d e c l a r a t i o n s−}

data TypeDec = TypeDec TypeID [ Cons ] −−da ta t y p e d e c l a r a t i o n

d e r i v i n g Eq

data TypeID = TypeID S t r i n g [ TypeID ] −−t y p e i d e n t i f i c a t i o n

d e r i v i n g ( Eq , Ord )

data Cons = Cons S t r i n g [ TypeID ] −−c o n s t r u c t o r

data ConsArg = ArgLeaf S t r i n g

| ArgBranch Cons

d e r i v i n g ( Show , Eq )

{−a r r a y d e c l a r a t i o n s−}

data ArrayDec = ArrayDec S t r i n g TypeID [ I n t ]

128



129

d e r i v i n g Eq

{− e n t r y−}

data E n t r y = E n t r y S t r i n g [ Arg ] Body

d e r i v i n g ( Show , Eq )

{− c o n t r o l e x p r e s s i o n−}

data ConExp = FLOEYcase Exp [ ( ( Str ing , [ S t r i n g ] ) , ConExp ) ]

| FLOEYcontrol ConOp [ ( ( Str ing , [ S t r i n g ] ) , ConExp ) ]

| FLOEYexit S t r i n g [ Exp ]

| FLOEYreturn Exp

| FLOEYloop S t r i n g [ B ind ing ] Body

d e r i v i n g Eq

type Bind ing = ( Exp , Exp ) −−l oop b i n d i n g

data ConOp = ConOp S t r i n g [ Exp ]

d e r i v i n g ( Ord , Eq )

{− e x p r e s s i o n−}

data Exp = BinE S t r i n g Exp Exp

| FunE S t r i n g [ Exp ]

| ConsE S t r i n g [ Exp ]

| ElemE S t r i n g [ Exp ]

| BraceE Exp

| NegE Exp

| I n t E I n t

| RealE Double

| CharE Char

| VarE S t r i n g

d e r i v i n g ( Ord , Eq )

B.2 Normalizations



130

{− e x p r e s s i o n e x p a n s i o n−}

expandNode : : ConExp −> I n t −> ( ConExp , I n t )

expandNode e t num =

i f s imAss ign then ( FLOEYcase ( head exps ) s imbr , simn )

e l s e case e t of

FLOEYloop −>

( FLOEYloop s b i n d i n g s ( newe t ree ’ , e n t r i e s ) , newnum ’ )

−> i f n u l l exps then ( e t , num ) e l s e ( newet , newn ’ )

where ( FLOEYloop s b i n d i n g s ( e t r e e , e n t r i e s ) ) = e t

( newe t ree ’ , newnum ’ ) = expandNode e t r e e num

−−i d = getConExpID e t

s imAss ign = sim ’ e t

where sim ’ ( FLOEYcase q a r g s ) =

l e n g t h a r g s == 1 &&

( f s t $ f s t $ head $ a r g s ) ==

” # Ass ign ” && i s S e m i F i n a l q

sim ’ = F a l s e

( s imbr , simn ) = u p d a t e B r a n c h e s e t num

leaveOne = i s A s s i g n e t

exps = getConExpExp e t

( ( addedexps , newexps ) , newnum ) =

f o l d l (\ x y −> u p d a t e l i s t x y ) ( ( [ ] , [ ] ) , num ) exps

where u p d a t e l i s t ( ( a , b ) , n ) ex =

i f n u l l exs

then ( ( a , b ++ ex : [ ] ) , n )

e l s e ( ( a ++ exs , b ++ nexp : [ ] ) , newn )

where ( exs , newn ) = expandExp ex n True

nexp = i f l eaveOne then f s t $ l a s t exs



131

e l s e VarE ( t m p P r e f i x ++ show ( newn − 1 ) )

( newbr , newn ’ ) = u p d a t e B r a n c h e s e t newnum

newet ’ = case e t of

( FLOEYcase q ) −> FLOEYcase q newbr

( FLOEYcontrol q ) −> FLOEYcontrol q newbr

−> e t

newet = f s t $ f o l d l ( \ ( x , i ) y −>

i f snd y < 0 then ( x , i )

e l s e ( FLOEYcase ( f s t y )

[ ( ( ” # Ass ign ” , [ t m p P r e f i x ++

show ( snd y ) ] ) , x ) ] , i −1))

( updateConExpExp newet ’

newexps ,−1) $

( i f l eaveOne

then t a i l $ r e v e r s e addedexps

e l s e r e v e r s e addedexps )

expandExp : : Exp −> I n t −> Bool −> ( [ ( Exp , I n t ) ] , I n t )

expandExp ex num f l a g = i f i s F i n a l ex then ( [ ] , num )

e l s e case ex of

( FunE s e x p l i s t ) −>

( expandedExps ++ [ ( FunE s n e w l i s t ,

i f f l a g then newnum e l s e −1)] ,

newnum+( i f f l a g then 1 e l s e 0 ) )

where ( n e w l i s t , expandedExps , newnum ) =

f o l d l ( \ ( a , b , n ) x −>

i f i s F i n a l x then ( a ++ [ x ] , b , n )

e l s e l e t ( ex ’ , n ’ ) =



132

expandExp x n True in

( ( a ++ [ ( VarE ( t m p P r e f i x ++

( show $ ( n ’ ) − 1 ) ) ) ] ,

b ++ ex ’ , n ’ ) ) ) ( [ ] , [ ] , num ) e x p l i s t

( ConsE s e x p l i s t ) −>

( expandedExps ++ [ ( ConsE s n e w l i s t ,

i f f l a g then newnum e l s e −1)] ,

newnum+( i f f l a g then 1 e l s e 0 ) )

where ( n e w l i s t , expandedExps , newnum ) =

f o l d l ( \ ( a , b , n ) x −>

i f i s F i n a l x then ( a ++ [ x ] , b , n )

e l s e l e t ( ex ’ , n ’ ) =

expandExp x n True in

( ( a ++ [ ( VarE ( t m p P r e f i x ++

( show $ ( n ’ ) − 1 ) ) ) ] ,

b ++ ex ’ , n ’ ) ) ) ( [ ] , [ ] , num ) e x p l i s t

( ElemE s e x p l i s t ) −>

( expandedExps ++ [ ( ElemE s n e w l i s t ,

i f f l a g then newnum e l s e −1)] ,

newnum+( i f f l a g then 1 e l s e 0 ) )

where ( n e w l i s t , expandedExps , newnum ) =

f o l d l ( \ ( a , b , n ) x −>

i f i s F i n a l x then ( a ++ [ x ] , b , n )

e l s e l e t ( ex ’ , n ’ ) =

expandExp x n True in

( ( a ++ [ ( VarE ( t m p P r e f i x ++

( show $ ( n ’ ) − 1 ) ) ) ] ,

b ++ ex ’ , n ’ ) ) ) ( [ ] , [ ] , num ) e x p l i s t



133

( NegE exp ) −> ( n e w l i s t , newnum+1)

where ( e x p l i s t , newnum ) = expandExp exp num True

n e w l i s t =

e x p l i s t ++ i f i s F i n a l exp then [ ( NegE exp , num ) ]

e l s e [ ( NegE $

VarE ( t m p P r e f i x ++ ( show $ newnum−1) ) , newnum ) ]

( BraceE exp ) −> expandExp exp num True

( BinE s exp1 exp2 ) −>

( l e f t e x p ++ r i g h t e x p ++ ( t h i s e x p : [ ] ) , num2 + 1)

where ( l e f t e x p , num1 ) = expandExp exp1 num True

( r i g h t e x p , num2 ) = expandExp exp2 num1 True

newexp1 = i f num1 == num then exp1

e l s e VarE $ t m p P r e f i x ++ show ( num1 − 1)

newexp2 = i f num2 == num1 then exp2

e l s e VarE $ t m p P r e f i x ++ show ( num2 − 1)

t h i s e x p = ( BinE s newexp1 newexp2 , num2 )

{− e x p r e s s i o n c o l l e c t i o n−}

e x p C o l l e c t : : ConExp −> ConExp

e x p C o l l e c t e t =

c o l l e c t e t

where ( useNO , s u b L s t ) = useCount e t M. empty M. empty

r e L s t = f o l d l (\ l ( s , i ) −>

M. i n s e r t s ( needRep lace s i ) l ) M. empty (M. t o L i s t useNO )

c o l l e c t : : ConExp −> ConExp

c o l l e c t ( FLOEYexit s ex ) =

FLOEYexit s (map (\ x −> v a r R e p l a c e x r e L s t s u b L s t ) ex )

c o l l e c t ( FLOEYreturn ex ) =



134

FLOEYreturn ( v a r R e p l a c e ex r e L s t s u b L s t )

c o l l e c t ( FLOEYcase q a r g s ) =

case g e t A s s i g n P r o ( FLOEYcase q a r g s ) of

SS s −> case M. lookup s r e L s t of

Jus t True −> c o l l e c t ( snd $ head a r g s )

