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1 Introduction

It is impossible to give a complete view of category theory in a short sequence of lectures such as
these and at the same time begin to illustrate an application. It is, therefore, inevitable that I
will present a very biased and selective sampling. Since its inception in 1945 (with Eilenberg and
Mac Lane’s paper [13]) category theory has found use as a fundamental tool in almost all areas of
mathematics, it has had a profound effect on logic and philosophy, and it has been seriously applied
both in the foundations of physics and, increasingly since the mid 1980’s, to the foundations of
computer science in programming semantics.

The second part of these notes describe another important area of application to computer
science: computability. Despite the obvious potential for categorical methods to provide new
insights in this area, computability (and complexity) has still not received the level of categorical
attention it deserves. This makes it a particularly appropriate target for a series of lectures as there
are plenty of opportunities to contribute!

1.1 Categories and foundations

Category theory starts with a beguilingly simple notion: a category is just a directed graph with
a composition defined on the edges. However, as more structure (mediated by functors, natural
transformations, limits, and colimits) is added to this modest beginning, a fundamentally new
and powerful mathematical perspective begins to emerge .... the reverberations of which are still
working their way through the body of mathematics.

Prior to the 1950’s work in the foundations of mathematics was almost all reductionist. This
approach to foundations originated in Cantor’s creation of set theory. It is easy to forget that
shortly after its formulation around the turn of the 20th century this foundation was beset by
“paradoxes” and was widely criticized. Indeed, it was not until the work of Russell, Whitehead,
and Zermelo which established axiomatic set theory, that Cantor’s sets were viewed as laying a
foundation for mathematics. The antinomies which had plagued the foundations of mathematics
had been quite embarrassing, and it was almost, with relief that the Mathematical establishment
embraced the solution offered by axiomatic set theory. In 1926, when some mathematicians –
following the “intuitionistic” views of Brouwer – continued to question this newly lain foundation,
it was hardly surprising that Hilbert, representing the establishment, famously declared: “No one
shall expel us from the paradise that Cantor has created for us”.

Ironically it was only a few years later in 1931 that Gödel’s work left Hilbert’s program in tatters.
Brouwer’s “intuitionistic” views, although in some sense vindicated, never became mainstream. In
fact, the focus in Mathematics had by that time already shifted away from foundational issues
toward new and more applied frontiers – analysis, topology, algebraic geometry, number theory,
combinatorics, etc. – and to other developments, such as Bourbaki’s program to organize and
systematize mathematics at a more abstract level. By the 1950’s large tracts of new mathematics
had been developed and documented. The relationships between these diverse developments had
begun to assume an importance which, on the one hand, could not have been foreseen and, on the
other, was simply not addressed at all by a reductionist approach to foundation.

The development of category theory brought to the table a potent antidote to the reductionist
program. Not only did it allow for the expression of relationships between areas of mathematics
but also it provided methods to directly encode behavior in terms of admissible transformations.
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It embodies an approach to mathematics very much in the tradition of Klein’s Erlangen Program
(involving transformation groups in geometry), and Noether’s abstract approach to algebra. Most
importantly category theory allowed the systematic discussion of behavior in a manner which
avoided the detailed bottom-up development of internal structure. This enabled mathematicians
to focus on structural interactions without actually worrying about exactly how the structures might
arise. Considering that, famously, it took 360 pages of Principia Mathematica to prove 1 + 1 = 2,
this was an immensely important innovation. Mathematical structures had become increasingly
sophisticated and a reductionist approach to all structure had become a millstone around the neck
of progress. It was simply too much work to connect securely to increasingly distant and irrelevant
foundations.

1.2 Categories and computer science

In 1987 Andre Scedrov and John Gray arranged a research conference at the University of Boulder
(Colorado) entitled “Categories in Computer Science and Logic.” If one were to try to pinpoint
exactly when category theory became a respectable tool in computer science this meeting (and
its aftermath) stands out. John Reynolds, already a prominent computer scientist, and Jean-
Yvres Girard, a young French logician, had independently invented the polymorphic λ-calculus.
John Reynold had naively suggested a set theoretic semantics and had discovered somewhat to his
dismay that not only was his semantics flawed but that he could prove that there could be no such
semantics. The fact that one could compute perfectly well with this calculus displayed a serious gap
between set theoretic semantics and what was apparently required for computation. Consequently
Reynolds had asked both logicians and category theorists where the semantics of such systems lay.
It turned out that category theorists already had an answer and part of the meeting was dedicated
to an exposition (by Andy Pitts and Edmund Robinson) of that answer. The answer involved topos
theory and altogether too many categorical steps for John Reynolds to digest at the meeting itself,
however, he undertook to learn category theory and subsequently made substantial use of it in his
work.

The seeds of a number of other burgeoning interactions between these subjects (logic, category
theory, and computer science) were also latent at that meeting. To mention just one: Jean-Yvres
Girard was present and gave an exposition of linear logic and its proof theory. Subsequently in
the proceedings Robert Seely [28] provided a categorical semantics for this system in Barr’s ∗-
autonomous categories. This developed into a continuing interaction between categorical proof
theory, logic, and computer science which is still central as it has important implications for the
semantics of concurrency and more generally in systems in which resources are limited.

1.3 Categories and computability

An area in which one might have expected computer science and category theory to have had
a potentially significant interaction is right at the foundations of computer science, namely, at
computability and complexity theory. Realizability topoi (due to Martin Hyland and Dana Scott)
are built on top of a model of computability, and these were instrumental in answering Reynolds
question. Thus, already computability issues were indirectly present. In the same year as the
Boulder Conference, a very influential paper by Robert Di Paola and Alex Heller on “recursion
theory without elements” [12] was published in the Journal of Symbolic Logic. It outlined a
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categorical approach to computability theory. Their work set in motion a rather different program
to understand computability categorically.

