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Abstract

We present a formal description of the Message Passing Language (MPL) which is based on

the message passing logic proposed by Cockett and Pastro with the addition of concurrent

datatypes or protocols. This thesis also provides a “proof of concept” of the language by

developing substantial examples in MPL. We also present a complete type system for MPL

which underpins both the type checking and the type inference of the language.
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Chapter 1

Introduction

This thesis introduces the concurrent programming language MPL (Message Passing Lan-

guage) which is based on an extension of linear logic [?] which allows messages from a

sequential world to be passed between processes [?]. The thesis explains the language and

provides examples of programs in MPL. However, its main technical contribution is to spec-

ify the type system for MPL. The type system underpins both the type checking and the

type inference of the language.

MPL is based on a two-tier logic for message passing proposed by Cockett and Pastro,

in [?]. The logic serves as a proof theory for concurrency in which livelocks and deadlocks

are impossible. The first tier of the logic is just a proof theory for sequential programs

(such as the λ-calculus) which we refer to as the “sequential world”. The second tier,

which is built on top of the first tier, is a proof theory of concurrent programs which uses

message passing primitives to pass sequential data. We refer to it as the “concurrent world”.

MPL maintains a strict separation between sequential computations (sequential world) and

interacting processes (concurrent world). The correspondence between the proof theory, the

categorical semantics, and the internal language for this two-tier logic was established in [?].

The internal language of the categorical semantics gives a basic programming language for

concurrent programs in which processes communicate by passing messages via channels.

The categorical semantics of concurrent datatypes was introduced in [?]. Types for

interaction in the concurrent world are called protocols. Concurrent datatypes in MPL are,

thus, user defined protocols. A protocol determines the legal actions on a channel: such

actions consist of sending and receiving messages on the channel and creating new channels

1



to connect to processes which are spawned during interaction. The addition of user defined

protocols to MPL, makes the language much more useable as will be demonstrated in this

thesis. The programs in MPL determine how processes interact and use sequential data.

1.1 Organization

This thesis defines the type system for MPL: it is divided into the sequential type system

and the concurrent type system. The type system, as it is based in the message passing logic

[?], ensures that the well typed programs of MPL have no livelock, deadlock, or runtime

errors.

The thesis is organized as follows: Chapter 2 provides an overview of MPL programs.

This chapter also describes the use of layout in MPL programs. Chapter 3 presents an

introduction to sequential MPL and Chapter 4 presents a description of the concurrent part

of MPL. In Chapter 5, some more substantial examples in MPL are developed to illustrate

the use of the language. Chapter 6 is devoted to giving a formal type system for the sequential

part of MPL. Chapter 7 is devoted to giving a formal type system for the concurrent part

of MPL. Chapter 8 presents conclusion and possible future work.

1.2 Contribution of this thesis

Chapter 3 and 4 provides the description of the Message Passing Language (MPL). The

thesis then explores examples of programs to illustrate programming in MPL. Chapter 5

presents more substantial MPL programs which further explore expressiveness of MPL.

The main contribution of the thesis is a complete description of the type system of the

language. This is broken into two chapters, namely Chapter 6 and Chapter 7. Chapter 6

gives the type system for the sequetial world while Chapter 7 gives the type system for the

2



concurrent world. These type systems are the basis for type checking and type inference in

MPL.

A type inference program was originally developed by Sean Nichols for MPL. However,

there was little documentation of the system which, in addition, contained a number of

“bugs” (which have now been fixed). This thesis contains a more complete description of

MPL and in particular the formal description of its type system which underpins that type

inference algorithm.

1.3 Related work

1.3.1 Types in general

Types in a programming language are of great theoretical and practical importance. Typed

programming languages eliminate the source of many programming errors at compile time.

For example, if f : Z→ Z and l : [Z] then f(l) will not type check and this will be detected

as an error at compile time. Typed programming encourages a “compositional” development

style, and the type checker can be used to ensure that the composition of a program out of

smaller modular components fits together correctly.

Type systems have many applications: they have been used to give programs running

on the Linux operating system a memory safe execution environment [?]. In the DecaC

programming language, types are used to prevent certain common pointer errors such as

dangling pointers and double-free errors. In the Applied Type System (ATS) language [?],

types are used to ensure a completely safe use of pointers. ATS also uses type information

to optimize the code it generates and produces binaries that run as fast or faster than C.

3



1.3.2 Formal programming

One of the interesting features of the simply typed λ-calculus (with a natural number object

see [?]), which is a basic formal programming language, is that all computations are total and

terminate (in the sense that every term reduces to a head normal form). Formal languages

which guarantee termination in this sense cannot be Turing complete. So, for example, one

cannot write an interpreter for the language in the language itself. However, all feasible

computations can be expressed (although they may require much longer and less efficient

programs). The typed λ-calculus can be turned into a much more expressive programming

language by adding inductive and coinductive datatypes. The addition of coinductive data,

in particular, allows one to program with potentially infinite data and adds an expressive

aspect not present in most traditional languages. Charity is a programming language based

on these ideas [?, ?]: it is a typed programming language with inductive and coinductive

data, and moreover, to ensure termination, the only source of recursion and corecursion is

through the universal properties of that data. In [?], Turner argues that a “total” functional

programming language (by which he meant a language using Walther recursion [?] which is

very similar to the form of primitive recursion used above in Charity), is powerful enough

for “production programming”.

These formal programming systems are common components of proof assistants. For

example Agda [?, ?] is an extension of Martin-Löf type theory [?] and implements a depen-

dent type system which has inductive data. Another similar and well-known system with

dependent types is Coq [?] which is an extension of the Calculus of Constructions [?]: it also

has inductive data.

The Message Passing Language (MPL) that we are going to describe in this thesis, has

initial and final data with their respective recursion and corecursion combinators following

the approach used in Charity [?, ?].

4



1.3.3 Formal concurrent programming

In [?], Milner introduced the π-calculus which is based on the notion of message passing

along channels between processes. Milner’s notion of process calculus allows many processes

to communicate on one channel so the π-calculus is highly non-deterministic. In MPL,

a deterministic approach is taken to concurrent processes: in particular, a channel only

connects exactly two processes.

In [?], [?], a notion, called session types, was introduced to guide the communication

between two processes in a concurrent program. In [?], session types are described to imple-

ment concurrent communication for a functional programming language and in [?], Sackman

and Eisenbach, incorporate session types into Haskell as a tool for concurrent programming.

In recent work [?], Wadler describes how propositions of classical linear logic correspond

to session types. These session types can be seen as the user defined protocols (in the sense

of this thesis) which describe the sequence of allowable actions on a channel which connects

two processes.
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Chapter 2

Introduction to MPL

This chapter provides an overview of MPL (Message Passing Language). MPL is a concur-

rent language based on Cockett and Pastro’s message passing logic [?] with the addition of

datatypes or protocols to it. A central feature of this language is the separation between se-

quential computations (sequential world) and interacting processes (concurrent world); MPL

programs describe how processes interact and use sequential computations. MPL provides

a strong type system for programs and processes. In particular, a well typed program has

no livelock or deadlock, and has no runtime errors.

The grammar for MPL programs is given in Appendix A. An MPL program consists of

a sequence of definitions followed by the run command which executes a process. Each defi-

nition is either a data declaration, a protocol declaration, a function definition, or a process

definition. The run command initiates the execution of an MPL program by specifying the

process at which the program will start its execution.

2.1 Comments

MPL uses Haskell-style comments [?]: there are multi-line comments:

{−

comment

−}

and single-line comments

−− comment.

Comments are removed in the first preprocessing step before tokenizing.

6



2.2 Layout

A program written in MPL depends on its layout. While, one is not forced to use layout, it

is more convenient to do so. The rules governing the layout of MPL programs are provided

in Appendix B. Layout uses the offside rule described by Peter J. Landin, in [?] as follows:

“Any non-whitespace token to the left of the first such token on the previous line is taken to

be the start of a new declaration.” The layout preprocessing causes explicit tokens, called

off-side markers to be added to the program and relieves the programmer from having to

use explicit separators. Consider the following program written in MPL:

1 data Bool -> c = True : c

2 False : c

3 or : Bool -> Bool -> Bool

4 or x y =

5 case x of

6 True -> True

7 False -> y

Note how layout is used to group the True and False constructors in the data declaration

in line 1 and 2 and also in line 6 and 7. Here no explicit semicolon is required as same

indentation level is maintained in both cases and the layout preprocessing step will add the

explicit off-side markers required.

The same program with explicit semicolon separators looks like:

1 data Bool -> c = True : c; False : c

2 or : Bool -> Bool -> Bool; or x y =

3 case x of

4 True -> True; False -> y

Note that, after “=” and “of”, no explicit semicolon is required, because these are special

keywords which reset the indentation level to that of the next token.
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2.3 Sequential programs

The sequential part of MPL is functional in style. Consider the example, in Figure 2.1, of

a sequential program to compute the length of a list whose values are of arbitrary type.

To compute the length of a list it is necessary to recurse over the list: MPL only allows

disciplined recursion using “folding” (or catamorphisms), hence the program is introduced

with the fold command: this is an example of a fold function definition.

In line 9, the name of the function, length and type of the function List a→ Nat are

given separated by “:”. Thus, length has type List a→ Nat which means, explicitly, the

function length takes a list of arbitrary type as input and produces the length of the list as

a unary natural number. The types List a and Nat are defined in line 1 to 5 in Figure 2.1

using data declarations. The data declarations and the recursive definition using the fold

construct are all sequential constructs of the MPL language. The sequential world of MPL

is discussed further in chapter 3.

Notice, however, to actually run a sequential program one must create a process which

uses the sequential program. Thus to run a MPL program a process which is a concurrent

term in MPL must be defined. From line 14-16, the process, Test, is defined which applies

length to a list provided by the “user”. The process arranges the interaction with user.

Notice, the Test process has one input (polarity) channel, user, but no output (polarity)

channels. These input and output channels are always separated by ⇒. In line 19, the run

keyword followed by the process, Test, executes the process.

2.4 Concurrent programs

A process always has one or more channels associated to it. Thus, processes can be easily

identified by the fact that they always have channels associated to them which are separated
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1 -- data definitions

2 data Nat -> c = Zero : c

3 Succ : c -> c

4 data List a -> c = Nil : c

5 Cons : a -> c -> c

6

7 -- length function given by fold combinator

8 fold

9 length : List a -> Nat

10 length x by x =

11 Nil -> Zero

12 Cons y ys -> Succ (length ys)

13

14 -- process needed to run the computation in length function

15 Test user => =

16 get x on user. put (length x) on user; end user

17

18 -- initializing command to start the execution of a MPL program

19 run Test

Figure 2.1: Sequential program in MPL

by⇒ into input and ouput polarity channels. As channels in MPL allow two-way communi-

cation, putting a channel in “input” position does not mean the channel only provides inputs

to the process; similarly, putting a channel in “output” position does not mean the channel

only provides outputs. A channel can potentially recieve and send messages whether it is an

“input” or “output” channel in this sense.

Thus while processes have input polarity and ouput polarity channels, because channels

are two-way communication devices, this does not determine the direction in which messages

are passed. Placing a channel to the left of ⇒ (i.e. giving it an input polarity) determines

only that recieving and sending messages will be seen from the perspective of the external

world. While placing a channel to the right of ⇒ (i.e. giving it an output polarity) means

these actions are seen from the perspective of the process itself. Thus the “polarity” of the
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channel is the perspective from which it is to be viewed. When plugging processes together

the channels must have opposite polarities but be of the same type.

An example of a concurrent program in which two processes are plugged together is

given in Figure 2.2. A simple process, TwoWayTalk is given in line 5-17. It uses the drive

construct which allows recursive definitions in the concurrent world, analogous to the fold in

the sequential world. For a fuller description see Chapter 4. This process receives messages

on each of its output channels, namely y and z, and passes these messages as a pair on its

input channel, x. Then the process takes a message on its input channel, x, and sends a copy

of the message on each of the output channels, y and z. The type of a channel or protocol

is determined by the actions possible on a channel: the protocol, in this case, is defined in

line 1-3. We wish to plug this process to another process which we describe next.

The process, Average has one input channel w and one output channel x. It recieves

a pair of numbers on channel x, and then sends the average on channel w: the average

function is assumed to have been defined elsewhere. The process Average then recieves a

message on w and pass it on to x.

As the input channel of TwoWayTalk and the output channel of Average have the same

protocol, these two processes can be plugged together to make a compsite process TwoAverage.

In line 34-37, plug command is used to plug Average to TwoWayTalk on channel x.

Finally one runs the process TwoAverage.
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1 -- protocol definition

2 protocol Talk (a b) => $C =

3 #response :: get a (put b $C) => $C

4

5 -- process definitions

6 drive

7 TwoWayTalk :: () Talk ((a * b) b) => Talk (a c), Talk (b c)

8 TwoWayTalk x => y, z by x =

9 #response: #response on y

10 #response on z

11 get a1 on y.

12 get a2 on z.

13 put (a1 * a2) on x

14 get b on x.

15 put b on y

16 put b on z

17 call TwoWayTalk x => y, z

18

19 drive

20 Average :: () Talk (a b) => Talk ((a * b) c)

21 Average w => x by w =

22 #response: #response on x;

23 get a on x.

24 case a of

25 (a1 * a2) -> put (average a1 a2) on w

26 get a on w.

27 put a on x

28 call Average w => x

29

30 -- This process is a composite process via

31 -- plugging of two above processes

32 TwoAverage :: () Talk ((a * b) c) => Talk (a b), Talk (a b)

33 TwoAverage w => y, z =

34 plug on x

35 call Average w => x

36 to

37 call TwoWayTalk x => y, z

38

39 -- initializing command to start the execution of a MPL program

40 run TwoAverage

Figure 2.2: Concurrent program in MPL
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Chapter 3

Introduction to Sequential world

The sequential part of MPL consists of data definitions, their operations, basic term con-

structions, and function definitions. MPL separates the data definitions into two classes: the

inductive data definitions (data) and the coinductive data definitions (codata).

3.1 Inductive data

The general form of an inductive data declaration is:

data D P̃→ z = c1 : F1 P̃1 z→ z

...

cn : Fn P̃n z→ z

where,

1. D is the name of the datatype.

2. P̃ is a sequence of type parameters such as p1 · · · pm and P̃i is a sequence of

type parameters for ci.

3. ci is the name of the constructor where i ranges from 1 to n.

4. z is the state variable.

5. Fi P̃i z is a type using the type varibales P̃i and z.

Inductive data is a least fixed point, µz.F (z), of a functor, F . The state variable, z of

an inductive data declaration is the bound variable in the fixed point definition, i.e. the z

in µz.F (z).
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Basic examples of inductive data definition are the boolean type, the maybe type, the

natural numbers, and lists of a given type:

-- boolean type definition

data Bool -> c = True : c

False : c

-- maybe type definition for representing possible failure

data Maybe a -> c = Just : a -> c

Nothing : c

--natural number type definition

data Nat -> c = Zero : c

Succ : c -> c

-- list type definition

data List a -> c = Nil : c

Cons : a -> c -> c

3.1.1 Constructors

An inductive data declaration has a set of constructors. For example, the boolean data

declaration, Bool, has two constructors: True and False. The Maybe type also has two

constructors, Just and Nothing.

The natural number type, Nat has two constructors: Zero and Succ. To obtain the types

of these constructors, one substitutes the state variable c by Nat: thus Zero has the type

Nat, and Succ has the type Nat→ Nat. The natural number type is recursive and this allows

infinitely many terms of Nat to be constructed:

Zero, Succ(Zero), Succ(Succ(Zero)), · · ·.

These are often written as 0, 1, 2, · · · .

The list type, List has two constructors: Nil and Cons. To obtain the types of these

constructors, one substitutes the state variable c by List a: thus Nil has the type List a,

and Cons has the type a→ List a→ List a. This allows, for example, the following terms
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to be constructed:

Nil, Cons 1 Nil, Cons 2 (Cons 1 Nil).

These are often written as [ ], [1], [2, 1] respectively.

3.1.2 Case

The case construct allows programs using inductive data to be conditional on the outermost

constructor. The case construction has the following general form:

case t of

c1 x11 · · · x1m1 → t1

· · ·

cn xn1 · · · xnmn → tn

where t and t1, · · · , tn are terms such that the variables xi1, · · · , ximi are bound in ti.

In Figure 3.1, the case is used to write the predecessor function on natural numbers.

1 pred : Nat -> Nat

2 pred a =

3 case a of

4 Zero -> Zero

5 Succ n -> n

Figure 3.1: MPL function for calculating the predecessor of a natural number

Data like Bool and Maybe a are not recursive: thus, the case construct is the main

operation for these types. The case can be used to express the boolean operations and and

or, see Figure, 3.2.

3.1.3 Fold

The fold combinator is the basic recursion operation in sequential MPL, and is provided

automatically once inductive data is declared. The fold is the only way to recursively

14



1 -- and operation on booleans

2 and : Bool -> Bool -> Bool

3 and x y =

4 case x of

5 True -> y

6 False -> False

7 -- or operation on booleans

8 or : Bool -> Bool -> Bool

9 or x y =

10 case x of

11 True -> True

12 False -> y

Figure 3.2: The and and or operations on booleans by using case

process recursive data. The fold is referred to as a “catamorphism” by Meijer, et.al in [?, ?]

and provides primitive recursion on inductive data.

The fold has the following general form:

fold

f : T

f x1 · · · xp by xk =

c1 y11 · · · y1q1 → t1

...

cm ym1 · · · ymqm → tm

where,

• T is the type of the function f.

• x1 · · · xp are the names of the parameters of the function f and at the parameter

xk on which the recursion is performed.

• c1 · · · cm are constructors.
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• t1 · · · tm are terms.

• yi1 · · · yiqi are the parameters of the constructors.

such that,

• f can occur in t1 · · · tm (so f is in the scope of t1 · · · tm).

• The variables yi1 · · · yiqi are bound in ti.

• The type of the function f and the type of the terms t1 · · · tm are same.

• This fold operation delivers a function f with type T.

The example in Figure 3.3, defines the append function using fold, which concatenates

two lists. The append function recurses on the first argument, xs which is a list and is called

recursively in line 6.

1 -- appending two lists

2 fold

3 append : List a -> List a -> List a

4 append xs ys by xs =

5 Nil -> ys

6 Cons x xs -> Cons x (append xs ys)

Figure 3.3: MPL function for appending two lists

3.1.4 Mutual recursion on inductive data

One can write mutually recursive folds on non-mutually recursive inductive data in MPL.

For mutual recursion, MPL allows many fold phrases under the keyword, fold. An example

is given in Figure 3.4: this example determines whether a list is of even or odd length. The

multiple fold phrases are used to define even and odd in a mutually recursive way.
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1 -- determines even or odd number of elements in a list

2 fold

3 evens : List a -> Bool

4 evens xs by xs =

5 Nil -> True

6 Cons e es -> Cons e (odds es)

7 odds : List a -> Bool

8 odds xs by xs =

9 Nil -> False

10 Cons o os -> evens os

Figure 3.4: MPL functions for showing mutual recursion using a mutually recursive fold

One can also have mutually recursive inductive data in MPL. For mutually recursive data,

the fold must be mutually recursive. In MPL, the data keyword sets an environment in

which mutually recursive data can be declared, separated by the “and” keyword which allows

sharing state variables. The general form of a declaration of mutually recursive inductive

data is:

data D1 P̃→ z1 = c11 : F11 P̃11 z1 → z1

...

c1m : F1m P̃1m z1 → z1

...

and Dn P̃→ zn = cnm : Fn1 P̃n1 zn → zn

...

cnm : Fnm P̃nm zn → zn

An example showing the use of mutual recursion on mutually inductive data is given in

Figure 3.5, which calculates the free variables of a predicate formula. The inductive data

for predicate formula, is defined in line 1-7. It has a term construct which is a conditional

on a predicate and this means the Term and Prop data declaration are defined in terms of
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each other. One can substitute the state variables, c by Term and d by Prop, to obtain

the types of the constructors. For example, Var has type String→ Term and Pr has type

String→ List Term→ Prop.

Then fvTerm and fvProp respectively calculates the free variables of terms and propo-

sitions where union, remove and foldUnion functions are assumed to have been defined

elsewhere.

1 data Term -> c = Var : String -> c

2 Cond : d -> c -> c -> c

3 and Prop -> d = Pr : String -> List c -> d

4 And: d -> d -> d

5 Or : d -> d -> d

6 Forall : String -> d -> d

7 Exist : String -> d -> d

9 fold

10 map : (a -> b) -> (List a) -> List b

11 map f x by x =

12 Nil -> Nil

13 Cons y ys -> Cons (f y) (map ys)

21 --calculating the list of free variables from terms and propositions

22 fold

23 fvTerm : Term -> List a

24 fvTerm x by x =

25 Var t -> Cons t Nil

26 Tm t ts -> Cons t (foldUnion (map fvTerm ts))

27 Cond p t1 t2 -> union (propt p) (union (fvTerm t1) (fvTerm t2))

28 fvProp : Prop -> List a

29 fvProp y by y as

30 Pr p ts -> Cons p (foldUnion (map fvTerm ts))

31 And p1 p2 -> union (fvProp p1) (fvProp p2)

32 Or p3 p4 -> union (fvProp p3) (fvProp p4)

33 Forall p p1 -> remove p (fvProp p1)

34 Exist p p1 -> remove p (fvProp p1)

Figure 3.5: MPL function for calculating the list of free variables from terms and propositions
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3.2 Coinductive data

Dual to inductive data is coinductive data. The general form of a coinductive data declaration

is:

codata z→ D P̃ = d1 : z→ F1 P̃1 z

...

dn : z→ Fn P̃n z

where,

1. D is the name of the codatatype.

2. P̃ is a sequence of type parameters such as p1 · · · pn and P̃i is a sequence of

type parameters for ci.