−> FLOEYcase newq

(map ( \ ( p , e ) −>

( p , c o l l e c t e ) ) a r g s )

−> FLOEYcase newq (map ( \ ( p , e ) −> ( p , c o l l e c t e ) ) a r g s )

where newq = v a r R e p l a c e q r e L s t s u b L s t

c o l l e c t ( FLOEYloop s bs ( e t , e n t r i e s ) ) =

FLOEYloop s newbs ( c o l l e c t e t ,

map ( e x p C o l l e c t E n t r y ) e n t r i e s )

where newbs = map ( \ ( a , b ) −>

( a , v a r R e p l a c e b r e L s t s u b L s t ) ) bs

c o l l e c t e t = e t

{−SSA form−}

dif fName : : ConExp −> I n t −> ( ConExp , I n t )

d i f fName e t i = diffName ’ e t i

where diffName ’ : : ConExp −> I n t −> ( ConExp , I n t )

diffName ’ ( FLOEYcase q a r g s ) n = ( FLOEYcase q a rgs ’ , n ’ )

where ( a rgs ’ , n ’ ) = f o l d l ( \ ( newargs , num ) b−>

d i f f O n e B r a n c h newargs num b ) ( [ ] , n ) a r g s

d i f f O n e B r a n c h bs i ( ( b , p ) , e t ) =

( bs + + [ ( ( b , p ’ ) , e t ’ ) ] , i ’ ’ )

where ( p ’ , i ’ ) = f o l d l ( \ ( nv , n i ) v −>

( nv ++[ d i f f V a r v n i ] , n i + 1 ) ) ( [ ] , i ) p



135

( e t ’ , i ’ ’ ) = diffName ’ ( s imRep lace

(map ( VarE ) p ) (map ( VarE ) p ’ ) e t ) i ’

diffName ’ ( FLOEYcontrol q a r g s ) n = ( FLOEYcontrol q a rgs ’ , n ’ )

where ( a rgs ’ , n ’ ) = f o l d l ( \ ( newargs , num ) b−>

d i f f O n e B r a n c h newargs num b ) ( [ ] , n ) a r g s

d i f f O n e B r a n c h : : [ Branch ] −> I n t −> Branch −> ( [ Branch ] , I n t )

d i f f O n e B r a n c h bs i ( ( b , p ) , e t ) = ( bs + + [ ( ( b , p ’ ) , e t ’ ) ] , i ’ ’ )

where ( p ’ , i ’ ) =

f o l d l ( \ ( nv , n i ) v −>

( nv ++[ d i f f V a r v n i ] , n i + 1 ) ) ( [ ] , i ) p

( e t ’ , i ’ ’ ) =

diffName ’

( s imRep lace (map ( VarE ) p ) (map ( VarE ) p ’ ) e t ) i ’

diffName ’ ( FLOEYloop s b i n s ( e t , e n t r i e s ) ) n =

( FLOEYloop s newbins ( newet , e n t r i e s ’ ) , n ’ ’ ’ )

where ( i n t e n , e x t e n ) = unzip b i n s

( newin ten , n ’ ) =

f o l d l ( \ ( nin , nn ) ( VarE v ) −>

( n i n ++[ VarE $ d i f f V a r v nn ] , nn + 1 ) ) ( [ ] , n ) i n t e n

( newet , n ’ ’ ) = diffName ’ ( s imRep lace ( i n t e n ) ( n e w i n t e n ) e t ) n ’

newbins = z i p n e w i n t e n e x t e n

( e n t r i e s ’ , n ’ ’ ’ ) =

f o l d l ( \ ( newen , newi ) en −>

l e t ( en ’ , newi ’ ) = d i f f N a m e E n t r y en newi in

( newen ++[ en ’ ] , newi ’ ) )

( [ ] , n ’ ’ ) e n t r i e s

diffName ’ ( FLOEYreturn e ) n = ( FLOEYreturn e , n )

diffName ’ ( FLOEYexit s exs ) n = ( FLOEYexit s exs , n )



136

{− e n t r y promot ion−}

p r o m o t e i n T r e e : : ConExp −> ( ConExp , [ E n t r y ] )

p r o m o t e i n T r e e ( FLOEYexit s ex ) = ( FLOEYexit s ex , [ ] )

p r o m o t e i n T r e e ( FLOEYreturn ex ) = ( FLOEYreturn ex , [ ] )

p r o m o t e i n T r e e ( FLOEYcase q a r g s ) = ( FLOEYcase q newargs , ens )

where ( newargs , ens ) = f o l d l ( \ ( n , e ) ( p , e t ) −> l e t ( newet , ens ) =

p r o m o t e i n T r e e e t in ( n ++[ ( p , newet ) ] , e++ ens ) ) ( [ ] , [ ] ) a r g s

p r o m o t e i n T r e e ( FLOEYcontrol q a r g s ) = ( FLOEYcontrol q newargs , ens )

where ( newargs , ens ) = f o l d l ( \ ( n , e ) ( p , e t ) −> l e t ( newet , ens ) =

p r o m o t e i n T r e e e t in ( n ++[ ( p , newet ) ] , e++ ens ) ) ( [ ] , [ ] ) a r g s

p r o m o t e i n T r e e ( FLOEYloop s bs ( e t , e n t r i e s ) ) =

( FLOEYloop s bs ( newet , l ) , f )

where ( newet , added ) = p r o m o t e i n T r e e e t

n e w e n t r i e s =

f o l d l (\ newen t h i s −>

newen ++ p r o m o t e i n E n t r y t h i s ) [ ] e n t r i e s

( l o c a l s , f r e e s ) =

c l a s s i f y E n t r y ( FLOEYloop s bs ( newet , n e w e n t r i e s ++ added ) )

l = f o l d l (\ l t h i s −> l ++[ ( f i n dE n t h i s ) ] ) [ ] l o c a l s

f = f o l d l (\ f t h i s −> f ++[ ( f i nd En t h i s ) ] ) [ ] f r e e s

f i nd En : : S t r i n g −> E n t r y

f i nd En s =

case f i n d ( \ ( E n t r y x ) −> s == x ) ( n e w e n t r i e s ++ added ) of

Jus t en −> en

{− l oop b i n d i n g r e d u c t i o n and dead loop e l i m−}

l o o p b s r e d u c e : : ConExp −> ConExp



137

l o o p b s r e d u c e ( FLOEYloop s bs ( e t , e n t r i e s ) ) =

i f a l i v e | | ( not $ n u l l e n t r i e s ) then FLOEYloop s newbs newbody

e l s e e t −− k i l l s a loop when no loop c a l l s

where ( i n t e n , e x t e n ) = unzip bs

( used , changed , a l i v e ) =

loop ’ ( expandBody ( e t , e n t r i e s ) [ ] ) [ ]

(map (\ −>F a l s e ) i n t e n ) F a l s e

t o d o l s t =

−− 0: do n o t h i n g , 1 : unused , 2 : unchanged

map ( \ ( VarE x , c ) −>

i f x ‘ notElem ‘ used then 1

e l s e i f c then 0 e l s e 2) ( z i p i n t e n changed )

todo ’ = f s t $ f o l d l ( \ ( l , n ) t −>

i f t ==0 then ( l , n +1)

e l s e ( l ++[ n ] , n + 1 ) ) ( [ ] , 0 ) t o d o l s t

unchanged = f i l t e r ( \ ( b , c)−>c ==2) ( z i p bs t o d o l s t )

e t ’ = f o l d l (\ t r e e ( ( VarE i , e ) , ) −>

FLOEYcase e [ ( ( ” # Ass ign ” , [ i ] ) , t r e e ) ] ) e t unchanged

newbs = i f n u l l todo ’ then bs

e l s e f s t $ unzip $ f i l t e r ( \ ( a , b)−>b ==0) ( z i p bs t o d o l s t )

newbody = i f n u l l todo ’ then ( e t , e n t r i e s ) e l s e ( e t ’ , e n t r i e s )