Di Paola and Heller’s paper was based on a categorical formulation of partiality and almost
immediately Pino Rosolini and Edmund Robinson [26] pointed out that there was a cleaner foun-
dation using what they called P-categories. Their work indicated that there were still foundational
issues underlying Di Paola and Heller’s approach which needed to be resolved. A little later Eugenio
Moggi, in his thesis [24], undertook an exhaustive study of the logics of partiality: he linked half
a dozen available approaches to partiality in an impressive tour de force. However, Moggi in the
course of this work also realized that partial map classifiers, viewed as cartesian monads, could be
used to describe partiality and, indeed, other computational effects. This led him to subsequently
concentrate on the theory and logics for these monads. This had the unfortunate effect of sidelin-
ing the original program of Di Paola and Heller as it became submerged in the somewhat different
program of investigating the role of monads in computation.

The purpose of these notes is to return to Di Paola and Heller’s program and to provide an
elementary categorical development of the subject starting much further back than they started
but, eventually, arriving at a setting very much as they had envisaged it. A satisfying aspect of
this development is that it is suitable abstract: it encompasses not only the traditional classical
setting of recursive function theory but also the –somewhat different in feel – total theories of
computability. These include Church’s λ-calculus and Curry’s combinatory logic. Significantly the
underlying mathematical machinery, restriction categories – while certainly being well-suited to
this application – are much more broadly applicable (see the introduction of [9] and [23]) and this
repositions the subject more centrally in mathematics.

A defect of these notes is that I have not presented any non-standard examples. Instead I have
drawn the examples, such as they are, almost entirely from traditional sources. This is a pity
as the value of a more abstract approach is exactly that it accommodates unexpected examples.
That there are, indeed, highly non-standard examples of Turing categories and recursion categories
is known. The notes, in fact, do include a brief mention of one such example: the classifying
category for partial combinatory algebras. This Turing category is in a strong sense the mother of
all computation. It is also the tip of an iceberg. There are many fascinating Turing and recursion
categories out there which have yet to be thoroughly investigated and each has the potential to
add to – or even upset – our preconceptions of computation.

Acknowledgements:
Thanks to Geoff Crutwell and Brian Redmond for providing feedback throughout the develop-

ment of these notes. Thanks also to Steve Awodey for passing his philosophically more experienced
eyes over my introduction.

The first part of the notes are a selection from my Category Theory class notes. The section on
restriction categories is based on a term paper of Johnathan Gallagher and, of course, on [8]. The
section on Turing categories was borrowed – virtually verbatim – from work with Pieter Hofstra
[7]. The last section on recursion categories was based on a talk I gave at FMCS in 2007.
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Part I

Basic Categories

This part introduces category theory. It starts with various ways to define a category and intro-
duces some examples of categories. It then provides a brief introduction to functors and natural
transformations. It ends by giving a brief description of adjunctions and limits.
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2 Categories and examples

2.1 The definition of a category

There are various ways to define a category which are naively equivalent – but also subtlety quite
different. Each definition presents a different perspective on what a categoryhood really is .... We
shall start with the most common presentation of a category which is as a directed graph with
a composition. From there we mention three further formulations, as an internal category, as a
partial algebra, and as an enriched category.

2.1.1 Categories as graphs with composition

A category, C consists of a directed graph, that is a collection of objects, C0, and a collection of
maps, C1, such that each map f ∈ C1 has an associated object ∂0(f) ∈ C0 which is its domain
and an associated object ∂1(f) ∈ C0 which is its codomain. We shall indicate that f has domain
A and codomain B by writing f : A −→ B.

The maps of a category can be composed: that is given any pair of maps f, g ∈ C1 with the
codomain of f being the same as the domain of g, that is they are a composable pair of the form
f : A −→ B and g : B −→ C, then there is an associated composite fg : A −→ C.1 The operation
of forming composites is called composition:

A
f−−→ B B

g−−→ C
A −−→

fg
C

Categories are also required to have identity maps for the composition. Thus, given any object
C ∈ C there is associated to it an identity map

C −−−→
1C

C

denoted by 1C : C −→ C. This data must then satisfy the following axioms:

[C.1] (Identity laws) if f : A −→ B then 1Af = f = f1B,

[C.2] (Associative law) if f : A −→ B, g : B −→ C, and h : C −→ D then (fg)h = f(gh).

Now when checking that something is actually a category one must first establish that all the
data is present. Thus, one must first identify a collection of objects. It will often be the case that
the objects will be known by some other name such as nodes, types, sets, or algebras. Next one
must have a collection of maps. Again the maps will often be known by some other name such as
arrows, terms, functions, or homomorphisms. Finally one must have a notion of composition for
these maps: this involves not only having the operation which allows the formation of composites
for maps which juxtapose but also the presence of identities.

We remark that having identities is a property rather than extra structure as an identity (if it
exists at an object) is uniquely determined by the composition. This is because if 1A and 1′A are
identities on A then 1A = 1A1′A = 1′A; so there can be at most one identity map.

1Please note that “diagrammatic” as opposed to “applicative” order will be used in this text. Applicative order
is particularly common in many of the more mathematical text books on category theory so you should be able to
read both.
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The identity map is an example of a map which starts and ends at the same place: these we
call endo-maps. A category can have – and often will have – many endo-maps. More generally a
category can have many different parallel maps from one object A to another B: these maps can
be collected into a hom-object, which in this case is a set denoted C(A,B)

A subcategory C′ of a category C is given by any subcollection of the objects and maps which
is “closed” to the domain, codomain, identity, and composition structure.

Please notice that it has not been required that the objects or arrows of a category should form
a set: this is because some categories are too large for either their objects or their arrows to form
sets. A typical ”big” category is the category of sets Sets itself: Russell’s paradox2 informs us that
the set of all sets cannot possibly be a set. So it is convenient to allow the objects to belong to
something bigger than a set (a class).