3. di is the name of the destructor where i ranges from 1 to n.

4. z is the state variable.

5. Fi P̃i z is a type using the type variables P̃i and z.

Some examples of coinductive datatypes are triples, infinite lists, colists, cotrees etc. The

datatype of triples is produced by the following definition:

codata t -> Triple a b c = First : t -> a

Second : t -> b

Third : t -> c

The dual of a list is a colist. Colists are lists which can be either finite or infinite. Colists

are defined using the Maybe datatype as follows:

codata c -> CoList a = dest : c -> Maybe (a * c)
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The data definition for infinite lists is given below. Note that an infinite list cannot be finite.

codata c -> InfList a = Head : c -> a

Tail : c -> c

3.2.1 Destructors

Destructors are dual to constructors. To apply a destructor, D to a term, t we use: D t.

While constructors build data structure from pieces, destructors break down coinductive

data into pieces. For example, Triple has three destructors: First, Second and Third. To

obtain the types of these destructors one substitutes t with Triple a b c: thus First has

the type Triple a b c→ a, Second has the type Triple a b c→ b and Third has the type

Triple a b c→ c. Building a codata is a bit trickier, but intuitively let t = (a,1,‘‘First

Alphabet’’) be a triple. Then First t = a. In Figure 3.6, we use the record construct to

create a triple.

Infinite lists have two destructors: Head and Tail. To obtain the types of the destructors,

one substitutes the state variable c by InfList a: thus Head has the type InfList a →

a, and Tail has the type InfList a→ InfList a. The example in Figure 3.7 produces an

infinite list of natural numbers : Head 0 (Tail (Head 1 (Tail (Head 2 · · · )))).

3.2.2 Record

The record operation is the counterpart of case for coinductive data. When using case,

we extract the elements from a data structure and when using record, we construct the

elements into a data structure. MPL has the following syntax to write a record:
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record d1 ← t1

...

dn ← tn

where t1 · · · tn are all terms and d1 · · · dm are destructors.

In Figure 3.6, the record construct is used to create a triple. Here, makeTriple takes

three arguments and returns a triple. First is actually the first projection and same thing

for Second and Third. The record syntax for this triple can also be thought of as (First:

a, Second: 1, Third: ‘‘First Alphabet’’).

1 makeTriple : a -> b -> c -> Triple a b c

2 makeTriple a b c =

3 record First <- a

4 Second <- b

5 Third <- c

Figure 3.6: MPL program for demonstrating the use of record

3.2.3 Unfold

The unfold combinator is the basic corecursion operation in sequential MPL, and is provided

automatically once coinductive data is declared. The unfold is the only way to corecursively

produce codata. It is referred to as the “anamorphism” by Meijer, et.al in [?, ?].

The unfold has the following general form:
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unfold

f : T

f x1 · · · xp =

d1 ← t11

...

dm ← tm

where,

• T is the type of the function f.

• x1 · · · xp are names of the parmeters of the function f.

• d1 · · · dm are destructors.

• t1 · · · tm are terms.

such that,

• f is in the scope of t1 · · · tm.

• The type of the function f and the type of the terms t1 · · · tm are same.

• This unfold operation delivers a function f with type T.

In Figure 3.7, a function is defined by using unfold, which generates an infinite list of nat-

ural numbers. The coinductive values for an infinte list of natural numbers are constructed.

These are processed by applying destructors (Head and Tail).

3.2.4 Mutual corecursion on coinductive data

One can write mutually corecursive unfolds on non-mutually recursive coinductive data in

MPL. For mutual corecursion, MPL allows many unfold phrases under the unfold keyword

as for the inductive fold.
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1 codata c -> InfList a = Head : c -> a

2 Tail : c -> c

3 --infinite natural number list

4 unfold

5 infnats : nat -> Inflist (Nat)

6 infnats n =

7 Head <- n

8 Tail <- infnats (Succ n)

Figure 3.7: MPL function for giving an infinite list of natural numbers

One can also have mutual coinductive data in MPL. For mutual codata, the unfold

must be mutually corecursive. In MPL, the codata keyword sets an environment in which

mutually recursive codata can be declared, separated by the “and” keyword and allows

sharing state variables. The general form of mutually recursive coinductive data is:

codata z1 → D1 P̃ = d11 : z1 → F11 P̃11 z1

...

d1m : z1 → F1m P̃1m z1

...

and zn → Dn P̃ = dn1 : zn → Fn1 P̃n1 zn

...

dnm : zn → Fnm P̃nm zn

An example of mutual coinductive data for a game can be defined as follows:

codata c -> PGame a b = Pmove : c -> List (a, d)

and d -> OGame a b = Omove : d -> List (b, c)

where the codata PGame and OGame are defined in terms of each other. A typical use of

this codata, is to implement a combinatoric game, such as Nim. In this game the player and
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opponent are allowed to remove at least one element from one of a number of stacks. The

game is lost by the player who cannot move.

3.3 Functions, function application and where

Functions are named terms in the sequential world. A function is given a name, supplied

with a list of named parameters, then supplied with the term that constitutes the body of

the function. The definition of a function takes the form:

f : a1 → · · · → an → b

f x1 · · · xn = t

where

• f is the name of the function.

• a1 → · · · → an → b is the type of the function f.

• t is a term.

• x1 : a1 · · · xn : an are the parameter names which are in the scope of t : b.

In Figure 3.8, the equal function is defined, which checks whether two natural numbers

are equal or not, in line 8-15.

To apply a function, f, to its arguments, t1, · · · , tn, we write:

f t1 · · · tn

In Figure 3.8, the use of function call can be seen: in line 9, where monus and add

functions are called. We assume add function has been defined elsewhere which adds two

natural numbers. The monus function is defined in line 2-6, using the fold construct.
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1 -- computes truncated minus i.e. no negative

2 fold

3 monus : Nat -> Nat -> Nat

4 monus x y by x =

5 Zero -> y

6 Succ n -> pred (monus n y)

7 -- checks whether two numbers are equal or not

8 equal : Nat -> Nat -> Bool

9 equal x y = isZero (add (monus x y) (monus y x))

10 where

11 isZero : Nat -> bool

12 isZero x =

13 case x of

14 Zero -> True

15 Succ n -> False

Figure 3.8: MPL program that checks the equality of two natural numbers

The where clause allows local definitions of functions in MPL like other programming

languages. The where specifies the substitution of some terms for identifiers in a term. This

corresponds to the cut rule given in message passing logic [?]. To substitute terms whose

names are f and g from a term t, one uses the following syntax:

t where

f = tf

g = tg

where t, tf and tg are terms, f and g are names, f and g are in the scope of t. Note that f

and g may take some parameters, for example:

t where

f x y = tf

where t and tf are terms, f is the name of the function, x and y are names of the arguments.

Figure 3.8 highlights the use of where clause in the body of equal (line 25-32) where

equal is defined in terms of isZero function which is defined under the where clause.
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3.4 Tuples

MPL has products whose terms are tuples. MPL has the following syntax to form a tuple

of terms t1, · · · , tn:

(t1, t2, · · · , tn)

If T1, T2, T3, · · · , Tn are the types of terms t1, t2, t3, · · · , tn respectively then the type

of the tuple is (T1, T2, T3, · · · , Tn).

MPL facilitates the use of pattern matching a product which can be written in MPL by the

following syntax:

case t of

(t1, t2, · · · , tn)→ tt

Consider the example given in figure 6.4.6 . A swap function is defined which takes a pair

of elements and returns the swapped pair of those elements.

1 swap : (a,b) -> (b,a)

2 swap t =

3 case t of

4 (x,y) -> (y,x)

Figure 3.9: MPL program showing the use of case and pair

The unit is the nullary case of tuple. The unit is denoted:

( )
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Chapter 4

Introduction to Concurrent world

The concurrent part of MPL consists of basic concurrent term constructions, protocol and

coprotocol definitions. Protocols and coprotocols definitions provide user defined intial and

final datatypes in the concurrent world. They arrive with their basic methods of building

processes: structors (constructors and destructors), match and drive.

4.1 Basic Concurrent Terms

In this section, we describe how to build processes in MPL.

4.1.1 Defining a process

The definition of a process takes the following general form:

P :: (a1, · · · , an) A1 : p1, · · · , An : pn ⇒ B1 : q1, · · · , Bm : qm

P = tp

where,

• P is the name of the process.

• :: seperates the name from the type of the process i.e, it can be read as P has

type (a1, · · · , an) A1 : p1, · · · , An : pn ⇒ B1 : q1, · · · , Bm : qm

• a1 · · · ak are the types of the sequential inputs to the process.

• A1 · · · An are the names of the input channels and B1 · · · Bm are the names of the

output channels.
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• ⇒ seperates the input and output channels.

• p1 · · · pn and q1 · · · qm are the names of the protocols assigned to the channels

A1 · · · An and B1 · · · Bm respectively. The symbol, :, is used as an assignment

operater which binds the type or protocol of a channel to a channel name.

• tp is the process term that defines the process, P.

• The channel names A1 · · · An and B1 · · · Bm are bound in tp.

An MPL process, Successor is defined in Figure 4.1 which takes a natural number on

its input channel, inCh and gives back the successor of that natural number on its output

channel, outCh and then ends the communication with the end command. The type of the

process ensures that the process peforms these general input/output actions, although the

particular number which is output depends on the process. Notice, there is no sequential

argument to this process which is indicated by () in line 1.

1 Successor :: () put Nat top => put Nat top

2 Successor inCh => outCh =

3 get x on inCh.

4 put (Succ x) on outCh

5 close inCh -> end outCh

Figure 4.1: Defining a process in MPL

4.1.2 Getting a message on a channel

The following command is used to recieve a message on a channel:

get x on X . P
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where x is a sequential variable which is the message, X is the channel name on which the

process recieves the message x, P is the process executed after the message is recieved. The

process P can use x, that is, x is bound in P.

In line 3 of Figure 4.1, there is an example of a get operation. The message x is recieved

on channel inCh and then is used by the process defined in lines 4 and 5.

When one gets a message, x, on a channel which has an output polarity, it must have a

protocol get A Q where A is the sequential type of the message which is being passed and

Q is the protocol of the channel after the message is recieved. On the other hand, if the

channel has an input polarity, then that channel must have protocol put A Q.

4.1.3 Putting a message on a channel

The following general form is used to put a message on a channel:

put t on A; P

where t is a sequential term, the message to be passed, A is a channel name which is the

carrier of t, and P is the process that is executed after the message has been sent.

In line 4 of Figure 4.1, there is an example of a use of put. From that example, we have:

put (Succ x) on outCh; close inCh → end outCh

this process outputs Succ x on channel outCh and then continues with the rest of the process

which closes inCh and ends outCh, thus terminating the process.

When one outputs a message, t on a channel which has an output polarity, it must have

a protocol put A Q where A is the sequential type of the message which is being passed and

Q is the protocol of the channel after the message is sent. On the other hand, if the channel

has an input polarity, it must have protocol get A Q.
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4.1.4 Split and fork

MPL cannot pass channel names as messages: this, for example, is fundamental to the π-

calculus [?]. However, MPL has other mechanisms which allow one to simulate the effect

of passing channel names (see more in Example 5.3). Two important mechanisms in this

regard are split and fork which allow one to bundle multiple channels into one channel

and to unbundle them.

To split a channel which has an input polarity it must have protocol P ⊗ Q, the “tensor”

of P and Q. To split a channel which has an output polarity, on the other hand, it must have

protocol P ⊕ Q, the “cotensor” of P and Q. To fork a channel which has an output polarity

it must have protocol P ⊗ Q, the “tensor” of P and Q. On the other hand, to fork a channel

which has an input polarity, it must have protocol P ⊕ Q, the “cotensor” of P and Q.

MPL has the following syntax for splitting a channel:

split A into (A1, ... , An) → p

where p is a process, A is the channel to be split and A1 · · · An are channels into which channel

A is split. Note, p is in the scope of A1 · · · An, so may use the introduced channel names

A1 · · · An. However p is now no longer in the scope of A, so may not use A.

MPL has the following syntax for forking channel:

fork A as

A1 with B1 → p1

· · ·

An with Bn → pn

where p1 · · · pn are processes, A is the channel to be forked and A1 · · · An are channels into

which channel A is forked. Ai is in the scope of process pi, but A is not in the context of any

of p1 · · · pn. B1 · · · Bn are optional channel names that can specify the opposite polarity of

A1 · · · An for p1 · · · pn respectively.
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A simple process, IdPar is defined in Figure 4.2 which is the identity for the cotensor

protocol, ⊕. This process has one input channel, a and one output channel, b. The defnition

of the process is given using split and fork: in line 3, the output channel b is split into two

channels b1 and b2. Then, the input channel is forked, in line 3 to 5, which allows the two

resulting processes to run in parallel.

1 IdPar :: () ($A (+) $B) => ($A (+) $B)

2 IdPar a => b =

3 split b into (b1,b2) -> fork a as

4 a’ with b1 -> a’ == b1

5 a’’ with b2 -> a’’ == b2

Figure 4.2: MPL process demonstrating the use of split and fork operation

A simple process, PAppend is defined in Figure 4.3 which “appends” at the concurrent

level two lists of channels of protocol PList $A $B. The user defined protocol, PList $A $B,

has two constructors: #PCons and #PNil, which allow one to bundle an arbitary number

of channels together. The #PCons constructor allows one to add a channel to a bundle and

the #PNil constructor defines the action when a process gets an empty list with channel

identification discussed later. The PAppend has one channel of the input polarity, ch1, and

one channel of output polarity, ch2, where input channel is split into two channels followed

by a forking operation on the output channel.

4.1.5 Closing and ending channels

One is allowed to close an input polarity channel when its protocol is top or when it is an

output polarity channel with protocol bottom. Provided all other channels have been closed

one can end the remaining channel provided either it has protocol top and an output polarity

or protocol bottom and an input polarity. This ofcourse terminates the process.
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1 protocol PList $A $B => $C = #PCons :: $A, $C => $C

2 #PNil :: $B => $C

3

4 drive

5 PAppend :: () (PList () $A (PList () $A $B)) => (PList () $A $B)

6 PAppend ch1 => ch2 by ch1 =

7 #PCons : #PCons on ch2

8 split ch1 into (c11,c12) ->

9 fork ch2 as

10 c21 with c11 -> c11 == c21

11 c22 with c12 -> call Append c12 => c22

12 #PNil : ch1 == ch2

Figure 4.3: MPL process demonstrating the use of split and fork operation

The syntax for closing a channel in MPL is as follows:

close A → P

where A is the channel name and P is a process. The P is no longer in the scope of A. Note,

closing a channel is equivalent to:

split A into () → P

The end must be the last statement of the process as everything else must be closed and

there can be no process to continue. The syntax used to end a channel is as follows:

end A

where A is the channel name.

The use of close and end can be seen in line 5 of Figure 4.1

close inCh → end outCh
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where the channel inCh is closed followed by the process

end outCh

where the channel outCh has ended its communication after all other channel associated

with the communication are closed like channel inCh.

4.1.6 Channel identification and negation

One can identify two channels x and y provided they have the same type and opposite

polarity. Channel identification has the following form:

x == y

An example of the use of channel identification is in line 10 and 12 of Figure 4.3.

A useful feature allows the identification of two channels of the same polarity. In this

case the type of one channel must be the “negation” of the other.

x == neg (y) or, neg (x) == y

The use of negating a channel can be seen in Example 5.3. Note: (α == β) means the

same as (β == α).

4.1.7 Calling defined processes

The general form of calling a process in MPL is as follows:

call P x ⇒ y

where P is a process, x is a list of input channels and y is a list of output channels. A process

must be called with inputs and outputs of the right type. In Figure 4.3, there is an example

of a process call, the call Append c12 ⇒ c22 in line 11.
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4.1.8 Defining local functions and processes using where

The where construct in the concurrent world allows local definitions (function or process

definitions) under a process definition. The where construct specifies the substitution of

some terms for variables in the context of a process. To substitute the named terms f and

g into a process p, one uses the following syntax:

p where

f = t1

g = t2

where t1 and t2 are terms, p is a process, f and g can be the names of functions or processes,

and f and g are in the scope of p.

In Figure 4.4, the process GetHead takes a list on its input channel ch, gives back the

head of that list, by using the head function on the same channel, and then ends the com-

munication. In line 5, we can see that to extract the head of the list x, the process head is

defined locally under a where clause.

1 GetHead :: () (put (List a) (get (Maybe a) bottom)) =>

2 GetHead ch => =

3 get x on ch. put (head x) on ch; end ch

4 where

5 head : List a -> Maybe a

6 head xs = case xs of

7 Nil -> Nothing

8 Cons x xs -> Just x

Figure 4.4: MPL process demonstrating the use of where
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4.1.9 Plugging processes together

The plug construct is used to connect two processes on a communication channel. For

plugging one process to another process, the language has the following syntax:

plug on (Ak == Ap)

P1 A11 · · · A1n ⇒ A21 · · · A2n

to

P2 A31 · · · A3n ⇒ A41 · · · A4n

where

• P1 and P2 are process names.

• Ak and Ai1 · · · Ain (for i ∈ {1, 2, 3, 4}) are the channel names.

• Ak is one of the A21 · · · A2n.

• Ap is one of the A41 · · · A4n.

such that

• Ak and Ap carry same protocol but different polarity.

Recall the example given in Figure 2.2 where the following composite process, TwoAverage

is created by plugging two opposite polarity channels of two different processes (Average and

TwoWayTalk); the channels have to have the same type.

4.2 User defined protocols

As in the sequential world, MPL separates datatypes at the concurrent level into two classes:

protocols and coprotocols. However, the concurrent world is much more symmetric thus,

for example, folds and unfolds behave in the same way. Thus in the concurrent world, the
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1 TwoAverage :: () Talk ((a * b) c) => Talk (a b), Talk (a b)

2 TwoAverage w => y, z =

3 plug on x

4 Average w => x

5 to

6 TwoWayTalk x => y, z

Figure 4.5: MPL process demonstrating the plugging

constructions are same and we talk of “driving” (instead of folding or unfolding), “matching”

(instead of case or record).

4.2.1 Protocol declarations

The general form of a protocol declaration is:

protocol D (P̃) $̃Y⇒ $Z = #C1 :: F1 P̃1 $̃Y $Z⇒ $Z

...

#Cn :: Fn P̃n $̃Y $Z⇒ $Z

where,

1. D is the name of the protocol.

2. P̃ is a sequence of sequential type parameters such as p1 · · · pm and P̃i is a

sequence of sequential type parameters for Ci.

3. $̃Y is a sequence of concurrent type parameters such as $Y1 · · · $Yk.

4. #Ci, where i ranges from 1 to n, are the names of the constructors of the

protocol.

5. $Z is the state variable.
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6. Fi P̃i $̃Y $Z is a type in terms of P̃i, $̃Y and $Z.

The example given in Figure 4.6 defines the User protocol which either receives a String,

then receives a natural number and then outputs a boolean value on the input channel, or

ensures the propoer ending of the communication. In the figure the Use protocol is defined

which uses the protocol, User, on its input channel, x.

1 protocol User => $C = #Do :: put String (put Nat (get Bool $C)) => $C

2 #Stop :: bottom => $C

3 drive

4 Use :: () User () =>

5 Use x => by x =

6 #Do : get s on x.

7 get n on x.

8 put True on x

9 call Use x =>

10 #Stop : end x

Figure 4.6: MPL program defining protocol and demonstrating its use

4.2.2 Coprotocol declarations

The general form of a coprotocol declaration is:

coprotocol $Z⇒ CD (P̃) $̃Y = #D1 :: $Z⇒ F1 P̃1 $̃Y $Z

...

#Dn :: $Z⇒ Fn P̃n $̃Y $Z

where,

1. CD is the name of the coprotocol.

2. P̃ is a sequence of sequential type parameters such as p1 · · · pm and P̃i is a

sequence of sequential type parameters for Ci.
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3. $̃Y is a sequence of concurrent type parameters such as $Y1 · · · $Yk.

4. #Di, where i ranges from 1 to n, are the names of the destructors of the

coprotocol.

5. $Z is the state variable.

6. Fi P̃i $̃Y $Z is a type in terms of P̃i, $̃Y and $Z.

An example of coprotocol is CoUser, the dual of the protocol User described earlier.

The only difference is that we can recurse on this coprotocol on an output channel of a

process while User can only be used to recurse on an input channel. This coprotocol has

two destructors namely, #Od and #Pots. The #Od destructor of the coprotocol will receive

a String type message at first, then receive a natural number and then output a boolean

value on the same output channel, y which is shown in process, CoUse. The dual action will

happen in the input channel in the same sequence if the coprotocol is applied on an input

channel. The other destructor of the CoUser coprotocol #Pots ensures the proper closing

and ending of the channels involved in communication.