−− used and changed v a r i a b l e s i n loop

loop ’ ( FLOEYreturn ex ) u c a l i v e = ( u ’ , c , a l i v e )

where u ’ = union ( g e t Va r ( E ex ) ) u

loop ’ ( FLOEYexit l ex ) u c a l i v e = ( u ’ , c ’ , a l i v e ’ )

where u ’ = union ( f o l d l (\ v l exp −>

v l ++ ( g e t Va r ( E exp ) ) ) [ ] ex ) u

c ’ = i f l == s



138

then map ( \ ( ch , ( v , v ’ ) , e)−>

i f ch then ch

e l s e ( v /= e && v ’ / = e ) ) ( z ip3 c bs ex )

e l s e c

a l i v e ’ = a l i v e | | l == s

loop ’ ( FLOEYcase q a r g s ) u c a l i v e =

f o l d l ( \ ( ud , cd , a l ) ( p , e t ) −>

loop ’ e t ud cd a l ) ( u ++( g e t Va r ( E q ) ) , c , a l i v e ) a r g s

loop ’ ( FLOEYcontrol con a r g s ) u c a l i v e =

f o l d l ( \ ( ud , cd , a l ) ( p , e t ) −>

loop ’ e t ud cd a l ) ( u ++( g e t Va r (C con ) ) , c , a l i v e ) a r g s

loop ’ ( FLOEYloop l ’ b ’ ( e t ’ , e n t r i e s ’ ) ) u c a l i v e =

loop ’ e t ’ u ’ c a l i v e

where u ’ = f o l d l (\ used ( i , VarE e ) −> union used [ e ] ) u b ’

B.3 Repeat reduction

r e p e a t r e d u c e : : ConExp −> E n t r y A r g L s t −> ConExp

r e p e a t r e d u c e t a r g l s t = b r a n c h s r e d u c e a r g l s t [ ] a r g l s t $ norma lTree t

b r a n c h s r e d u c e a r g l s t : : Cho ices −> E n t r y A r g L s t −> ConExp −> ConExp

b r a n c h s r e d u c e a r g l s t ch a r g l s t e t = b r a n c h s r e d u c e ch e t where

b r a n c h s r e d u c e : : Cho ices −> ConExp −> ConExp

b r a n c h s r e d u c e ch ( FLOEYexit s e ) =

case M. lookup s a r g l s t of

Jus t b l −>

FLOEYexit s

( f s t $ unzip $ f i l t e r ( \ ( a , b)−>b ) $ z i p e b l )

−> FLOEYexit s e



139

b r a n c h s r e d u c e ch ( FLOEYreturn e ) = FLOEYreturn e

b r a n c h s r e d u c e ch ( FLOEYcase q ( ( ( br , p ro ) , e t ) : r e s t ) )

| i s A s s i g n ( FLOEYcase q ( ( ( br , p ro ) , e t ) : r e s t ) ) =

i f ( VarE ( head pro ) == q ) then b r a n c h s r e d u c e ch e t

{−c o n s t / copy p r o p a g a t i o n−}

e l s e i f i s C o n s t q | | i s V a r q

then b r a n c h s r e d u c e ch $

s imRep lace (map ( VarE ) pro ) [ q ] e t

e l s e case g e t c h o i c e ch ( E q ) of

SS ( br ’ , v l ’ ) −>

i f br ’ == ” # Ass ign ”

then b r a n c h s r e d u c e ch $

s imRep lace (map ( VarE ) pro ) (map ( VarE ) vl ’ ) e t

e l s e b r a n c h s r e d u c e ch $

s imRep lace (map ( VarE ) pro )

[ ConsE br ’ (map ( VarE ) vl ’ ) ] e t

FF −> r e c u r s i v e R e d u c e ( FLOEYcase q ( ( ( br , p ro ) , e t ) : r e s t ) ) ch

| o t h e r w i s e =

i f getExpType q == ” ConsE ” then

l e t ( ConsE cons exs ) = q in

case g e t b r a n c h ( cons , map (\ x−>” ” ) exs )

( ( ( br , p ro ) , e t ) : r e s t ) of

SS ( ( , t h i s v ) , t h i s e t ) −>

b r a n c h s r e d u c e ch $

s imRep lace (map ( VarE ) t h i s v ) ( exs ) t h i s e t

e l s e i f i s V a r q then l e t ( VarE s ) = q in

case g e t v a r e x p ch s of

SS ex −> case ex of



140

( ConsE c i d exs ) −>

case g e t b r a n c h ( c id , map (\ x−>” ” ) exs )

( ( ( br , p ro ) , e t ) : r e s t ) of

SS ( ( t h i s b , t h i s v ) , t h i s e t ) −>

b r a n c h s r e d u c e ch newet ’ where

newet ’ = s imRep lace

(map ( VarE ) t h i s v ) ( exs ) t h i s e t

−> r e c u r s i v e R e d u c e

( FLOEYcase q ( ( ( br , p ro ) , e t ) : r e s t ) ) ch

−> r e c u r s i v e R e d u c e

( FLOEYcase q ( ( ( br , p ro ) , e t ) : r e s t ) ) ch

e l s e case g e t c h o i c e ch ( E q ) of

SS ( br ’ , v l ’ ) −>

case g e t b r a n c h ( br ’ , v l ’ ) ( ( ( br , p ro ) , e t ) : r e s t ) of

SS ( ( t h i s b , t h i s v ) , t h i s e t ) −>

b r a n c h s r e d u c e ch newet ’

where newet ’ = s imRep lace

(map ( VarE ) t h i s v ) (map ( VarE ) vl ’ ) t h i s e t

FF −> r e c u r s i v e R e d u c e ( FLOEYcase q ( ( ( br , p ro ) , e t ) : r e s t ) ) ch

b r a n c h s r e d u c e ch ( FLOEYcontrol q ( ( ( br , p ro ) , e t ) : r e s t ) ) =

case g e t c h o i c e ch (C q ) of

SS ( br ’ , v l ’ ) −>

case g e t b r a n c h ( br ’ , v l ’ ) ( ( ( br , p ro ) , e t ) : r e s t ) of

SS ( ( t h i s b , t h i s v ) , t h i s e t ) −>

b r a n c h s r e d u c e ch newet ’

where newet ’ = s imRep lace

(map ( VarE ) t h i s v ) (map ( VarE ) vl ’ ) t h i s e t

FF −> r e c u r s i v e R e d u c e ( FLOEYcontrol q ( ( ( br , p ro ) , e t ) : r e s t ) ) ch



141

b r a n c h s r e d u c e ch ( FLOEYloop s bs ( e t , e n t r i e s ) ) =

FLOEYloop s bs ( b r a n c h s r e d u c e ch e t , e n t r i e s )

r e c u r s i v e R e d u c e : : ConExp −> Choices −> ConExp

r e c u r s i v e R e d u c e ( FLOEYcase q br ) ch = FLOEYcase q newbr

where newbr = f o l d l (\ nb b −> upda te ’ nb b ) [ ] b r

where upda te ’ nb ’ ( ( b ’ , p ’ ) , e t ’ ) = ( nb ’ + + [ ( ( b ’ , p ’ ) , e t ’ ’ ) ] )

where e t ’ ’ = i f getExpType q == ” VarE ” then

i f n u l l p ’

then b r a n c h s r e d u c e

ch ( s imRep lace [ q ] [ ConsE b ’ [ ] ] e t ’ )

e l s e l e t ( VarE s ) = q in

b r a n c h s r e d u c e ( addChoice

( E ( ConsE b ’ (map ( VarE ) p ’ ) ) ,

( ” # Ass ign ” , [ s ] ) ) ch ) e t ’

e l s e b r a n c h s r e d u c e

( addChoice ( ( E q ) , ( b ’ , p ’ ) ) ch ) e t ’

r e c u r s i v e R e d u c e ( FLOEYcontrol q b r ) ch = FLOEYcontrol q newbr

where newbr = f o l d l (\ nb b −> upda te ’ nb b ) [ ] b r

where upda te ’ nb ’ ( ( b ’ , p ’ ) , e t ’ ) = ( nb ’ + + [ ( ( b ’ , p ’ ) , e t ’ ’ ) ] )

where e t ’ ’ = b r a n c h s r e d u c e

( addChoice ( ( C q ) , ( b ’ , p ’ ) ) ch ) e t ’

B.4 The reduction algorithm

{−g e t t h e semi−e s s e n t i a l s i n a c o n t r o l e x p r e s s i o n−}

g e t s e m i e s s e n t i a l : : ConExp −> SF D e f i n i t i o n

g e t s e m i e s s e n t i a l cexp = case g e t s e m i e s s e n t i a l a l l cexp [ ] of