However, it is also sometimes convenient to require that the maps and arrows all belong to one
world: this gives rise to the notion of an internal category. Thus, a small category is a category
whose arrows and objects do both form sets a finite category is a category whose objects and maps
are finite sets, a topological category is a category whose arrows and objects are topological
spaces, an ordered category is a category whose objects and arrows are partially ordered sets,
etc.....

2.1.2 Categories as partial semigroups

Another way to view a category is as collection of maps which have a partial associative multipli-
cation and a system of units. This view is interesting as it indicates that the objects are actually
redundant structure and their role can be replaced by the identity maps. However, the cost of
making them redundant is that one needs some additional axioms.

This time a category C just consists of a collection of maps on which there is a partial associative
composition and two assignments of arrows to arrows ∂0 and ∂1 such that:

[C’.1] ∂0(f)f is always defined and is f ,

[C’.2] f∂1(f) is always defined and is f ,

[C’.3] fg defined if and only if ∂1(f) = ∂0(g) and ∂0(fg) = ∂0(f) and ∂1(fg) = ∂1(g),

[C’.4] (Associative) (fg)h = f(hg) whenever each side is defined,

[C’.5] ∂j(∂i(x)) = ∂i(x), for i, j = 0, 1.

To return to the definition above it is necessary to provide the collection of objects: these are
the maps for which ∂0(x) = x = ∂1(x) which are just the identity maps.

2Russell’s paradox concerns the set of all sets: this should be a set because as one can define sets by properties
(such as being a set) but consider the set of all sets which are not members of themselves - a subset of the set of all
sets. If it were a member of itself then it could not be a member of itself; on the other hand if it were not a member of
itself then it would be a member of itself! This paradox forced set theorists to declare that the set of all sets cannot
be a set. As one can hardly deny the existence of the collection of all sets, the awkward question then arises: what
is the set of all sets? This forced set theorists – Russel – into considering class hierarchies.

8



2.1.3 Categories as enriched categories

Recall the notation C(A,B) for hom-objects mentioned above for this leads naturally into our third
view of what a category is: if C is a category then by C(A,B) will be denoted the collection of
all arrows with domain A and codomain B. These are called the hom-objects of the category.
If these collections are actually sets then we call these “hom-sets” and say that the category is
enriched in Sets.

Notice that when a category is enriched in Sets, the composition can be described as a family
of maps, one for each triple of objects in C:

mA,B,C : C(A,B)× C(B,C) −→ C(A,C)

(where m is for multiplication). In addition, there must be an identity map 1A : 1 −→ C(A,A),
where 1 as an object represents a generic one element set 1 = {∗}. These maps must now satisfy
the two requirements imposed on a category (associativity and the identity laws):

C(A,B)× C(B,C)× C(C,D)
mABC×1 //

1×mBCD

��

C(A,C)× C(C,D)

mACD

��
C(A,B)× C(B,D) mABD

// C(A,D)

1× C(A,B)
1A×1//

π1 ))RRRRRRRRRRRRRR
C(A,A)× C(A,B)

mAAB

��
C(A,B)

C(A,B)× 1
1×1A//

π0 ))RRRRRRRRRRRRRR
C(A,B)× C(B,B)

mABB

��
C(A,B)

.

These requirements have been expressed as commuting diagrams - a style which we shall see
much more of as we progress.

This enriched category style of expressing the structure of a category is important as often
the hom-objects of categories are not simply unstructured collections of maps but themselves have
structure (e.g. Abelian categories, poset enriched categories, Cat-enriched categories, etc.). By
regarding a category in this manner we will be able to explain how the additional structure of the
hom-objects must interact with the composition of the category itself.

For enriched categories a very natural notion of subcategory is determined by taking a subcol-
lection of the objects and leaving the hom-objects and composition structure the same. This is
called a full-subcategory.

2.1.4 The opposite category and duality

Category theory is full of symmetries which are called dualities. The basic source of symmetry is
the ability to reverse arrows. Thus, given any category we may obtain a new category by keeping
everything the same except to switch the direction of the arrows. If we start with a category C and
flip the direction of the arrows we obtain a new category written Cop. Observe now that anything
which is true of C now holds in the dual form in Cop. Thus, when we prove a result there is always
another result, obtained by reversing the sense, of the arrows which will also be true. This principle
of duality allows us to get double the bang for our buck!
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Often the prefix “co” (as in colimit, coequalizer, coproduct) is an indication that this is the
dual concept to that with this prefix removed.

Some categories are actually self-dual, thus Cop is in some sense the same as C. In this case
there is often an explicit translation (this is an example of a contravariant functor see section 3.2)
( )∗ : C −→ Cop this has the following properties:

(i) If f : A −→ B then f∗ : B∗ −→ A∗;

(ii) If f : A −→ B and g : B −→ C then (fg)∗ = g∗f∗ and 1∗A = 1A∗ .

We shall say that such a translation is an involution in case (f∗)∗ = f for each arrow. Sometimes
it is the case that for objects A = A∗ in this case we shall refer to the involution as a converse.3

2.2 Examples of categories

Below we outline a series of sources of examples of categories.

2.2.1 Preorders

Categories enriched in sets of cardinality at most 1 (in other words the category containing, as
objects, the empty set and the one element set, and, as maps, all set maps between these objects)
are called preorders. They are important as they account for both equivalence relations and
partially ordered sets. There is a considerable body of knowledge about partially ordered sets and
this provides an important source of examples and, often, a pattern to follow when developing
categorical structures.

Notice when there is at most one arrow between any two objects the value of the composite of
any two maps is forced. Thus, it is simply a matter of whether maps exists between objects or not.
Thus we may view such a category as a relation on the objects.