1 coprotocol $C => CoUser = #Od :: $C => get String (get Nat (put Bool $C))

2 #Pots :: $C => top

3 drive

4 CoUse :: () => CoUser ()

5 CoUse => y by y =

6 #Od : get m on y.

7 get p on y.

8 put True on y

9 call CoUse => y

10 #Pots : end y

Figure 4.7: MPL program declaring a coprotocol and a process using it
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4.2.3 Structors

In MPL, concurrent constructors and destructors behave in similar way and are called “struc-

tors”. They are written starting with a hash symbol, #.

A protocol has a set of constructors. For example, the User protocol in Figure 4.6 has

two constructors: #Do and #Stop. To obtain the types of these constructors, one substitutes

the state variable $C by User: thus #Do has the type

put String (put Nat (get Bool User))⇒ User,

and #Stop has the type

top⇒ User.

Destructors are the dual of constructors. The CoUser coprotocol in Figure 4.7 has two

destructors: #Od and #Pots. To obtain the types of these destructors, one substitutes the

state variable $C by CoUser: thus #Od has the type

CoUser⇒ put String (put Nat (get Bool CoUser)),

and #Stop has the type

CoUser⇒ top.

By applying constructors, actions can be unwrapped on a channel where the protocol is

assigned. For applying a constructor on a channel, MPL has the following general form:

#C on A; p

where A is a channel, #C is protocol constructor and p is a process.

MPL has the similar general form for applying a destructor on a channel:

#D on A; p
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4.2.4 Matching structors

Match allows pattern matching on protocols. It unwraps the structors of a protocol to a

channel. The general form to write the match is:

match A as

#C1 : p1
...

#Cn : pn

where

• A is a channel name

• #C1 · · ·#Cn are protocol constructors

• p1 · · · pn are processes

The example in Figure 4.8 demonstrates the use of match where Mirror receives and

reflects a message on its input channel. In this example, a protocol named Reflector is

defined and followed by the Mirror process definiton. Mirror has one input channel user

carrying the Refelector protocol. Matching on a channel by match reveals its constructor

#Reflect and unwraps it on user.

1 protocol Reflector (a) => $C =

2 #Reflect :: put a (get a BOTTOM) => $C

3 Mirror :: () Reflector(a) =>

4 Mirror user => =

5 match user as

6 #Reflect: get n on user . put n on user ; end user

Figure 4.8: MPL process demonstrating the use of match operation
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4.2.5 Recursive processes: using the drive command

In the sequential world, MPL has fold for inductive datatypes and unfold for coinductive

datatypes. But in the process world, both folds and unfolds use one operation, drive,

because of the symmetry in the concurrent world; every protocol gives a coprotocol by

choosing the channel (and vice-versa). MPL has the following syntax of drive:

drive

P :: PT

P by A =

#C1 : P1
...

#Cm : Pm

where

• P is a process,

• PT is the type of a process,

• P1 · · · Pm are processes,

• A is a channel name by which the process is driven and it is one of the input

or output channel associated with the process,

• #C1 · · ·#Cm are protocol constructors.

such that,

• P is in the scope of P1 · · · Pm.

• This drive operation delivers a term P.
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The example in Figure 4.2.5, defines the Counter process using drive, which can either

add any number with the previous state or can ouput the present state. The Counter process

is driven by channel pinger where the Ping protocol is applied on channel pinger. The

process is called recursively in line 7.

1 protocol Ping => $C = #Ping :: put Nat $C => $C

2 #Pong :: get Nat bottom => $C

3

4 drive

5 Counter :: (Nat) Ping() =>

6 Counter (n) pinger => by pinger =

7 #Ping: get i on pinger . call Counter (add n i) pinger =>

8 #Pong: put n on pinger; end pinger

4.3 Mutual recursion on protocols

One can write a mutually recursive drive on a non-mutually recursive protocol in MPL. For

mutual recursion, MPL allows many drive phrases under the keyword, drive. An example

is given in Figure 4.9: this example counts half of the numbers that it encounters. The

multiple drive phrases are used to define Tally and NoTally in a mutually recursive way.

These processes are driven by input channel feed (as feed is the only channel).

One can also have mutually recursive protocols in MPL. For mutually recursive protocols,

the drive must be mutually recursive. In MPL, the protocol keyword sets an environment

in which mutually recursive data can be declared, separated by the “and” keyword which

allows sharing state variables.

The general form of a declaration of mutually recursive protocol is:

protocol D1 P̃ $̃Y⇒ $Z1 = #C11 :: F11 P̃11 $̃Y Z1 ⇒ $Z1
...
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1 protocol Counter => $C = #More :: $C => $C

2 #Nomore :: get Nat bottom => $C

3 {-

4 This is the process which counts half of the numbers it encounters

5 -}

6 drive

7 Tally (n) :: () Counter () =>

8 Tally (n) feed => by feed =

9 #More: call NoTally (Succ n) feed =>

10 #Nomore: put n on feed; end feed

11 NoTally (n) :: () Counter () =>

12 NoTally (n) feed => by feed =

13 #More: call Tally (n) feed =>

14 #Nomore: put n on feed ; end feed

Figure 4.9: MPL program demostrating mutual recursion

#C1m :: F1m P̃1m $̃Y Z1 ⇒ $Z1
...

and Dn P̃ $̃Y⇒ $Zn = #Cn1 :: Fn1 P̃n1 $̃Y Zn ⇒ $Zn
...

#Cnm :: Fnm P̃nm $̃Y Zn ⇒ $Zn

An example showing the use of mutual recursion on mutual protocol is given in Figure

4.10 which implements the copycat strategy. The mutual protocol for the copycat strategy

is defined in lines 1-4. The processes Talk and Listen are defined using mutually recursive

drive. The constructor #response for the Talk(a b) protocol indicates that the Talk process

will receive a in the input channel and then call the Respond(a b) protocol. On the other

hand, the constructor #listen for the Respond(a b) protocol indicates that the process will

receive b in the output channel, and then call the Talk(a b) protocol.
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1 protocol Talk (a b) => $C =

2 #response :: put a $D => $C

3 and Respond (a b) => $D =

4 #listen :: get b $C => $D

5

6 drive

7 Talk :: () Talk (a b) => Talk (a b)

8 Talk x => y by x =

9 #response : #response on y

10 get a on x.

11 put a on y

12 call Listen x => y

13 Listen :: () Respond (a b) => Respond (a b)

14 Listen x => y by x =

15 #listen : #listen on y

16 get b on y.

17 put b on x

18 call Talk x => y

Figure 4.10: MPL program demostrating mutual recursion on mutual protocol

4.4 Mutual corecursion on coprotocols

Like, mutual protocols, in MPL, we can also build mutually corecursive coprotocols. In

MPL, the coprotocol keyword sets an environment in which multiple coprotocols can be

declared at once, seperated by the “and” keyword, and allows sharing state variables. The

general form of a mutually recursive coprotocol is:

coprotocol $Z1 ⇒ CD1 P̃ $̃Y = #D11 :: $Z1 ⇒ F11 P̃11 $̃Y $Z1
...

#D1m :: $Z1 ⇒ F1m P̃1m $̃Y $Z1
...

and $Zn ⇒ CDn P̃ $̃Y = #Dn1 :: $Zn ⇒ Fn1 P̃n1 $̃Y $Zn
...
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#Dnm :: $Zn ⇒ Fnm P̃nm $̃Y $Zn

An example showing the use of mutual corecursion on mutual coprotocol is given in

Figure 4.11 which also implements the copycat strategy but in this example we recurse on

the opposite polarity channel than that of Figure 4.10. The mutual coprotocol for copycat

strategy is defined in line 1-4. The processes CoTalk and CoListen are defined using mutually

recursive drive. The destructor #coresponse for the CoTalk(a b) coprotocol indicates that

CoTalk process will receive a in the input channel and then call CoRespond(a b) coprotocol.

On the other hand, the destructor #colisten for the CoRespond(a b) coprotocol indicates

that the process will receive b in the output channel, and then call CoTalk(a b) coprotocol.

1 coprotocol $C => CoTalk (a b) =

2 #coresponse :: $C => put b $D

3 and $D => CoRespond (a b) =

4 #colisten :: $D => get a $C

5

6 drive

7 CoTalk :: () CoTalk (a b) => CoTalk (a b)

8 CoTalk x => y by y =

9 #coresponse : #coresponse on x

10 get a on x.

11 put a on y

12 call CoListen x => y

13 CoListen :: () CoRespond (a b) => CoRespond (a b)

14 CoListen x => y by y =

15 #colisten : #colisten on x

16 get b on y.

17 put b on x

18 call CoTalk x => y

Figure 4.11: MPL program demostrating mutual recursion on mutual coprotocol
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Chapter 5

Examples in MPL

5.1 Bank Machine

Consider what happens when someone wants to withdraw some money from a bank machine

(or ATM). They normally insert their card into the bank machine, with the required personal

identification number, and a money request. The bank machine sends this information to the

bank. The bank then uses this information to generate a transaction identification number

and to check whether the personal identification number is correct and whether the requested

amount is available in the account. The bank machine then does a security check using

the transaction identification number and account number. Finally, an acknowledgement

from the bank machine will be sent to the bank on successful completion or failure of the

transaction.

To develop an MPL program for a bank machine the first step is to understand the

communication channels which are involved. These are illustrated in Figure 5.1.

The next step is to define the protocols that will be used on these channels. To define

these protocols one needs to understand the information which must pass on the channels.

The bank machine will get the personal identification number, PIN (we shall assume the

PIN contains the account number), and a money request, REQ, on channel usr. The bank

responds with a transaction identification number, TIN, account number, ACCOUNT, and

whether the account has the required funds. The bank machine checks with the security

system on channel, sec, to ensure the transaction is legitimate (i.e. the bank card has not

been reported stolen etc.). These data are defined in Figure 5.2.
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Bank

User
usr

Bank Machine

sec

bnk

Security

Figure 5.1: Banking Machine interaction channels

The next step is to define the protocols which will be used on each channel. The protocol

on channel bnk is Bank, the protocol on channel sec is Security and the protocol on channel

usr is User: these are given in Figure 5.3. Here we assume that the data PIN, REQ, TIN

and, ACCOUNT are defined. Each protocol determines the sequence of possible actions on

the channel to which it is assigned. Protocols allow infinite interactions so that after a

transaction, the bank machine can be left ready for the next transaction.

Having defined the channels and their protocols we can write the MPL program which

is given in Figure 5.4. Note, this program shows how the messages of the sequential world

can control events in the concurrent world (line 13-22). The message received from Bank,

Money or NoMoney and the message received from Security, Accept or Deny determines the

subsequent behaviour of the process.
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1 -- bank’s response to bank machine which indicates

2 -- the availability of money

3 data MResponse -> c = Money : c

4 NoMoney : c

5 -- bank machine’s response to user which idicates

6 -- whether to hold or return the card

7 data Response -> c = TakeCard : c

8 GiveCard :c

9 -- security’s response to bank machine which

10 -- indicates whether the transaction is legitimate or not

11 data SResponse -> c = Accept : c

12 Deny : c

13 -- bank machine’s response to bank which

14 -- indicates whether the transaction is successful or Failed

15 data Back -> c = Success : c

16 Fail : c

Figure 5.2: Data, necessary to pass on channels

5.2 Diffie-Hellman key exchange

Consider an example from the field of cryptography: the Diffie-Hellman key exchange pro-

tocol. This allows Alice and Bob to establish a shared secret key in order to be able to pass

encoded messages through an insecure channel. The key exchange protocol between Alice

and Bob works as follows:

• Alice and Bob agree to use two numbers p = 7 and g = 3 where p is prime

and g is a primitive root mod p. For our example, set p = 7 and g = 3.

• Alice choose a secret number a, computes A = ga mod p and sends A to Bob.

Thus if Alice chooses a = 4, A = 34 mod 7 = 4.

• Bob choose a secret number b, computes B = gb mod p and sends B to Alice.

Thus if Bob chooses b = 5, B = 35 mod 7 = 5.

• Alice computes the secret key, s = Ba mod p. Here, s = (5)4 mod 7 = 2.
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1 -- protocol for usr channel

2 protocol User => $C =

3 #use :: put PIN (put REQ (get REQ (get Response $C))) => $C

4 -- protocol for bnk channel

5 protocol Bank => $C =

6 #bank :: put (PIN * REQ)

7 (get TIN (get ACCOUNT (get MResponse (put Back $C)))) => $C

8 -- protocol for sec channel

9 protocol Security => $C =

10 #security :: put TIN (put ACCOUNT (get SResponse $C)) => $C

Figure 5.3: Protocols for channels

• Bob computes the secret key, s = Ab mod p. Here, (4)5 mod 7 = 2.

• Alice sends an encrypted message to Bob using the secret key.

We develop an MPL program for the Diffie-Hellman key exchange protocol. The first

step is to understand the communication channels which are involved. These are illustrated

in figure 5.5. Alice has three channels associated with her. Alice uses two secure channels

to receive respectively a secret key and the message to be encoded: these are secretA and

messageA respectively. Bob also has three channels: two secure channels to receive a secret

key and to send the decoded message after receiving it from Alice on the insecure channel.

Alice and Bob communicate on the insecure channel, cipher.

The next step is to determine the protocols for these channels so that the desired actions

can take place on each channel. The protocols are defined:

• secretA is a secure channel on which Alice can obtain a secret key. The

protocol we shall use is put key top. This allows Alice to get the secret key

and then close the communication.

• messageA is a secure channel on which Alice can receive a message to be sent

to Bob. The protocol we shall use is put msg top. This allows Alice to get
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the message to be encoded and then close the communication.

• cipher is an insecure channel shared between Alice and Bob. The protocol we

shall use is put key (get key (put msg top)). This allows Alice to send

her generated key to Bob, then Bob to send his generated key to Alice, and

then, for Alice to send the encoded message to Bob and close the communica-

tion.

• secretB is a secure channel on which Bob can obtain a secret key. The protocol

we shall use is get key bottom. This allows Bob to get the secret key and

then close the communication.

• messageB is a secure channel on which Bob can send the decoded message on.

The protocol we use is put msg top. This allows Bob to send the decoded

message and then end the communication.

We assume the types key and msg have already been defined. We also assume the

functions modulus, power, encode and decode have been defined elsewhere.

Having defined the channels and their types we can write the MPL program which is

given in Figure 5.6. The protocols are used in the process type of Alice and Bob. Note the

two numbers that Alice and Bob agreed to use are sequential arguments to their processes.

5.3 Memory passing: Mobility

This example illustrates how the topology of the communicating processes in MPL can be

changed dynamically. The example we will present is similar to the mobile phone example

of Chapter 8 in [?]. To illustrate mobility, we shall show how a “mutable” memory cell can

be passed between two processes in MPL. The example used ideas of Emmanuel Beffara [?].
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To develop this MPL program, the first step is to write the process for a memory cell. To

start with we need to understand the protocol associated with the communication channel

of a memory cell. A memory cell can either remember a value which is passed to it or it

can provide, on demand, the value it is remembering. A memory cell, as in Figure 5.7,

communicates to the outside world through a single channel: through this channel it can

receive values and output (remembered) values. A memory cell should be able to repeatedly

receive new values and provide the value it has remembered. In order to program these

actions a protocol for the interface to a memory cell, named Memory, is defined, see lines 1-3

in Figure 5.8. The process MemoryCell, using the Memory protocol, on channel ch is in lines

4-8 of Figure 5.8.

When the protocol, Memory is connected on the channel, ch, the channel behaviour is

determined by the constructor, #rcv or #snd. which is received. The memory cell process

reads the value when the constructor is #rcv and remembers the recieved value. On the

other hand, on the #snd constructor the process memory cell returns the remembered value

along the channel, ch, and still remembers the same value.

Our aim is to mobilize this memory cell (see Figure 5.9) between two processes (P1 and

P2) so that the memory cell can communicate alternately with one process then the other.

Each process (P1 or P2) can change the value in the memory cell and can also retrieve

stored values from the memory cell. These actions are determined here by the protocol,

Talker, connected to the process in Figure 5.10. The moving of a memory cell between two

processes can be done by defining a protocol Passer. The process P1 has two input polarity

channels, c1 and in2 and one output polarity channel, c2 and is driven by c1. The Passer

protocol is applied on c1, the Talker protocol is applied on in2 and the protocol Memory

is applied on c2. The P1 process extracts a stored value from the memory cell and then

puts a new value which is receieved on channel in2 into the memory cell. P1 then passes
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the extracted value on its channel in2. After that, the memory cell is passed to the other

process P2. The process, P2, has one input polarity channel, in1 and one output polarity

channel, c and is driven by in1. P2 also extracts value from the memory cell which was

stored by P1 and passes it back along channel in2 again after storing a new value in the

memory cell. Each time the memory cell is passed back and forth between processes, the

protocol, Memory, needs to be negated. This program gives a simple example to show that

the connection topology of a MPL program need not be fixed but can be quite dynamic.
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1 drive

2 BankMachine :: () User () => Bank (), Security ()

3 BankMachine usr => bnk, sec by usr =

4 #use : get pin on usr.

5 get req on usr.

6 #bank on bnk

7 put (pin * req) on bnk

8 get tin on bnk.

9 get account on bnk.

10 get moneyResponse on bnk.

11 case moneyResponse of

12 Money -> #security on sec

13 put tin on sec

14 put account on sec

15 get srp on sec.

16 case srp of

17 Accept -> put i on usr

18 put GiveCard on usr

19 put Success on bnk

20 call BankMachine usr => bnk, sec

21 Deny -> put Zero on usr

22 put TakeCard on usr

23 put Fail on bnk

24 call BankMachine usr => bnk, sec

25 NoMoney -> put Zero on usr

26 put GiveCard on usr

27 put Fail on bnk

28 call BankMachine usr => bnk, sec

Figure 5.4: MPL program for bank machine

Alice
cipher

secretA

messageA

Bob

secretB

messageB

Figure 5.5: Key exchange between Bob and Alice
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1 --DiffieHellman key exchange

2 Alice :: (key, key) put key top, put msg top

3 => put key ( get key (put msg top))

4 Alice (agreedKey1 agreedKey2) secretA, messageA => cipher =

5 get skey on secretA.

6 put (modulus (power agreedKey2 skey) agreedKey1) on cipher

7 get bkey on cipher.

8 get msg on messageA.

9 put (encode msg (modulus (power bkey skey) agreedKey1)) on cipher

10 close secretA -> close messageA -> end cipher

11

12 Bob :: (key, key) put key (get key (put msg top))

13 => get key bottom, put msg top

14 Bob (agreedKey1 agreedKey2) cipher => secretB, messageB =

15 get skey1 on secretB.

16 get bkey1 on cipher.

17 put (modulus(power agreedKey2 skey1)agreedKey1) on cipher

18 get enmsg on cipher.

19 put decode(enmsg((modulus(power bkey1 skey1)agreedKey1))) on messageB

20 close secretB -> close cipher -> end messageB

21

22 AliceBob :: (key, key) put key top, put msg top

23 => get key bottom, put msg bottom

24 AliceBob (agreedKey1 agreedKey2) secretA, messageA => secretB, messageB =

25 plug on cipher

26 Alice (agreedKey1, agreedKey2) secretA, messageA => cipher

27 to

28 Bob (agreedKey1, agreedKey2) cipher => secretB, messageB

Figure 5.6: MPL program for Diffie-Hellman key exchange

Memorycell
ch : Memory

Figure 5.7: Memory Cell
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1 protocol Memory (a) => $C =

2 #rcv :: put a $C => $C

3 #snd :: get a $C => $C

4 drive

5 Memorycell :: (a) Memory (a) =>

6 Memorycell (n) ch => by ch =

7 #rcv : get a on ch. call Memorycell (a) ch =>

8 #snd : put n on ch; call Memorycell (n) ch =>

Figure 5.8: MPL program for Memory cell

P1
c1 : Passer

in2 : Talker

c2 : Memory

P2

in1 : Talker

Memorycell

m

P1
c : Passer

in2 : Talker

P2

in1 : Talker

m : Memory

Memorycell

Figure 5.9: Memory cell mobility
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1 protocol Talker (A) => $C =

2 #talk :: put A get A $C => $C

3

4 protocol Passer $M => $C =

5 #pass :: ($M (+) (Neg($M) (x) $C)) => $C

6

7 drive

8 P1 :: () Passer (Memory (A)), Talker (A) => Memory (A)

9 P1 c1 , in2 => c2 by c1 =

10 #pass: match in2 as

11 #talk : get x on in2.

12 #snd on c2; get y on c2. #rcv on c2;

13 put x on c2; put y on in2;

14 fork c1 as

15 x1 with c2 -> x1 == c2

16 x2 with in2 -> split x2 into (nm, x3) -> plug on x1

17 P1 x3, in2 => x1

18 to

19 (Neg (x1) == nm)

20

21 drive

22 P2 :: () Talker (A) => Passer (Memory (A))

23 P2 in1 => c by in1 =

24 #talk : get x on in1.

