
P. 1 of 7

THE UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

FINAL EXAMINATION

COMPUTER SCIENCE 521

December, 2016 Time: 2 hrs.

Instructions

The exam contains questions totaling 100 points. Answer all
questions. This exam is closed book.

. 2

CPSC 521 Final Exam cont’d. P. 2 of 7

(10 Marks)
1. (a) Given the definition of fold(right) in Haskell for lists.

(b) Use the fold(right) on lists to implement the function

inlist :: Eq a⇒ a→ [a]→ Bool

which tests whether an element is in a list.

(c) What is the foldleft combinator for a list? How do you implement
it using a the fold(right) combinator?

(15 marks)

2. (a) Explain what a fixed point combinator is in the λ-calculus.

(b) Show that X = (λxy.x y x)(λyx.y (x y x)) is a fixed point com-
binator (this is Tromp’s fixed point combinator). Remember to
try β-reducing at both ends of the desired equality!

(c) Consider the general recursive function

nats n = 〈n, nats (n+ 1)〉

where 〈x, y〉 := λp.p x y. Describe how nats is implemented in
the λ-calculus (you may assume a general fixed point combinator
Y).

(d) When is a λ-term in head normal form? Illustrate a head re-
duction on nats 0 as implemented in the λ-calculus in part (c)
above.

. 3

CPSC 521 Final Exam cont’d. P. 3 of 7

20 marks
3. In the λ-calculus:

(a) Give an example of a term with a normal form for which a right-
most innermost rewriting strategy will not find the normal form.
Explain briefly why a leftmost outermost reduction will find a
normal form if there is one.

(b) Give the de Bruijn form of the term:

λxy.(λx.(λy.yx)(xy))(yx)

and give the step-by-step outermost leftmost reduction of the
term.

(c) Explain how the natural numbers, Nat, can be represented in the
λ-calculus - the so called Church numerals. How does one write
the fold and the predecessor function?

(d) One may represent λ-terms in the λ-calculus using the following
datatype:

data LTerm a = Var a | App LTerm LTerm | Abs a LTerm

Describe the encoding of the constructors, the fold, and the map
for this data type.

(e) In the second recursion theorem one uses a function T such that
T (X) = X where X is the representation of the λ-term X in the
λ-calculus (as above using LTerm Nat). Describe how T can be
implement as a λ-calculus term. (Hint: use the folds above!!)

. 4

CPSC 521 Final Exam cont’d. P. 4 of 7

15 marks
4. Call a λ-term n-cyclic if all reduction sequences leaving the term revisit

the term (for the first time) after exactly n-steps. Every term is 0-
cyclic and, for example, Ω is 1-cyclic.

(a) Show that the terms

(λyx.xxx)(λyx.xxx)(λyx.xxx)

and
λz.z((λyx.xxy)(λyx.xxy)(λyx.xxy))

are 2-cyclic.

(b) Show that for each n > 0, there are always terms which are n-
cyclic and are not n-cyclic. Furthermore, show that for each n
there are always infinitely many terms which are n-cyclic and
infinitely many which are not n-cyclic!

(c) Explain why it is decidable, for n > 0, whether a term is not
n-cyclic but (harder!) undecidable whether a term never reduces
to any n-cyclic term.

Explain your reasoning carefully!

. 5

CPSC 521 Final Exam cont’d. P. 5 of 7

15 marks
5. The basic modern SECD/CES machine has instructions:

Clo(c) for pushing a closure of the code c with the current environment
on the stack,
App for perform an application,
#(n) for retrieving the nth value in the environment,
Ret for jumping to the continuation on the stack,
Const(n) for pushing the constant n on the stack, and
Add for addition.

The machine transitions are:

Before After

Code Env Stack Code Env Stack

Clo(c′) : c e s c e Clos(c′, e) : s

App : c e Clos(c′, e′) : v : s c′ v : e′ Clos(c, e) : s

#(n); c e s c e e(n) : s

Ret : c e v : Clos(c′, e′) : s c′ e′ v : s

Const(k) : c e s c e k : s

Add : c e n : m : s c e (n+m) : s

Where Clos(c, e) denotes closure of code c with environment e and e(n)
is the nth-element of the environment.

One way to express the compilation of λ-terms (with arithmetic) into
CES-machine code is as follows:

Jλx.tKs = [Clo(JtKx:s++[Ret])]

JM NKs = JNKs++JMKs++[app]

JxKs = [#(n)] where n = index x s

JkKs = [Const(k)]

Ja+ bKs = JbKs++JaKs++[Add]

Compile
(λx.(λy.x+ y) 10) 3

into CES-machine code and show in detail the machine steps for eval-
uating this code.

Which reduction strategy does this machine implement? What are the
advantages and disadvantages of this reduction strategy?

. 6

CPSC 521 Final Exam cont’d. P. 6 of 7

25 marks
6. Using the judgments for type inference in Table 1 give the result of

collecting the type equations and solving the equations (or showing
there is no solution) in the following:

(a) For the term, λxf.(f x) (x f), in the simply typed lambda calcu-
lus (or in BPCF), either provide the most general type or show
that it cannot be typed.

(b) Show how the recursive program, map, map on lists:

map f z =
case z

of

∣∣∣∣ nil 7→ nil
cons a as 7→ cons (f a) (map f as)

can be written in BPCF as a close term using the fix construct
and show how its most general type can be inferred.

. 7

CPSC 521 Final Exam cont’d. P. 7 of 7

x : P, z : Γ ` x : Q 〈P = Q〉
proj

x : X, z : Γ ` t : Y 〈E〉
z : Γ ` λx.t : Q 〈∃X,Y.Q = X → Y,E〉 abst

z : Γ ` f : Z z : Γ ` t : X 〈E〉
z : Γ ` (ft) : Q 〈∃X,Z.Z = X → Q,E〉

app

z : Γ ` t : Z 〈E〉
z : Γ ` fix[t] : Q 〈∃Z.Z = Q→ Q,E〉 fix

z : Γ ` t : X 〈E1〉 z : Γ ` s : Y 〈E2〉
z : Γ ` (t, s) : Q 〈∃X,Y.Q = X × Y,E1, E2〉

pair

z : Γ ` t : Z 〈E1〉 z : Γ, x : X, y : Y ` s : Q 〈E2〉

z : Γ ` case t
of (x, y) 7→ s

: Q 〈∃X,Y, Z.Z = X × Y,E1, E2〉
pcase

z : Γ ` () : Q 〈Q = 1〉 unit

z : Γ ` t : Z 〈E1〉 z : Γ ` s : Q 〈E2〉

z : Γ ` case t
of () 7→ s

: Q 〈∃Z.Z = 1, E1, E2〉
ucase

z : Γ ` nil : Q 〈∃A.Q = L(A)〉 nil

z : Γ ` cons : Q 〈∃A.Q = A× L(A)→ L(A)〉
cons

z : Γ ` t : X1 〈E1〉 z : Γ ` t0 : Y1 〈E2〉 z : Γ, v : X2 ` t1 : Y2 〈E3〉

z : Γ `
case t

of

∣∣∣∣ nil → t0
cons v → t1

: Q

〈
∃
A,X1,
Y1, X2,
Y2

.

X1 = L(A),
X2 = A× L(A),
Y2 = Q,Y1 = Q,
E1, E2, E3

〉 L case

Table 1: Rules for type inference

∗ JRBC

