
Attribute systems and plumbing diagrams

Andrew Seniuk Robin Cockett

March 26, 2007

1 Introduction

The purpose of these notes is to provide a gentle introduction to attribute systems using plumbing
diagrams. These notes were developed to supplement the course material of CPSC411, Introduc-
tion to Compilers, and employ a graphical representation of attribute systems, called “plumbing
diagrams”, in order to represent, particularly, the semantic analysis stage of a simple compiler.
Attribute systems are usually associated with a context free grammar, however, in these notes and
in the class we associate them more generally with datatypes and view them as a way of expressing
a computation on a datatype. This makes them more generally applicable and provides those who
get to understand what they are about a powerful program development tool.

2 What is an attribute system?

From a pragmatic viewpoint, an attribute system is a specification of a program. Given a datatype,
an attribute is some computable characteristic (e.g. numeric value, type, or space requirement) for
which a program is wanted. An attribute system indicates how the attribute is calculated, and
usually this involves showing how it is computed from other attributes. A given datatype may
have many different attribute systems associated with it, each one for computing corresponding
attributes. Once you have a valid attribute system it can be used as a template to write actual
code which, if the translation is done correctly, is guaranteed to work.

Attribute systems at first sight are rather complex things so we shall approach them from an
informal point of view to start with. Plumbing diagrams such as the sample shown in Figure 1
provide a visual representation of the complexities of attribute systems and will be used throughout

1

these notes. When developing your own attribute systems, you are strongly encouraged to work
them out (and present them) as plumbing diagrams.

− +

− +

− +

−

− +

Synthesized

Component

Attribute+

Dependency

Interface

f v n =
ase n>v ofTrue-->[n℄
4

7 1ff

f ++

++

False-->[℄

v::Int lst::[Int℄

Figure 1: Typical plumbing diagram of an attribute system.

An attribute system is made up of components, which may be connected together in any number
and arrangement consistent with the types of the interfaces. One may think of each component
as a piece of plumbing and the interface as a plug: each plug has a special configuration and
two components can only be plugged together when the plugs at that interface match. The
components therefore naturally form a datatype in which the components are constructors whose
types determine the interfaces. In the example of Figure 1, the datatype is simply a binary tree
of integers:

Tree Int = NODE (Tree Int) (Tree Int)

| LEAF Int

2

This datatype has two constructors, and so there are two kinds of components possible in attribute
systems for this datatype, one for NODE and one for LEAF. In our particular example, the attribute
system computes the list of integers from the leaves of the tree (in left to right order) which have
value greater than a threshold v.

− +

− +

− +

− +++ LEAF
NODE

Nf
lst

lst1

v lst

v

v2 lst2v1

Figure 2: The two kinds of components possible in our attribute system of Figure 1.

The NODE component performs two computations (also called equations in the textbook):

• The integer v is copied into v1 and v2.

• Lists lst1 and lst2 are concatenated to give lst.

The LEAF component performs one computation: It applies the function f to the inherited attribute
v and the constant integer N, which returns a list either empty or singleton.

f v n = case n>v of

True-->[n]

False-->[]

Bear in mind that, while the computation in this example is very basic, it’s the idea of an attribute
system which is the point. Attribute systems provide us with a powerful tool for organizing and
writing correct code in cases where the computations involved are monstrously complex.

However, there is a danger of things going awry. Even though each component represents a sensible
computation, if precautions aren’t taken it may happen that a connected assemblage represents
a nonsensical computation. This is illustrated in Figure 3, to which we’ll return for a thorough
analysis in Section 5.

Since there is no limit to the number of components which can be assembled, and problems
might only become apparent in some very large assemblies, checking the validity of an attribute

3

4

− − + ++

− +

−

β

α

− − + ++

− +

−

4
β

α

Plumbing diagram exhibiting circular dependencies. This one represents a valid computation.

Figure 3: Depending on how components are connected up, cycles of dependencies may be possible; compo-
nent definitions which can give rise to such constructions do not constitute a valid attribute system.

system cannot be reduced to checking all possibilities. This is where some theory becomes useful:
in particular conditions regarding circularity will come to the rescue, as we’ll see after defining
attribute systems more formally.

3 Formal definition of an Attribute System

Here is the definition of an attribute system that we shall use. This is sometimes called a “strongly
non-circular” attribute system in compiler texts.