25 #pass on c;

26 split c into (m, x4) ->

27 #snd on m; get y on m. put y on in1;

28 #rcv on m; put x on m;

29 fork x4 as

30 nm with m -> (Neg (m) == nm)

31 x5 with in1 -> call P2 in1 => x5

Figure 5.10: MPL program showing the mobility of a memory cell
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Chapter 6

The Type System for the Sequential world

The objective of a type system is to be able to deterministically decide whether a term has a

proposed type. The aim is to do this using the structure of the term alone. If this is achieved

then the type system can also be used to support type inference. To achieve this it must

be possible to show how a term can be uniquely decomposed into components whose types

determine the typing of the whole term. This, therefore, is the objective of the type system

developed below.

MPL has two layers: the sequential layer and the concurrent layer. Each layer has a type

system which allows one to recognize correctly typed programs. This chapter describes the

type system for the sequential layer.

The core of the sequential layer is based on a fragment of polymorphic λ-calculus [?]

(called λ2 in [?] or system-F in [?]). Our goal in this chapter is to introduce the fragment of

the polymorphic λ-calculus used by MPL, and the extension of it used in MPL that provides

initial and final data (data and codata).

The λ-calculus as conceived by Church [?] was developed to provide a theory of functions

that could serve as the foundations of mathematics [?]. The untyped λ-calculus is a Turing

complete language which is the basis for functional programming languages.

Church proposed a system, called the simply typed λ-calculus, which we will review in

the next section. This calculus is based on the intuitive notions that a function f : A → B

applied to a λ-term t of type A, written t : A, will return a λ-term of type B, f t : B.

A formal connection between the simply typed λ-calculus and the Brouwer’s propositional

intuitionistic logic was described by Curry and Howard in [?]. In propositional intuitionistic
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logic, for example, a proof of A ⇒ B is to be regarded as corresponding to a procedure for

transforming proofs of A into proofs of B that is a function f : A→ B which acts on proofs.

The polymorphic typed λ-calculus is the typed λ-calculus with the additional ability to

universally quantify propositional formulae [?]. In this chapter, we start by reviewing the

simply typed λ-calculus and then describe the type system that MPL uses for its sequential

types, which is based on the polymorphic λ-calculus.

6.1 The simply typed λ-calculus

The simply typed λ-calculus provides a basic example of a type system. The types are

generated by:

T = A | T → T

where A is a type variable (belonging to a set of type variables). For example, A, B, A→ B,

(A→ B)→ A, (A→ B)→ (C → D) etc. are types.

The programs or λ-terms are generated by

P = x | λx.P | PP

where x is a variable (belonging to a set of term variables), λx.P is an abstraction operation

which binds the variable, x, in a term, P and PP is the application of a λ-term to a λ-term.

Some examples of terms are xx, xy, λxy.x, λxy.y etc. Two syntactic conventions are followed

when writing λ-terms: abstractions are flattened, for example: λxy.P denotes λx(λy.P ) and

application associates to the left, for example: xyz denotes (xy)z.

In order to facilitate the description of this type system the definitions of a context and

a term in context are discussed first before introducing the typing rules in detail.

A context is a multiset of distinct typed variables, written ∆ = x1 : T1, · · · , xn : Tn. It

is a multiset as the order does not matter and the variable names are distinct in the sense
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∆, x : T,∆′ context

∆, x : T,∆′ ` x : T TermProj

∆, x : T ` t : T ′

∆ ` λx.t : T → T ′
λ− abst

∆ ` f : T → T ′ ∆ ` t : T

∆ ` ft : T ′ TermApplication

Table 6.1: Simply typed λ-term building

that xi = xj implies i = j.

A term in context in the simply typed λ-calculus is a sequent of the form:

∆ ` t : T

where ∆ is the context and t is a term with assigned type T . This is a judgement of the

simply typed λ-calculus although it is only considered to be a valid judgement when it can

be derived by the type system given in 6.1.

The inference rules that describe how to construct well-typed λ-terms or programs are

given in 6.1. Programs in the simply typed λ-calculus are terms in context: the context

collects all the symbols (variables) that the program uses and the types associated to these

symbols.

The λ-abst rule says if x : T is used in a proof of t : T ′ so that we have:

[x : T ]

...

t : T ′
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then we can build a proof of T → T ′. This is the implication introduction rule of logic

and the program that proves the implication introduction is λx.t.

The TermApplication rule is the modus ponens rule or the implication elimination rule

of logic. Thus, if we have a proof of T → T ′ and of T then we have a proof of T ′.

The following example in which the K combinator λxy.x is type checked shows the use of

λ-abst and TermProj rules from table 6.1 .

x : A, y : B context
x : A, y : B ` x : A

TermProj

x : A ` λy.x : B → A
λ− abst

` λxy.x : A→ B → A
λ− abst

In the typed λ-calculus, a benefit of typing is that every typed program terminates [?].

For example λx.xx cannot be typed in the simply typed λ-calculus: when λx.xx is applied

to itself it produces a program which does not terminate. Here is what a proof would have

to look like if we were to try to infer the type of λx.xx:

x : P1 ` x : P3 〈P1 = P3〉
TermProj

x : P1 ` x : P4 〈P1 = P4〉
TermProj

x : P1 ` xx : P2 〈P3 = P4 → P2〉
TermApp

` λx.xx : Q 〈Q = P1 → P2〉
λ− abst

In this proof, an arbitrary type is assigned in each step to the terms. We get P1 = P3 and

P1 = P4, by TermProj rule from the upper portion of the proof. From these two equations we

get P3 = P4. In the next step, we have P3 = P4 → P2. Substituting P3 by P4 then we obtain

P4 = P4 → P2 which has no solution because occurs check fails. Thus the term cannot be

validly typed, that is, there is no valid judgement of the form ` λx.xx : Q, in this system.

6.2 Basic polymorphic system for sequential MPL

The polymorphic λ-calculus [?], [?] is an extension to the simply typed λ-calculus in which

existential and universal quantification over type variables are allowed. This allows types
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to be arguments of functions on types. In the polymorphic λ-calculus, kinds are used to

describe the type quantification. For the basic polymorphic system for the sequential type

system of MPL, only universal quantification and a subset of the possible kinds will be

allowed. This fragment of the polymorphic λ-calculus which is the basis of sequential MPL

will be reviewed.

The most basic kind, •, denotes the simple types and the simply typed terms. A higher

kind such as • → • will have as its “types” F : • → • a type which depends on a type. If F

is supplied with a type T of kind •, then it will return a type of kind •. A higher kind term

is a type function, and its kind tells us how many types it needs in order to evaluate to a

type of kind •. Kinds for sequential MPL are generated by:

α := • | • → α

Typical examples of the type kinds are: •, • → •, • → (• → •), · · · . However, for

example (• → •) → (• → •), which is allowed in polymorphic λ-calculus, is not allowed in

this system.

In order to facilitate the description of the MPL type system the context of a term or

program needs to be built gradually from the empty context. The rules dedicated to building

contexts will be indicated with the word context in the conclusion of a rule.

The typing rules for the fragment of the polymorphic λ-calculus, used by MPL, are given

in table 6.2 and the type building rules are in table 6.3. The rules given in the table 6.1 are

represented in table 6.2 again with their kinds. The two new rules are TypeAbs and TypeApp.

The TypeAbs rule allows one to abstract a type variable. The TypeApp rule applies a function

that expects a type to a type.

Given a polymorphic term one can particularize it i.e. substitute out the type variable

(TypeApp rule). In this rule, (ΛX.V )@T can be evaluated by substituting T for X in V ,
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∆ ` T : α new x
∆, x : T : α context TermVarIntro

∆, x : T : •,∆′ context

∆, x : T : •,∆′ ` x : T : • TermProj

∆, x : T : • ` t : T ′ : •
∆ ` λx : T.t : T → T ′ : • λ− abst

∆ ` f : T → T ′ : • ∆ ` t : T : •
∆ ` ft : T ′ : • TermApplication

∆, X : • ` s : S : α

∆ ` ΛX.s : ΛX.S : • → α
TypeAbs

∆ ` T : • ∆ ` t : V : • → α
∆ ` t@T : V@T : α

TypeApp

Table 6.2: Polymorphic λ-term building

V [T/X], this is a “β-reduction” of the type expression. For example, if V = ΛX.X → Y :

• → • then V@T can be β-reduction to (X → Y )[T/X] = T → Y .

Notice in the TermApplication rule, the single kind (•) ensures that programs have to

have a simple type i.e. no universal quantification is present before they can be applied to

any term.

Let us extend the previous example (λxy.x : A→ B → A : •) to the polymorphic setup.

In this example we show how to particularize type. Suppose we have a type, Z. We want to

specialize

λxy.x : A→ B → A : •

to type, Z→ Z→ Z. At first, we make this term depend on types. We can abstract its type
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ε context EmptyContext

∆ context new X
∆, X : • context TypeVarIntro

∆, X : •,∆′ context

∆, X : •,∆′ ` X : • TypeProj

∆ ` T : • ∆ ` S : •
∆ ` T → S : • Implication

∆ ` T : • ∆ ` T ′ : •
∆ ` (T × T ′) : • TypeProduct

Table 6.3: Type Building

variables: ΛAB.λxy.x : A → B → A : • → • → •. Typing this term needs several extra

steps beyond the previous proof, and these steps are shown in the proof below:

ε context TypeVI new A
A : • context

TypeVI
new B

A : •, B : • context
TypeVI

A : •, B : • ` A : • TypeProj
new x

A : •, B : •, x : A : • context
TermVI

A : •, B : •, x : A : • ` B : • TypeProj
new y

A : •, B : •, x : A : •, y : B : • context
TermVI

A : •, B : •, x : A : •, y : B : • ` x : A : • TermProj

A : •, B : •, x : A : • ` λy.x : B → A : • λ− abst

A : •, B : • ` λxy.x : A→ B → A : • λ− abst

A : • ` ΛB.λxy.x : ΛB.A→ B → A : • → • TypeAbs

` ΛAB.λxy.x : ΛAB.A→ B → A : • → • → • TypeAbs

Now we can apply it to the type Z twice by using type application rule: (((ΛAB.λxy.x :

A→ B → A)@Z) @Z : • → • → •). It will be reduced to λxy.x : Z→ Z→ Z : •.
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∆, a : A : •, b : B : •,∆′ ` γ
∆, (a, b) : A×B : •,∆′ ` γ ProductPattern

∆ ` t1 : T : • ∆ ` t2 : T ′ : •
∆ ` (t1, t2) : (T × T ′) : • TermProduct

∆ context
∆ ` () : 1 : • TermUnit

∆ ` t : T : •
∆, () : 1 : • ` t : T : • UnitPattern

Table 6.4: Product

6.3 Products and function definitions in sequential MPL

To make MPL into a more usable programming language we start introducing some addi-

tional features. We start with products and function definitions.

Term formation rules for products are provided in the Table 6.4. One can have a product

pattern in the term context (ProductPattern). The product structure pairs terms and allows

projection out of a pair. The last two rules analogously concern the unit or empty product.

In MPL, we can define functions we have built; the context acts like a symbol table to

remember terms that we have already built. Rules related to context building with function

definition and use of functions are in Table 6.5. We can name a term t with the label f

(FunctionDef rule). To denote that t is labelled by f we write (f := t).

For example, if we want to use our earlier proved term, ΛAB.λxy.x as a function, we can

extend the proof:
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∆ ` t : T : α ∆, f : T : α context

∆, (f := t) : T : α context FunctionDef

∆, (f := t) : T : α ` t′ : T ′ : •
∆ ` (t′ where (f := t) : T : α) : T ′ : • Where

∆, (f := t) : T : α,∆′ context

∆, (f := t) : T : α,∆′ ` f : T : α FunctionUse

Table 6.5: Function definition and use

A : •, B : •, x : A : •, y : B : • context
A : •, B : •, x : A : •, y : B : • ` x : A : • TermProj

A : •, B : •, x : A : • ` λy.x : B → A : • λ− abst

A : •, B : • ` λxy.x : A→ B → A : • TermProj

A : • ` ΛB.λxy.x : A→ B → A : • → • TypeAbs

` ΛAB.λxy.x :ΛAB.A→B→A :•→•→• TypeAbs
f :ΛAB.A→ B→A :•→•→• ctxt

(f := λxy.x) :ΛAB.A→B→A :•→•→• ctxt

We can apply these predefined functions by name, via the FunctionUse rule. Also, we

can bind a function using a where clause which would look like where ∆ has been defined

elsewhere:

∆, (f := λxy.x) : ΛAB.A→ B → A : • → • → • ` t : T : •
∆ ` (t where (f := λxy.x) : ΛAB.A→ B → A : • → • → •) : T : • Where

6.4 User defined inductive data

Data and codata in MPL provide convenience and flexibility for writing programs. Recall,

in the sequential world of MPL in section 3.1 and 3.2, a type is defined using the (co)data

keyword followed by the choice of rules for constructing or destructing the type. Also, when

such a type is declared, the declaration delivers case (or record) and primitve (co)recursion
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operators. In order to describe the type system we must give the rules for typing all these

operators.

The first rule describes how a new inductive datatype is defined and introduced into the

context:

{∆, X1 : •, · · · , Xn : •, C : • ` Fi X̃i C : •}i=1 ··· k

∆,
data D X1 · · · Xn → C =

{ci : Fi X̃i C → C}i=1 ··· k

context

DataIntro

Here, X̃i is a sequence of type variables (belonging to the list of type variables X1 · · ·Xn)

for ci.

Example 6.4.1.

(1) The following defines the type of natural numbers:

ε context new C
C : • context
C : • ` C : •

ε context new C
C : • context
C : • ` C : •

ε context new C
C : • context
C : • ` C : •

C : • ` C → C : •

data Nat→ C = Zero : C

Succ : C→ C
context

(2) Similarly the following defines the type of a List for an arbitrary type A:

...
A : •, C : • ` C : •

...
A : •, C : • ` A→ C → C : •

data List A→ C = Nil : C

Cons : A→ C→ C
context

MPL also allows mutual inductive data declarations which are natural extensions of the

above data declaration. In the sequent, we use X̃ to denote a list of type variables X1 · · ·Xn

and X̃ji (belongs to X̃) is a sequence of type variables for cji. The general definition for

datatype then looks like:
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{∆, X̃ : •, C1 : •, · · · , Cm : • ` Fji Xji Cj : •}i=1 ··· k and j=1 ···m

∆,

data D1 X̃ → C1 = {c1i : F1i X̃1i C1 → C1}i=1 ··· k

...

and Dm X̃ → Cm = {cmi : Fmi X̃mi Cm → Cm}i=1 ··· k

context

DataIntro

Example 6.4.2. The following defines the type of alternating lists:

...
∆ ` C : •

...
∆ ` A→ D → C : •

...
∆ ` C : •

...
∆ ` B → C → D : •

data ListA A B→ D = NilA : C

ConsA : A→ D→ C

and ListB A B→ D = NilB : D

ConsB : B→ C→ D

context

where, ∆ = A : •, B : •, C : •, D : •.

6.4.1 Typing data constructors

The following rule is the typing rule for data constructors:

∆ context

∆ ` cni : ΛX̃.Fni X̃ji (Di X̃) : • → · · · → •
Cons

where, ∆ contains

data D1 X̃ → C1 = {c1i : F1i X̃1i C1 → C1}i=1 ··· k

...

and Dm X̃ → Cm = {cmi : Fmi X̃mi Cm → Cm}i=1 ··· k

Example 6.4.3.

(1) In the following example, we derive the type of constructor Succ: assume that the

datatype Nat has been defined as above and is in the context, ∆.

∆ ctxt
∆ ` Succ : Nat→ Nat : • Cons
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(2) In the following example, we derive the type of constructor Cons: we assume that the

data List A has been defined as above and is in the context, ∆.

∆ ctxt
∆ ` Cons : Λ A.A→ List A→ List A : • → • Cons

6.4.2 Typing type constructors

The following rule is the rule for the type constructors introduced by a data declaration:

∆ context
∆ ` Di : • → · · · → • TypeCons

where, ∆ contains

data D1 X̃ → C1 = {c1i : F1i X̃1i C1 → C1}i=1 ··· k

...

and Dm X̃ → Cm = {cmi : Fmi X̃mi Cm → Cm}i=1 ··· k

Example 6.4.4.

(1) For example, assume Nat is as defined earlier and is in the context, ∆, then the following

is legal:

∆ ctxt
∆ ` Nat : • TypCons

i.e. Nat is a type.

(2) For example, assume List A has been defined earlier and is in the context, ∆, then the

following is legal:

∆ ctxt
∆ ` List : • → • TypCons
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6.4.3 Typing the case construct

Case allows us to pattern match on the constructors of a datatype. Assume Fi X̃ (D X̃) =

A1 → · · ·Aj → D X̃ so ci : Fi X̃ (D X̃). Then the general form of case can be expressed as:

∆ ` t : D X̃ : • {∆, {x̃ij : Aij : •}j=1···n ` ti : T : •}i=1···m

∆ `
case t of

{ci x̃i → ti}i=1···m

: T : •

case

where c1 · · · cm are the constructors for D X̃. Recall Fi X̃ (D X̃) is the type of ci, the ith

constructor of D.

Example 6.4.5. The use of case is shown in the following example that defines the prede-

cessor function, pred:

1 pred : Nat -> Nat

2 pred a =

3 case a of

4 Zero -> Zero

5 Succ n -> n

The proof for the body of the function is:

π1

∆, a : Nat : •, () : 1 : •

` Zero : Nat : •

π2

∆, a : Nat : •, n : Nat : •

` n : Nat : •

∆, a : Nat : • ` case a of
Zero→ Zero

Succ n→ n
: Nat : •

case

∆ ` λa. case a of
Zero→ Zero

Succ n→ n
: Nat→ Nat : •

λ− abst
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Here, ∆ = data Nat→ C =
Zero : C

Succ : C→ C

The sub-proofs denoted as π1 and π2 will be completed in Appendix C.

In MPL, we also have case for products. The rule to type check the case for an n-ary

product is:

∆ ` t : Tt : • ∆, (x1, · · · , xn) : Tt : • ` t : T : •
∆ ` case t of (x1, · · · , xn)→ t : T : •

casep

where, x1, · · · , xn are variables.

Example 6.4.6. A use of casep is shown in the following example that defines the swap

function, swap:

1 -- swapping the elements of a pair

2 swap : (X * Y) -> (Y * X)

3 swap t =

4 case t of

5 (x , y) -> (y , x)

The proof for the body of the function is:

π1

X : •, Y : •, t : (X × Y ) : •

` t : (X × Y ) : •

π2

X : •, Y : •, t : (X × Y ) : •, (x, y) : (X × Y ) : •

` (y, x) : (Y ×X) : •

X : •, Y : •, t : (X × Y ) : • ` case t of (x, y)→ (y, x) : (Y ×X) : •
casep

The completed proof will be given in Appendix C.
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6.4.4 The fold operation

The fold construct allows one to write programs which iterate over a datatype. In [?], it

is described that datatypes come packaged with a primitive recursion operator which we

explain below.

6.4.4.1 Initial algebras

From a categorical perspective, a datatype is an initial algebra, F̄ , for a functor F : X→ X.

An algebra for F with carrier X is given by a map: h : F (X) → X, called the structure

map of the algebra. The structure map of the initial algebra is called the constructor of the

datatype and written consF : F (F̄ ) → F̄ . Being an initial algebra means that given any

algebra for h : F (X) → X, there is a unique map, fold h, that makes the following square

commute:

F (F̄ )

F (fold h)

��

cons // F̄

fold h

��
F (X)

h
// X

When the functor F is a coproduct (sum) of functors, then cons can be canonically viewed

as a copairing of constructors – one for each component of the sum of functors. Consider in

any category X with a final object, 1, and coproducts, F : X→ X : X → 1 +X, the functor

F (X) = 1 + X, with F (f) = 1 + f , an algebra is of the form h : 1 + X → X. Now by

universality, a map out of a coproduct is always a choice of maps. Thus h breaks into a choice

of maps h = 〈h0 | h1〉, where h0 : 1→ X (i.e. z ∈ X) and h1 : X → X. The initial algebra of

this functor, which is a natural number object, N, has constructor cons : 1 + N→ N, where

cons = 〈zero | succ〉 : 1 + N→ N with, zero : 1→ N and succ : N→ N. One may think of N

as being freely generated by zero and succ. The datatype of the natural numbers is defined

as the type satisfying for any h : 1 +X → X the universal diagram:
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1 + N
1+fold h

��

〈zero|succ〉 // N
fold h
��

1 +X
h

// X

Letting h = 〈h0 | h1〉 we may rewrite this universal property

1 zero //

h0 $$

N
fold〈h0|h1〉
��

Nsuccoo

fold〈h0|h1〉
��

X X
h1

oo

Thus,

zero(fold 〈h0 | h1〉) = h0

succ(fold 〈h0 | h1〉)(x) = (fold 〈h0 | h1〉)h1(x)

Thus we recover a form of primitive recursion on the natural number object, N.

We could use the initial algebra description of datatypes directly to provide type recur-

sion; however we shall use different but more convenient form which is equivalent, which we

now introduce.

6.4.4.2 Circular definitions

There is an alternative way of defining the universal property of a datatype using a circular

combinator [?]. We will review this circular definition of datatypes and how they fit into

the syntax and type system of MPL. For further information on these datatypes, see [?, ?].

The basic structure involved in defining circular datatypes is called a circular combinator.