A preordered set may more prosaically be described as a set with a reflexive, transitive
relation . A relation is reflexive on a set X in case whenever x ∈ X we require (x, x) to be in
the relation: this gives the identity map on that object. A relation is transitive in case whenever
(x, y) and (y, z) are in the relation then (x, z) must be in the relation: this gives composition.

A relation is an equivalence relation in case in addition it is symmetric that is whenever
(x, y) is in the relation (y, x) is also in the relation. This is equivalent to asking that every arrow
is an isomorphism (see section 3.1: a category in which all the maps are isomorphisms is called a
groupoid).

Clearly an equivalence relation viewed as a category has a converse involution.
A partially order set is a preorder with the addition anti-symmetry property that whenever

(x, y) and (y, x) are in the relation then x = y. This is equivalent categorically to asking either that
the only isomorphisms are the identity maps or, less stringently, that all isomorphisms are endo-
maps. This is a small illustration of how one notion for a poset can be generalized in different ways
for arbitrary categories indicating a shortcoming of viewing categories as simply generalization of
posets.

3Notice that an involution cannot in general be stationary on maps. If an involution is stationary on maps one can
easily show that there is only one object in each connected component of the category and that the endomorphism
monoid on each object is a commutative monoid.
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2.2.2 Finite categories

The simplest category of all has no objects and no maps. This is called (for reasons which will be
explained later) the initial category. The initial category is certainly finite and there is not much
else one can say about it!

The next most simple category is the category with one object and exactly one arrow. This is
called the final category: it is also finite and there is not so very much more one can say about
it either. The one arrow is actually forced to be the identity map on the one object.

A finite category, a category internal to finite sets, must have both a finite number of objects
and a finite number of arrows. All finite categories are necessarily enriched over finite sets (i.e.
have finite hom-sets).

A finite categories may be presented as a directed graph with a multiplication table for each
object: each table will represent the arrows which juxtapose at that object.

We may view a finite category F as having an underlying directed graph such as the one below:
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We may then arrange the composition tables by the objects at which the arrows meet. For each
such table we may arrange the arrows coming in to the object (along the vertical axis) according
to the object from which they come. Similarly, along the horizontal axis we may arrange the maps
according to the object at which they end. The result of the composition (minimally) must then
be an arrow with the correct domain and codomain. One then must check that the composition
satisfies the identity and associative laws. The latter law is quite arduous to check as one must
consider triples of composable maps and check that the two possible compositions are in fact equal
(for good computational shortcuts see Light’s generalized associativity test).

Finite categories are a great source of counter-examples for simple categorical non-facts. Notice
also that there are two simple ways of constructing new finite categories from old ones. Given
two categories C and D one can form the disjoint union of their arrows and objects to form a new
category C + D where the composition(s) are unchanged: this is the coproduct. Alternately one
can put the arrows in parallel to form C× D the product category. Here one takes the cartesian
product of both the objects and the arrows and define the composition pointwise, that is if f : C1

−→ C2 in C and g : D1 −→ D2 in D then in C × D there is the maps (f, g) : (C1, D1) −→ (C2, D2)
and (f, g)(f ′, g′) = (ff ′, gg′).

2.2.3 Categories enriched in finite sets

A category all of whose homsets are finite is a category enriched in finite sets. While every finite
category (i.e internal category in finite sets) is also a finite set enriched category, there are plenty of
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A B C

A 1A x1 x2

A 1A 1A x1 x2

B y1 y1 e1 y3

C z1 z1 z3 f2

A B C

B y1 1B e1 y2 y3

A x1 1A x1 x1 x2 x2

B 1B y1 1B e1 y2 y3

e1 y1 e1 e1 y3 y3

C z2 z1 z2 z3 f1 f2

z3 z1 z3 z3 f2 f2

A B C

C z1 z2 z3 1C f1 f2

A x2 1A x1 x1 x2 x2 x2

B y2 y1 1B e1 y2 y2 y3

y3 y1 e1 e1 y3 y3 y3

C 1C z1 z2 z3 1C f1 f2

f1 z1 z2 z3 f1 f1 f2

f2 z1 z3 z3 f2 f2 f2

Figure 1: Composition tables for F

finite set enriched categories which are not finite. The category of finite sets, Setf , itself is certainly
finite set enriched but not finite.

Another example of a finite set enriched category is the category of finite interference graphs,
Intff . This category has objects finite sets equipped with a symmetric, anti-reflexive relation (S, ./).
Explicitly such a relation satisfies:

• x ./ y ⇔ y ./ x,

• x ./ y ⇒ x 6= y.

A map between two objects in this category

f : (X, ./X) −→ (Y, ./Y )

is a map between the underlying finite sets such that

x ./ x′ ⇒ f(x) ./ f(x′).

Here is an example of a map which collapses the four cycle C4 onto the completely separated graph
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This category already has lots of interesting structure!

2.2.4 Monoids

A category which has one object and a set of maps is a monoid in Set. Monoids have been
extensively studied in their own right under the more general title of semigroups. For example
group theory is the study of monoids all of whose maps are isomorphisms (see section 3.1) and
these besides being monoids are an important source of examples of categories.

There are large numbers of finite groups, larger numbers of finite monoids and, thus, by impli-
cation there are even larger numbers of finite categories!

2.2.5 Path categories

Given a directed graph G we may form a category from it which we call the path category of G,
denoted Path(G). The objects are the same as those of G but the arrows are sequences of arrows
in G which juxtapose. The composition is, as might be expected, given by concatenation.

More formally, the arrows in Path(G) are given by triples (A, [g0, .., gn], B) where, when the list
of maps is non-empty, A = D0(g0), B = D1(gn), and D1(gi) = D0(gi+1) for i = 0, ..., n− 1. When
the list is empty we insist that A = B which gives us maps of the form (A, [], A) for each object
A: these will serve as the identity maps. We define D0(A, l, B) = A and D1(A, l, B) = B and set
(A, l1, B)(B, l2, C) = (A, l1@l2, C), where @ is the usual concatenation operation.