An attribute system consists of:

1. A mutually recursive collection of inductive datatypes (or a context free grammar).

2. For each type (non-terminal) a set of attributes which are labelled as either inherited (−) or
synthesized (+).

3. For each type (non-terminal) a dependency specification for each synthesized attribute upon
the inherited attributes.

4. With each constructor (production), a function for calculating:

(a) each synthesized parent attribute, and

4

− + Tree Int
lst::[Int℄v::Int

Figure 4: Synthesized and inherited attributes

(b) each child attribute to be inherited by underlying components.

5. The condition of strong non-circularity must be satisfied by the data above:

(a) When the dependencies of the children types (RHS nonterminals) are added to the depen-
dencies given by the functions, the dependency graph must have no cycles.

(b) At the parent interface (LHS nonterminal), the dependencies implied by this graph between
the attributes must all lie within the specified dependencies.

Given such a strong attribute system it is possible to automatically generate code which will
calculate the attributes. Let’s take a closer look at each of these defining properties.

1. A mutually recursive collection of inductive datatypes. We gave an example having one datatype
with two constructors; typical applications (such as intermediate code generation) are much more
complex than this example! We’ll look at some of these in later sections.

Tree Int = NODE (Tree Int) (Tree Int)

| LEAF Int

2. For each type a list of inherited and synthesized attributes. (These are the same for all
constructors of the type.)

3. For each type a list of dependencies. For each synthesized attribute, one possible dependency
may exist from each inherited attribute. In this example, there is only one datatype, and only one
inherited and one synthesized attribute, so the list of dependencies is simply v ` lst. Dependencies
are indicated in plumbing diagrams by small directed arcs between the attributes at an interface,
as illustrated in Figure 1.

4. A description of how you calculate the synthesized attributes in the head of a component
from inherited attributes from the parents and synthesized attributes from the children. These
descriptions are normally in the form of equations or functions. In this document some of these
are presented in a Prolog-like “definite clause language” (DCL) specifically designed for attribute

5

systems. Others are presented in Haskell. Our present example introduces the DCL calculations
for NODE and LEAF.

− +

− +

− +

++

lst1

v lst

v2 lst2v1

NODE
f [NODE(t1, t2)](x; lst)

:- f [t1](x; lst1),
f [t2](x; lst2),
lst := lst1++lst2.

f [LEAF (n)](v; lst)
:- v < n,

lst := [n],
:- lst := [].

− + LEAFNf
lstv

Probably the semantics of this DCL code are quite clear from a comparison with Figures 1 and
2. The idea of a DCL clause is that it acts on a datatype(s) (in this case trees). For each clause
what is in square brackets is matched to the datatype(s) being processed. The clause then has
arguments: those before the semicolon are input (inherited) those after are outputs (synthesized).
The body of the clause after “:-” and before the “.” are statements indicating what should be done.
If a statement in the body of a clause is a condition (e.g. x < n) which fails then the statements
of the clause are skipped till a handler is found (here the phrase starting with “:-”), otherwise one
continues. Thus the second clause calls for n to be returned as a singleton list only if it is greater
than x.

5. The conditions of an attribute system must be satisfied

(a) No cycles occur in the directed graph consisting of circuitry inside a component together
with the terminating (bottom, RHS) dependencies.

(b) The dependencies implied on the attributes in the head (top, LHS) of a component by
this digraph are contained in specified dependencies. A synthesized attribute is dependent on an
inherited attribute when to compute that attribute one may need to use the values of the inherited
attribute: this means there should be a computation path (in the circuitry) from the inherited
attribute to the synthesized attribute.

4 Plumbing Diagrams

Plumbing diagrams are a notation – a visual language – for attribute systems and their in-
stances. As seen in Figure 2 and Figure 1, respectively, they are an intuitive component-based
way to visually sum up all the elements of an attribute system and to present an arbitrary in-
stance. A component’s surface (the “pants”) represents the datatype constructor declaration

6

(e.g. Tree Int = NODE (Tree Int) (Tree Int)). The interface (aperture) at the top of a com-
ponent represents the parent type of the constructor, and is always present. A component also has
one bottom (child) interface per argument to the data constructor. The attributes are represented
as wires passing in or out of parent and child interfaces. Interfaces are labelled by their types, and
can be plugged together only if they are of identical types.1 The functions relating attributes are
represented as intra-component circuitry and multi-input/multi-output function boxes. Two types
of functions have distinguished notation: small, filled black triangles represent single-input/many-
output fanout (copy), and small, non-filled circles or ovals represent terminal values constructed by
the datatype. These latter elements behave like constant function boxes in the plumbing diagrams,
and represent actual data embedded in the datatype. For function boxes, the actual code must
be given somewhere – except when it is standard (such as ++). Note there is no requirement for
function box inputs or outputs to pass either up or down; and indeed any input or output line
might connect to the parent interface, a ch ild interface, or another function box, provided that
the conditions of an attri bute system are inviolate.