A circular combinator over D for a functor F is a way to produce from a map g : A→ D,

a map c[g] : F (A)→ D, such that
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A

g ��

h // A′

g′~~
D

⇒ F (A)

c[g] ""

F (h) // F (A′)

c[g′]||
D

.

Lemma 1. (See [?, ?]) Circular combinators for a functor F : X → X over D correspond

precisely to F-algebras on D. Given an algebra f : F (D) −→ D one obtains a circular

combinator, cf [g] := F (g)f and conversely, given a circular combinator c[ ] one obtains an

algebra, c[1D] : F (D) −→ D.

Proof. If f : F (D) −→ D is an algebra, then a circular combinator, cf [g] is defined as follows:

A
g // D

F (A)
F (g) // F (D)

f // D

cf

So cf [g] = F (g)f and the implication

A

g ��

h // A′

g′~~
D

⇒ F (A)

cf [g]

��

F (g)
##

F (h) // F (A′)

F (g′)
zz

cf [g′]

~~

F (D)

f
��
D

clearly holds. Conversely, a circular combinator, c[ ] defines an algebra by applying it to

the identity map:

D
1 // D

F (D)
c[1D] // D

c

Clearly cf [1D] = f and conversely cf [g] = F (g)cf [1D]: so circular combinator and algebras

are in bijective correspondence.
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To obtain the circular definition of a datatype for a functor, F, we need an object F̄

and a map cons : F (F̄ ) → F̄ such that, for every combinator c[ ] there is a unique map F̄

foldc−−−→ A such that

F (F̄ )

c[foldc] ""

cons // F̄

foldc��
A

Proposition 6.4.1. (See [?, ?]) The algebraic definition and the circular definition of

datatypes are equivalent.

Proof. Given F̄ satisfying the algebraic definition of an inductive datatype, we must show

it satisfies the circular definition of the datatype. If F̄ is the initial algebra, then for any

algebra f : F (D) −→ D there is a unique fold(f) such that the following diagram commutes.

F (F̄ )

F (fold(f))

��

cons // F̄

fold(f)

��
F (D)

f
// D

Given a circular combinator c[ ] of F over D one may extract an algebra f = c[1D] : F (D)

−→ D. Then we set foldc = fold(f) and the following circular diagram:

F (F̄ )

c[fold(f)] ""

cons // F̄

fold(f)��
A

commutes as F (fold(f)) = cf [fold(f)] and fold(f) is certainly unique. Thus, fold(f)

satisfies the properties required by the circular map foldc.

Conversely, if the circular definition of an inductive datatype holds for F̄ , then we want

to show that it must satisfy the algebra definition. Given an algebra f : F (D) −→ D one can

define a circular combinator cf [ ] such that cf [g] = F (g)f then ∃!h
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F (F̄ )

c[h] ""

cons // F̄

h��
A

Again, we consider, N, the datatype generated freely by 1+N→ N i.e, 〈zero | succ〉 freely

generated by 1
zero−−−→ N and N succ−−−→ N.

Any combinator for the functor F (X) = 1 +X is of the form:

c[f] : 1 + X
1 + f−−−−→ 1 + A

[z, s]−−−→ A

= 1 + X
[z, fs]−−−−→ A

=


case m of

() 7→ zero

x 7→ succ(f x)

 : 1 + X→ A

The universal property we have is then for all c[ ], there is a unique foldc. This tells us

again that

foldc zero = z and foldc (succ n) = s (foldc n)

i.e., we again recover the primitive recursion equations described in the previous section.

In MPL the syntax for defining f : N→ A as a fold is:

fold

f : N -> A

f x by x as

Zero -> z
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Succ a -> s (f a)

If f is to be written as a fold it suffices to provide the combinator which is

() -> z

a -> s (f a) .

This is a combinator (with the case implicit) that we need to type check. Since a com-

binator, c[f ] = [z, fs] is defined over all f, we use any f in the context with right type. We

thus have:

∆, C : •, f : C → A : • ` t1 : A ∆, C : •, f : C → A : •, a : C : • ` t2 : A : •

∆,

fold

f : N→ A

f x by x as

Zero→ t1

Succ a→ t2

context

fold

This generalizes into the following typechecking rule:

{∆, C : •, f : C → Z : •, {p̃ij : Aij : •}j=1,··· ,n ` ti : Z : •}i

∆,

fold

f : D X̃ → Z

f x by x as

ci p̃i → ti

context

fold

where ci are the constructors for a datatype defined in ∆. Recall Fi X̃ D X̃ is the type of

ci, the ith constructor of D and Fi X̃ D X̃ = A1 → · · ·Aj → C.

Example 6.4.7. Here an example of how to typecheck the recursive function add : Nat

→ Nat → Nat, is given. The sub-proofs of this proof are denoted as π1 and π2, and will be

completed in Appendix C.
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π1

∆, X : •, add : X → (Nat→ Nat) : •,

x : Nat : •, y : Nat : • ` y : Nat : •

π2

∆, X : •, add : X → (Nat→ Nat) : •,

x : Nat : •, y : Nat : •, n : X : •

` Succ (add n y) : Nat : •

∆,

fold

add : Nat→ Nat→ Nat

add x y by x as

Zero→ y

Succ n→ Succ (add n y)

context

fold

Here is the rule for the mutual fold combinator in MPL:

{∆, C̃ : •, fi : Cp → Zp : •, {p̃ij : Aij : •}j=1,··· ,n ` tji : Zj : •}i

∆,

fold

f1 : D1 X̃ → Z1

f1 x̃ by x1k as

c1i p̃1i → t1i
...

fn : Dn X̃ → Zn

fn x̃ by xnk as

cni p̃ni → tni

context

fold

Example 6.4.8. In the following example, we use mutual recursion on the non-mutually

recursive datatype, N, to determine whether a natrual number is even or odd:
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π1

∆,∆′, () : 1 : •

` True : B

π2

∆,∆′, n1 : X : •

` odd(n1) : B

π3

∆,∆′, () : 1 : •

` True : B

π4

∆,∆′, n2 : X : •

` even(n2) : B

∆,

fold

even : N→ B

even x by x as

Zero 7→ True

Succ n1 7→ odd(n1)

odd : N→ B

odd x by x as

Zero 7→ False

Succ n2 7→ even(n2)

context

fold

∆ =
data N→ C = Zero : C

Succ : C→ C
,

data B→ C = True : C

False : C

∆′ = X : •, even : X → B, odd : X → B

The complete proof is given in Appendix C.

We collect all the rules related to user defined inductive data in one Table 6.6.

6.5 User defined coinductive data

The rules for defining and using codata are introduced in this section. As for data, we

can put codata definitions in the context. Any codata definition in context delivers a type

constructor (i.e. the name of the codatatype with arguments), data destructors, records and

an unfold operation. The type system must have the rules for typing all these constructs.

The first rule describes how a new codatatype is defined and introduced into the context:
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{∆, X̃ : •, C1 : •, · · · , Cm : • ` Fji Xji Cj : •}i=1 ··· k and j=1 ···m

∆,

data D1 X̃ → C1 = {c1i : F1i X̃1i C1 → C1}i=1 ··· k
...

and Dm X̃ → Cm = {cmi : Fmi X̃mi Cm → Cm}i=1 ··· k

context DataIntro

∆ context

∆ ` cni : ΛX̃.Fni X̃ji (Di X̃) : • → · · · → • Cons

∆ context
∆ ` Di : • → · · · → • TypeCons

∆ ` t : D X̃ : • {∆, {x̃ij : Aij : •}j=1···n ` ti : T : •}i=1···m

∆ ` case t of
{ci x̃i → ti}i=1···m

: T : • case

∆ ` t : Tt : • ∆, (x1, · · · , xn) : Tt : • ` t : T : •
∆ ` case t of (x1, · · · , xn)→ t : T : • casep

{∆, C̃ : •, fi : Cp → Zp : •, {p̃ij : Aij : •}j=1,··· ,n ` tji : Zj : •}i

∆,

fold

f1 : D1 X̃ → Z1

f1 x̃ by x1k as
c1i p̃1i → t1i

...

fn : Dn X̃ → Zn
fn x̃ by xnk as
cni p̃ni → tni

context fold

Table 6.6: Rules related to inductive data
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{∆, X̃ : •, C1 : •, · · · , Cm : • ` Gji X̃ji Cj : •}i=1 ··· k and j=1 ···m

∆,

codata C1 → E1 X̃ = {d1i : C1 → G1i X̃1i C1}i=1,··· ,k

...

and Cm → En X̃ = {dmi : Cm → Gni X̃ni Cm}i=1,··· ,k

context

CoDataIntro

Example 6.5.1.

(1) The following defines the type of infinite list of a type:

...
A :•,C :• ` C→ A :•

...
A :•,C :• ` C→ C :•

codata C→ InfList A = Head : C→ A

Tail : C→ C
context

(2) The following defines the type of a mutual recursive codata for a game:

...
∆,A :•,B :•,C :•,D :• ` C→ List (A, D) :•

...
∆,A :•,B :•,C :•,D :• ` D→ List (B, C) :•

∆,
codata C→ PGame A B = Pmove : C→ List (A, D)

and D→ OGame A B = Omove : D→ List (B, C)
context

where ∆ contains List datatype.

6.5.1 Typing codata destructors

The following rule is the typing rule for codata destructors:

∆ context

∆ ` dni : ΛX̃.Gni X̃ji (Ei X̃) : • → · · · → •
Des

where, ∆ contains

codata C1 → E1 X̃ = {d1i : C1 → G1i X̃1i C1}i=1,··· ,k

...

and Cm → En X̃ = {dmi : Cm → Gni X̃ni Cm}i=1,··· ,k
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Example 6.5.2.

(1) One of the codata destructors for the infinite list of natural numbers, Head, is given

below where data InfList Nat is available in the context:

∆ ctxt
∆ ` Head : ΛA.InfList A→ A : • → • Des

(2) One of the codata destructors for the previously discussed mutual recursive codata,

PMove, is given below where codata PGame A B and OGame A B is available in the context:

∆ ctxt
∆ ` Pmove : ΛAB.PGame A B→ A→ SF OGame A B : • → • → • Des

6.5.2 Typing type constructors

The following rule is the typing rule for codatatype projection from the context:

∆ context
∆ ` Ei : • → · · · → • TypeDes

where, ∆ contains

codata C1 → E1 X̃ = {d1i : C1 → G1i X̃1i C1}i=1,··· ,k

...

and Cm → En X̃ = {dmi : Cm → Gni X̃ni Cm}i=1,··· ,k

Example 6.5.3. The type constructor for InfList A is typed as follows:

∆ ctxt
∆ ` InfList : • → • TypDes

assuming datatype InfList A is in the context.

6.5.3 Typing the record construct

The typing rule for record is:
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{∆ ` ti : Gi X̃ (Ei X̃) : •}i=1···m

∆ `
record

{di ← ti}i=1···m

: T : •

record

Example 6.5.4. Consider the following example:

1 codata t -> Triple a b c = First : t -> a

2 Second : t -> b

3 Third : t -> c

4 makeTriple : a -> b -> c -> Triple a b c

5 makeTriple a b c =

6 record First <- a

7 Second <- b

8 Third <- c

...
∆ ` a : A : •

...
∆ ` b : B : •

...
∆ ` c : C : •

∆ `

record

First← a

Second← b

Third← c

: A→ B → C → Triple A B C : •

record

where,

∆ =

codata t→ Triple a b c =

First : t→ a

Second : t→ b

Third : t→ c

, A : •, B : •, C : •, a : A : •, b : B : •, c : C : •

6.5.4 Typing unfold

Here is the typing rule for the unfold combinator in MPL:
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{∆, C̃ : •, fi : Zp → Cp : • ` tji : Gi X̃ (Ei X̃) : •}i

∆,

unfold

f1 : Z1 → (Ei X̃)

f1 x̃ =

d1i ← t1i
...

fn : Zn → (Ei X̃)

fn x̃ =

dni ← tni

context

unfold

Example 6.5.5. We type the example function nats that represents the infinite list; 0, 1, 2, · · · .

The unfold gives nats function which provides that infinite list.

...

∆, X : •, nats : X : •, n : InfList Nat : •

` n : Nat : •

...

∆, X : •, nats : X : •, n : InfList Nat : •

` nats (Succ m) : InfList Nat : •

∆,

unfold

nats : InfList Nat

nats n :=

Head← n

Tail← nats (Succ m)

context

unfold

assuming natural number data, Nat and infinite list codata, InfList Nat in the context.

We can collect all the rules related to user defined inductive data in one Table 6.7.
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{∆, X̃ : •, C1 : •, · · · , Cm : • ` Gji X̃ji Cj : •}i=1 ··· k and j=1 ···m

∆,

codata C1 → E1 X̃ = {d1i : C1 → G1i X̃1i C1}i=1,··· ,k
...

and Cm → En X̃ = {dmi : Cm → Gni X̃ni Cm}i=1,··· ,k

context CoDataIntro

∆ context

∆ ` dni : ΛX̃.Gni X̃ji (Ei X̃) : • → · · · → • Des

∆ context
∆ ` Ei : • → · · · → • TypeDes

{∆ ` ti : Gi X̃ (Ei X̃) : •}i=1···m

∆ ` record
{di ← ti}i=1···m

: T : • record

{∆, C̃ : •, fi : Zp → Cp : • ` tji : Gi X̃ (Ei X̃) : •}i

∆,

unfold

f1 : Z1 → (Ei X̃)
f1 x̃ =
d1i ← t1i

...

fn : Zn → (Ei X̃)
fn x̃ =
dni ← tni

context unfold

Table 6.7: Rules related to coinductive data
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Chapter 7

The Type System for the Concurrent world

In this chapter, the type system for the concurrent world will be described. The type system

shows, in detail, how the type of a process is determined by its syntactic structure. This

provides the basis for type checking and type inference.

7.1 Type system for concurrent MPL

The kinds for concurrent MPL are generated by:

α := ◦ | • → α | ◦ → α

where, ◦ is the most basic kind. These allow for concurrent programs to be parametric on

both concurrent types (or protocols) and sequential types.

In the concurrent world, there are many sorts of terms and types which can be produced

and we start by giving a brief overview of these to help the reader.

(1) Protocols: These are the basic types of the concurrent world. A protocol T has kind ◦

which we indicate by writing T : ◦.

(2) Process types: These take the form

(Φ⇒ Ψ) :: ◦

where Φ is a list of protocols which have an “input polarity” and Ψ is a list of protocols of

“output polarity”.

(3) Process types with channel names: These are denoted by

(α⇒ β) . (Φ⇒ Ψ) J ◦.
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Here Φ ⇒ Ψ is a process type and α ⇒ β is a pair of corresponding lists of channel

names, which allow us to refer to channels by name rather than by their position in Φ⇒ Ψ.

We shall regard the following two forms

(α1, α2 ⇒ β1, β2) . (T1, T2 ⇒ S1, S2) J ◦

and

(α1 . T1, α2 . T2)⇒ (β1 . S1, β2 . S2) J ◦

to be equivalent. The former form is particularly convenient when one wants to express the

step of abstracting the channel names (which is necessary to obtain a process).

(4) Process terms: These can only be built once the channel names have been introduced

(as above). They have the form:

t J (α⇒ β) . (Φ⇒ Ψ) J ◦.

(5) Processes: Once one has built a term using channel names, one can abstract the channel

names away to obtain a process which can be used with any channel names. A process Q is

then written as Q :: Φ⇒ Ψ :: ◦ where Φ⇒ Ψ is its process type.

A term in the context is a sequent of the form:

∆ ` P

where P is a single formula which can be any of the items discussed above. The context, ∆,

should be regarded as a symbol table which contains the variables, functions, types and other

terms required to build a process. Every process which can be derived in this system can

be added into its context as a definition; this allows one to build contexts with predefined

processes.
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7.1.1 Basic protocols

For the process world, the basic kind for a protocol is ◦. The basic protocols we are going

to introduce are built from the protocol constructors >,⊥,⊗ ,⊕ ,� ,� . Table 7.1 shows

the rules for building these basic types, called protocols, in the process world.

7.1.2 Process types and basic terms

In Table 7.2, the rule ProcessTypeIntro, builds a process type, which is essentially a two-sided

sequent of protocols. It can be created from the protocols introduced in the Table 7.1. The

first three rules of this table are for building process types. There are two types of abstraction

in the process world. The rule ProcessTermAbs, allows a sequential term to be abstracted

over a concurrent term while the rule ProcessProcessAbs, allows a process to be abstracted

over another process. This allows a process to take other processes and sequential terms

as arguments. We can also discharge these abstractions by applying them respectively to a

sequential term (TermApp rule) or a concurrent term (ProcessApp rule).

7.1.3 Typing process types with channels

Table 7.3 shows the relation between channel names and process types. We can assign

channel names to the protocols in process types by using Channelnaming. When a process

type, Φ⇒ Ψ :: α, is valid, where, Φ and Ψ are list of protocols and α is a kind, can attach

channel names α ⇒ β to the protocols. When channel names have been attached to the

protocols, we use the symbol, J to indicate that it is not a pure process and that channel

names are being used. These are therefore called processes with channel names. The channel

names in the process types can be abstracted always by using the ChannelAbs rule to obtain

a process. The rule for calling a predefined process (the call rule) requires channel names to

be added before we can use a predefined process in a process term.
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∆ context new T
∆, T : ◦ context TypeVarIntro

∆, T : ◦,∆′ context

∆, T : ◦,∆′ ` T : ◦ TypeProj

∆ context
∆ ` ⊥ : ◦ Bot

∆ context
∆ ` > : ◦ Top

∆ ` T : ◦ ∆ ` T ′ : ◦
∆ ` (T ⊗ T ′) : ◦ TypeTensor

∆ ` T : ◦ ∆ ` T ′ : ◦
∆ ` (T ⊕ T ′) : ◦ TypePar

∆ ` T : • ∆ ` T ′ : ◦
∆ ` (T � T ′) : ◦ TypeGet

∆ ` T : • ∆ ` T ′ : ◦
∆ ` (T � T ′) : ◦ TypePut

∆ ` T : ◦
∆ ` neg (T ) : ◦ TypeNeg

Table 7.1: Basic protocols
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{∆ ` T : ◦}T∈Φ,Ψ

∆ ` Φ⇒ Ψ :: ◦ ProcessTypeIntro

∆ ` T :: ◦ ∆ ` T : •
∆ ` T → T :: ◦ PTypeTypeAbs

∆ ` T :: ◦ ∆ ` S :: ◦
∆ ` T � S :: ◦ PTypePTypeAbs

∆ ` T :: ◦ new Q
∆, Q :: T :: ◦ context ProcessName

∆, Q :: T :: ◦,∆′ context

∆, Q :: T :: ◦,∆′ ` Q :: T :: ◦ ProcessProj

∆, x : T : • ` t :: T :: ◦
∆ ` λx.t :: T → T :: ◦ ProcessTermAbs

∆, P :: T :: ◦ ` Q :: S :: ◦
∆ ` λP.Q :: T � S :: ◦ ProcessProcessAbs

∆ ` P :: T → T :: ◦ ∆ ` t : T : •
∆ ` P (t) :: T :: ◦ TermApp

∆ ` P :: T ′ → T :: ◦ ∆ ` t :: T ′ :: ◦
∆ ` P [t] :: T ′ :: ◦ ProcessApp

Table 7.2: Process types and basic terms
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∆ ` Φ⇒ Ψ :: ◦ new α, β

∆ ` (α⇒ β) . (Φ⇒ Ψ) J ◦ Channelnaming

∆ ` t J (α⇒ β) . (Φ⇒ Ψ) J ◦
∆ ` [α⇒ β] t :: (Φ⇒ Ψ) :: ◦ ChannelAbs

∆ ` t :: Φ⇒ Ψ :: ◦ ∆ ` (α⇒ β) . (Φ⇒ Ψ) J ◦
∆ ` call t (α⇒ β) J (α⇒ β) . Φ⇒ Ψ J ◦ Call

Table 7.3: Process types with channels

7.1.4 Message passing: getting and putting

Table 7.4 gives the typing rules for the message passing primitives. When one gets a message

of type T on a channel, α, which has an output polarity, α must have a protocol T� P where

T is the sequential type of the message and P is the protocol of the channel after the message

has been recieved. As it is an output polarity channel, receiving messages is seen from the

perspective of the process itself, i.e. the process is getting a message on channel α. On

the other hand, if the channel, α, has input polarity, then that channel must have protocol

T� P. As it is an input polarity channel, receiving messages is seen from the perspective

of the external world, i.e. the external world (any other process) is putting a message on

channel α to be recieved by the process. Similarly when one outputs a message on a channel

which has an output polarity, then that channel must have a protocol T� P where T is the

sequential type of the message which is being passed and P is the protocol of the channel

after the message has been sent. On the other hand, if the channel has an input polarity,

then the channel must have protocol T� P.
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∆, x : T : • ` P J Φ, α . T ′,Φ′ ⇒ Ψ J ◦
∆ ` get x on α ; P J Φ, α . T � T ′,Φ′ ⇒ Ψ J ◦ getL

∆, x : T : • ` P J Φ⇒ Ψ, α . T ′,Ψ′ J ◦
∆ ` get x on α ; P J Φ⇒ Ψ, α . T � T ′,Ψ′ J ◦ getR

∆ ` t : T : • ∆ ` P J Φ⇒ Ψ, α . T ′,Ψ′ J ◦
∆ ` put t on α ; P J Φ⇒ Ψ, α . T � T ′,Ψ′ J ◦ putR

∆ ` t : T : • ∆ ` P J Φ, α . T ′,Φ′ ⇒ Ψ J ◦
∆ ` put t on α ; P J Φ, α . T � T ′,Φ′ ⇒ Ψ J ◦ putL

Table 7.4: Message passing: getting and putting

7.1.5 Closing and ending channels

The rules in Table 7.5 tells how to close and end channels: these rules allow a process to be

terminated successfully. The > and ⊥ protocols allow communication to be finished on a

channel and the channel to be removed. However, removing channels, in this manner must

be done in a manner that depends on the channel polarity. One can close a channel when

other channels are present. In particular, one can close a channel when it has protocol ⊥

and an output polarity (closeR rule), or one can close a channel when it has protocol > and

an input polarity (closeL rule). Provided all other channels have been closed one can end

this (last channel) provided either it has protocol > and an output polarity (endR rule) or

protocol ⊥ and an input polarity (endL rule). This terminates a process.

