
P. 1 of 7

THE UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

FINAL EXAMINATION

COMPUTER SCIENCE 521

December, 2014 Time: 2 hrs.

Instructions

The exam contains questions totaling 100 points. Answer all
questions. This exam is closed book.

. 2

CPSC 521 Final Exam cont’d. P. 2 of 7

(15 Marks)
1. Given the following Haskell data type for expressions:

data Exp a b = Var a

| Op b [Exp a b]

Write Haskell functions for:

(a) The fold for this data type. Give the type of this function.

(b) The occurs check:

occurs:: Eq a => a -> (Exp a b) -> Bool

(c) Performing substitution:

substitute:: Eq a => [(a,Exp a b)]->(Exp a b)->(Exp a b)

(10 marks)

2. Explain what the most general unifier of two terms is.

Which of the following pairs of terms can be unified and what is their
most general unifier?

(a) f(g(x, y), z) and f(w, f(w, x))

(b) f(y, h(x, y)) and f(g(v, w), h(v, w))

(c) f(x, h(v, x)) and f(g(z, z), h(w, f(x, v)))

. 3

CPSC 521 Final Exam cont’d. P. 3 of 7

20 marks
3. In the λ-calculus:

(a) Give an example of a term with a normal form for which a right-
most innermost rewriting strategy will not find the normal form.
Explain briefly why a leftmost outermost reduction will find a
normal form if there is one.

(b) Give the de Bruijn form of the term:

λxy.(λxy.(λxy.yx)yx)yx

and give the step-by-step outermost leftmost reduction of the
term.

(c) Explain how the natural numbers can be represented in the λ-
calculus - the so called Church numerals. How does one write the
predecessor function?

(d) Explain how one may represent λ-terms in the λ-calculus:

data LTerm a = Var a | App LTerm LTerm | Abs Int LTerm

Describe the encoding of the constructors, the fold, the map, and
the case for this data type.

(e) In the second recursion theorem one uses a function T such that
T (X) = X where X is the representation of the λ-term X in the
λ-calculus (as above). Describe how T can be implement as a
λ-calculus term. (Hint: use the fold above!!)

. 4

CPSC 521 Final Exam cont’d. P. 4 of 7

15 marks
4. Call a λ-term n-cyclic if all reduction sequences leaving the term revisit

the term (for the first time) after exactly n-steps. Every term is 0-
cyclic and, for example, Ω is 1-cyclic.

(a) Show that the terms

(λyx.xxx)(λyx.xxx)(λyx.xxx)

and
λz.z((λyx.xxy)(λyx.xxy)(λyx.xxy))

are 2-cyclic.

(b) Show that for each n, there is always a term which is n-cyclic.
Furthermore, show that there are always infinitely many terms
which are n-cyclic for each n!

(c) Explain why it is decidable whether a term is n-cyclic but (harder!)
undecidable whether a term reduces to any particular n-cyclic
term. Conclude, for example, that whether a λ-term reduces to
Ω cannot be decided.

Explain your reasoning carefully!

. 5

CPSC 521 Final Exam cont’d. P. 5 of 7

15 marks
5. The basic modern SECD/CES machine has instructions:

Clo(c) for pushing a closure of the code c with the current environment
on the stack,
App for perform an application,
#(n) for retrieving the nth value in the environment,
Ret for jumping to the continuation on the stack,
Const(n) for pushing the constant n on the stack, and
Add for addition.

The machine transitions are:

Before After

Code Env Stack Code Env Stack

Clo(c′) : c e s c e Clos(c′, e) : s

App : c e Clos(c′, e′) : v : s c′ v : e′ Clos(c, e) : s

#(n); c e s c e e(n) : s

Ret : c e v : Clos(c′, e′) : s c′ e′ v : s

Const(k) : c e s c e k : s

Add : c e n : m : s c e (n+m) : s

Where Clos(c, e) denotes closure of code c with environment e and e(n)
is the nth-element of the environment.

One way to express the compilation of λ-terms (with arithmetic) into
CES-machine code is as follows:

Jλx.tKs = [Clo(JtKx:s++[Ret])]

JM NKs = JNKs++JMKs++[app]

JxKs = [#(n)] where n = index x s

JkKs = [Const(k)]

Ja+ bKs = JbKs++JaKs++[Add]

Compile
(λxy.x+ y) 10 3

into CES-machine code and show in detail the machine steps for eval-
uating this code.

Which reduction strategy does this machine implement? What are the
advantages and disadvantages of this reduction strategy?

. 6

CPSC 521 Final Exam cont’d. P. 6 of 7

25 marks
6. Using the judgments for type inference in Table 1 give the result of

collecting the type equations and solving the equations (or showing
there is no solution) in the following:

(a) For the term, λxf.f (f x), in the simply typed lambda calculus
(or in BPCF), either provide the most general type or show that
it cannot be typed.

(b) Show how the recursive program, fold, fold on lists:

fold f g z =
case z

of

∣∣∣∣ nil 7→ g
cons a as 7→ f a (fold f g as)

can be written in BPCF as a close term using the fix construct
and show how its most general type can be inferred.

. 7

CPSC 521 Final Exam cont’d. P. 7 of 7

x : P, z : Γ ` x : Q 〈P = Q〉
proj

x : X, z : Γ ` t : Y 〈E〉
z : Γ ` λx.t : Q 〈∃X,Y.Q = X → Y,E〉 abst

z : Γ ` f : Z z : Γ ` t : X 〈E〉
z : Γ ` (ft) : Q 〈∃X,Z.Z = X → Q,E〉

app

z : Γ ` t : Z 〈E〉
z : Γ ` fix[t] : Q 〈∃Z.Z = Q→ Q,E〉 fix

z : Γ ` t : X 〈E1〉 z : Γ ` s : Y 〈E2〉
z : Γ ` (t, s) : Q 〈∃X,Y.Q = X × Y,E1, E2〉

pair

z : Γ ` t : Z 〈E1〉 z : Γ, x : X, y : Y ` s : Q 〈E2〉

z : Γ ` case t
of (x, y) 7→ s

: Q 〈∃X,Y, Z.Z = X × Y,E1, E2〉
pcase

z : Γ ` () : Q 〈Q = 1〉 unit

z : Γ ` t : Z 〈E1〉 z : Γ ` s : Q 〈E2〉

z : Γ ` case t
of () 7→ s

: Q 〈∃Z.Z = 1, E1, E2〉
ucase

z : Γ ` nil : Q 〈Q = L(A)〉 nil

z : Γ ` cons : Q 〈Q = A× L(A)→ L(A)〉
cons

z : Γ ` t : X1 〈E1〉 z : Γ ` t0 : Y1 〈E2〉 z : Γ, v : X2 ` t1 : Y2 〈E3〉

z : Γ `
case t

of

∣∣∣∣ nil → t0
cons v → t1

: Q

〈
∃
X,X1,
Y1, X2,
Y2

.

X1 = L(X),
X2 = X × L(X),
Y2 = Q,Y1 = Q,
E1, E2, E3

〉 L case

Table 1: Rules for type inference

∗ JRBC