SS ds −> SS $ head ds

FF −> FF



142

g e t s e m i e s s e n t i a l a l l : : ConExp −> [ S t r i n g ] −> SF [ D e f i n i t i o n ]

g e t s e m i e s s e n t i a l a l l e t v l = case e t of

FLOEYcase a r g s −> ( case i n t e r s e c t i o n $ map ( \ ( ( b , p ) , t ) −>

g e t s e m i e s s e n t i a l s t $ nub ( p++ v l ) ) a r g s of

[ ] −> FF

( d ’ ) −> SS d ’ )

FLOEYcontrol a r g s −> ( case i n t e r s e c t i o n $ map ( \ ( ( b , p ) , t ) −>

g e t s e m i e s s e n t i a l s t $ nub ( p++ v l ) ) a r g s of

[ ] −> FF

( d ’ ) −> SS d ’ )

FLOEYloop bs ( e t ’ , ) −> ( case g e t s e m i e s s e n t i a l s e t ’

( union v l (map ( \ ( VarE i , e)−> i ) bs ) ) of

[ ] −> FF

( d ’ ) −> SS d ’ )

FLOEYexit −> FF

FLOEYreturn −> FF

where

g e t s e m i e s s e n t i a l s : : ConExp −> [ S t r i n g ] −> [ D e f i n i t i o n ]

g e t s e m i e s s e n t i a l s ( FLOEYexit ) = [ ]

g e t s e m i e s s e n t i a l s ( FLOEYreturn ) = [ ]

−−a d e c i s i o n can ’ t move pas s t h e d e f i n i t i o n s o f i t s used v a r i a b l e s

g e t s e m i e s s e n t i a l s ( FLOEYcase q a r g s ) v l

= i f n u l l $ i n t e r s e c t ( g e t Va r ( E q ) ) v l

then add (DF ( ( E q ) , map ( \ ( a , b)−>a ) a r g s ) ) s e

e l s e se

where se = i n t e r s e c t i o n (map ( \ ( ( b , p ) , t ) −>

g e t s e m i e s s e n t i a l s t ( union ( nub p ) v l ) ) a r g s )



143

newused = f i l t e r (\ x −> x ‘ notElem ‘ v l ) $ nub $ ge tV a r ( E q )

−−a d e c i s i o n can ’ t move pas s t h e d e f i n i t i o n s o f i t s used v a r i a b l e s

g e t s e m i e s s e n t i a l s ( FLOEYcontrol c a r g s ) v l

= i f n u l l $ i n t e r s e c t ( g e t Va r (C c ) ) v l

then add (DF ( ( C c ) , map ( \ ( a , b)−>a ) a r g s ) ) s e

e l s e se

where se = i n t e r s e c t i o n (map ( \ ( ( b , p ) , t ) −>

g e t s e m i e s s e n t i a l s t ( union ( nub p ) v l ) ) a r g s )

newused = f i l t e r (\ x −> x ‘ notElem ‘ v l ) $ nub $ ge tV a r (C c )

g e t s e m i e s s e n t i a l s ( FLOEYloop bs ’ ( e t ’ , ) ) v l =

g e t s e m i e s s e n t i a l s e t ’ $ union v l (map ( \ ( VarE i , e)−> i ) bs ’ )

add : : D e f i n i t i o n −> [ D e f i n i t i o n ] −> [ D e f i n i t i o n ]

add q [ ] = [ q ]

add q ( q ’ : r e s t )

| q == q ’ = ( q ’ : r e s t )

| q < q ’ = q : ( q ’ : r e s t )

| o t h e r w i s e = q ’ : ( add q r e s t )

i n t e r s e c t i o n : : [ [ D e f i n i t i o n ] ] −> [ D e f i n i t i o n ]

i n t e r s e c t i o n [ qs ] = qs

i n t e r s e c t i o n ( qs : r e s t ) = i n t e r s e c t qs ( i n t e r s e c t i o n r e s t )

i n t e r s e c t i o n [ ] = [ ]

{− i d e m p o t e n t r e d u c t i o n−}

i d e m r e d u c e : : D e c i s i o n −> [ P r o d u c t ] −> [ Branch ] −> SF ConExp

i d e m r e d u c e ( ( , FLOEYcase ) : ) = FF

i d e m r e d u c e ( ( , FLOEYcontrol ) : ) = FF

i d e m r e d u c e q pds ( ( ( b , p ro ) , FLOEYloop s bs ( e t , e n t r i e s ) ) : r e s t )

| n u l l r e s t = i f any (\ x−>x )



144

( a r e A l i v e (map ( VarE ) pro ) $

FLOEYloop s bs ( e t , e n t r i e s ) )

then FF

e l s e SS $ FLOEYloop s bs ( e t , e n t r i e s )

| o t h e r w i s e = FF

i d e m r e d u c e q pds ( ( ( b , p ro ) , FLOEYexit s x ) : [ ] ) =

i f n u l l $ i n t e r s e c t d e f used then SS ( FLOEYexit s x )

e l s e FF

where d e f = f o l d l (\ x p−>p : x ) [ ] p ro

used = f o l d l (\ u ex−> union u $ ge tV a r ( E ex ) ) [ ] x

i d e m r e d u c e q pds ( ( ( b , p ro ) , FLOEYexit s x ) : r e s t ) =

do ( s , x ) <− a l l s a m e ( remove branch ( b , p ro ) pds ) r e s t s x

re turn ( FLOEYexit s x )

where a l l s a m e [ ] [ ] s x = SS ( s , x )

a l l s a m e pds ( ( pd , FLOEYexit s ’ x ’ ) : r e s t ) s x

| s == s ’ && x == x ’ = a l l s a m e

( remove branch pd pds ) r e s t s x

| o t h e r w i s e = FF

a l l s a m e = FF

i d e m r e d u c e q pds ( ( ( b , p ro ) , FLOEYreturn x ) : [ ] ) =

i f n u l l $ i n t e r s e c t d e f used then SS ( FLOEYreturn x )

e l s e FF

where d e f = f o l d l (\ x p−>p : x ) [ ] p ro

used = g e t V a r ( E x )

i d e m r e d u c e q pds ( ( ( b , p ro ) , FLOEYreturn x ) : r e s t ) =

do x <− a l l s a m e ( remove branch ( b , p ro ) pds ) r e s t x

re turn ( FLOEYreturn x )

where a l l s a m e : : [ P r o d u c t ] −> [ Branch ] −> Exp −> SF Exp



145

a l l s a m e [ ] [ ] x = SS x

a l l s a m e pds ( ( pd , FLOEYreturn x ’ ) : r e s t ) x

| x == x ’ = a l l s a m e ( remove branch pd pds ) r e s t x

| o t h e r w i s e = FF

a l l s a m e = FF

{− p u l l i n g up d e c i s i o n s −}

p u l l u p : : D e c i s i o n −> [ Branch ] −> SF ( Dec i s ion , [ Branch ] )

p u l l u p q a r g s =

case q of

E exp −> case g e t s e m i e s s e n t i a l ( FLOEYcase exp a r g s ) of

SS (DF ( E q ’ , p r o d u c t s ’ ) ) −>

SS ( E q ’ , map (\ b −>

( b , b r a n c h r e d u c e ( ( E q ’ ) , b )

( FLOEYcase exp a r g s ) [ ] ) ) p r o d u c t s ’ )

SS (DF (C c ’ , p r o d u c t s ’ ) ) −>

SS (C c ’ , map (\ b −>

( b , b r a n c h r e d u c e ( ( C c ’ ) , b )

( FLOEYcase exp a r g s ) [ ] ) ) p r o d u c t s ’ )

FF −> FF

C con −> case g e t s e m i e s s e n t i a l ( FLOEYcontrol con a r g s ) of

SS (DF ( E q ’ , p r o d u c t s ’ ) ) −>

SS ( E q ’ , map (\ b −> ( b , b r a n c h r e d u c e

( ( E q ’ ) , b ) ( FLOEYcontrol con a r g s ) [ ] ) ) p r o d u c t s ’ )

SS (DF (C c ’ , p r o d u c t s ’ ) ) −>

SS (C c ’ , map (\ b −> ( b , b r a n c h r e d u c e

( ( C c ’ ) , b ) ( FLOEYcontrol con a r g s ) [ ] ) ) p r o d u c t s ’ )

FF −> FF



146

{− e l i m i n a t i o n f a c t o r−}

e l i m i n a t i o n f a c t o r : : D e c i s i o n −> [ Branch ] −> ( Bool , ConExp )

e l i m i n a t i o n f a c t o r q a r g s =

case i d e m r e d u c e q (map ( \ ( p , e)−>p ) a r g s ) a r g s of

SS t −> ( True , t )