2.2.6 Matrices over a rig

Let R be any rig (this a ring without the “n” for negatives), that is a set with an addition
(a commutative associate operation x + y with an identity 0) and a multiplication (that is an
associative not necessarily commutative operation x · y with a unit 1) such that

x · (y + z) = x · y + x · z and (y + z) · x = y · x+ z · x,

x · (y · z) = (x · y) · z and x · 1 = x = 1 · x

x · 0 = 0 = 0 · y

then we may form Mat(R) the category of R–matrices. This category has objects the natural
numbers and maps n×m–matrices with the usual multiplication.
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Somewhat unusually we also allow 0×n and n×0 matrices. The composites with these “empty”
matrices are themselves empty.

Notice that Mat(R) has a converse involution given by transposition.
A special example of this category which is very well-studied is Mat(K) where K is a field (such

as R).

2.2.7 Kleene categories

Let us briefly consider a variant of both the above and previous example which has traditional
computer science importance. Let G be a directed graph, we shall form a Path∗(G) by taking an
arrows from A to B to be (regular) subset of the set of all paths from A to B.

Regular subsets are generated by first including the singleton path sets and closing these with
respect to union, Kleene star, and composition. This means given a finite number of path sets
which are parallel (i.e. have the same domain and codomian) their union is also a path set (recall
finite sets include the empty set so the empty set is always a path set). The Kleene star of a set of
endopaths is:

P ∗ = {p1@p2@...@pn|p1, p2, ..., pn ∈ P}

Finally the composition of one set of paths with another is given by taking the composite of all
possible pairs of arrows from the sets.

Notice that in this category f(g ∪ h) = fg ∪ fh and (f ∪ g)h = fh∪ gh. This allows us to do a
matrix construction and to form Reg(G):

Objects: Lists of objects of G, e.g. [G1, .., Gn]

Maps: Matrices of regular subsets

[ai,j ] : [G1, .., Gn] −→ [G′1, .., G
′
m]

where ai,j : Gi −→ G′j .

Composition: Matrix multiplication where multiplication is composition and addition is union:

[ai,j ][bj,k] = [
⋃
j

ai,jbj,k]

Identities: Identity matrices with the singleton set of identity path on the diagonal and empty
sets off diagonal.

There is an important “trace” operation (which is a categorical trace) on these matrices which
allows one to reduce the dimension across a common input and output state: this operation intro-
duces feedback and makes the state internal.

For a 2-dimensional matrix this “trace” operation works as follows:

traceX

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 : [A1, A2, X] −→ [B1, B2, X]


=

[
a11 ∪ a13a

∗
33a31 a12 ∪ a13a

∗
33a32

a21 ∪ a23a
∗
33a31 a22 ∪ a23a

∗
33a32

]
: [A1, A2] −→ [B1, B2]
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where ( )∗ is the Kleene star operation. This trace operation is the basis of the translation of finite
state machines into regular languages. The idea is to view a finite state machine (with ε-transitions)
as a matrix in this category: the domain is arranged to consist of a distinguished start state and the
internal states while the codomain is a distinguished final state and the internal states. The trace
operation can then be used to eliminate rows and columns until one obtains a regular expression
from start state to final state corresponding to the automaton.

2.2.8 Sets

There are various categories we may form from the category of sets. The primary category, denoted
by Set, is the category of sets and functions itself. However, there are two other variants which we
shall want to use as examples: the category of relations, Rel, and the category of partial maps, Par.

The category of relations Rel is given by the following data:

Objects: Sets;

Maps: Relations R : X −→ Y ;

Composition: RS = {(x, z)|∃y.(x, y) ∈ R ∧ (y, z) ∈ S};

Identities: 1X = {(x, x)|x ∈ X}.

The category of sets and partial maps, Par, and the category of sets and functions, Sets, itself,
can be seen as subcategories of this category. The category of partial maps is the subcategory with
the same objects but only those relations which are deterministic, that is (x, y) and (x, y′) imply
y = y′. The category of functions is a further subcategory of the category of partial maps Par with
the same objects but with the maps restricted to those deterministic relations which are total. A
relation R : X −→ Y is total in case for every x ∈ X there is a y ∈ Y such that (x, y) ∈ R.

Notice that neither of these subcategories are full-subcategories as we are strictly reducing the
set of maps between objects (in most cases!).

The category of relations has a converse ( )o : Relop −→ Rel obtained by reversing the ordered
pairs. This converse operation, however, is not inherited by either the category Par or Sets. The
relations in Rel may also be ordered by inclusion: this makes the category poset enriched. This
enrichment is inherited by Par: for Sets this partial order is discrete (in the sense that two things
are related only if they are the same).

2.2.9 Programming languages

We may think of a programming language as being a given by a collection of types which have
programs defined between them. The ability to compose programs and the presence of the “do
nothing” program together with the expectation that these will satisfy the basic axioms of a category
means that programming languages may be modeled by categories.

Given a programming language there then is the question of which category precisely it de-
scribes. Given that many programming languages have grown in an ad hoc way this is, in general,
a messy question. However, one might expect that for simple programming languages this would
be an easy question to answer. There is always the “term model” to fall back on, that is the pro-
gramming language itself with the equalities that should hold. However, this is usually regarded as
a less than satisfactory answer: instead one usually seeks an answer which allows the language to
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be interpreted an independently well-understood mathematical structure . These are are generally
known as semantic issues: formally one is seeking a functor with certain properties from the pro-
gramming language into the “semantics” which is a category of independent origin. One usually
hopes that the functor is full or faithful: often as program equality itself is not well-understood
one takes equality to be “semantic equality”: that is the equality relation given by the semantics
so that fullness is the only real isssue.