There is a one-to-one correspondence between kinds of plumbing components and constructors
of datatypes, although when a constructor takes a primitive type argument (such as Int), this
value is shown in a circle within the component rather than creating separate components for each
possible value of the primitive type. From the perspective of a context tree grammar (rather than
the datatype), these are the terminals. It is here that the datatype (or grammar) has a direct
influence on the attributes beyond a generic tree-structural one. We see this in the example of
Figure 1 with the integer constants. Note that an attribute computation may involve constants
of types which are quite independent of the datatypes of the attribute system. In such a case,
the constant is represented as a function box with no inputs – circles are reserved for constants
obtained from the datatype instance itself.

Finally, one should bear in mind the distinction between the plumbing diagrams for the components
of an attribute system (Figure 2), and the plumbing diagram of an instance of the attribute system
(Figure 1) in which not all components need appear but they are connected into a configuration
with only one root interface free. A contemplation of the range of structures entailed by this model
should convince you that it is very expressive. The terminal data circles in a plumbing diagram of
an abstract component can be thought of as empty, typed slots. The same circles in the plumbing
diagram of a concrete instance of the (strict) datatype would contain type-compatible values in
these slots.

Some parallels that exist between plumbing diagrams, attribute systems, context free grammars
and datatypes are summarized in Table 1.

1It should go without saying that no gross cycles are allowed by plugging any child interface into the parent
interface of any ancestor! This ruled out in our definition of an attribute system because the ductwork is supposed
to represent a instance of an inductive datatype (or parse tree of a c ontext free grammar), which is always acyclic.

7

Table 1: Some correspondences

Plumbing Attribute System Datatype
Ductwork Production Constructor
Interface Nonterminal Types
Inherited and synthesized attributes Type of (higher-order) fold
Circuitry Semantic rule Function used in fold

4

− − + ++

− +

−

Dependen
y fu
tionsthey synthesize.label the attribute
β δ

gv x y u
y u

A

CB

γ

α

z
k

z
fyv x

y

hv w
h[A(b, c)](v; w)

:- f [B](v, x; y),
g[C](y; z),
k[C](; u),
w := α(z, u),
x := γ(z).

f [B](v, x; y)
:- y := β(v, x).

g[C](y; z)
:- z := δ(y).

k[C](; u)
:- u := 4.

Figure 5: Tracing out the pathology of a circularity.

5 Strong Non-Circularity

Given an arbitrary assemblage of components with their attributes and circuitry2 (vis. a plumbing
diagram), there is no guarantee that the attempt to calculate an attribute will not lead to an
infinite (circular) calculation. Let’s consider the example of Figure 3(a) again: Figure 5 gives the
offending instance, with copious labelling. We’ve added a few function boxes to make the example
less perfunctory. Let’s try to write some code for the three constructors involved here and see
what happens.

Clearly there is no way to write a finite computation of attribute w in this instance, as w depends
on z, z depends on y, y depends on x, and x depends on z.3 So, it is not enough that the attributes
at the interfaces of the components all match up. What you need to ensure is that, given any

2Notice we don’t call it an attribute system, since then by definition it would not misbehave.
3Indeed, even if w had no dependence on the attributes x, y or z, this component would still violate 5(a) in our

definition of an attribute system.

8

− + +−

+
−

−
+

Figure 6: Violation of condition 5(b) for strong non-circularity: There are two implied dependencies on the
parent interface which are not part of the specified dependencies, presuming that all specified dependencies
are shown.

instance of the datatype (parse tree) and any attribute, it is always possible to calculate it. This
means that whatever tree you build, the calculations associated with the attributes must never
involve a cycle. Given that there may be infinitely many possible such trees you should note that
this is not something that can be simply checked by examining the possibilities!