Example 7.1.1. Consider the follwing example which shows how to type check the message

passing, close and end constructs. The type checked process receives a message on its input

channel, α1 and send the message along its output channel, α3. Then the communication on

the output polarity channel is ended provided that the input polarity channel is closed.
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∆ ` P :: Φ⇒ Ψ J ◦
∆ ` close α;P J Φ, α .> ⇒ Ψ J ◦ closeL

∆ ` P J Φ⇒ Ψ J ◦
∆ ` close α;P J Φ⇒ α .⊥,Ψ J ◦ closeR

∆ context
∆ ` end α J α .⊥ ⇒ J ◦ endL

∆ context
∆ ` end α J ⇒ α .> J ◦ endR

Table 7.5: Closing and ending channels

a : A : • ` a : A : • TermProj

a : A : • context
a : A : • ` end α3 J ⇒ α3 .> J ◦ endR

a : A : • `
close α1;

end α3

J α1 .> ⇒ α3 .> J ◦

closeR

a : A : • `

put a on α3;

close α1;

end α3

J α1 .> ⇒ α3 . (A� >) J ◦

putR

`

get a on α1.

put a on α3;

close α1;

end α3

J α1 . (A� >)⇒ α3 . (A� >) J ◦

getR
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∆ ` t :: T :: ◦ ∆, Q :: T :: ◦ context
∆, Q :: T :: ◦ := t context ProcessDef

∆, Q :: T :: ◦ := [α⇒ β] t,∆′ ` t′ :: T :: ◦
∆,∆′ ` t′ where Q := [α⇒ β] t :: T :: ◦ WhereP

∆, f : T : α := t,∆′ ` t′ :: T :: ◦
∆,∆′ ` t′ where f := t :: T :: ◦ Wheref

∆, Q :: T :: ◦ := t,∆′ context

∆, Q :: T :: ◦ := t,∆′ ` Q :: T :: ◦ ProcessUse

Table 7.6: Process definitions and uses

7.1.6 Process definitions and uses

Table 7.6 shows how a process can be defined, and added to the context. The defined

processes can be pulled out from the context by using the WhereP and ProcessUse rules.

The Wheref rule allows any function available in the context to be used under a process

(local definition). These rules act similarly to the rules like FunctionDef, Where, FunctionUse

discussed earlier for the sequential world.

Example 7.1.2. In order to use the concurrent term in example 7.1.1 as a process, the

channel names need to be abstracted from the process type by using ChannelAbs rule. Then

one can define the process and put it in the context if there is a process variable P that has

the same type as the term.
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...

`
[α1 ⇒ α3]

get a on α1.

put a on α3;

close α1;

end α3

:: (A� >)⇒ (A� >) :: ◦

ChlAbs

P :: (A� >)⇒ (A� >)

:: ◦ ctxt

P :: (A� >)⇒ (A� >) :: ◦ := [α1 ⇒ α3]

get a on α1.

put a on α3;

close α1;

end α3

ctxt

ProDef

Example 7.1.3. To continue the example 7.1.2: we show how processUse can be used to

pull out a process from the context and the call construct shows the important step of

attaching of channels to the process:

...
∆ ctxt

∆ ` P :: (A� >)⇒(A� >) ::◦ ProcessUse
...

∆`(α1⇒α3).(A� >)⇒(A� >)J◦

∆ `
call P (α1 ⇒ α3)

J (α1 ⇒ α3) . (A� >)⇒ (A� >) J ◦

Call

where, ∆ contains P :: (A� >)⇒(A� >) ::◦ :=[α1 ⇒ α3]

get a on α1.

put a on α3;

close α1;

end α3

7.1.7 Channel identification and plugging processes together

Four rules are given in table 7.7 which show the typing of channel identification and process

composition. The first one, Identity rule, allows one to identify two channels provided they
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∆ ` X : ◦ new α, β

∆ ` (α == β) J α . X ⇒ β . X J ◦ Identity

∆ ` X : ◦ new α, β

∆ ` (α == neg(β)) J α . neg(X), β . X ⇒ J ◦ negL

∆ ` X : ◦ new α, β

∆ ` (neg(α) == β) J ⇒ α . X, β . neg(X) J ◦ negR

∆` P (β3⇒α1, α, α2)
Jβ3.Φ⇒α1.Ψ, α.T, α2.Ψ′J◦ ∆′` Q (β1, β, β2⇒α3)

Jβ1.Φ′, β.T, β2.Φ′′⇒α3.Ψ′′J◦

∆,∆′ `

plug on (α == β)
P (β3 ⇒ α1, α, α2)
to
Q (β1, β, β2 ⇒ α3)

J
β1 . Φ′, β3 . Φ, β2 . Φ2 ⇒
α1 .Ψ, α3 .Ψ′′, α2 .Ψ′

J ◦ plug

Table 7.7: Channel identification, negation and process composition-plugging

have the same type and opposite polarity. The latter two rules allows one to identify two

channels provided they have the same type and same polarity. The last rule in the table

allows two processes to be “plugged” together. When plugging two processes together by

identifying channels, the types of the channels which are being identified have to be the

same.

Example 7.1.4. The following example shows how the plug rule can be used to compose

two processes P and Q:
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...

∆ `
call P (α1 ⇒ α3)

J (α1 ⇒ α3) . (T1 ⇒ T ) J ◦

...

∆′ `
call Q (α2 ⇒ α4)

J (α2 ⇒ α4) . (T ⇒ T2) J ◦

∆,∆′ `

plug on (α3 == α2)

call P (α1 ⇒ α3)

to

call Q (α2 ⇒ α4)

J (α1 ⇒ α4) . (T1 ⇒ T2) J ◦

Plug

7.1.8 Splitting and forking

The typing rules for splitting and forking channels are given in 7.8. To split a channel,

which has an input polarity, it must have protocol, T ⊗T ′, the “tensor” of T and T ′. On the

other hand, to split a channel, which has an output polarity, it must have protocol, T ⊕ T ′,

the “cotensor” of T and T ′. To fork a channel, which has an output polarity, it must have

protocol, T ⊗ T ′ and on the other hand to fork a channel, which has an input polarity, it

must have protocol, T ⊕ T ′. Splitting introduces new channel names while forking must

divide remaining channels between the processes.

7.1.9 Type abstraction over a process

The typing rules related to abstraction over a process are given in 7.9. The first rule allows

a process to take a sequential type as an argument and the PTypeAbs rule allows a process

to take a protocol as its argument.

Example 7.1.5. Consider another example in which we illustrate how to bundle channels

together using ⊕ and also the abstraction of type variables over process. This example shows

how we can bundle two output polarity channels into one channel while different messages

are received on those channels followed by ending the communication.
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∆ ` P J Φ, α1 . T, α2 . T
′,Φ′ ⇒ Ψ J ◦ new α

∆ ` split α into (α1, α2) in P J Φ, α . T ⊗ T ′,Φ′ ⇒ Ψ J ◦ splitL

∆ ` P J Φ⇒ Ψ, α1 . T, α2 . T
′,Ψ′ J ◦ new α

∆ ` split α into (α1, α2) in P J Φ⇒ Ψ, α . T ⊕ T ′,Ψ′ J ◦ splitR

∆ ` P1 J Φ, α1 . T : ◦ ⇒ Ψβ1 J ◦ ∆′ ` P2 J Φ′, α2 . T
′ ⇒ Ψ′β2 J ◦ new α

∆,∆′ `
fork α as

α1 with β1 → P1

α2 with β2 → P2

J Φ, α . T ⊕ T ′,Φ′ ⇒ Ψ J ◦ forkL

∆ ` P1 J Φβ1 ⇒ α1 . T,Ψ J ◦ ∆′ ` P2 J Φ′β2 ⇒ α2 . T
′,Ψ′ J ◦ new α

∆,∆′ `
fork α as

α1 with β1 → P1

α2 with β2 → P2

J Φ,Φ′ ⇒ Ψ, α . T ⊗ T ′,Ψ′ J ◦ forkR

Table 7.8: Splitting and forking

∆, X : • ` P :: T :: α

∆ ` ΛX.P :: T :: • → α
STypeAbs

∆, X : ◦ ` P :: T :: α

∆ ` ΠX.P :: T :: ◦ → α
PTypeAbs

Table 7.9: Type abstraction over a process
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A : •, B : •, a : A : •, b : B : • context

A : •, B : •, a : A : •, b : B : • ` end β2 J ⇒ β2 .> J ◦
endR

A : •, B : •, a : A : •, b : B : • ` close β1; end β2 J ⇒ β1 .⊥, β2 .> J ◦
closeR

A : •, B : •, a : A : • `
get b on β2;

close β1; end β2

J ⇒ β1 .⊥, β2 . (B � >) J ◦

getR

A : •, B : • `
get a on β1, get b on β2;

close β1; end β2

J ⇒ β1 . (A� ⊥), β2 . (B � >) J ◦

getR

A : •, B : • `

split β into (β1, β2) in

get a on β1; get b on β2;

close β1; end β2

J ⇒ β . (A� ⊥)⊕ (B � >) J ◦

splitR

A : • `

split β into (β1, β2) in

get a on β1; get b on β2;

close β1; end β2

J ΛB. ⇒ β . (A� ⊥)⊕ (B � >) J • → ◦

STypeAbs

split β into (β1, β2) in

get a on β1; get b on β2;

close β1; end β2

J ΛAB. ⇒ β . (A� ⊥)⊕ (B � >) J • → • → ◦

STypeAbs

7.2 User defined protocols in the concurrent world

In the concurrent world user defined protocols are the analogue of datatypes in the sequential

world. They are introduced using the keywords “protocol” or “coprotocol” which correspond,

in the concurrent world, to the “data” and “codata” keywords of the sequential world.

Protocols are distinguished from coprotocols as they must be “driven” by a channel with

input polarity; coprotocols are driven by a channel with an output polarity. This section

introduces the typing rules for these user defined protocols.
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7.2.1 Protocols

In MPL protocols are defined in much the same way as datatypes:

{∆, X̃ : •, $̃Y : ◦, $̃C : ◦ ` Fji X̃ $̃Y $Cj : ◦}i=1 ··· k and j=1 ···m

∆,

protocol P1 X̃ $̃Y ⇒ $C1 = {#c1i : F1i X̃ $̃Y $C1}i=1,··· ,k

...

and Pm X̃ $̃Y ⇒ $Cn = {#cmi : Fmi X̃ $̃Y $Cm}i=1,··· ,k

context

ProtocolIntro

In the above protocol definition, P1, · · · , Pm are the names of the introduced protocols

(i.e. the protocol constructors), the #c1i · · ·#cmi are process constructors. The fold for

these datatypes is called a “drive” to distinguish it from fold in the sequential world. One

must drive a program using a user defined protocol on an input polarity channel carrying

that protocol.

Example 7.2.1.

(1) Consider the following example where a protocol is introduced into the context:

...
∆ context

∆`N :• TypeCons

...
∆ context
∆`C1 :◦ TypeProj

∆`N� C1 :◦ TypePut

...
∆ context

∆`N :• TypeCons

...
∆ context
∆`C1 :◦ TypeProj

∆`N� ⊥ :◦ TypeGet

∆′,

protocol Ping⇒ C1 =

#Ping :: N� C1 ⇒ C1

#Pong :: N� ⊥⇒ C1

context

ProtocolIntro

Where, ∆′ contains
data N→ C = Zero : C

Succ : C→ C
and ∆ contains ∆′, C1 : ◦

(2) Consider the following example where a mutual recursive protocol is introduced into the

context:
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...
∆`A� D :◦ TypePut

...
∆`B � C :◦ TypeGet

protocol Talk(AB)⇒ C =

#response :: A� D ⇒ C

and Respond(A B)⇒ D =

#listen :: B � C ⇒ D

context

ProtocolIntro

Where, ∆ = C : ◦, D : ◦, A : •, B : •

7.2.1.1 Typing process constructors

The following rule is the typing rule for process constructors:

∆ context

∆ ` #cni : ΛX̃.Π$̃Y .Fni X̃ $̃Y (Pi X̃ $̃Y ) : • → · · · → ◦ · · · → ◦
PCons

where, ∆ contains

protocol P1 X̃ $̃Y ⇒ $C1 = {#c1i : F1i X̃ $̃Y $C1}i=1,··· ,k

...

and Pm X̃ $̃Y ⇒ $Cn = {#cmi : Fmi X̃ $̃Y $Cm}i=1,··· ,k

Example 7.2.2.

Consider the following example where #response constructor of the protocol Talk (A B)

is pulled out from the context:

...
∆ context

∆`#response : ΛAB.(A�(Respond A B))→(Talk A B) : • → • → ◦ PCons

where, ∆ contains

protocol Talk(A B)⇒ C =

#response :: A� D ⇒ C

and Respond(A B)⇒ D =

#listen :: B � C ⇒ D
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7.2.1.2 Typing protocol constructors

The following rule shows how to type a protocol constructor:

∆ context
∆ ` Pi : • → · · · → ◦ · · · → ◦ PTypeCons

where, ∆ contains

protocol P1 X̃ $̃Y ⇒ $C1 = {#c1i : F1i X̃ $̃Y $C1}i=1,··· ,k

...

and Pm X̃ $̃Y ⇒ $Cn = {#cmi : Fmi X̃ $̃Y $Cm}i=1,··· ,k

Example 7.2.3.

In the following example, a protocol constructor is pulled out from the context:

∆ context
∆ ` Talk : • → • → ◦ PTypeCons

where, ∆ contains

protocol Talk(A B)⇒ C =

#response :: A� D ⇒ C

and Respond(A B)⇒ D =

#listen :: B � C ⇒ D

7.2.1.3 Process constructors on a channel

Consider consChannel rule:

∆ ` #c : F X̃ $̃Y (P X̃ $̃Y ) : ◦
∆ ` P J Φ⇒ Ψ,

α . F X̃ $̃Y (P X̃ $̃Y ),Ψ′ J ◦

∆ ` #c on α ; P J Φ⇒ Ψ, α . P X̃ $̃Y ,Ψ′ J ◦
consChannel

In this rule, #c is a process constructor and the rule shows how to type the application

of constructor to a channel.

All the rules related to user defined protocols are collected in the Table 7.10.
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{∆, X̃ : •, $̃Y : ◦, $̃C : ◦ ` Fji X̃ $̃Y $Cj : ◦}i=1 ··· k and j=1 ···m

∆,

protocol P1 X̃ $̃Y ⇒ $C1 = {#c1i : F1i X̃ $̃Y $C1}i=1,··· ,k
...

and Pm X̃ $̃Y ⇒ $Cn = {#cmi : Fmi X̃ $̃Y $Cm}i=1,··· ,k

context ProtocolIntro

∆ context

∆ ` #cni : ΛX̃.Π$̃Y .Fni X̃ $̃Y (Pi X̃ $̃Y ) : • → · · · → ◦ · · · → ◦ PCons

∆ context
∆ ` Pi : • → · · · → ◦ · · · → ◦ PTypeCons

∆ ` #c : F X̃ $̃Y (P X̃ $̃Y ) : ◦
∆ ` P J Φ⇒ Ψ,

α . F X̃ $̃Y (P X̃ $̃Y ),Ψ′ J ◦

∆ ` #c on α ; P J Φ⇒ Ψ, α . P X̃ $̃Y ,Ψ′ J ◦
consChannel

Table 7.10: Rules related to protocols
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7.2.2 Coprotocols

Here we introduce the rules for coprotocols. Like protocols, coprotocol definitions can be

added to the context. A coprotocol definition in the context delivers: type constructors

(i.e. the name of the coprotocol with its arguments), coprotocol destructors, match, and

the drive combinator. Unlike sequential world, in the concurrent world we do not have

different recursive combinators for protocols and coprotocols. The symmetry between input

and output polarity processes allows us to have one syntax for the recursive combinator, the

drive, in the concurrent world.

The first rule introduces a coprotocol into the context:

{∆, X̃ : •, $̃Y : ◦, $̃C : ◦ ` Gji X̃ $̃Y $Cj : ◦}i=1 ··· k and j=1 ···n

∆,

coprotocol $C1 ⇒ E1 X̃ $̃Y = {#d1i : G1i X̃ $̃Y $C1}i=1,··· ,k

...

and $Cn ⇒ En X̃ $̃Y = {#dni : Gni X̃ $̃Y $Cn}i=1,··· ,k

context

CoProtocolIntro

Example 7.2.4.

(1) In the following example a coprotocol is introduced into the context:

...
A : •, B : •, C : • context

A : •, B : •, C : • ` A : • TypeProj
...

A : •, B : •, C : • ` (B � C) :: ◦
TypePut

A : •, B : •, C : • ` A� (B � C) :: ◦
TypeGet

coprotocol C ⇒ Respond(AB) =

#cresponse :: C ⇒ A� (B � C)
context

CoprotocolIntro

(2) In the following example a mutual recursive coprotocol is introduced into the context:
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...
∆`B � D :◦ TypePut

...
∆`A� C :◦ TypeGet

coprotocol C ⇒ CoTalk(AB) =

#coresponse :: C ⇒ (B � D)

and D => CoRespond(AB) =

#colisten :: D ⇒ (A� C)

context

CoprotocolIntro

7.2.2.1 Typing process destructors

The following rule is the typing rule for a process destructors:

∆ context

∆ ` #dni : ΛX̃.Π$̃Y .Gni X̃ $̃Y (Ei X̃ $̃Y ) : • → · · · → ◦ · · · → ◦
CPDes

where ∆ contains

coprotocol $C1 ⇒ E1 X̃ $̃Y = {#d1i : G1i X̃ $̃Y $C1}i=1,··· ,k

...

and $Cn ⇒ En X̃ $̃Y = {#dni : Gni X̃ $̃Y $Cn}i=1,··· ,k

Example 7.2.5.

In the following example, the process destructor #cresponse of coprotocol Respond (A B)

is pulled out from the context:

...
∆ context

∆`#cresponse : ΛAB.(RespondAB)→A�(B�(Respond A B)) :• → • → ◦ CPDes

where, ∆ contains
coprotocol C ⇒ Respond(A B) =

#cresponse :: C ⇒ A� (B � C)

7.2.2.2 Typing coprotocol constructors

The following rule shows how to type check a coprotocol constructors in a coprotocol defini-

tion:

∆ context
∆ ` Ei : • → · · · → ◦ · · · → ◦ CPTypeCons
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where ∆ contains

coprotocol $C1 ⇒ E1 X̃ $̃Y = {#d1i : G1i X̃ $̃Y $C1}i=1,··· ,k

...

and $Cn ⇒ En X̃ $̃Y = {#dni : Gni X̃ $̃Y $Cn}i=1,··· ,k

Example 7.2.6.

The following example shows how to extraxt a coprotocol constructor from the context:

∆ context
∆ ` Respond : • → • → ◦ CPTypeCons

where, ∆ contains
coprotocol C ⇒ Respond(A B) =

#cresponse :: C ⇒ A� (B � C)

7.2.2.3 Process destructors on a channel

We can apply a process destructor on any channel. The following rules shows how to type

check destructor on a channel:

∆ ` #d : G X̃ $̃Y (E X̃ $̃Y ) : ◦
∆ ` P J Φ⇒ Ψ,

α . G X̃ $̃Y (E X̃ $̃Y ),Ψ′ J ◦

∆ ` #d on α ; P J Φ⇒ Ψ, α . E X̃ $̃Y ,Ψ′ J ◦
desChannel

Example 7.2.7. Consider the following example to explore the CPDes and desChannel step

in the type system:
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...
∆ context

∆`

#response :

(Respond A B)→A�(B�(Respond A B))

:◦

CPDes

...

∆`

get a onα.

put a onβ; get b onβ.

put b onα.closeα; endβ

Jα.A�(B�(Respond A B))⇒

β.A�(B�(Respond A B))J◦

∆`

#response on α;

get a on α.

put a on β;

get b on β.

put b on α.

close α;

end β

J
α.(Respond A B)⇒

β.A�(B�(Respond A B))
J◦

desChannel

All the rules related to user defined coprotocols are collected in the Table 7.11.

