
Relation Categories and Allegories
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Leaving behind our previous definition of a topos, we now move on to define the notion of an
allegory. Allegories give us a different perspective with which we can approach the construction
of a topos, but this approach will not be discussed in these notes. Instead, we will just define an
allegory and go through some significant properties. In order to see what sorts of properties we
want in an allegory, we first look at how we can define categories of relations in regular categories,
and then define an allegory as a category which satisfies similar nice properties.

Notational notes: in this set of notes, a ”subobject” X of Y will be considered to be an
isomorphism class of monomorphisms X � Y where m : X → Y and m′ : X ′ → Y are equivalent
if and only if X ∼= X ′. Another note to make is that these notes will be using applicative notation.
That is, compositions of f : X → Y and g : Y → Z will be written as gf : X → Z.

1 Relations in Regular Categories

Recall first that a regular category is a Cartesian category which has images, and whose covers are
stable under pullbacks. Now we can begin to define relations in such categories, starting with the
weaker condition of just Cartesian.

Definition 1.1. Let C be a Cartesian category and A,B be objects of C. We say a relation from
A to B is a subobject of A×B. We denote a relation from A to B by A# B.

We can fully determine any relation A # B by a monomorphism T → A × B taken as a
representative of the isomorphism class. Using this, we can define the idea of a tabulation of a
relation.

Definition 1.2. Suppose f : T → A and g : T → B are morphisms in C such that the induced
morphism (f, g) : T → A × B is monic. Then if (f, g) belongs to the isomomorphism class of the
relation φ : A# B, we say (f, g) is a tabulation of φ.

We can use tabulations of relations to define a composition of these relations now. Let C be
a Cartesian category with images, with φ : A # B and ψ : B # C relations in C tabulated by
(f, g) : T → A×B and (h, k) : U → B × C respectively. We form the pullback

P U

T B

q

p h

g
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and define the composition ψφ to be the relation tabulated by the image of (fp, kq) : P → A× C.
This composition is independent of choice of tabulations, since the choice of tabulation will affect
the p and q we get in our diagram, and ultimately give us the same relation in the end.

Lemma 1.3. Let C be a Cartesian category with images. The composition of relations is associative
if and only if C is regular.

Proof. Suppose φ : A # B, ψ : B # C, and χ : C # D are tabulated by (f, g) : T → A × B,
(h, k) : U : B → C, and (l,m) : C # D respectively.
(⇐) Assume C is regular. Then we can form the pullback diagrams

P U Q V

T B U C

q

p h

s

r l

g k

and with these objects and morphisms now defined, we can now form the pullback

R Q

P U

u

t r

q

using the Q, P , q, and r from the pullback diagrams above. Stacking these two diagrams together,
we get the diagram

R Q V D

P U C
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A A×D
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where we get the induced morphism (fpt,msu) : R → A × D since fpt : R → A and
msu : R → D. We want to show that the image of (fpt,msu) tabulates both of the relations
χ(ψφ) and (χψ)φ.

(⇒) Conversely, suppose that composition is associative. We just need to show that covers are
stable under pullback to show that C is regular. Let e : A → B be a cover in C, and f : C → B
be any arbitrary morphism in C. Now we can define the relations φ : C # B, ψ : B # A, and
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χ : A# 1 tabulated by (1C , f), (e, 1A), and (1A, !A) respectively. So taking the composite χψ

Then since (e, !A) : A→ B × 1 ∼= B is a cover, the composite χψ is tabulated by (1B, !B), and
so (χψ)φ is tabulated by (1C , !C).

Corollary 1.4. If C is a regular category, then relations in C form the morphisms of a category
Rel(C) having the same objects of C.

Proof. We already have objects, arrows, and an associative composition from above. All that is
left to prove is that there exists an identity morphism for each object. But the relation ιA : A# A
tabulated by the diagonal morphism (1A, 1A) gives us exactly what we want, since pulling back
along an identity morphism just gives us back an identity, so left or right composition by ιA is
composition with identities.

We have now that Rel(C) is a category, but in fact it is more than just a category. The category
Rel(C) is actually a locally ordered 2-category, which just means that between any two relations,
we can define a partial order by φ ≤ ψ if and only if we have

T A×B

U

m

m′

whenever m is in the isomorphism class of φ and m′ is in ψ. That is, a monomorphism in φ is
the composition of a monomorphism in ψ and another monomorphism. In fact, we can notice that
this partial order is preserved under composition, which is to say that if φ ≤ ψ, then φχ ≤ ψχ and
θφ ≤ θψ whenever these compositions make sense.