FF −> ( case p u l l u p q a r g s of

FF −> case q of

E exp −> ( False , FLOEYcase exp a r g s )

C conop −> ( False , FLOEYcontrol conop a r g s )

SS ( q ’ , a rgs ’ ) −> e l im q ’ a rgs ’ )

where

e l im q ’ a rgs ’ = case q ’ of

E exp −> ( v , FLOEYcase exp a rgs ’ ’ )

C conop −> ( v , FLOEYcontrol conop a rgs ’ ’ )

where

( v , a rgs ’ ’ ) = e l i m i n a t i o n f a c t o r s a rgs ’

e l i m i n a t i o n f a c t o r s [ ] = ( False , [ ] )

e l i m i n a t i o n f a c t o r s ( ( b , t ) : r e s t ) = ( v ’ | | v ’ ’ , ( b , t ’ ) : r e s t ’ )

where ( v ’ , r e s t ’ ) = e l i m i n a t i o n f a c t o r s r e s t

( v ’ ’ , t ’ ) = case t of

FLOEYexit s e −> ( False , FLOEYexit s e )

FLOEYreturn e −> ( False , FLOEYreturn e )

FLOEYcase t h i s q t h i s a r g s −>

e l i m i n a t i o n f a c t o r ( E t h i s q ) t h i s a r g s

FLOEYcontrol t h i s c t h i s a r g s −>

e l i m i n a t i o n f a c t o r (C t h i s c ) t h i s a r g s



147

{−ma s t e r f u n c t i o n o f t h e r e d u c t i o n a l g o r i t h m−}

r e d u c e : : ConExp −> E n t r y A r g L s t −> ConExp

r e d u c e t a r g l s t = e x p C o l l e c t $ r e d u c t i o n ( r e p e a t r e d u c e t a r g l s t ) [ ] where

r e d u c t i o n : : ConExp −> [ Choice ] −> ConExp

r e d u c t i o n ( FLOEYexit s x ) = FLOEYexit s x

r e d u c t i o n ( FLOEYreturn x ) = FLOEYreturn x

r e d u c t i o n ( FLOEYcase q a r g s ) ch = i f v then t ’ e l s e FLOEYcase q a rgs ’

where a rgs ’ = map ( \ ( b , t ) −>

( b , r e d u c t i o n t ( addChoice ( ( E q ) , b ) ch ) ) ) a r g s

( v , t ’ ) = e l i m i n a t i o n f a c t o r ( E q ) a rgs ’

r e d u c t i o n ( FLOEYcontrol c a r g s ) ch = i f v then t ’ e l s e FLOEYcontrol c a rgs ’

where a rgs ’ = map ( \ ( b , t ) −>

( b , r e d u c t i o n t ( addChoice ( ( C c ) , b ) ch ) ) ) a r g s

( v , t ’ ) = e l i m i n a t i o n f a c t o r (C c ) a rgs ’

r e d u c t i o n ( FLOEYloop s bs ( e t , e n t r i e s ) ) ch =

case newinne r of

( FLOEYloop s ’ bs ’ ( e t ’ , e n t r i e s ’ ) ) −>

i f n u l l $ i n t e r s e c t ( f s t $ unzip bs ) ( snd $ unzip $ bs ’ )

then case f l i p p e d of

( FLOEYloop s ’ ’ ) −>

i f s ’ ’ == s then newloop

e l s e b r a n c h s r e d u c e a r g l s t ch a r g l s t $

FLOEYloop s ’ bs ’ ( f l i p p e d , [ ] )

−> b r a n c h s r e d u c e a r g l s t ch a r g l s t $

FLOEYloop s ’ bs ’ ( f l i p p e d , [ ] )

e l s e newloop

where f l i p p e d = r e d u c t i o n

( FLOEYloop s bs ( e t ’ , e n t r i e s ++ e n t r i e s ’ ) ) ch



148

−> newloop

where newinne r = r e d u c t i o n e t ch

newloop = b r a n c h s r e d u c e a r g l s t ch a r g l s t

( FLOEYloop s bs ( newinner , e n t r i e s ) )

{− r e d u c t i o n a l g o r i t h m ( i n c l u i n g loop r e d u c t i o n ) −}

r educe ’ : : ConExp −> E n t r y A r g L s t −> ConExp

reduce ’ t a r g l s t =

e x p C o l l e c t $ r e d u c t i o n ( r e p e a t r e d u c e t a r g l s t ) [ ] where

r e d u c t i o n : : ConExp −> [ Choice ] −> ConExp

r e d u c t i o n ( FLOEYexit s x ) = FLOEYexit s x

r e d u c t i o n ( FLOEYreturn x ) = FLOEYreturn x

r e d u c t i o n ( FLOEYcase q a r g s ) ch =

i f v then l o o p i n v a r i a n t t ’ F a l s e

e l s e FLOEYcase q a rgs ’

where a rgs ’ = map ( \ ( b , t ) −>

( b , r e d u c t i o n t ( addChoice ( ( E q ) , b ) ch ) ) ) a r g s

( v , t ’ ) = e l i m i n a t i o n f a c t o r ’ ( FLOEYcase q a rgs ’ )

r e d u c t i o n ( FLOEYcontrol c a r g s ) ch =

i f v then l o o p i n v a r i a n t t ’ F a l s e

e l s e FLOEYcontrol c a rgs ’

where a rgs ’ = map ( \ ( b , t ) −>

( b , r e d u c t i o n t ( addChoice ( ( C c ) , b ) ch ) ) ) a r g s

( v , t ’ ) = e l i m i n a t i o n f a c t o r ’ ( FLOEYcontrol c a rgs ’ )

r e d u c t i o n ( FLOEYloop s bs ( e t , e n t r i e s ) ) ch =

i f v then loop ’

e l s e ( FLOEYloop s bs ( e t , e n t r i e s ) )

where e t ’ = r e d u c t i o n e t ch



149

( v , loop ’ ) = e l i m i n a t i o n f a c t o r ’

( FLOEYloop s bs ( e t ’ , e n t r i e s ) )

e l i m i n a t i o n f a c t o r ’ : : ConExp −> ( Bool , ConExp )

e l i m i n a t i o n f a c t o r ’ cexp =

l e t ( bs , s , v , cexp ’ ) = l o o p r e d u c e [ ] [ ] cexp in

( v , cexp ’ )

upda teSub : : ConExp −> [ Sub ] −> ConExp

upda teSub cexp subs = l e t ( to , from ) = unzip subs in s imRep lace from t o cexp

{− l oop r e d u c t i o n −}

l o o p r e d u c e : : [ BS ] −> [ Sub ] −> ConExp −> ( [ BS ] , [ Sub ] , Bool , ConExp )

l o o p r e d u c e bs subs ( FLOEYexit s exs ) =

( bs , subs , False , upda teSub ( FLOEYexit s exs ) subs )

l o o p r e d u c e bs subs ( FLOEYreturn ex ) =

( bs , subs , False , upda teSub ( FLOEYreturn ex ) subs )

l o o p r e d u c e bs subs ( FLOEYcase oex o a r g s ) =

l e t ( FLOEYcase ex a r g s ) = upda teSub ( FLOEYcase oex o a r g s ) subs in

case i d e m r e d u c e ( E ex ) (map ( \ ( p , e)−>p ) a r g s ) a r g s of

SS t −> ( bs , subs , True , t )

FF −> case p u l l u p ( E ex ) a r g s of

SS ( d ’ , a rgs ’ ) −>

l e t ( bs ’ , subs ’ , v , e t ) =

f o l d l ( \ ( b , s , f , e ) ( ( br , p ro ) , e t )−> l e t

( b ’ , s ’ , v ’ , e t ’ ) = l o o p r e d u c e b s e t in

( b ’ , s ’ , v ’ | | f , e ++[ e t ’ ] )

) ( bs , subs , False , [ ] ) a rgs ’ in



150

i f v then case d ’ of

( E ex ’ ) −> ( bs ’ , subs ’ , True , upda teSub

( FLOEYcase ex ’

(map ( \ ( ( ( b , p ) , t ) , t ’)−>((b , p ) , t ’ ) )

( z i p a rgs ’ e t ) ) ) subs ’ )

(C q ’ ) −> ( bs ’ , subs ’ , True , upda teSub

( FLOEYcontrol q ’

(map ( \ ( ( ( b , p ) , t ) , t ’)−>((b , p ) , t ’ ) )

( z i p a rgs ’ e t ) ) ) subs ’ )

e l s e ( bs , subs , False , FLOEYcase ex a r g s )