It is possible to determine whether a “general” attribute system, as above, is non-circular but the
algorithm is exponential.4 However, there is a stronger notion, often called strong non-circularity ,
which is easy to check and is, in fact, the condition which is used in practise. The two requirements
for strong non-circularity were given by 5(a) and 5(b) in the definition of an attribute system. 5(a)
prevents explicit circular calculations within a component, and 5(b) checks that the specified
dependencies include all the implied dependencies which result from the circuitry. A failure of
5(a) indicates an error in your logical plan! Failure of 5(b) is more complicated: it may mean
you need to add some more specified dependencies to your attribute system (i.e. your choices in
step 3 of the definition were not sufficiently complete), after which 5(a) needs to be checked again
and, considering that the graph will now have additional arrows, the risk of a failure of condition
5(a) will increased. The nice thing about strong non-circularity is that one can check it merely be
running these checks on each component in isolation. However, there do exist computable attribute
systems which violate strong non-circularity – we are only assured that every strongly non-circular
attribute system is computable, not that such systems describe every possible computation.

Given the specified dependencies on the children nonterminals (RHS or argument types) and the
dependencies implied by the equations it is possible to generate for each production (or constructor)
a little directed graph where an arrow indicates a dependency. If this graph has no cycles and
the implied dependencies on the parent are always contained within the specified dependencies for

4See the text: in fact this check relies on determining all the possible dependencies which is what makes it
exponential.

9

that nonterminal (or type) then the attribute system will be non-circular.

The proof of this is as follows: suppose there is a (parse) tree with a cycle of dependencies then
there is a topmost nonterminal (type) through which this cycle passes. The cycle below this
nonterminal (type) produces a dependency −N.a → +N.b. This must be one of the specified
dependencies (a simple inductive argument on the underlying tree). But the cycle is formed by a
dependency +N.b → −N.a above the nonterminal which produces an instantaneous cycle in the
calculation of the graph for that production (constructor).

This means you can write the code!

6 Applications

6.1 Code to check that numbers are well-formed

As a one-paragraph crash course in the definite clause language (DCL), consider some example
code

base num [bn(N, B)](; z)
:- base[B](; b),

num[N](b; z).

dig [n](b; m)
:- n < b,

m := n.

Each group of statements corresponding to a constructor is a ‘clause’. The phrases of each clause
can contain guards which must evaluate to true in order to continue the normal evaluation of
clause. If a guard fails one looks for an exception handler. In Haskell this could be modelled with
an exception monad like Maybe or Error from the Haskell Standard Prelude. For example, dig
[n](b; n) = n < b. fails unless n < b in which case it synthesizes n.

We’re now ready to tackle the complete problem. Consider the following grammar for non-negative
integers, of base either octal or decimal. The plumbing diagram in Figure 7 illustrates a possible
parse relative to this grammar, along with attribute calculations for the value of the number. Note
that this value is a magnitude and has no particular base associated with it – the base is a feature
of the representation of the number, not a feature of its value.

10

(bn) based num → num basechar.

(bo) base → OCTAL

(bd) | DECIMAL.

(num1) num → num digit

(num2) | digit.

(dig) digit → 0 | 1 | 2 | ... | 9.

b

v
bn based num[bn(N, B)](; z)

:- base[B](; b),
num[N](b; z).

based num (BasedNum n bc) = z

where b = base bc

z = num n b

BASEbase
b

b base[OCTAL](; 8).
base[DECIMAL](; 10).

base OCTAL = 8

base DECIMAL = 10

num
v1 v2

v b
num1

num[num1(N, D)](b; v1*b+v0)
:- num[N](b; v1),

dig[D](b; v0).

num (Num1 n d) b = testOkay [v1,v0] v

where v1 = num n b

v0 = dig d b

v = ((fromOkay v1)*b+(fromOkay v0))

11

num1

num1

bn

bo

num2

dig1

dig7

dig2

num

num
dig

dig

dig

OCTAL

+ -synthesized inherited1
7

2
base

Figure 7: Plumbing diagram for computing the magnitude of the number encoded as "172o"bv
num2 num[num2(D)](b; v)

:- dig[D](b; v).

num (Num2 d) b = v

where v = dig d b

Ndig
v b

digN dig[n](b; n) :- n < b.

dig n b

| n < b = Okay n

| otherwise = NotOkay

12

The code for this computation is expressed in both DCL and Haskell. For more information about
the Okay monad, you can refer to Appendix A, but roughly speaking, testOkay returns its second
argument (wrapped in an Okay) if every element of the list in the first argument is Okay, and
returns NotOkay otherwise.