Since we have a 2-category, we can also talk about adjoints. In particular, a relation φ : A# B
is left adjoint to ψ : B # A if and only if φψ ≤ ιB and ιA ≤ ψφ. Going through to check this
is rather boring, as the triangle identities fall out directly since our 2-morphisms define a poset
structure. This is going to be relevant when we start looking at opposite relations and graphs of C
morphisms, which we will begin to define now.

Definition 1.5. Let φ : A # B be a relation tabulated by (f, g). Then the opposite relation
φo : B # A is the relation tabulated by (g, f).

Definition 1.6. If f : A→ B is a morphism in C, we call the induced morphism (1A, f) : A→ A×B
the graph of f . This morphism tabulates a relation denoted f• : A# B. We also write f• = (f•)

o.

Proposition 1.7.

(i) For any morphism f in C, f• is left adjoint to f• in Rel(C).

(ii) Let φ : A # B be a morphism in Rel(C) having a right adjoint. Then there is a unique
morphism f in C such that φ = f•.

Proof.
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(i) Let f : A → B be a morphism in C. The relation f•f• is tabulated by the kernel pair of f .
This relation is reflexive, which exactly gives us ιA ≤ f•f•. The other composition, f•f

• is
tabulated by (f, f) : A→ B×B, which factors through the diagonal morphism, so f•f

• ≤ ιB,
therefore f• is left adjoint to f•.

(ii) (Sketch) Let ψ : B # A be the right adjoint of φ. Say φ is tabulated by monomorphism
(a, b) : T → A × B and ψ is tabulated by monic (b′, a′) : T ′ → B × A. Going through the
appropriate pullback diagrams with the a and a′, as well as b and b′, ιA ≤ ψφ tells us that a
and a′ are covers. This, along with the other inequality φψ ≤ ιB forces the equality ψ = φo.
Then by setting f = ba−1, we get that φ = f•. The uniqueness comes from the fact that the
functor which takes f 7→ f• is faithful.

Definition 1.8. We call any morphism f : A→ B in C a map if it has a right adjoint.

The proposition above tells us that we can actually recover C entirely (up to isomorphism) from
Rel(C) if we look at the subcategory of Rel(C) with all objects of Rel(C), but containing only maps
in Rel(C) as its morphisms.

For our next proposition, we must first note that since a regular category C has all of the
appropriate limits, it has meets, which we can denote with φ ∩ ψ for the meet of φ and ψ.

Proposition 1.9. Let φ : A # B, ψ : B # C, and χ : A # C be three relations in a regular
category. Then

ψφ ∩ χ ≤ (ψ ∩ χφo)φ.

Proof. (Sketch) Let (f, g) : T � A×B, (h, k) : U � B ×C, (l,m) : V � A×C be tabulations of
φ, ψ, and χ respectively. We form the limit P of the diagram

T A V

P

B U C

f

g

l

m

x y

y

h k

so that the x, y, and z make the diagram commute and are the universal such morphisms.

In the case where C is the category of sets, the object P would be the set of all triples (a, b, c) ∈
A×B ×C where a and b are related by φ, b and c are related by ψ, and a and c are related by χ.
The idea behind this proof is that if you start with (a, c) ∈ ψφ∩χ, there must be some b such that
(a, b) ∈ φ and (b, c) ∈ ψ, so (a, b, c) ∈ P . But then we get that (b, c) ∈ ψ ∩ χφo and (a, b) ∈ φ, so
(a, c) ∈ (ψ∩χφo)φ. Obviously the more general proof requires the use of more general constructions
such as pullbacks, and uses the fact that image factorizations are stable under pullbacks, but the
details of this are just a generalization of the same ideas we just looked at in the case of sets.

The above proposition is commonly referred to as the modular law, alluding to the similar
structure we find in modular lattices. It is not quite as strong as having a distributive law, but this
inequality can give us a lot of what we could hope for in relation categories.
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2 Allegories and Tabulations

In this section, we will define a new type of category referred to as an allegory. Essentially, we
will be forgetting everything we learned in the previous chapter, and then building all of the same
structure up from scratch. The relation categories discussed in the previous section give us an
idea of what shape of structures should be considered when we define allegories, and it will be
immediately clear from the definition that any relation category Rel(C) on a regular category C is
an allegory.