FF −> case p u l l h e a d e r ( FLOEYcase ex a r g s ) of

SS cexp −> l o o p r e d u c e bs subs cexp

FF −> case ge tP a r g s bs of

[ ] −> ( bs , subs , False , FLOEYcase ex a r g s )

p t s −>

f o l d l ( \ ( b , s , v , c ) ( d , s s ) −>

i f v then ( b , s , v , c ) e l s e

l e t ( to , from ) = unzip s s

c ’ = s imRep lace from t o c

b ’ = upda t eLoca lB bs s s

( b ’ ’ , s ’ , v ’ , c ’ ’ ) =

l o o p r e d u c e b ’

( nub $ s ++ s s ) c ’ in

i f v ’ then ( b ’ ’ , s ’ , v ’ , c ’ ’ )

e l s e ( b , s , v , c )

) ( bs , subs , False , FLOEYcase ex a r g s ) p t s

l o o p r e d u c e bs subs ( FLOEYcontrol oq o a r g s ) =

l e t ( FLOEYcontrol q a r g s ) = upda teSub ( FLOEYcontrol oq o a r g s ) subs in



151

case i d e m r e d u c e (C q ) (map ( \ ( p , e)−>p ) a r g s ) a r g s of

SS t −> ( bs , subs , True , t )

FF −> case p u l l u p (C q ) a r g s of

SS ( d ’ , a rgs ’ ) −>

l e t ( bs ’ , subs ’ , v , e t ) = f o l d l ( \ ( b , s , f , e ) ( ( br , p ro ) , e t )−> l e t

( b ’ , s ’ , v ’ , e t ’ ) =

l o o p r e d u c e b s e t in

( b ’ , s ’ , v ’ | | f , e ++[ e t ’ ] )

) ( bs , subs , False , [ ] ) a rgs ’ in

i f v then case d ’ of

( E ex ’ ) −> ( bs ’ , subs ’ , True , upda teSub

( FLOEYcase ex ’ (map ( \ ( ( ( b , p ) , t ) , t ’)−>

( ( b , p ) , t ’ ) ) ( z i p a rgs ’ e t ) ) ) subs ’ )

(C q ’ ) −> ( bs ’ , subs ’ , True , upda teSub

( FLOEYcontrol q ’ (map ( \ ( ( ( b , p ) , t ) , t ’)−>

( ( b , p ) , t ’ ) ) ( z i p a rgs ’ e t ) ) ) subs ’ )

e l s e ( bs , subs , False , FLOEYcontrol q a r g s )

FF −> case p u l l h e a d e r ( FLOEYcontrol q a r g s ) of

SS cexp −> l o o p r e d u c e bs subs cexp

FF −> case ge tP a r g s bs of

[ ] −> ( bs , subs , False , FLOEYcontrol q a r g s )

p t s −>

f o l d l ( \ ( b , s , v , c ) ( d , s s ) −>

i f v then ( b , s , v , c ) e l s e

l e t ( to , from ) = unzip s s

c ’ = s imRep lace from t o c

b ’ = upda t eLoca lB bs s s

( b ’ ’ , s ’ , v ’ , c ’ ’ ) =



152

l o o p r e d u c e b ’

( nub $ s ++ s s ) c ’ in

i f v ’ then ( b ’ ’ , s ’ , v ’ , c ’ ’ )

e l s e ( b , s , v , c )

) ( bs , subs , False ,

FLOEYcontrol q a r g s ) p t s

l o o p r e d u c e bs subs ( FLOEYloop id b i n d s ( cexp , e n t r i e s ) ) =

i f v then ( bs ’ , subs ’ , True , FLOEYloop id b inds ’ ( cexp ’ , e n t r i e s ) )

e l s e ( bs , subs , False , FLOEYloop id b i n d s ( cexp , e n t r i e s ) )

where ( bs ’ , subs ’ , v , cexp ’ ) = l o o p r e d u c e ( ( id , b i n d s ) : bs ) subs cexp

b inds ’ = case ( getBS bs ’ id ) of

SS b −> b

{− g e t p o t e n t i a l s e m i s −}

type P r o t e n t i a l = ( D e f i n i t i o n , [ Sub ] )

v a l i d S u b s : : [ Sub ] −> Bool

v a l i d S u b s subs = l e t ( x , y ) = unzip subs in

nub x == x && nub y == y

checkDS : : [ P r o t e n t i a l ] −> [ D e f i n i t i o n ] −> [ BS ] −> [ P r o t e n t i a l ]

checkDS [ ] = [ ]

checkDS [ ] = [ ]

checkDS ps ds bs = f o l d l (\ p d −> p ++ ( checkDS ’ ps d bs ) ) [ ] ds

checkDS ’ : : [ P r o t e n t i a l ] −> D e f i n i t i o n −> [ BS ] −> [ P r o t e n t i a l ]

checkDS ’ [ ] d bs = [ ]

checkDS ’ ( ( d ’ , subs ’ ) : ps ) d bs = l e t ps ’= checkDS ’ ps d bs in



153

case checkD d ’ d bs of

FF −> ps ’

SS subs −> l e t newsubs = nub $ subs ’ ++ subs in

( d ’ , newsubs ) : ps ’ e l s e ps ’

checkD : : D e f i n i t i o n −> D e f i n i t i o n −> [ BS ] −> SF [ Sub ]

checkD (DF ( q1 , pd1 ) ) (DF ( q2 , pd2 ) ) bs

| l e n g t h pd1 == l e n g t h pd2 &&

( a l l ( \ ( x , y)−>x==y ) ( z i p ( f s t $ unzip pd1 ) ( f s t $ unzip pd2 ) ) ) =

case equalM q1 q2 of

FF −> FF

SS subs −> i f v a l i d S u b s subs then SS subs e l s e FF

| o t h e r w i s e = FF

where equalM : : D e c i s i o n −> D e c i s i o n −> SF [ Sub ]

equalM ( E ) (C ) = FF

equalM (C ) ( E ) = FF

equalM ( E ex1 ) ( E ex2 ) = case exM ex1 ex2 of

SS subs −>

i f n u l l subs then FF

e l s e SS $ nub subs

FF −> FF

equalM (C ( ConOp s1 ex1 ) ) (C ( ConOp s2 ex2 ) )

| s1 == s2 = case f o l d l (\ f ( e1 , e2 ) −>

case f of

FF −> FF

SS sub −>

case exM e1 e2 of

FF −> FF



154

SS sub ’ −> SS $ sub ++sub ’

) ( SS [ ] ) ( z i p ex1 ex2 ) of

SS subs −>

i f n u l l subs

then FF e l s e SS subs

FF −> FF

| o t h e r w i s e = FF

exM : : Exp −> Exp −> SF [ Sub ]

exM ( VarE x1 ) ( VarE x2 ) =

i f x1 == x2 then SS [ ]

e l s e case g e t F r e e bs x1 of

SS y −> i f g e t F r e e bs x2 == ( SS y )

then SS [ ( VarE x1 , VarE x2 ) ]

e l s e FF

FF −> FF

exM ( FunE s1 ex1 ) ( FunE s2 ex2 ) =

i f s1 /= s2 then FF

e l s e f o l d l (\ f ( e1 , e2 ) −> case f of

FF −> FF

SS sub −> case exM e1 e2 of

FF −> FF

SS sub ’ −> SS $ sub ++sub ’

) ( SS [ ] ) ( z i p ex1 ex2 )

exM ( ConsE s1 ex1 ) ( ConsE s2 ex2 ) =

i f s1 /= s2 then FF

e l s e f o l d l (\ f ( e1 , e2 ) −> case f of

FF −> FF

SS sub −> case exM e1 e2 of



155

FF −> FF

SS sub ’ −> SS $ sub ++sub ’

) ( SS [ ] ) ( z i p ex1 ex2 )

exM ( ElemE s1 ex1 ) ( ElemE s2 ex2 ) =

i f s1 /= s2 then FF

e l s e f o l d l (\ f ( e1 , e2 ) −> case f of

FF −> FF

SS sub −> case exM e1 e2 of

FF −> FF

SS sub ’ −> SS $ sub ++sub ’

) ( SS [ ] ) ( z i p ex1 ex2 )

exM ( BinE s1 ex1 ex2 ) ( BinE s2 ex3 ex4 ) =

i f s1 /= s2 then FF

e l s e f o l d l (\ f ( e1 , e2 ) −> case f of

FF −> FF

SS sub −> case exM e1 e2 of

FF −> FF

SS sub ’ −> SS $ sub ++sub ’