6.2 A simple symbol table, and let expressions

The symbol table is a list of identifiers [x1, y1, x2, ...] supporting two operations: insertion, and
membership test.

insert(x,st;st’) to add an element to the front of the list.

member(x,st;) to check for membership in the list.

Consider the following simple expression grammar.5

exp → exp + exp

| (exp)

| ID

| NUM

| LET decls IN exp.

decls → decls , dec

| dec.

dec → ID = exp.

data exp = ADD(exp,exp)

| PAR(exp)

| ID(string)

| NUM(int)

| LET(decls,exp)

data decls = MANY(decls,dec)

| ONE(dec)

data dec = DEC(string,exp)

Grammar Syntax Tree

A typical expression is then

let y = 22 in

(let x = 4+y , z=7+y in x+z+y)

Given an expression and a symbol table, how does one check whether the expression is well-formed?
It is well-formed if the values of variables are all declared before they are used. Thus the above is
well formed. Here is a summary of the scoping rules:

• The usual scope rule: that is if v is declared in D then v can be used in the term t in let D

in t).

5This grammar is both left-recursive and ambiguous! However, we shall just use the parse trees as the basis for
an attribute grammar; the technicalities of the parse are immaterial here.

13

• Simultaneous declaration semantics: a declaration can only use variable which are already
declared and these do not include the variables in the same declaration list. Thus, let x=3,

y=x in 2y is not legal.

In this attribute system if a retrieveal from the sytmbol table (which is a membership test) fails,
the whole expression is immediately deemed to be ill-formed. The following are the components
of an attribute system implementing this solution, with the plumbing diagram for an example
expression given in Figure 6.2. For the last three, the first symbol table is for checking expressions,
and the second symbol table is for collecting declarations.

st

exp

exp

exp
ADD valid exp[ADD(t1, t2)](st;)

:- valid exp[t1](st;),
valid exp[t2](st;).

valid exp (ADD t1 t2) st =

valid exp t1 st

valid exp t2 stst
PAR valid exp[PAR(t)](st;)

:- valid exp[t](st;).

valid exp (PAR t) st =

valid exp t st

memberstr
st

ID valid exp[ID(str)](st;)
:- member(str,st).

valid exp (ID str) st =

member str st

14

n
st

NUM valid exp[NUM(n)](st;).

valid exp (NUM n) st = True

st

de
ls exp
LET exp valid exp[LET(decls,exp)](st;)

:- valid decls[decls](st,st;st’)
valid exp[exp](st’;).

valid exp (LET decls exp) st

= valid exp exp st’

where st’ = valid decls decls st st

de
lsONEde

st1

st2
st

′

valid decls[ONE(dec)](st1, st2; st
′)

:- valid dec[dec](st1, st2; st
′).

valid decls (ONE dec) st1 st2 = st’

where st’ = valid dec dec st1 st2

de

valid_de
lsST,ST⊢ST valid_de
ST,ST⊢ST

de
lsMANY
de
ls

st1
st2 st

′

st
′′

valid decls[MANY(decls,dec)](st1, st2; st
′)

:- valid decls[decls](st1, st2; st
′′),

valid dec[dec](st1, st
′′; st′).

valid decls (MANY decls dec) st1 st2 = st’

where st’’ = valid decls t st1 st2

st’ = valid dec dec st1 st’’

15

insert
y

x 3
member

memberx
7

st

ADD
NUMID

ID
ADD

NUM

DECONE
LET

Figure 8: Plumbing diagram for testing validity of let x=7+y in 3+x. The outcome would depend on
whether the incoming table satisfied member(y,st;) or not.

str
insert

de

exp
DEC

st1
st2

st
′

valid dec[DEC(str,exp)](st1, st2; st
′)

:- insert(str, st2; st
′),

valid exp[exp](st1;).

valid dec (DEC str exp) st1 st2

| valid exp exp st1 = insert str st2

| otherwise = error "valid dec: error"

16

MANYONEDEC DECx int NUM4 y int NUM3 VAR VAR VAR VARLT LTANDLET

x y xy
LT : int,int → boolAND : bool,bool → boolADD : int,int → int

Figure 9: Does let x = 4, y = 3 in (x<y) & (y<x) type check?