Definition 2.1. An allegory is a locally ordered 2-category A whose hom-posets have binary
intersections equipped with an anti-involution φ 7→ φo and satisfying the modular law

ψφ ∩ χ ≤ (ψ ∩ χφo)φ

whenever these compositions make sense.

In an allegory A, we denote the 1-morphisms by φ : A # B as in the previous section. We
also retain the definition that a map in A is a morphism with a right adjoint. Note here that we
will have to be wary of when the word ”morphism” or ”map” is used. We also continue to use
Greek letters in this section for morphisms and latin letters for maps. However, we now denote the
identity morphisms with 1 rather than ι.

Since we are using essentially the same definition of ”maps” as in the previous section, we can
again

Because of the anti-involution we have in A, the modular law is actually equivalent to

ψφ ∩ χ ≤ ψ(φ ∩ ψoχ).

Lemma 2.2. For any morphism φ in an allegory, we have φ ≤ φφoφ.

Proof. By application of the modular law, φ = 1φ ∩ φ ≤ (1 ∩ φφo)φ ≤ φφoφ.

Now let’s look at one example. Consider a lattice L regarded as a locally ordered 2-category with
one object, taking composition to be the join operation. Since join is commutative, the identity
λo = λ is an anti-involution. So L satisfies the conditions to be an allegory. In this case, the
modular law is exactly equivalent to the more common notion of the modular law in lattice-theory,
where

λµ ∩ ν ≤ λ(µ ∩ ν) whenever λ ≤ ν.

Now we can go into some more depth about maps in allegories, which has already been proved
(partially) in proposition 1.7 for relation categories.

Lemma 2.3.

(i) In an allegory, the right adjoint of a map f is necessarily fo.

(ii) The maps in an allegory are discretely ordered (i.e. for any maps f and g, if f ≤ g then
f = g).

Proof.
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(i) Let f : A→ B be a map in an allegory. We can assume its left adjoint is go for some map g,
since any adjunction f a φ gives an adjunction φo a fo. Now applying our modular law, we
have

1A = gof ∩ 1A ≤ (go ∩ 1Af
o)f = (fo ∩ go)f.

It is not too difficult to see that f(fo ∩ go) ≤ fgo, and fgo ≤ 1B since they are adjoint, so
f(fo ∩ go) ≤ 1B. But then we have that f is left adjoint to fo ∩ go = (f ∩ g)o, but adjoints
are unique so (f ∩ g)o = go, so f ∩ g = g. By a totally symmetric argument, we can find
f ∩ g = f , and therefore f = g, and thus fo = go as required.

(ii) Let f ≤ g be maps in an allegory. This also means that fo ≤ go, so

g ≤ gfof ≤ ggof ≤ f,

therefore f = g.

Now in keeping with the theme of generalizing Rel(C), we want to define a notion of tabulations
in an allegory the way we had tabulations of relations in a regular category.

Definition 2.4. Let φ : A# B be a morphism in A. A tabulation of φ is a pair of maps f : T → A,
g : T → B with a common domain satisfying φ = gfo and fof ∩ gog = 1T . If every morphism in
A has a tabulation, we call A a tabular allegory.

We can notice that this notion of tabulation is equivalent to the one we defined in the previous
section in the case of Rel(C) modulo the isomorphism Map(Rel(C)) ∼= C mentioned in the remark
after definition 1.8. The second condition in definition 2.4 is exactly what tells us that the (f, g)
in a tabulation in Rel(C) is jointly monic. So the category Rel(C) is tabular.

Lemma 2.5. Suppose φ : A # B has a tabulation (f, g), and let x : C → A, y : C → B be maps.
Then yxo ≤ φ if and only if there exists a map h such that x = fh and y = gh. Moreover, if such
an h exists, it is unique.

Proof. First suppose x = fh and y = gh. Then yxo = ghhofo ≤ gfo = φ since h is a map.
Conversely, suppose yxo ≤ φ. Define another morphism θ = fox ∩ goy : C # T . The idea here
will be to show that θ will be a map which we will denote h which satisfies the condition required.
Since x and y are maps, we have

1C ≤ yoy1C ≤ yoyxox ≤ yoφx = yogfox.