) ( SS [ ] ) [ ( ex1 , ex3 ) , ( ex2 , ex4 ) ]

exM ( BraceE ex1 ) ( BraceE ex2 ) = exM ex1 ex2

exM ( NegE ex1 ) ( NegE ex2 ) = exM ex1 ex2

exM ( I n t E i 1 ) ( I n t E i 2 ) = i f i 1 == i 2 then SS [ ] e l s e FF

exM ( RealE i 1 ) ( RealE i 2 ) = i f i 1 == i 2 then SS [ ] e l s e FF

exM ( CharE i 1 ) ( CharE i 2 ) = i f i 1 == i 2 then SS [ ] e l s e FF

exM ex1 ex2 = FF

B.5 Invariant code removal

{− p u l l i n g o u t semi−e s s e n t i a l s from l o o p s−}



156

l o o p s e m i i n v a r i a n t : : ConExp −> ConExp

l o o p s e m i i n v a r i a n t ( FLOEYexit s exs ) = FLOEYexit s exs

l o o p s e m i i n v a r i a n t ( FLOEYreturn ex ) = FLOEYreturn ex

l o o p s e m i i n v a r i a n t ( FLOEYcase ex a r g s ) =

FLOEYcase ex (map ( \ ( ( b , p ) , t )−>

( ( b , p ) , l o o p s e m i i n v a r i a n t t ) ) a r g s )

l o o p s e m i i n v a r i a n t ( FLOEYcontrol q a r g s ) =

FLOEYcontrol q (map ( \ ( ( b , p ) , t )−>

( ( b , p ) , l o o p s e m i i n v a r i a n t t ) ) a r g s )

l o o p s e m i i n v a r i a n t ( FLOEYloop id bs ( t , ens ) ) =

l e t t ’ = l o o p s e m i i n v a r i a n t t in

case p u l l u p i n l o o p ( FLOEYloop id bs ( t ’ , ens ) ) of

FF −> ( FLOEYloop id bs ( t ’ , ens ) )

SS e t −> l o o p s e m i i n v a r i a n t e t

{− p u l l i n g o u t a l l i n v a r i a n t s from l o o p s−}

l o o p s e m i i n v a r i a n t : : ConExp −> ConExp

l o o p i n v a r i a n t : : ConExp −> Bool −> ConExp

l o o p i n v a r i a n t cexp f

| f = l e t maxSub = ( getMaxSub cexp ) + 1 in

f s t $ l o o p a l l i n v a r i a n t cexp [ ] maxSub

| o t h e r w i s e = l o o p s e m i i n v a r i a n t cexp

l o o p a l l i n v a r i a n t : : ConExp −> [ ConExp ] −> I n t −> ( ConExp , I n t )

l o o p a l l i n v a r i a n t ( FLOEYexit s exs ) i = ( FLOEYexit s exs , i )

l o o p a l l i n v a r i a n t ( FLOEYreturn ex ) i = ( FLOEYreturn ex , i )

l o o p a l l i n v a r i a n t ( FLOEYcase ex a r g s ) l s i =

l e t ( a rgs ’ , i ’ ) = f o l d l ( \ ( a ’ , i ’ ) ( ( b , p ) , t ) −>



157

l e t ( t ’ , i ’ ’ ) = l o o p a l l i n v a r i a n t t l s i ’ in

( a ’ + + [ ( ( b , p ) , t ’ ) ] , i ’ ’ )

) ( [ ] , i ) a r g s

in ( FLOEYcase ex a rgs ’ , i ’ )

l o o p a l l i n v a r i a n t ( FLOEYloop id bs ( t , ens ) ) l s i =

case p u l l u p i n l o o p ( FLOEYloop id bs ( t ’ , ens ) ) of

SS e t −> l o o p a l l i n v a r i a n t e t l s ’ i

FF −> l e t ( t ’ ’ , i ’ ’ ) =

reLoop t ’ (map ( \ ( VarE x , y)−>x ) bs ) [ ] i ’ in

( b r a n c h s r e d u c e a r g l s t [ ]

M. empty $ FLOEYloop id bs ( t ’ ’ , ens ) , i ’ ’ )

where ( t ’ , i ’ ) = l o o p a l l i n v a r i a n t t ( ( FLOEYloop id bs ( t , ens ) ) : l s ) i

l s ’ = ( FLOEYloop id bs ( t ’ , ens ) ) : l s

reLoop : : ConExp −> [ S t r i n g ] −> Cho ices −> I n t −> ( ConExp , I n t )

reLoop ( FLOEYexit s exs ) v l chs i

| n u l l chs = ( FLOEYexit s exs , i )

| o t h e r w i s e =

case f i n d ( \ ( FLOEYloop id bs ( t , ens ) ) −> id == s ) l s ’ of

Jus t t −>

l e t ( t ’ ’ , i ’ ’ ) = di f fName t ’ i ’

( t ’ , i ’ ) =

d i f f L o o p

( l o o p b s r e d u c e $

b r a n c h s r e d u c e a r g l s t chs M. empty $

u p d a t e H e a d e r t ) i M. empty

in ( t ’ ’ , i ’ ’ )

where u p d a t e H e a d e r ( FLOEYloop id bs ( t , ens ) ) =

FLOEYloop id



158

(map ( \ ( ( a , b ) , y)−>(a , y ) ) ( z i p bs exs ) ) ( t , ens )

reLoop ( FLOEYreturn ex ) i = ( FLOEYreturn ex , i )

reLoop ( FLOEYcase ex a r g s ) v l chs i =

l e t f = n u l l $ i n t e r s e c t ( g e t Va r ( E ex ) ) v l

( a rgs ’ , i ’ ) = f o l d l ( \ ( a ’ , i ) ( ( b , p ) , t )−>

l e t chs ’ =

i f f then ( E ex , ( b , p ) ) : chs

e l s e chs

( t ’ , i ’ ) =

reLoop t ( nub $ p++ v l ) chs ’ i

in ( a ’ + + [ ( ( b , p ) , t ’ ) ] , i ’ )

) ( [ ] , i ) a r g s

in ( FLOEYcase ex a rgs ’ , i ’ )

reLoop ( FLOEYcontrol q a r g s ) v l chs i =

l e t f = n u l l $ i n t e r s e c t ( g e t Va r (C q ) ) v l

( a rgs ’ , i ’ ) = f o l d l ( \ ( a ’ , i ) ( ( b , p ) , t )−>

l e t chs ’ =

i f f then (C q , ( b , p ) ) : chs

e l s e chs

( t ’ , i ’ ) =

reLoop t ( nub $ p++ v l ) chs ’ i

in ( a ’ + + [ ( ( b , p ) , t ’ ) ] , i ’ )

) ( [ ] , i ) a r g s

in ( FLOEYcontrol q a rgs ’ , i ’ )

reLoop ( FLOEYloop id bs ( t , ens ) ) i =

( FLOEYloop id bs ( t , ens ) , i )



Bibliography

A. V. Aho and S. C. Johnson. Optimal code generation for expression trees. J. ACM, 23

(3):488–501, 1976. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/321958.321970.

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, edi-

tors. Compilers: principles, techniques, and tools. Pearson/Addison Wes-

ley, Boston, MA, USA, second edition, 2007. ISBN 0-321-48681-1. URL

http://www.loc.gov/catdir/toc/ecip0618/2006024333.html.

F. E. Allen and J. Cocke. A catalogue of optimizing transformations. In R. Rustin, editor,

Design and Optimization of Compilers, pages 1–30. Prentice-Hall, 1971.

J. R. Allen and K. Kennedy. Automatic loop interchange. In SIGPLAN84, June 1984.

Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge University Press,

1998. ISBN 0-521-58274-1.

David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations for

high-performance computing. ACM Comput. Surv., 26(4):345–420, 1994. ISSN 0360-

0300. doi: http://doi.acm.org/10.1145/197405.197406.

Chandan Kumar Behera and Pawan Kumar. An improved algorithm for

loop dead optimization. SIGPLAN Notices, 40(11):18–28, 2005. URL

http://doi.acm.org/10.1145/1107541.1107545.

G. Bilardi and K. Pingali. The static single assignment form and its computation, 1999.

URL citeseer.ist.psu.edu/bilardi99static.html.

159



160

Gianfranco Bilardi and Keshav Pingali. Algorithms for computing the static sin-

gle assignment form. J. ACM, 50(3):375–425, 2003. ISSN 0004-5411. doi:

http://doi.acm.org/10.1145/765568.765573.