6.3 Simple type checking

Now let’s see how we can expand on this, and – augmenting the grammar slightly – modify our
attribute system to perform type checking on expressions.

exp → exp + exp | exp & exp

| exp < exp | (exp)

| ID | NUM

| LET decls IN exp.

decls → decls , decl

| decl.

decl → ID = exp.

data Exp = ADD Exp Exp | AND Exp Exp

| LT Exp Exp | PAR Exp

| ID String | NUM Int

| LET Decls Exp

data Decls = MANY Decls Dec

| ONE Dec

data Dec = DEC String Exp

data Type = INT | BOOL

How might we check an expression trees, as in figure 9, for well-formedness?

17

exp
string

he
k_add
exp

exp

st type
ADD VAR

exp st type

st st

retrieve

type
1 type

2

type check exp[ADD(t1, t2)](st;type)
:- type check exp[t1](st;type1)

type check exp[t2](st;type2)

check add(type1, type2; type).

type check exp[VAR(str)](st;type)

:- retrieve(str;type).

check add(t1, t2;INT)
:- t1 =INT,t2 =INT.

We need a symbol table as before ... but it is slightly more complex as it needs to hold type
information for each declared variable:

[(x, int), (y, bool), ...]

As before, inserting adds the decalation to the front of list. A retrieval, given a string, will return
a type or fail (recall the the example above retrieval merely succeeded or failed).

retrieve(x,[(x,int),(y,bool)];INT) Succeeds and returns the type INT.
retrieve(z,[(x,int),(y,bool)];) Fails.

6.4 “Dance of the symbol table”

If the function types are also stored in the symbol table, what would the code look like if we wanted
to build an intermediate representation. It actually means that we must thread the symbol table
almost twice round the code: first to pick up the function names and types and second to handle
the variable declarations.

The rest of these notes will sketch the salient aspects of defining an attribute system to calculate
intermediate representation data for programs in a simple programming language. We’ll begin

18

st

type irst

he
k_add ADD

st type
1

ir1 ir2type
2

Figure 10: Returning a type and an intermediate representation for expressions

with a simple expression grammar, then introduce let-style local declarations, then types and
type-checking, and finally scoped function declarations permitting in-block forward references. We
drop the monadic Haskell exception model for the sake of more lucid code, with the understanding
that exception handling can be restored essentially mechanically.

collects[decls](table;table′) :-
genfuns[decls](table′;ir fun),
genstmts[stmts](table′;ir stmts),
ir := (ir fun,ir stmts).

ir decls stmts = (ir fun,ir stmts)

where table’ = collects decls table

ir fun = genfuns decls table’

ir stmts = genstmts stmts table’

collects[decl::decls](table;table′′) : −
collect[decl](table;table′),
collects[decl](table′;table′′). collects (decl:decls) table

= collects decls $ collect decl table

19

table
symbol ir for

block

new
table functions

ir for
ir for
stmts

block

collects genstmtsgenfunsdecls stmts

block

BLOCK\x y-->(x,y)

Figure 11: The symbol table dance for blocks

olle
ts genfuns

olle
t genfun
olle
ts genfuns
de
lsde
l

de
ls
\h t-->h:t

Figure 12: Tne symbol table dance for declarations

20

genfuns[decl::decls](table;ir fun::ir funs) : −
genfun[decl](table;ir fun),
genfuns[decls](table;ir funs).

genfuns[nil](table;nil).

genfuns [] table = []

genfuns (decl:decls) tab

= (genfun decl tab,genfuns decls tab)

A Brief Guide to the Notation and Languages

These notes were originally written using definite clause language (DCL), which may add value
for those who’ve seen some Prolog. We present Haskell translations of the DCG syntax in shaded
boxes. Hence, most of the examples here are presented redundantly in three notational systems:
The original DCG/Prolog, it’s parallel Haskell translations, and the Plumbing Diagrams.

The following box summarizes the Haskell ‘glue’ needed to translate the spirit of the Prolog, the
main feature of which is the exception monad Okay needed to model the exception raising semantics
of DCL.

data Okay m = Okay m | NotOkay

testOkay :: [Okay a] -> Okay a -> Okay a

testOkay xs y

| allOkay xs = y

| otherwise = NotOkay

allOkay lst = foldl isOkay True lst

isOkay (Okay) = True

isOkay = False

fromOkay (Okay x) = x

fromOkay = error "fromOkay applied to NotOkay."

Haskell definitions we’ll be using frequently.

21