The pursuit of semantics is a major theoretical direction in programming languages. However,
there is another direction which is considerably less traditional but, nonetheless, of greater practical
importance. One can ask which constructs should be present in a good programming language.
This is a seemingly rather vague question, however, one can give a reasonable answer to such
a question if one understands the theory of programming constructs. Category theory provides
a powerful mathematical tool for addressing this sort of question: it gives a landscape view of
the constructs involved in programming and how they can be fit together to make reasonable
programming environments.

2.2.10 Products and sums of categories

Once one has a stock of categories one can begin to build new categories. There are two rather
obvious constructions: the product and the disjoint union or sum of categories.

Let us discuss the sum: given a family, (Xi)i∈I , of categories one can just consider the disjoint
union of the categories

⊔
i∈I Xi. This is a category whose objects (respectively maps) are the disjoint

union of the objects (respectively maps) of each Xi. Clearly objects from different components will
not be connected by any maps. Indeed given any category there is always a (unique) decomposition
of it into connected components which allows us to view it as a sum of connected categories.

It is always worth considering the exteremal examples: what happens when we sum the empty
family of categories? Well, of course, we get a perfectly good category: the empty category, 0, the
one which has no arrows and no objects!

If we think of this construction as putting categories side-by-side, the product a family, (Xi)i∈I ,
of categories,

∏
i∈I Xi is obtained by putting the categories in parallel. Thus the objects are

tuples of objects (Xi)i∈I with Xi ∈ Xi, the maps are tuples of maps (fi)i∈I with fi ∈ Xi, domain
∂0((fi)i∈I) = (∂0(fi))i∈I , and codomain ∂0((fi)i∈I) = (∂0(fi))i∈I . Composition is then performed
in parallel: (fi)i∈I(gi)i∈I = (figi)i∈I .

Again the empty product of categories is also perfectly well defined: it has one object, the
empty tuple (), and one arrow, the empty tuple (): so it is the category 1.

2.2.11 Slice categories

If C is any category and X ∈ C we may form the slice category C/X. This has the following
structure:

Objects: Maps of C to X, f : C −→ X;
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Maps: Triples (f1, g, f2) : f1 −→ f2 which are commutative triangles:

C1

f1   AAAAAAA
f // C2

f2~~}}}}}}}

X

Identities: (f, 1C , f) : f −→ f .

Composition: (f1, g, f2)(f2, h, f3) = (f1, gh, f3) which is well-defined as ghf3 = gf2 = f1.

Now one must, in fact, check that this is a category which amounts to checking that we have a
composition which satisfies the required axioms. However, this structure is directly inherited from
C so the proof is straightforward.

It is worth noting a peculiar things about the slice categories over Set:

Set/0 ∼= 1

Set/1 ∼= Set

Set/2 ∼= Set× Set

Set/3 ∼= Set× Set× Set

...

In fact, we may regard Set/I as the I-indexed product of the category of sets with itself. This is
because a map C −→ I in Sets is “the same thing” as the I-indexed collection of sets (Ci = {c ∈
C|f(c) = i})i∈I . A map in the slice category k : f −→ f ′ can then be viewed as an indexed collection
of maps (ki : Ci −→ C ′i).

This view of a slice category is rather special to sets. However, the properties of these slice
categories of Set have been the inspiration for trying to codify abstractly the important type
theoretic properties of a “set theory”.
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3 Elements of category theory

It is natural to consider maps between categories, otherwise known as functors, and it is no surprise
to discover that these organize themselves into a category Cat. What is a little more surprising
is that there are also maps between functors. This means that Cat is in fact a category which is
enriched in categories.

It is this 2-dimensional structure which gives rise the notion of an adjunction. These codify
algebraically and precisely what a “universal property” is. As these occur all over mathematics –
and, indeed, in computer science – providing an abstract understanding of them was a significant
contribution of the development of categorical thought.

Before discussing all this it is useful to talk about maps in categories ...

3.1 Epics, monics, retractions, and sections

A map f : A −→ B in a category C is monic (or sometimes a monomorphism) in case whenever
k1f = k2f then k1 = k2. Dual to the notion of a monic map is that of an epic map: a map f : A
−→ B in a category C is epic (or sometimes an epimorphism) in case whenever fh1 = fh2 then
h1 = h2. The fact that a map is monic does not stop it from being epic as well: a map that is both
epic and monic we shall refer to as being bijic (sometimes bijection).

A map f : A −→ B is a section in case there is a map f ′ : B −→ A such that ff ′ = 1A. Dual to
a section is a retraction: a map g : A −→ B is a retraction in case there is a map g′ : B −→ A such
that g′g = 1B. It is quite possible for a map to be both a section and a retraction: such a map is
called an isomorphism. Clearly identity maps are always isomorphisms.

We have the following result linking these properties:

Lemma 3.1 In any category C it is the case that:

(i) The composition of monics is monic; (vi) All retractions are epic;
(ii) The composition of epics is epic; (vii) The compositions of sections is a section;
(iii) If fg is monic then f is monic; (viii) The composition of retractions is a retraction;
(iv) If fg is epic then g is epic; (ix) If fg is a section then f is a section;
(v) All sections are monic; (x) If fg is a retraction then g is a retraction.

Isomorphisms are rather special: if f : A −→ B is a map we shall refer to a map g : B −→ A such
that fg = 1A as the right inverse of f . Similarly a map h : B −→ A such that hf = 1B will be
referred to as the left inverse of f . A section has a right inverse and is itself a left inverse, while
a retraction is a right inverse and has a left inverse. An isomorphism has both a left inverse and a
right inverse:

Lemma 3.2 If f : A −→ B has a left inverse h and a right inverse g then h = g.

