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Complete at least ten of the following questions.

(1) Describe how the following are natural tansformations between functors on Sets:

(a) Flattening a list of lists to a list,

(b) Appending two lists together,

(c) The first projection from the cartesian product,

(d) The diagonal map for the cartesian product,

(2) The center of a category consists of the natural endo-transformations on the identity functor.
Prove that the center of any category is a commutative monoid. Is this a functor from categories
to commutative monoids Cat→ CMon (think about the situation for groups)?

(3) Prove carefully that Poset can be viewed as a Poset-enriched category.

(4) Prove carefully that the underlying functor from the category of categories to the category of
directed graphs has a left adjoint.

(5) Let R be the real numbers viewed as a category by using the usual ordering; the integers may
also be regarded as a category, Z, by using the usual ordering and the usual inclusion of the
integers into the reals is a functor. Prove that this functor has a left and right adjoint.

(6) A Galois connection is a contravariant adjunction between posets. That is f a g : P op
1 → P2.

(a) Show that g(f(g(x))) = g(x) and f(g(f(y))) = f(y) for any Galois connection and that
the full subposets determined by {x|x = g(f(x))} ⊆ P1 and {y|y = f(g(y))} ⊆ P2 are
(contra-)isomorphic.

(b) Show that any relation between sets R ⊆ X × Y induces a Galois connection fR a gR :
P (X)→ P (Y )op by

fR(X ′) = {y ∈ Y |∀x ∈ X ′.xRy} gR(Y ′) = {x ∈ X|∀y ∈ Y ′.xRy}
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(c) The original Galois connection works as follows: let F be a field extension of some field
K ⊆ F consider the automorphism group, G, of field isomorphisms α such that
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then consider the relation R ⊂ F × G where R(x, g) ⇔ x = g(x): that is a field element
is related to a group element if the group element fixes the field element. Show that the
group elements that fix a set of field elements is a subgroup and the field elements fixed
by a get of group elements are a subfield ... discuss what this Galois correspondence tells
one!

(7) Show that for any adjunction (η, ε) : F a G : X → Y the full subcategories Xη, with objects
X for which ηX is an isomorphism, Yε, with objects Y for which εY is an isomorphism are
equivalent.

(8) Show that in any adjunction the following are equivalent

• ηG(F (X)) is an isomorphism,

• G(F (ηX)) is an isomorphism,

• ηG(Y ) is an isomorphism,

• εF (G(Y )) is an isomorphism,

• F (G(εY )) is an isomorphism,

• εF (X) is an isomorphism.

Call an adjunction satisfying any one of these conditions a “Galois adjunction” and conclude
that the full subcategories of objects {G(F (X))|x ∈ X} and {F (G(Y ))|Y ∈ Y} are equivalent.

(9) Let f : X → Y be any map of sets then prove that this induces a chain of adjoints ∃f a f∗ a
∀f : P(X)→ P(Y ) where

• P(X) and P(Y ) are the powersets (set of all subsets) of X and Y respectively,

• ∃f : P(X)→ P(Y );S 7→ {y ∈ Y |∃x ∈ X · f(x) = y ∧ x ∈ S},
• f∗ : P(Y )→ P(X);T 7→ {x ∈ X|f(x) ∈ T},
• ∀f : P(X)→ P(Y );S 7→ {y ∈ Y |∀x ∈ X · f(x) = y ⇒ x ∈ S}.

(10) Prove that the functor A× : Sets→ Sets has a right adjoint (hint: think hom-set).

(11) The category of posets has an obvious inclusion into the category of preorders. Prove that this
is a reflection (hint: how do you turn a preorder into an order?).

(12) Prove that the category of finite sets and relations is equivalent to the category of Boolean
matrices:

Objects: Natural numbers n ∈ N;
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Maps: Boolean matrices [bij ]
j=1..,m
i=i,..,n : n→ m;

Identity: The diagonal matrix;

Composition: Matrix multiplications with ∧ as multiplication and ∨ as addition.

(13) Show that Rel, the category of sets and relations with the ordinary composition, is a poset
enriched category (with R ≤ S iff R ⊆ S). This means it is a 2-category (whose hom objects
are posets) and thus we may talk of adjoints. Prove that a relation is a left adjoint in Rel if
and only if it is a function.
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