7.2.3 Typing match

The typing rules for match are given here:

{∆ ` Pi :: Φ, α . F X̃ $̃Y (P X̃ $̃Y ),Φ′ ⇒ Ψ :: ◦}i=1···n

∆ `
match α as

{#ci : Pi}i=1···n

:: Φ, α . P X̃ $̃Y ,Φ′ ⇒ Ψ :: ◦

matchL

{∆ ` Ei :: Ψ⇒ Φ, α . G X̃ $̃Y (E X̃ $̃Y ),Φ′ :: ◦}i=1···n

∆ `
match α as

{#di : Ei}i=1···n

:: Ψ⇒ Φ, α . E X̃ $̃Y ,Φ′ :: ◦

matchR

The match is similar to case or record operation.
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{∆, X̃ : •, $̃Y : ◦, $̃C : ◦ ` Gji X̃ $̃Y $Cj : ◦}i=1 ··· k and j=1 ···n

∆,

coprotocol $C1 ⇒ E1 X̃ $̃Y = {#d1i : G1i X̃ $̃Y $C1}i=1,··· ,k
...

and $Cn ⇒ En X̃ $̃Y = {#dni : Gni X̃ $̃Y $Cn}i=1,··· ,k

context CoProtocolIntro

∆ context

∆ ` #dni : ΛX̃.Π$̃Y .Gni X̃ $̃Y (Ei X̃ $̃Y ) : • → · · · → ◦ · · · → ◦ CPDes

∆ context
∆ ` Ei : • → · · · → ◦ · · · → ◦ CPTypeCons

∆ ` #d : G X̃ $̃Y (E X̃ $̃Y ) : ◦
∆ ` P J Φ⇒ Ψ,

α . G X̃ $̃Y (E X̃ $̃Y ),Ψ′ J ◦

∆ ` #d on α ; P J Φ⇒ Ψ, α . E X̃ $̃Y ,Ψ′ J ◦
desChannel

Table 7.11: Rules related to coprotocols
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Example 7.2.8. In the following example, match is used to build the process which can

reflect any message that is received on its inout polarity channel:

protocol Reflector (a) => $C =

#Reflect :: put a (get a bottom) => $C

Mirror :: () Reflector (a) =>

Mirror user => =

match user as

#Reflect: get n on user . put n on user ; end user

The proof tree for the process body is:

n : A : • ` n : A : • TermProj
n : A : • context

n : A : • ` end user J user .⊥ ⇒J ◦
endL

n : A : • `
put n on user;

end user
J user . (A� ⊥)⇒J ◦

putR

`

get n on user.

put n on user;

end user

J user . (A� (A� ⊥))⇒J ◦

getR

∆ `

match user with

#Reflect : get n on user.

put n on user;

end user

matchL

7.2.4 The drive operation

While in the sequential world, MPL has fold for inductive datatypes and unfold for coin-

ductive datatypes, the symmetry in the concurrent world gives rise to only one operation,

drive for both folds and unfolds. Here is the rule for the drive combinator:
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 ∆, X̃ : •, Ṽ : ◦, Ỹ : ◦, Qi :: Φ,Yi,Φ′ ⇒ Ψ :: ◦, x̃ : T̃ ′ : • `

tji J Φ, α . ((Fji T̃ T̃ ) Ỹ),Φ′ ⇒ Ψ J ◦


i

∆,

drive

ΠṼ .ΛX̃.λx̃.Q1 :: T̃ ′ → [α̃1 ⇒ β̃1] Φ1, α . P1 T̃ T̃ ,Φ′1 ⇒ Ψ1 :: ◦

:= [α̃1 ⇒ β̃1] on γ1 {#c1i : t1i}i
...

ΠṼ .ΛX̃.λx̃.Qn :: T̃ ′ → T̃ ,Φ′n ⇒ Ψn :: ◦

:= [α̃n ⇒ β̃n] on γn {#cni : tni}i

context

drive

Example 7.2.9. In the following example, drive is used to add numbers and output the

state of the counter on demand:

π1

∆,∆′ ` get i on α; call (Counter(add n i)(α⇒)

J (α . N� X ⇒) J ◦

π2

∆,∆′ ` put n on α; end α

J (α . N� ⊥⇒) J ◦

∆,

drive

λn.Counter :: [α⇒ ] N→ (α . Ping⇒ ) :: ◦ :=

[α⇒ ] by α

#Ping : get i on α; call (Counter(add n i)(α⇒))

#Pong : put n on α; end α

context

drive

∆ =

protocol Ping⇒ C1 =

#Ping :: N� C1 ⇒ C1

#Pong :: N� ⊥⇒ C1

,
data N→ C = Zero : C

Succ : C→ C

∆′ = X : ◦, Counter :: N→ (X ⇒ ) :: ◦, n : N : •

The completed proof will be given in Appendix C.
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Chapter 8

Conclusion and Future Work

This thesis describes a type system for the Message Passing Language (MPL). We began with

a detailed description of the language which is based on Cockett and Pastro’s message passing

logic [?] with the addition of concurrent datatypes or protocols. This thesis provides a “proof

of concept” by developing examples of programs written in MPL. Some more substantial

examples are given to illustrate the expressiveness of MPL.

After the description and examples of MPL, a type system for the sequential world was

given and followed by a type system for the concurrent world. These two type systems

constitute the type system for MPL which is the basis of type checking and type inference

in MPL.

Future work This thesis provides a detailed description of MPL with examples and

also provides a complete type system for MPL. However, in this thesis we did not explicitly

describe the type inference algorithm which allows one to infer types for any MPL program.

The type system given here provides the basis of this type inference system; however, one also

requires an annotation of the rules and a generalized unification procedure (which includes

universally quantified types).

As has been mentioned, there is still no complete implementation of MPL. There is

considerable work still required to complete the implementation. It will be useful to compile

the language to an abstract machine and to provide an interpreted environment for the

programs in order to fully assess the language.
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Appendix A

Grammar for Message Passing Language

A mpl program consists of a list of definitions followed by a command to run a process.

To run a process one uses the keyword run followed by the process name, which must start

with upper case letter.

MPL -> Defns run name_upper .

Defns -> Defns Defn symb_semi | .

A definition is either a sequential definition or a concurrent definition. A sequential

definition can be a type definition or a function definition. Similarly, a concurrent definition

can be a type definition or a process definition.

Defn -> SDefn | CDefn.

SDefn -> STypeDefn | SFunctionDefn .

CDefn -> CTypeDefn | CProcessDefn .

A.1 User defined types

Sequential type definitions are either data or codata definitions. A data definition starts

with the keyword data and can be mutually recursive, in which case it consists of multiple

clauses connected by the keyword and.

STypeDefn -> SData | SCodata .

SData -> data SDataClause SDataClauses .

SDataClauses -> SDataClauses and SDataClause | .

111



Each clause of a data definition is started with the sequential type name which is being

declared and can have type variables as arguments, then there is a rightarrow followed by a

state variable. The state variable is followed by an equal sign,“=”, and a sequence of phrases

which are specifications of the constructors for the declared type.

SDataClause -> STypeSpec symb_arrowr name_lower symb_eq SDataPhrases .

STypeSpec -> name_upper STDefParams .

STDefParams -> STDefParams name_lower | .

SDataPhrases -> SDataPhrase | SDataPhrases SDataPhrase .

A constructor specifications start with a constructor name. Constructor names must start

with an upper case letter. The constructor is followed by a colon, and the type specification

of the constructor.

SDataPhrase -> name_upper symb_colon SType symb_semi .

The type specification is not only used for specifying a constructor, it is used whenever

the type of all sequential terms is required. A type specification can be either a variable

of the data or a sequential type constructor applied to a sequence of types or a tuple. The

tuple takes care of products of types.

SType -> SArrowedTypes .

SArrowedTypes -> STypePart

| SArrowedTypes symb_arrowr STypePart .

STypePart -> name_lower | STuple | name_upper STParams .

STParams -> STParams STParam | .

STParam -> name_upper | name_lower | STuple .

STuple -> symb_parenl symb_parenr
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| symb_parenl STypeList symb_parenr .

STypeList -> SType | STypeList symb_product SType .

Codata is similar to data but it starts with the keyword codata which is followed by a

state variable, a rightarrow, and the codata type constructor with its parameters.

SCodata -> codata SCodataClause SCodataClauses .

SCodataClauses -> SCodataClauses and SCodataClause | .

SCodataClause -> name_lower symb_arrowr STypeSpec symb_eq SDataPhrases .

A.2 User defined protocols

Concurrent type definitions are either protocol or coprotocol definitions. A protocol defini-

tion starts with the keyword protocol. A protocol definition can be mutually recursive, in

which case it consists of multiple clauses connected by the keyword and.

CTypeDefn -> Protocol | Coprotocol .

Protocol -> protocol CProtocolClause CProtocolClauses .

CProtocolClauses -> CProtocolClauses and CProtocolClause | .

Each clause of a protocol definition is started with a protocol constructor, the name of

the protocol, followed by its sequential arguments and concurrent arguments. Following a

double rightarrow “=>” to the state variable which is always started with “$”. The state

variable is followed by “=” and a sequence of clauses which are specifications of the process

constructors. Types in the concurrent world, unlike those in the sequential world, may

take two kinds of parameters namely sequential types, or other protocols. When defining a

parameterized protocol, the parameter list must be split in two, with the list of sequential

parameters parenthesized: it can be empty but must be there. After the closing parentheses,
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the list of concurrent parameters is supplied (it can be empty). This is a pattern which is

repeated whenever parameters must be specified in the concurrent world.

CProtocolClause -> CTypeSpec symb_darrowr name_dollared

symb_eq CDataPhrases .

CTypeSpec -> name_upper CTDefSParams CTDefParams .

CTDefSParams -> symb_parenl STDefParams symb_parenr | .

CTDefParams -> CTDefParams name_dollared | .

CDataPhrases -> CDataPhrase | CDataPhrases CDataPhrase .

Process constructor specifications start with a process constructor name. Process con-

structor names always start with an “#”. The constructor is followed by “::” and the type

specification of the constructor. Like the data clauses in the sequential world, each clause

of the protocol (respectively coprotocol) definition consists of a constructor (respectively

destructor) followed by zero or more parameters. These parameters may be another named

type, or may be one of the types over which the protocol (respectively coprotocol) has itself

been parameterized. Additionally, as with products of sequential types, they may be tensors

(or cotensors) over multiple concurrent types. This includes the empty tensor > (or empty

cotensor ⊥). While the elements of a tensor over concurrent types are seperated by “(x)’

(as with elements of a product of sequential types), elements of a cotensor are seperated by

the “(+)” symbol.

CDataPhrase -> name_hashed symb_dcolon CType symb_darrowr

name_dollared symb_semi.
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A.3 Concurrent types (or protocols)

The concurrent type itself may be a named protocol, an anonymous (concurrent) type, a

tensor or cotensor of types (including the empty > and ⊥), or it may be a transaction type.

A transaction type consists of a sequential type which is either sent or recieved (indicated

by the keywords put and get, respectively), followed by the rest of the protocol. A named

protocol may be parmeterized over other types, either in the sequential or the concurrent

world. As with the protocol definition, the parameter list (if present) must be split into

two, with the (possibly empty) list of sequential parameters parenthesized. After the closing

parentheses, the (possibly empty) list of concurrent parameters is supplied.

CType -> name_dollared | CNamed | CMultip | CMsgPut

| CMsgGet | top | bottom.

CNamed -> name_upper symb_parenl STParams symb_parenr CNameParams .

CNameParams -> CNameParams CNameParam | .

CNameParam -> name_dollared | name_upper | CMultip | CMsgPut

| CMsgGet | top | bottom .

CMultip -> symb_parenl symb_parenr

| symb_parenl CMultip1 .

CMultip1 -> CType symb_parenr

| CType symb_tensor CTensorParts symb_parenr

| CType symb_par CCotensorParts symb_parenr .

CTensorParts -> CType | CTensorParts symb_tensor CType .

CCotensorParts -> CType | CCotensorParts symb_par CType .

CMsgPut -> put STParam CNameParam .

CMsgGet -> get STParam CNameParam .
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A coprotocol is similar to a protocol but it is started with the keyword coprotocol which

is followed by a state variable and a double rightarrow “=>’ followed by the coprotocol name.

Coprotocol -> coprotocol CCoprotocolClause CCoprotocolClauses .

CCoprotocolClauses -> CCoprotocolClauses and CCoprotocolClause | .

CCoprotocolClause -> name_dollared symb_darrowr CTypeSpec symb_eq

CCodataPhrases .

CCodataPhrases -> CCodataPhrase

| CCodataPhrases CCodataPhrase .

CCodataPhrase -> name_hashed symb_dcolon name_dollared symb_darrowr

CType symb_semi .

A.4 Sequential function definitions

Function definitions may optionally be preceded by a line that explicitly assigns type to that

function followed by the function name which must start with lower case letter. Clearly, the

given type must correspond to the inferred type of the function. The function can have a

list of parameters which is followed by“=” and a sequential term.

SFunctionDefn -> name_lower SFTypeLine SPatternParams symb_eq

STerm symb_semi .

SFTypeLine -> symb_colon SType symb_semi name_lower | .

SPatternParams -> SPatternParams SPatternParam | .

SPatternParam -> name_lower | symb_undersc .
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A.5 Sequential terms

A sequential term can be either a function call or a product or a case operation or a record

construct or a constructor or a fold or unfold operaton which is followed by an optional

where clause.

STerm -> STerm1 WhereClause .

STerm1 -> SCall | SProd | SCase | SRecord | SCons | SFold | SUnfold .

A function call started with the name of the function which may take parameters.

SCall -> name_lower SFParams .

SFParams -> SFParams SFParam | .

SFParam -> name_lower | name_upper | SProd .

The product is a (possibly empty) comma-seperated list of terms, enclosed in parentheses.

SProd -> symb_parenl symb_parenr

| symb_parenl SProdParts symb_parenr .

SProdParts -> STerm1

| SProdParts symb_product STerm1 .

The sequential case is used to extract terms from a product, or may be used to decompose

a datatype, selecting from among the constructors of which it is comprised. It is started

with the keyword case followed by a sequential term, the keyword of, and then one or more

case patterns.

SCase -> case STerm1 of SCasePatterns

| case STerm1 of SProdPattern symb_semi .
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The patterns that can be matched against may therefore be a product of names, a

constructor, followed by the names of its arguments, or the symbol “ ” . This last pattern

(if present) matches any term that is not matched to another preceding pattern.

SCasePatterns -> SCasePattern SCasePatterns1 symb_semi SElsePattern .

SCasePatterns1 -> SCasePatterns1 symb_semi SCasePattern | .

SCasePattern -> name_upper SPatternParams symb_arrowr STerm1 .

SElsePattern -> symb_undersc symb_arrowr STerm1 symb_semi | .

SProdPattern -> symb_parenl symb_parenr symb_arrowr STerm1

| symb_parenl SProdPattern1 symb_parenr symb_arrowr STerm1 .

SProdPattern1 -> name_lower | SProdPattern1 symb_product name_lower .

The dual of the sequential case is record which is started with the keyword record. This

is used to construct codata by associating values to the destructors.

SRecord -> record SRecordParts symb_semi .

SRecordParts -> SRecordPart

| SRecordParts symb_semi SRecordPart .

SRecordPart -> name_upper symb_arrowl STerm1 .

One may apply either a constructor or a destructor to its arguments:

SCons -> name_upper SFParams .

A fold over a datatype allows for multiple named circular rules, preceded by the keyword

fold and seperated by the keyword and. Each rule may take multiple parameters, with the

parameter on which the recursion will act specified by the keyword by.

SFold -> fold SFoldPhrases .
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SFoldPhrases -> SFoldPhrase | SFoldPhrases and SFoldPhrase .

SFoldPhrase -> name_lower SPatternParams by name_lower as

SFoldConstrs symb_semi .

SFoldConstrs -> SFoldConstr

| SFoldConstrs symb_semi SFoldConstr symb_semi .

SFoldConstr -> name_upper SPatternParams symb_arrowr STerm1 .

The dual to the fold is unfold. It has similar syntax as fold but it is started with the

keyword unfold.

SUnfold -> unfold SUnfoldPhrases .

SUnfoldPhrases -> SUnfoldPhrase

| SUnfoldPhrases and SUnfoldPhrase .

SUnfoldPhrase -> name_lower SPatternParams as SUnfoldDestrs symb_semi .

SUnfoldDestrs -> SUnfoldDestr

| SUnfoldDestrs symb_semi SUnfoldDestr symb_semi .

SUnfoldDestr -> name_upper symb_arrow STerm1 .

The keyword where may follow any term, allowing the definition of further local func-

tions:

WhereClause -> where SFunctionDefns | .

SFunctionDefns -> SFunctionDefns SFunctionDefn symb_semi | .

A.6 Process definitions

Process definition starts with process name which must starts with upper case letter. It

is follwed by the process type. In the process definition, arguments are specified in the
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following order: the list of names corresponding to sequential term parameters which is

enclosed in parentheses, the name corresponding to the process parameter is optional, but

if present enclosed in curly braces, the list of names corresponding to input channels which

are seperated by commas. This is followed by a double arrow, then the required comma

separated list of names corresponding to output channels.

CProcessDefn -> name_upper CPTypeLine CPParams symb_eq CTerm symb_semi .

CPParams -> CPatternPParam CPatternVParams CPatternParams | .

CPatternPParam -> symb_bracel name_upper symb_bracer | .

CPatternVParams -> symb_parenl SPatternParams symb_parenr | .

CPatternParams -> CChannels symb_darrowr CChannels .

CChannels -> name_lower CChannels1 | .

CChannels1 -> CChannels1 symb_comma name_lower | .

Process is always preceded by a line that explicitly assigns a type to that process. A

process type line mirrors the structure of the argument list, where instead of a name for each

argument, the type of the intended argument is given.

CPTypeLine -> CCType symb_dcolon CPType symb_semi name_upper.

CCType -> symb_bracel CPType symb_bracer | .

CPType -> CCType symb_parenl CPSTypes symb_parenr CPTParams

symb_darrowr CPTParams .

CPSTypes -> SType STypes | .

STypes -> STypes symb_comma SType | .

CPTParams -> CType CPTParams1 | .

CPTParams1 -> CPTParams1 symb_comma CType | .
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A.7 Concurrent terms

A concurrent term can be formed in one of the 13 ways each of them described seperately

below:

CTerm -> CTerm1 WhereClause .

CTerm1 -> CID | CCall | CSplit | CFork | CClose | CEnd

| CGet | CPut | CConstr | CMatch | CCase | CPlug | CDrive .

This identity term coresponds to channel identity that specifies that an input channel is

to be connected directly to an output channel.

CID -> name_lower symb_deq name_lower .

When calling another process, the ususal structure (i.e. the same as is used when defining

a process) is used for specifying arguments. A comma-separated list of sequential terms is

enclosed in parentheses. This is followed by an optional process name enclosed in curly

braces, then two comma-separated lists of channel names, with the two lists partitioned

by a double arrow “=>”. If the process being called does not take any arguments, or its

arguments are all already in the context, with their intended names (e.g. when recursing

inside a circular term), then the argument list mat be omitted entirely.

CCall -> call name_upper CCallParams .

CCallParams -> CCallPParam CCallSParams CChannels symb_darrowr CChannels | .

CCallPParam -> symb_bracel name_upper symb_bracer | .

CCallSParams -> symb_parenl symb_parenr

| symb_parenl STerm1 STerms symb_parenr | .

STerms -> STerms symb_comma STerm1 | .
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A channel splitting consists of assigning names to channels into which a channel is to be

split and it is preceded by a keyword split. This is followed by the channel name which is

going to be split and a keyword into. This is followed by a comma-separated list of channel

names, enclosed in parentheses and rightarrow preceeded by a process.

CSplit -> split name_lower into symb_parenl CChannels symb_parenr

symb_arrowr CTerm1 .

A channel forking is the dual of channel splitting. This starts with the keyword fork

which is followed by a channel name to be forked and the keyword as. This is followed by

forked parts where each consists of the forked channel names with optional assciated channel

name and an assigned term which can be called.

CFork -> fork name_lower as CForkParts symb_semi .

CForkParts -> CForkPart

| CForkParts symb_semi CForkPart .

CForkPart -> name_lower with CChannels symb_arrowr CTerm1 .

The closing of a channel is started with the keyword close which is follwed by the channel

name. This is follwed by a concurrent term continuing the process. To end a process one

starts with the keyword end followed by the channel name.

CClose -> close name_lower symb_semi CTerm1 .

CEnd -> end name_lower .

Message passing is performed using the get and put operations. The receiving of message

is done with a get operation. This comes in the following order: the keyword get, then

the message (sequential term) that is going to be recieved, the keyword on, the channel on

which the message is going to be recieved. This is followed by a concurrent term in which
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the received message is bound. For sending a message the keyword put, then the message

(a sequential term) that is going to be sent, the keyword on, and the channel on which the

message is going to be sent. This is followed by a process to be continued after sending the

message.

CGet -> get name_lower on name_lower symb_bdot CTerm1 .

CPut -> put STerm1 on name_lower symb_semi CTerm1 .

Putting a constructor onto a channel to unwrap a user defined protocol is achieved by

writing the constructor’s and channel’s names.

CConstr -> name_hashed On name_lower symb_semi CTerm1 .

Matching on a channel reveals its constructor, analogus to casing on a sequential term.

This starts with the keyword match followed by the channel name and the keyword as.

This is followed by the constructor that one wants to see on the channel and a concurrent

term.

