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This is due January 28th. Please attempt at least 10 questions ...

(1) Prove that all maps in a preorder (regarded as a category) are bijic (that is both epic and
monic) and that all sections and retractions are isomorphisms.

(2) Prove that in any category F , all of whose hom-sets are finite (i.e. it is enriched over finite
sets), that

(a) F need not be a finite category;

(b) Every monic endomorphism is an isomorphism;

(c) Every epic endomorphism is an isomorphism;

(d) The idempotent completion Split(F) is finite set enriched whenever F is;

(e) (Harder) For every endomorphims g there is a (smallest) n ∈ N such that gn is an idem-
potent.

(f) (Even harder) In a finite set enriched category in which idempotents split every objects
has a retraction to an object which is “fully retracted” (that is has no further non-trivial
– non-dientity – retractions).

(3) The category 2 is

A1A
&& a // B 1Bff

What do the categories 2 + 2 and 2× 2 look like?

(4) How many categories are there with 1,2, and 3 arrows?

(5) Show that Path(G), where G is a directed graph, is a category and identify the monics, epics,
sections, and retractions.

(6) Here is an illustration of how two categories can have the same objects and maps but a com-
pletely different composition structure. Consider sets with relations but alter the composition
to be:

RS = {(x, z)|∀y.(x, y) ∈ R ∨ (y, z) ∈ S}.

Prove that this forms a category (what are the identities?).
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(7) Consider the category of matrices over a rig:

(a) Prove that Mat(R), the category of matrices over a (non-commutative) rig R, is a category;

(b) (Harder) Prove that when the rig R has an involution ( ) : R → R (where 0 = 0, x+ y =
x+ y, 1 = 1, and x · y = y · x) transposition given by

( )† : Mat(R)op → Mat(R);Aij : m→ n 7→ Aji : n→ m

is a functor (in fact, a converse involution).

(c) (Harder) Do all idempotents split in Mat(R)? Do they split when R = R is the field of real
numbers? If this true for any field?

(8) Show that in Sets:

(a) A map f is monic if an only if it is injective (f(x) = f(y) implies x = y);

(b) A maps f is epic if and only if it is surjective (for every y in the codomain there is an x
such that f(x) = y);

(c) All epics are retractions;

(d) Not all monics are sections;

(e) All bijics are isomorphisms.

Prove that the surjections and injections give a factorization system on Sets.

(9) (Harder:) What are the monics in Rel?

(10) Given any category X and an object A ∈ X define f ∼A g for f, g : X → Y if and only if for
every x : A→ X it is the case that xf = xg. Show that ∼A is a congruence and, furthermore,
in X/ ∼A h 6= k : X → Y implies there an x : A → X with xh 6= xk (that is A always
generates X/ ∼A).

(11) What are the monics in Cat? Show that every functor can be factorized as

X F //

Q∼F ""F
FF

FF
FF

FF
Y

X/ ∼F

I∼F

<<xxxxxxxxx

where the first functor is full and bijective on objects while the second is faithful. Show that

(a) This defines a factorization system on Cat;

(b) (Harder) The E-functors of this factorization do not include all epic functors;

(c) (Harder) The M-functors are not necessarily monic.

(12) For idempotents in any category prove that:

(a) If an idempotent is either epic or monic then it is the identity map;
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(b) Prove that if rm = e, where e is an idempotent, r is epic, and m is monic, then the pair
(r,m) provides a splitting for the idempotent e.

(c) Give an example of two idempotents e1 and e2 such that neither e1e2 nor e2e1 are idem-
potents.

(d) Show that if idempotents commute, e1e2 = e2e1, then the composite e1e2 is an idempotent.

(e) The relation on idempotents e ≤ e′ if and only if ee′ = e is a preorder.

(f) If e = sr and e′ = s′r′ are splittings and e ≤ e′ that there is a unique map α with s = αs′.

(13) SubC(A), the category of subobjects of A, is defined for an object A ∈ C, for any category C is
any category, to be the category:

Objects: monics m : A′ → A;

Maps: f : m1 → m2 maps in C such that f ;m2 = m1;

Identities: 1A′ : m→ m as in C;
Composition: As in C.

Prove that SubC(A) is a preorder.
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