So we get

θoθ = (xof ∩ yog)(fox ∩ goy)

= (xof ∩ yog)(fox ∩ (fox ∩ goy))

≥ (xof ∩ yog)fox ∩ 1C

≥ 1C ∩ yogfox ∩ 1C

= 1C

by applying the modular law twice. Similarly, we can use the modular law again to get that

θθo = (fox ∩ goy)(xof ∩ yog)

≤ foxxof ∩ goyyog
≤ fof ∩ gog
= 1T .
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This gives us that θ is a map, so we can denote it θ = h. Now we observe

fh = f(fox ∩ goy) ≤ ffox ≤ x

by the modular law, and since fh and x are both maps, we get fh = x by lemma 2.3. By a similar
argument we get that gh = y.

Finally, we must show that such an h is unique. Let k be another map which satisfying fk = x
and gk = y. Then we get

h = (fof ∩ gog)k ≤ fofk ∩ gogk = fox ∩ goy = h,

so again by lemma 2.3 we have h = k.

Corollary 2.6. Any two tabulations of a given morphism in an allgeory are uniquely isomorphic.

Proof. Let (f, g) and (f ′, g′) be two tabulations of a morphism φ : A # B, where f : T → A,
g : T → B, f ′ : T ′ → A, and g′ : T ′ → B are maps. Applying lemma 2.5 to (f, g), and substituting
x = f ′ and y = g′, we get f ′ = fh and g′ = gh. But we can apply the lemma the other way around
to get f = f ′h′ and g = g′h′. Moreover, this h and h′ are unique, giving us that (f, g) and (f ′, g′)
are uniquely isomorphic.

As in the case of relation categories, we can again define a subcategory of A, consisting of the
same objects as A, but limiting the morphisms to only containing maps in A. We denote this
category by Map(A).

Lemma 2.7. Let f : A# B be a map in a tabular category A. The following are equivalent:

(i) f is monic in Map(A),

(ii) fof = 1A,

(iii) (f, f) is a tabulation of ffo.

Proof. First we show that (i) ⇒ (ii). Suppose f is monic, and let (h, k) be a tabulation of
fof . Then by the definition of a tabulation, we have fof = kho. Using this identity, we have
fk ≤ fkhoh = ffofh and by the inequality from lemma 2.2, ffof ≥ fh. But since all of these are
maps, any inequalities become equalities by lemma 2.3, so we have that fk = fh. Now we can use
that f is monic to say that in fact k = h. So, 1A ≤ fof = hho ≤ 1A, again using that f and h are
maps, so fof = 1A.

Now we show that (ii) ⇒ (iii). Suppose fof = 1A. Then, fof ∩ fof = fof = 1A, so (f, f) is a
tabulation of ffo.

Finally, we show that (iii) ⇒ (i). Suppose (f, f) is a tabulation of ffo. Now let h, k be maps
such that fh = fk. Then we can define maps x = y = fh = fk, so by lemma 2.5 this h is unique,
so h = k as required.

Proposition 2.8. Let A be a tabular allegory. Then Map(A) is locally regular (that is, it has
pullbacks and images, and covers are stable under pullback).
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The proof of this proposition just combines previous results using modular law and results about
tabulations. However, what we really want to note from all of this is that tabular categories are
an analogue to categories of relations in locally regular categories. But we already saw that Rel(C)
was a tabular allegory for some regular category C, so we want to see if we can find an analogue
for Rel(C) in the case that C is regular, not just locally regular. So we just add the following final
piece of the puzzle to serve to bridge the gap between locally regular and regular. In particular, we
want to add some condition to A so that Map(A) has a terminal object

Definition 2.9. An object U of A is called a unit if 1U is the largest morphism U # U , and for
every object A there is a morphism φ : A# U with φoφ ≥ 1A.

As we can see in this definition, it is almost just explicitly demanding the existence of a terminal
object. However, this is worth stating as a lemma so that we know that it’s important enough to
reference back to.

Lemma 2.10. If U is a unit in an allegory A, then it is a terminal object in Map(A). The converse
holds if A is tabular.

Now we get to the big theorem that we would really want. We can finally categorize when an
allegory is really essentially Rel(C) for a regular category C.

Theorem 2.11.

(i) If C is a regular category, then Rel(C) is a tabular category with a unit, and C ∼= Map(Rel(C)).

(ii) If A is a tabular allegory with a unit, then Map(A) is a regular category, and A ∼= Rel(Map(A)).

All of this has already been mostly verified or sketched previously, except the isomorphism
A ∼= Rel(Map(A)). But even for this detail, all the work has already been done in previous results.
This theorem tells us finally how to really generalize the idea of Rel(C) for a regular category C, by
looking specifically at allegories which are tabular and have a unit.
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