CPSC617: Category Theory for Computer Science Second Exercise Sheet

J.R.B. Cockett Department of Computer Science

September 30, 2019

Complete at least ten of the following questions.

- (1) Describe how the following are natural tansformations between functors on Sets:
 - (a) Flattening a list of lists to a list,
 - (b) Appending two lists together,
 - (c) The first projection from the cartesian product,
 - (d) The diagonal map for the cartesian product,
- (2) The **center** of a category consists of the natural endo-transformations on the identity functor. Prove that the center of any category is a commutative monoid. Is this a functor from categories to commutative monoids $Cat \rightarrow CMon$ (think about the situation for groups)?
- (3) Prove carefully that Poset can be viewed as a Poset-enriched category.
- (4) Prove carefully that the underlying functor from the category of categories to the category of directed graphs has a left adjoint.
- (5) Let \mathbb{R} be the real numbers viewed as a category by using the usual ordering; the integers may also be regarded as a category, \mathbb{Z} , by using the usual ordering and the usual inclusion of the integers into the reals is a functor. Prove that this functor has a left and right adjoint.
- (6) A Galois connection is a contravariant adjunction between posets. That is $f \dashv g : P_1^{\text{op}} \to P_2$.
 - (a) Show that g(f(g(x))) = g(x) and f(g(f(y))) = f(y) for any Galois connection and that the full subposets determined by $\{x|x = g(f(x))\} \subseteq P_1$ and $\{y|y = f(g(y))\} \subseteq P_2$ are (contra-)isomorphic.
 - (b) Show that any relation between sets $R \subseteq X \times Y$ induces a Galois connection $f_R \dashv g_R : P(X) \to P(Y)^{\text{op}}$ by

$$f_R(X') = \{ y \in Y | \forall x \in X'.xRy \} \quad g_R(Y') = \{ x \in X | \forall y \in Y'.xRy \}$$

(c) The original Galois connection works as follows: let F be a field extension of some field $K \subseteq F$ consider the automorphism group, G, of field isomorphisms α such that

then consider the relation $R \subset F \times G$ where $R(x,g) \Leftrightarrow x = g(x)$: that is a field element is related to a group element if the group element fixes the field element. Show that the group elements that fix a set of field elements is a subgroup and the field elements fixed by a get of group elements are a subfield ... discuss what this Galois correspondence tells one!

- (7) Show that for any adjunction $(\eta, \epsilon) : F \dashv G : \mathbf{X} \to \mathbf{Y}$ the full subcategories \mathbf{X}_{η} , with objects X for which η_X is an isomorphism, \mathbf{Y}_{ϵ} , with objects Y for which ϵ_Y is an isomorphism are equivalent.
- (8) Show that in any adjunction the following are equivalent
 - $\eta_{G(F(X))}$ is an isomorphism,
 - $G(F(\eta_X))$ is an isomorphism,
 - $\eta_{G(Y)}$ is an isomorphism,
 - $\epsilon_{F(G(Y))}$ is an isomorphism,
 - $F(G(\epsilon_Y))$ is an isomorphism,
 - $\epsilon_{F(X)}$ is an isomorphism.

Call an adjunction satisfying any one of these conditions a "Galois adjunction" and conclude that the full subcategories of objects $\{G(F(X))|x \in \mathbf{X}\}$ and $\{F(G(Y))|Y \in \mathbf{Y}\}$ are equivalent.

- (9) Let $f: X \to Y$ be any map of sets then prove that this induces a chain of adjoints $\exists_f \dashv f^* \dashv \forall_f : \mathcal{P}(X) \to \mathcal{P}(Y)$ where
 - $\mathcal{P}(X)$ and $\mathcal{P}(Y)$ are the powersets (set of all subsets) of X and Y respectively,
 - $\exists_f : \mathcal{P}(X) \to \mathcal{P}(Y); S \mapsto \{y \in Y | \exists x \in X \cdot f(x) = y \land x \in S\},\$
 - $\bullet \ f^*: \mathcal{P}(Y) \to \mathcal{P}(X); T \mapsto \{x \in X | f(x) \in T\},$
 - $\forall_f : \mathcal{P}(X) \to \mathcal{P}(Y); S \mapsto \{y \in Y | \forall x \in X \cdot f(x) = y \Rightarrow x \in S\}.$
- (10) Prove that the functor $A \times _: \mathsf{Sets} \to \mathsf{Sets}$ has a right adjoint (hint: think hom-set).
- (11) The category of posets has an obvious inclusion into the category of preorders. Prove that this is a reflection (hint: how do you turn a preorder into an order?).
- (12) Prove that the category of finite sets and relations is equivalent to the category of Boolean matrices:

Objects: Natural numbers $n \in \mathbb{N}$;

Maps: Boolean matrices $[b_{ij}]_{i=i,..,n}^{j=1..,m}: n \to m;$

Identity: The diagonal matrix;

Composition: Matrix multiplications with \wedge as multiplication and \vee as addition.

(13) Show that Rel, the category of sets and relations with the ordinary composition, is a poset enriched category (with $R \leq S$ iff $R \subseteq S$). This means it is a 2-category (whose hom objects are posets) and thus we may talk of adjoints. Prove that a relation is a left adjoint in Rel if and only if it is a function.