Rastislav Bodı́k and Rajiv Gupta. Partial dead code elimination using slicing transforma-

tions. In PLDI ’97: Proceedings of the ACM SIGPLAN 1997 conference on Program-

ming language design and implementation, pages 159–170, New York, NY, USA, 1997.

ACM. ISBN 0-89791-907-6. doi: http://doi.acm.org/10.1145/258915.258930.

Preston Briggs and Keith D. Cooper. Effective partial redundancy elimination. In PLDI

’94: Proceedings of the ACM SIGPLAN 1994 conference on Programming language

design and implementation, pages 159–170, New York, NY, USA, 1994. ACM. ISBN

0-89791-662-X. doi: http://doi.acm.org/10.1145/178243.178257.

Briggs, P. Register Allocation via Graph Coloring. PhD thesis, Dept. of Computer Sci-

ence, Rice Univ., 1992.

David Callahan, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Interprocedural

constant propagation. SIGPLAN Not., 21(7):152–161, 1986. ISSN 0362-1340. doi:

http://doi.acm.org/10.1145/13310.13327.

David Callahan, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Interprocedural

constant propagation. SIGPLAN Not., 39(4):155–166, 2004. ISSN 0362-1340. doi:

http://doi.acm.org/10.1145/989393.989412.

P. P. Chang and W.-W. Hwu. Inline function expansion for compiling c pro-

grams. SIGPLAN Not., 24(7):246–257, 1989. ISSN 0362-1340. doi:

http://doi.acm.org/10.1145/74818.74840.



161

Fred Chow, Sun Chan, Robert Kennedy, Shin-Ming Liu, Raymond Lo, and Peng Tu. A

new algorithm for partial redundancy elimination based on ssa form. In PLDI ’97:

Proceedings of the ACM SIGPLAN 1997 conference on Programming language design

and implementation, pages 273–286, New York, NY, USA, 1997. ACM. ISBN 0-89791-

907-6. doi: http://doi.acm.org/10.1145/258915.258940.

Cliff Click and Michael Paleczny. A simple graph-based intermediate representation. In

Intermediate Representations Workshop, pages 35–49, 1995.

Cocke, J. Global common subexpression elimination. SIGPLAN Notices, 5:20–24, 1970.

J. R. B. Cockett and J. A. Herrera. Decision tree reduction. J. ACM, 37(4):815–842, 1990.

ISSN 0004-5411. doi: http://doi.acm.org/10.1145/96559.96576.

Thomas H. Corman, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo-

rithms. MIT Press, 1990. ISBN 0-262-03141-8.

Ron Cytron and Reid Gershbein. Efficient accommodation of may-alias information in ssa

form. In PLDI ’93: Proceedings of the ACM SIGPLAN 1993 conference on Program-

ming language design and implementation, pages 36–45, New York, NY, USA, 1993.

ACM. ISBN 0-89791-598-4. doi: http://doi.acm.org/10.1145/155090.155094.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.

Efficiently computing static single assignment form and the control dependence graph.

ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991. ISSN 0164-0925. doi:

http://doi.acm.org/10.1145/115372.115320.

D. M. Dhamdhere. Practical adaption of the global optimization algorithm of morel and



162

renvoise. ACM Trans. Program. Lang. Syst., 13(2):291–294, 1991. ISSN 0164-0925.

doi: http://doi.acm.org/10.1145/103135.214520.

J. J. Dongarra and A. R. Jinds. Unrolling loops in Fortran. Software—Practice and Expe-

rience, 9(3):219–226, March 1979.

John R. Ellis. Bulldog: a compiler for VLSI architectures. MIT Press, Cambridge, MA,

USA, 1986. ISBN 0-262-05034-X.

Lawrence Feigen, David Klappholz, Robert Casazza, and Xing Xue. The revival trans-

formation. In POPL ’94: Proceedings of the 21st ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pages 421–434, New York, NY, USA, 1994.

ACM. ISBN 0-89791-636-0. doi: http://doi.acm.org/10.1145/174675.178043.

Michael P. Gerlek, Eric Stoltz, and Michael Wolfe. Beyond induction variables:

detecting and classifying sequences using a demand-driven ssa form. ACM

Trans. Program. Lang. Syst., 17(1):85–122, 1995. ISSN 0164-0925. doi:

http://doi.acm.org/10.1145/200994.201003.

M. S. Hecht and J. D. Ullman. Characterizations of reducible flow graphs. J. ACM, 21(3):

367–375, 1974. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/321832.321835.

Matthew S. Hecht. Flow Analysis of Computer Programs. New York: North Holland,

1977.

Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Lazy code motion. In PLDI, pages

224–234, 1992.



163

Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Partial dead code elimination. In PLDI

’94: Proceedings of the ACM SIGPLAN 1994 conference on Programming language

design and implementation, pages 147–158, New York, NY, USA, 1994. ACM. ISBN

0-89791-662-X. doi: http://doi.acm.org/10.1145/178243.178256.

S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,

1997.

D. Neel and M. Amirchahy. Removal of invariant statements from nested-loops in a single

effective compiler pass. In Proceedings of the conference on Programming languages

and compilers for parallel and vector machines, pages 87–96, 1975.

Diego Novillo. Tree SSA: A new optimization infrastructure for GCC. In Andrew J.

Hutton, Stephanie Donovan, and C. Craig Ross, editors, Proceedings of the GCC De-

velopers Summit May 25–27, 2003, Ottawa, Ontario Canada, pages 181–193, 2003.

Diego Novillo. Design and implementation of Tree SSA. In Andrew J. Hutton, Stephanie

Donovan, and C. Craig Ross, editors, Proceedings of the GCC Developers Summit ,June

2nd-4th, 2004, Ottawa, Ontario, Canada, pages 119–130, 2004.

David A. Padua and Michael J. Wolfe. Advanced compiler optimizations for su-

percomputers. Commun. ACM, 29(12):1184–1201, 1986. ISSN 0001-0782. doi:

http://doi.acm.org/10.1145/7902.7904.

A. V. S. Sastry and Roy D. C. Ju. A new algorithm for scalar register promotion based

on ssa form. In PLDI ’98: Proceedings of the ACM SIGPLAN 1998 conference on

Programming language design and implementation, pages 15–25, New York, NY, USA,

1998. ACM. ISBN 0-89791-987-4. doi: http://doi.acm.org/10.1145/277650.277656.



164

Sethi and Ullman. The generation of optimal code for arithmetic expressions. JACM:

Journal of the ACM, 17, 1970.

Sachin Shaw and Pawan Kumar. Loop-dead optimization. SIGPLAN Not., 40(2):33–40,

2005. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/1052659.1052665.

Vugranam C. Sreedhar and Guang R. Gao. A linear time algorithm for placing ;-nodes. In

POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pages 62–73, New York, NY, USA, 1995. ACM. ISBN

0-89791-692-1. doi: http://doi.acm.org/10.1145/199448.199464.

Stanford SUIF Compiler Group. SUIF: A parallelizing & optimizing research compiler.

Technical Report CSL-TR-94-620, Computer Systems Laboratory, Stanford University,

May 1994.

Ullman. A fast algorithm for the elimination of common subexpressions. In FOCS: IEEE

Symposium on Foundations of Computer Science (FOCS), 1972.

Peter Vanbroekhoven, Gerda Janssens, Maurice Bruynooghe, Henk Corporaal, and

Francky Catthoor. Advanced copy propagation for arrays. SIGPLAN Not., 38(7):24–33,

2003. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/780731.780736.

Thomas VanDrunen and Antony L. Hosking. Value-based partial redundancy elimination.

In 13th International Conference on Compiler Construction, volume 2985 of Lecture

Notes in Computer Science, pages 167–184. Springer, 2004.

Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional



165

branches. ACM Trans. Program. Lang. Syst., 13(2):181–210, 1991. ISSN 0164-0925.

doi: http://doi.acm.org/10.1145/103135.103136.

Paul Damian Wells. A universal intermediate representation for massively par-

allel software development. SIGPLAN Notices, 39(5):48–57, 2004. URL

http://doi.acm.org/10.1145/997140.997145.

M. Wolfe. More iteration space tiling. In Supercomputing ’89: Proceedings of the 1989

ACM/IEEE conference on Supercomputing, pages 655–664, New York, NY, USA, 1989.

ACM. ISBN 0-89791-341-8. doi: http://doi.acm.org/10.1145/76263.76337.

Minghui Yang, Gang-Ryung Uh, and David B. Whalley. Efficient and effective branch

reordering using profile data. ACM Trans. Program. Lang. Syst., 24(6):667–697, 2002.

ISSN 0164-0925. doi: http://doi.acm.org/10.1145/586088.586091.