Proof: Observe f is both epic and monic as it is both a section and a retraction. Thus, fh =
fh1A = fhfg = f1Bg = fg = 1A so that h is also a right inverse of f . But then fh = fg and as f
is epic h = g. �

As the inverse of an isomorphism f is unique we shall denote it f−1. We have the following
alternative characterizations of isomorphisms:
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Lemma 3.3 The following are equivalent:

(i) f is a section and a retraction; (iii) f is an epic section;
(ii) f is a monic retraction (iv) f is an isomorphism;

When a category has every map an isomorphism it is called a groupoid. All groupoids have a
converse:

( )−1 : G −→ G; f 7→ f−1

An endomap e : A −→ A is an idempotent if ee = e. Notice that if h : A −→ B is a retraction
with left inverse h′ : B −→ A then hh′ is an idempotent as hh′hh′ = h1Bh

′ = hh′. We shall say
that an idempotent e is split if there is a retraction h with left inverse h′ such that e = hh′. While
an idempotent may be split in many different ways there is an important a sense in which there is
essentially just one splitting:

Lemma 3.4 Suppose e : A −→ A is an idempotent and h1 : A −→ B1 has left inverse h′1 and h2 : A
−→ B2 has left inverse h′2, with e = h1h

′
1 = h2h

′
2 then there is a unique isomorphism k : B1 −→ B2

such that h1k = h2 and kh′2 = h′1.

Proof: Set k = h′1h2 then the required identities hold. Furthermore k is an isomorphism as
k−1 = h′2h1 (as h′1h2h

′
2h1 = h′1eh1 = h′1h1h

′
1h1 = 1B1 and similarly for the other composite

h′2h1h
′
1h2 = 1B2). Suppose k′ also satisfies h1k

′ = h2 then h1k
′ = h1k and as h1 is a retraction and

therefore epic it follows that k = k′. �

We shall say that the splitting of an idempotent is unique up to unique isomorphism. It is
certainly not the case that idempotents will generally split in a category, however, there is an
important construction which allows one to freely split idempotents.

Let C be any category. Let Split(C) be the following category:

Objects: Idempotents e of C;

Maps: (e1, f, e2) : e1 −→ e2 where e1 : A −→ A and e2 : B −→ B is a map f : A −→ B in C such
that e1fe2 = f ;

Compositions As in C on the middle coordinate: (e1, f, e2)(e2, g; e3) = (e1, fg, e3).

Identities: the identity for an idempotent is that idempotent (e, e, e) : e −→ e.

Now it is not hard to show that this is a category. What is interesting about this category is
that all the idempotents in it split:

Proposition 3.5 Let C be any category then C is a full subcategory of Split(C) and all idempotents
split in Split(C).

Proof: We may regard C as a full subcategory of Split by letting the identity maps (which are
certainly idempotent) represent the objects of C in Split(C).

Suppose (e, k, e) : e −→ e is an idempotent in Split(C) then k is an idempotent in C. But then
we have maps (e, k, k) : e −→ k and (k, k, e) : k −→ e in Split(C) and it is easy to check that these
provide a splitting for (e, k, e). �
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To motivate why this construction may be of more than passing interest consider the category of
partial recursive functions on the natural numbers, Rec. Each enumerable set may be characterized
by an idempotent which is the computation which returns the element unchanged when it is in the
recursively enumerable set but simply does not terminate on elements outside. In Split(Rec) there
is an object or type for each enumerable set. Thus, this gives an example of a unityped system
from which can be constructed a very rich type system.

3.2 Functors

A functor is a map of categories F : C1 −→ C2 which consists of a map F0 of the objects and a
map F1 of the maps (we shall consistently drop these subscripts when the intended domain is clear)
such that

• ∂0(F1(f)) = F0(∂0(f)) and ∂1(F1(f)) = F0(∂1(f));

• F1(1A) = 1F0(A);

• F1(fg) = F1(f)F1(g);

Clearly every category has an identity functor and the composition of functors is associative so
that the following is immediate.

Lemma 3.6 Categories and functors form a category Cat.

If F : C −→ D is a functor then F op : Cop −→ Dop is a functor. A functor from the opposite
of a category, Cop, is often called a contravariant functor from C as the maps get reversed (the
contra- prefix). An ordinary functor (with domain C) is sometimes called a covariant functor to
emphasize that there is no twisting of maps involved.

A diagram in a category is a collection of arrows and objects satisfying certain composability
relations. Suppose that P is a property involving a relationship between the maps and objects of
a diagram. Examples of such properties, for the diagram consisting of a single map, that we have
met so far are

• P (f : A −→ B) = ∃g : B −→ A.fg = 1A, which says f is a section,

• P (f : A −→ B) = ∀h, h′ : X −→ A.hf = h′f ⇒ h = h′ which says f is monic.

We shall say a functor F preserves a property P if whenever P holds of the arrows f1, .., fn and
objects A1, .., An then P holds of the arrows F (f1), .., F (fn) and objects F (A1), .., F (An) in the
codomain category.

Thus, a functor always preserves sections (and isomorphisms) but does not, in general, preserve
monics (or epics). While functors may not preserve a property we are often interested in restriction
attention to those functors which do preserve that property. Thus, while funcors do not in general
preserve monics, we may well be interested in functors which do preserve monics.

We say that a functor reflects a property P of a diagram if whenever the property holds of the
image under F of the diagram then the property must have held for the original arrows. (Notice
that as functors do not in general even reflect composability, the requirement that the composability
relations already hold in the domain is now important).
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Thus, for example while functors always preserves isomorphisms they do not in general reflect
isomorphisms.

