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Do the first three questions and one other of your choice!

(1) Prove that the pullback along any map of a retraction is itself a retraction. Show that the
pullback of a section along any map is not necessarily a section (hint: can you find a counter-
example in Sets?).

(2) In any category with products prove that:

(a)

C ×B π0 //

f×1B
��

C

f
��

A×B π0
// A

is always a pullback.

(b)

A
∆−−→ A×A

π0−−−→−−−→
π1

A

is always an equalizer.

(3) An idempotent map e : X −→ X (with e; e = e) is said to split if e = r;m where r : X −→ Y is
epic and m : Y −→ X is monic. Prove that

(a) m; r = 1Y ,

(b) In the following diagram

Y
m−−→ X

e−−−→−−−→
1X

X
r−−→ Y

m is the equalizer of e and 1X and r the coequalizer.

(c) Suppose r′;m′ = e also with r′ : X −→ Y ′ epic and m′ : Y ′ −→ X monic, then prove that
there is a unique isomorphism α : Y −→ Y ′ such that m = αm′ and r′ = rα.

1



(d) An idempotent e splits if and only if the diagram

X
e−−−→−−−→

1X
X

has either a limit or a colimit.

(e) If e is an idempotent in X, show that any functor F : X −→ Y preserves the limit and
colimit of the above diagram.

(4) (Harder) Prove that if a functor F : X −→ Y preserves pullbacks and X has products that F
preserves equalizers (Hint: show that F (π0), F (π1) are jointly monic).

(5) (Harder) Here are some examples of special limits:

(a) Prove that every category has limits for trees, that is acyclic graphs with a source. These
are graphs with an object from which any other object can be reached (in a unique way)
following the direction of the arrows.

(b) Prove that any category with equalizers has limits for finite graphs with a source (any
other object can be reached from the source in a not-necessarily-unique way following the
direction of the arrows).

(c) Prove that if a category has pullbacks it has limits for all finite connected acyclic graphs.
These are the graphs which regarding each (directional) arrow as a two-way arrow leaves
every object reachable from every other in a unique way.

(d) Prove that if a category has pullbacks and equalizers that every finite connected diagram
has a limit. These are the diagrams which regarding each (directional) arrow as a two
way arrow leaves every object reachable from every other (possibly in many ways).

(6) A parallel pair of arrows

A
d0−−−→−−−→
d1

B

is contractible in case there is a map t : B −→ A with td0 = 1B and d1td1 = d0td1. A
contractible pair is contractably coequalized in case d coequalizes the pair

A
d0−−−→−−−→
d1

B
d−−→ C

and there is an s : C −→ B such that sd = 1C and td1 = ds.

Prove that:

(a) The coequalizer (i.e the colimit) of any contractible pair necessarily contractibly coequalizes
the pair.

(b) Any contractible coequalizing map of a contractible pair is the coequalizer (i.e. the colimit).

(c) Any functor preserves coequalizers of contractible pairs.

(Hint: beware my notes there is an typo in the condition!)
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(7) Prove that for any small category C the functor category SetsC
op

is complete and cocomplete.

(8) Prove the category of matrices over (any field) R (recall the objects are the natural numbers
and the maps MatR(n,m) are n × m-matrices) is finitely complete and cocomplete. What
famous algorithm is the calculation of equalizers?

(9) Prove that any small category with arbitrary small products is a preorder.
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