CMatch -> match name_lower as CMatchParts .

CMatchParts -> CMatchPart CMatchParts1 symb_semi CElsePart .

CMatchParts1 -> CMatchParts1 symb_semi CMatchPart | .

CMatchPart -> name_hashed symb_colon CTerm1 .

CElsePart -> symb_undersc symb_colon CTerm1 symb_semi | .

Casing out a term in the context shares an identical syntax to the case sequential term

operation, save that each case specifies a concurrent term, not a sequential term.

CCase -> case STerm1 of CCasePatterns

| case STerm1 of CProdPattern symb_semi .
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CProdPattern -> symb_parenl symb_parenr symb_arrowr CTerm1

| symb_parenl SProdPattern1 symb_parenr symb_arrowr CTerm1 .

CCasePatterns -> CCasePattern CCasePatterns1 symb_semi CElsePattern .

CCasePatterns1 -> CCasePatterns1 symb_semi CCasePattern | .

CCasePattern -> name_upper SPatternParams symb_arrowr CTerm1 .

CElsePattern -> symb_undersc symb_arrowr CTerm1 symb_semi | .

To arrange for two processes to interact on a channel one plugs them together, and each

process is described using the same syntax as it is used to call a process. But it starts with

the keyword plug which is followed by another keyword on. This is followed by channel

name on which the plugging between two processes are to interact.

CPlug -> plug On name_lower name_upper CCallParams to

name_upper CCallParams .

Finally a recursive process is written using a similar syntax to the fold in the sequential

world but it starts with the keyword drive. One also needs to indicate by which channel the

process is going to be driven (whereas in case of fold one needs to indicate the sequential

term on which the recursion will act).

CDrive -> drive CDrivePhrases symb_semi .

CDrivePhrases -> CDrivePhrase

| CDrivePhrases symb_semi and CDrivePhrase .

CDrivePhrase -> name_upper CPParams by name_lower as CDriveConstrs symb_semi .

CDriveConstrs -> CDriveConstr

| CDriveConstrs symb_semi CDriveConstr .

CDriveConstr -> name_hashed symb_colon CTerm1 .
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Appendix B

Layout rules for MPL

In this appendix, the description of the layout rules for MPL are given.

The layout is handled by a preprocessing step between lexing and parsing. The first

preprocessing step is to remove comments. The next step is to identify lexographical tokens:

each token has a row and column number associated with it. In the next step the layout is

handled: the layout causes explicit tokens (layout semicolons), which can be seen as off-side

markers, to be added to the places determined by the layout algorithm. In MPL, one is not

allowed to write layout insensitive programs. Layout sensitive programs are converted into

layout insensitive programs internally by adding semicolons: the layout insensitive programs

are then used by the parser.

B.1 What is Off-Side rule?

The idea of the offside rule was described by Peter J. Landin, in [?]. He expressed it by:

“Any non-whitespace token to the left of the first such token on the previous line is taken

to be the start of a new declaration.” The main advantage of an offside rule is that it

replaces matching parenthesis or explicit separators by matching indentation which is more

convenient to a reader and programmer. MPL employs Landin’s idea of an offside rule,

with some additional of layout rules which are partially motivated by the layout rules of the

Haskell Report [?].
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B.2 Layout Rule

Before going into the detail description of layout rules, we introduce two terms:

Indentation of a token: The indentation of a token is the column number of the first

character of that token.

Indentation of a line: The indentation of a line is the column number of the first character

of the first token of the line.

By adding semicolons as off-side markers to the tokens, we produce layout insensitive form

of the tokens. To do this, a stack of indentations, the Indentation Context is maintained

starting with empty stack.

The layout program is divided into two parts: building the indentation context and

adding offside markers to the token list using offside rules.

B.2.1 Building Indentation Context

The indentation stack is be built gradually from the empty stack, as the layout program

goes through the token list, using the following rules:

• When the indentation context is empty and a token is encountered then the

indentation of that token is added to the stack.

• If one of the keywords as, where, in, fold, drive or of keywords or = is

encountered, the indentation is set to the indentation of the next token. This

means, the indentation of the next token is pushed onto the indentation stack.

B.2.2 Offside Rules

• When the input token list is empty then the output of the layout function will

be empty that is no offside marker (semicolon) is needed.
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• We will compare the column number of the current token to the head of the

indentation stack:

If the current column number is equal to the head of the stack then we

add an offside marker (a semicolon) to the output token list and continue with

the rest of the tokens.

If the current column number is less than the head of the stack then

we will add an offside marker to the token list and pop the head off of the

indentation stack and continue with the rest of the tokens.

Otherwise (that is, if the current column number is greater than the

head of the stack) we just continue with the rest of the tokens.
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Example B.2.1.

Consider the following program (layout sensitive program) written in MPL:

1 data Bool -> c = True : c

2 False : c

3 or : Bool -> Bool -> Bool

4 or x y =

5 case x of

6 True -> True

7 False -> y

One must write MPL programs using layout. But internally the same program with

explicit semicolon separators (after applying layout rule and making it layout insensitive by

adding offside markers) looks like :

1 data Bool -> c = True : c

2 ;False : c

3 ;;or : Bool -> Bool -> Bool

4 ;or x y =

5 case x of

6 True -> True

7 ;False -> y

We can also write the program equivalently with explicit semicolons in the following

manner:

1 data Bool -> c = True : c; False : c

2 or : Bool -> Bool -> Bool; or x y =

3 case x of

4 True -> True; False -> y
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Example B.2.2. Consider the following layout sensitive program written in MPL:

1 data Nat -> c = Zero : c; Succ : c -> c

2 protocol Ping => $C = #Ping :: put Nat $C => $C

3 #Pong :: get Nat bottom => $C

4 fold add : Nat -> Nat

5 add x y by x =

6 Zero -> y

7 Succ n -> Succ (add n y)

8 drive

9 PingCounter :: () Ping() =>

10 PingCounter (n) pinger => by pinger =

11 #Ping: get i on pinger . call PingCounter (add n i) pinger =>

12 #Pong: put n on pinger; end pinger

13

14 run PingCounter

One must write the program using layout. But internally, the same program with explicit

semicolon separators looks like :

1 data Nat -> c = Zero : c; Succ : c -> c

2 ;;protocol Ping => $C = #Ping :: put Nat $C => $C

3 ;#Pong :: get Nat bottom => $C

4 ;;fold add : Nat -> Nat

5 ;add x y by x =

6 Zero -> y

7 ;Succ n -> Succ (add n y)

8 ;;drive

9 PingCounter :: () Ping() =>

10 ;PingCounter (n) pinger => by pinger =

11 #Ping: get i on pinger . call PingCounter (add n i) pinger =>

12 ;#Pong: put n on pinger; end pinger

13

14 ;;;run PingCounter
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Appendix C

Extended examples of MPL

Example C.0.3.

The extended proof of example 6.4.7 is given below:

π1

∆, X : •, add : X → (Nat→ Nat) : •,

x : Nat : •, y : Nat : • ` y : Nat : •

π2

∆, X : •, add : X → (Nat→ Nat) : •,

x : Nat : •, y : Nat : •, n : X : •

` Succ (add n y) : Nat : •

∆,

fold

add : Nat→ Nat→ Nat

add x y by x :=

Zero→ y

Succ n→ Succ (add n y)

context

fold

Here, ∆ =
data Nat→ C = Zero : C

Succ : C→ C

π1 =

π3

∆, X : •, add : X → (Nat→ Nat) : •, x : X : •, y : Nat : • context

∆, X : •, add : X → (Nat→ Nat) : •, x : X : •, y : Nat : • ` y : Nat : • TermProj
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π3 =

π4
∆ context

∆, X :• context

∆, X : • ` X : •
TypeProj

π4
∆ context

∆, X :• context

∆, X :• ` Nat :•

π4
∆ context

∆, X :• context

∆, X :•`Nat : •

∆, X :•`Nat→ Nat :•
Implication

∆, X : • ` X → (Nat→ Nat) : •
Implication

new add

∆, X : •, add : X → (Nat→ Nat) : • context

∆, X :•, add :X → (Nat→ Nat) : •,

x :X : •`X :•

TypeProj

new x

∆, X : •, add : X → (Nat→ Nat) :•, x :X :• context

TypeVarIntro

∆, X :•, add :X → (Nat→ Nat) :•,

x :X :• ` Nat :•

TypeCons

new y

∆, X :•,

add :X → (Nat→ Nat)

:•, x :X :•, y : Nat :• context

TypeVarIntro

π4 =

π5

C : • ` C : •

π5

C : • ` C : •
π5

C : • ` C : •
C : • ` C → C : • Imp

data N→ C = Zero : C

Succ : C→ C
context

DataIntro

π5 =

ε context EmpCtxt new C
C : • context

TypeVIntro

C : • ` C : • TypeProj
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π2 =

π6

∆,∆′ context

∆,∆′ ` Succ : Nat→ Nat : • Cons
π7

∆,∆′ ` add n y : Nat : •

∆, X : •, add : X → (Nat→ Nat) : •, x : X : •, y : Nat : •, n : X : •

` Succ (add n y) : Nat→ Nat : •

TermApp

Here, ∆′ = X : •, add : X → (Nat→ Nat) : •, x : X : •, y : Nat : •, n : X : •

π6 =

π3

∆, X : •, add : X → (Nat→ Nat) : •, x : X : •, y : Nat : • context

∆, X : •, add : X → (Nat→ Nat) : •,

x : X : •, y : Nat : • ` X : •

TypVar

new n

∆,∆′ context
TermVarIntr

π7 =

π6

∆,∆′ ctxt

∆,∆′`add : X → Nat→Nat :• FunUse

π6

∆,∆′ ctxt

∆,∆′`n :Nat : • TermPrj

∆,∆′`add n :Nat→Nat :• TermApp

π6

∆,∆′ ctxt

∆,∆′`y :Nat :• TermPrj

∆,∆′`add n y :Nat :• TermApp
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Example C.0.4.

The extended proof of example 6.4.8 is given below:

π1

∆,∆′, () : 1 : •

` True : B

π2

∆,∆′, n1 : X : •

` odd(n1) : B

π1

∆,∆′, () : 1 : •

` True : B

π4

∆,∆′, n2 : X : •

` even(n2) : B

∆,

fold

even : N→ B

even x by x as

Zero 7→ True

Succ n1 7→ odd(n1)

odd : N→ B

odd x by x as

Zero 7→ False

Succ n2 7→ even(n2)

context

fold

∆ =
data N→ C = Zero : C

Succ : C→ C
,

data B→ C = True : C

False : C

∆′ = X : •, even : X → B, odd : X → B

π1 =

...
∆, X : •, even : X → B, odd : X → B, () : 1 : • context

∆, X : •, even : X → B, odd : X → B, () : 1 : • ` True : B Cons
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π2 =

...

∆, X : •, even : X → B,

odd : X → B, n1 : X : • context

∆, X : •, even : X → B,

odd : X → B, n1 : X : • ` n1 : N

TermProj

...

∆, X : •, even : X → B,

odd : X → B, n1 : X : • context

∆, X : •, even : X → B,

odd : X → B, n1 : X : • ` odd : N→ B

TermProj

∆, X : •, even : X → B,

odd : X → B, n1 : X : • ` odd(n1) : B

Cons

π3 =

π
∆, X : •, even : X → B, odd : X → B, () : 1 : • context

∆, X : •, even : X → B, odd : X → B, () : 1 : • ` True : B Cons

π4 =

...

∆, X : •, even : X → B,

odd : X → B, n2 : X : • context

∆, X : •, even : X → B,

odd : X → B, n2 : X : • ` n : N

TermProj

...

∆, X : •, even : X → B,

odd : X → B, n2 : X : • context

∆, X : •, even : X → B,

odd : X → B, n2 : X : • ` even : N→ B

TermProj

∆, X : •, even : X → B, odd : X → B, n2 : X : •

` even(n2) : B

Cons

Example C.0.5.

The extended proof of example 6.4.6 is given below:
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...
X : •, Y : •, t : (X × Y ) : • context

X : •, Y : •, t : (X × Y ) : •

` t : (X × Y ) : •

TermProj

...

X : •, Y : •, t : (X × Y ) : •,

x : X : •, y : Y : • context

X : •, Y : •, t : (X × Y ) : •,

x : X : •, y : Y : • ` y : Y : •

TermProj

...

X : •, Y : •, t : (X × Y ) : •,

x : X : •, y : Y : • context

X : •, Y : •, t : (X × Y ) : •,

x : X : •, y : Y : • ` x : X : •

TermProj

X : •, Y : •, t : (X × Y ) : •, x : X : •, y : Y : •

` (y, x) : (Y ×X) : •

TermProd

X : •, Y : •, t : (X × Y ) : •, (x, y) : (X × Y ) : •

` (y, x) : (Y ×X) : •

ProdPatt

X : •, Y : •, t : (X × Y ) : • `
case t of

(x, y)→ (y, x)
: (Y ×X) : •

casep

X : •, Y : • `
λt.case t of

(x, y)→ (y, x)
: (X × Y )→ (Y ×X) : •

λ− abst

X : • `
ΛY.λt.case t of

(x, y)→ (y, x)
: ΛY.(X × Y )→ (Y ×X) : • → •

TypeAbs

`
ΛX,Y.λt.case t of

(x, y)→ (y, x)
: ΛX,Y.(X × Y )→ (Y ×X) : • → (• → •)

TypeAbs
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Example C.0.6.

The extended proof of example 6.4.5 is given below:

π1

∆, a : Nat : •, () : 1 : •

` Zero : Nat : •

π2

∆, a : Nat : •, n : Nat : •

` n : Nat : •

∆, a : Nat : • `

case a of

Zero→ Zero

Succ n→ n

: Nat : •

case

∆ ` λa.

case a of

Zero→ Zero

Succ n→ n

: Nat→ Nat : •

λ− abst

Here, ∆ =
data Nat→ C = Zero : C

Succ : C→ C

π1 =

...
∆, a : Nat : •, () : 1 : • context

∆, a : Nat : •, () : 1 : • ` Zero : Nat : • TypeCons

π2 =

...
∆, a : Nat : •, n : Nat : • ctxt

∆, a : Nat : •, n : Nat : • ` n : Nat : • TermApp
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Example C.0.7.

The extended proof of example 7.2.9 is given below:

π1

∆,∆′ ` get i on α; call (Counter(add n i)(α⇒)

J (α . N� X ⇒) J ◦

π2

∆,∆′ ` put n on α; end α

J (α . N� ⊥⇒) J ◦

∆,

drive

λn.Counter :: [α⇒ ] N→ (α . Ping⇒ ) :: ◦ :=

[α⇒ ] by α

#Ping : get i on α; call (Counter(add n i)(α⇒))

#Pong : put n on α; end α

context

drive

∆ =

protocol Ping⇒ C1 =

#Ping :: N� C1 ⇒ C1

#Pong :: N� ⊥⇒ C1

,
data N→ C = Zero : C

Succ : C→ C

∆′ = X : ◦, Counter :: N→ (X ⇒ ) :: ◦, n : N : •

137



π1 =

π3

∆, X : ◦, Counter :: N→ (X ⇒ )

:: ◦, n : N : •, i : N : •

` (add n i) : N : •

π4

∆, X : ◦, Counter :: N→ (X ⇒)

:: ◦, n : N : •, i : N : • context

∆, X : ◦, Counter :: N→ (X ⇒ ) :: ◦, n : N : •,

i : N : • ` Counter :: N→ (X ⇒ ) :: ◦

ProcessProj

∆, X : ◦, Counter :: N→ (X ⇒ ) :: ◦, n : N : •, i : N : •

` Counter(add n i) :: (X ⇒ ) :: ◦

TermApp

∆, X : ◦, Counter :: N→ (X ⇒ ) :: ◦, n : N : •, i : N : • `

call (Counter(add n i)(α⇒ ) J (α . X ⇒) J ◦

Call

∆, X : ◦, Counter :: N→ (X ⇒ ) :: ◦, n : N : • `

get i on α; call Counter(add n i)(α⇒) J (α . N� X ⇒) J ◦

getL

π3 =
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π7

∆, X : ◦, Counter

:: N→ (X ⇒)

:: ◦, n : N : •, i : N : •

` add : N→ N→ N : •

π4

∆, X : ◦, Counter

:: N→ (X ⇒)

:: ◦, n : N : •, i : N : • ctxt

∆, X : ◦, Counter

:: N→ (X ⇒)

:: ◦, n : N : •, i : N : •

` n : N : •

TermProj

∆, X : ◦, Counter

:: N→ (X ⇒)

:: ◦, n : N : •, i : N : •

` add n : N→ N : •

TermApp

π4

∆, X : ◦, Counter

:: N→ (X ⇒)

:: ◦, n : N : •, i : N : • ctxt

∆, X : ◦, Counter

:: N→ (X ⇒)

:: ◦, n : N : •, i : N : •

` i : N : •

TermProj

∆, X : ◦, Counter

:: N→ (X ⇒)

:: ◦, n : N : •, i : N : •

` add n i : N : •

TermApp

π7 =
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π4

∆, X : ◦, Counter

:: N→ (X ⇒)

:: ◦, n : N : •,

i : N : • ctxt

∆, X : ◦, Counter

:: N→ (X ⇒)

:: ◦, n : N : •,

i : N : • ` N : •

TCon

π4

∆, X : ◦, Counter

:: N→ (X ⇒)

:: ◦, n : N : •,

i : N : • ctxt

∆, X : ◦, Counter

:: N→ (X ⇒)

:: ◦, n : N : •,

i : N : • ` N : •

TCon

π4

∆, X : ◦, Counter

:: N→ (X ⇒)

:: ◦, n : N : •,

i : N : • ctxt

∆, X : ◦, Counter

:: N→ (X ⇒)

:: ◦, n : N : •,

i : N : • ` N : •

TCon

∆, X : ◦, Counter

:: N→ (X ⇒)

:: ◦, n : N : •, i : N : •

` N→ N : •

TypImp

∆, X : ◦, Counter

:: N→ (X ⇒)

:: ◦, n : N : •, i : N : •

` N→ N→ N

: •

TypImp

new add

∆, X : ◦, Counter

:: N→ (X ⇒)

:: ◦, n : N : •, i : N : •

` add : N→ N→ N

: •

TVIntro

π4 =
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π5

∆, X : ◦, Counter :: N→ (X ⇒) :: ◦, n : N : • context

∆, X : ◦, Counter :: N→ (X ⇒) :: ◦, n : N : • ` N : • TypeCons
new i

∆, X : ◦, Counter :: N→ (X ⇒) :: ◦, n : N : •, i : N : • context
TermVarIntro

π5 =

∆, X : ◦ ctxt
π6

∆, X : ◦

` N : •

TypeCon

π6

∆, X : ◦ ctxt

∆, X : ◦

` X : ◦

TypeProj

∆, X : ◦

` (X ⇒ ) :: ◦

ProcessTyp

∆, X : ◦

` N→ (X ⇒ ) :: ◦

PTypTypAbs

new Counter

∆, X : ◦, Counter

:: N→ (X ⇒ ) :: ◦ ctxt

ProcessName

∆, X : ◦, Counter

:: N→ (X ⇒ ) :: ◦ ` N : •

TypeCon

new n

∆, X : ◦, Counter :: N→ (X ⇒ )

:: ◦, n : N : • ctxt

TermVarIntr

π6 =
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π8

∆ context new X
∆, X : ◦ context

TypeVarIntro

π2 =

π5

∆, X : ◦, Counter :: N→ (X ⇒ )

:: ◦, n : N : • context

∆, X : ◦, Counter :: N→ (X ⇒ )

:: ◦, n : N : • ` n : N : •

TermProj

π5

∆, X : ◦, Counter :: N→ (X ⇒ )

:: ◦, n : N : • context

∆, X : ◦, Counter :: N→ (X ⇒ )

:: ◦, n : N : • ` end α J (α .⊥ ⇒) J ◦

endL

∆, X : ◦, Counter :: N→ (X ⇒ ) :: ◦, n : N : • `

put n on α; end α J (α . N� ⊥⇒) J ◦

putL

π8 =

π9

∆′′ context
∆′′ ` N : •

TypeCons ∆′′ context
π9

∆′′ ` C1 : ◦
TypeProj

∆′′ ` N� C1 : ◦
getL

π9

∆′′ context
∆′′ ` N : •

TypeCons

π9

∆′′ context
∆′′ ` C1 : ◦

TypeProj

∆′′ ` N� ⊥ : ◦
getL

data N→ C = Zero : C

Succ : C→ C
,

protocol Ping⇒ C1 =

#Ping :: N� C1 ⇒ C1

#Pong :: N� ⊥⇒ C1

context

ProtocolIntro
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where, ∆′′ =
data N→ C = Zero : C

Succ : C→ C
, C1 : ◦

π9 =

data N→ C = Zero : C

Succ : C→ C
context

π10

new C1

data N→ C = Zero : C

Succ : C→ C
, C1 : ◦ context

TypeVarIntro

π10 =

C : • ` C : •
π11

C : • ` C : •
π11

C : • ` C : •
π11

C : • ` C → C : • Imp

data N→ C = Zero : C

Succ : C→ C
context

DataIntro

π11 =

ε context EmpCtxt new C
C : • context

TypeVIntro

C : • ` C : • TypeProj
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