The enriched view of a category gives another important view of a functor F : C −→ D as being
provided by a family of maps

FAB : C(A,B) −→ D(F0(A), F0(B))

which must satisfy the following two diagrams:

C(A,B)× C(B,C)
mABC //

FAB×FBC

��

C(A,C)

FAC

��
D(F0(A), F0(B))× D(F0(B), F0(C)) mF0(A)F0(B)F0(C)

// D(F0(A), f0(C))

1

1F0(A) ))RRRRRRRRRRRRRRRRR
1A // C(A,A)

FAA

��
D(F0(A), F0(A))

Using this point of view the idea of a faithful functor can be easily explained: it is a functor
all of whose maps FAB are injective. Similarly a full functor is one all of whose maps FAB are
surjective.

Notice that a category has a faithful functor to the final category (one object one map) if and
only if it is a preorder! As we shall see in a moment, every (small) category has a full functor to a
preorder.

Given a category C a congruence is a given by an equivalence relation on each hom-set
satisfying f ∼ g and then hfk ∼ hgk. Given a congruence we may form a new category with the
same objects C/ ∼ whose hom-sets are the ∼–equivalence classes: C(A,B)/ ∼AB. This is called
the quotient category for the congruence ∼:

Objects: Those of C;

Maps: Equivalence classes of maps under ∼ we may write these as [f ] : A −→ B where f : A −→ B
is a representative member of the equivalence class.

Identities: [1A] : A −→ A;

Composition: [f ][g] = [fg].

Now it is not immediate that this is indeed a category. It is clear that the identities have the
correct properties but what is not clear is that composition so defined is even a function. Specifically
it is not clear that if we have [f1] = [f2] and [g1] = [g2] (in other words f1 ∼ f2 and g1 ∼ g2) that
necessarily f1g1 and f2g2 are even related! Of course this is exactly where we must use the special
property of a congruence, here is the argument:

f1 ∼ f2

f1g1 ∼ f2g1
Compose 1 g1

g1 ∼ g2

f2g1 ∼ f2g2
Compose f2 1

f1g1 ∼ f2g2
Transitive
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There is an obvious functor Q∼ : C −→ C/ ∼ which is the identity on objects and carries a map
f to its ∼–equivalence class [f ]. This is clearly always a full functor.

There is an important way in which conguences arise:

Lemma 3.7 If F : X −→ Y is a functor then the relation on parallel arrows f ∼F g ⇔ F (f) = F (g)
is a congruence. Furthermore F can be factorized as Q∼FF

′ where Q∼F full and the identity on
objects and F ′ is faithful.

Proof: We must show that hfk ∼F hgk but F (hfk) = F (h)f(f)F (k) = F (h)F (g)F (k) = F (hgk).
We may define a functor F ′ : X/∼F −→ Y by F ′([f ]) = F (f). This is clearly well-defined and,

furthermore, a faithful functor as if F ′([f ]) = F ′([g]) then F (f) = F (g). �

Note that faithful functors need not, as functors, be monic by any means.
An important construction is as follow: let F : A −→ C and G : B −→ C be functors then we

may form the comma category4 of F over G which is denoted F/G as follows:

Objects: Triples (A,F (A)
f−−→ G(B), B);

Maps: Quadruples ((A, f,B), a : A −→ A′, b : B −→ B′, (A′, f ′, B′)) where (A, f,B) and (A′, f ′, B′)
are objects as above and a and b are maps which render

F (A)

F (a)
��

f // G(B)

G(b)
��

F (A′)
f ′
// G(B′)

commutative.

Identities: ((A, f,B), 1A, 1B, (A, f,B));

Composition: With ((A1, f1, B1), a, b, (A2, f2, B2))((A2, f2, B2), a′, b′, (A3, f3, B3)) defined to be
((A1, f1, B1), aa′, bb′, (A3, f3, B3)) where the required commutativity is provided by:

F (A1)

F (a)

��

f1 // G(B1)

G(b)
��

F (A2)

F (a′)
��

f2
// G(B2)

G(b′)
��

F (A3)
f3
// G(B3)

Again the fact that this is a category must be checked although it follows easily from the fact
that F and G are functors and that A and B are categories.

4This is a bit of a misnomer considering the notation chosen here! The original notation for this construction
involved a comma.
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Let us first observe that, indeed, the slice category construction is a special case of this con-
struction. First notice that an object in a category corresponds precisely to a functor from the
final category 1. Thus C/A can be read as the comma category using the identity functor on C,
C = 1C : C −→ C and the functor from the final category A : 1 −→ C. It is easy now to see that this
comma category is just the slice category.

The comma category F/G has some obvious associated functors

Π0 : F/G −→ A; ((A, f,B), a, b, (A′, f ′, B′)) 7→ a

Π1 : F/G −→ B; ((A, f,B), a, b, (A′, f ′, B′)) 7→ b

There is also a canonical natural transformation

α : Π0;F −→ Π1;G

where α(A,f,B) = f : F (A) −→ G(B). Thus, the comma category gives a pasting square:

F/G
Π0 //

Π1

��

A

F
��α

y� {{{{{{{{

{{{{{{{{

B
G
// C

3.3 Natural transformations

Given two functors F,G : C −→ D a natural transformation (or just a transformation) α : F ⇒ G
is a family of maps αC : F (C) −→ G(C), indexed by the objects of C, in D such that for every map
f : C1 −→ C2 in D the following diagram commutes:

F (C1)
F (f) //

αC1

��

F (C2)

αC2

��
G(C1)

G(f)
// G(C2)

Our first observation is that this means that Cat(C,D), which often written DC, can be given the
structure of a category. Ultimately this means that Cat is a Cat-enriched category – these are also
known as 2-categories.

Proposition 3.8 Cat(C,D) is a category with objects functors and maps natural transformations.

Proof: First notice that every functor has an identity transformation given by 1F (A) : F (A)
−→ F (A). To compose natural transformations we simply define (αβ)A = αAβA: if this composition
works then it is associative. It remains to check that the above requirement on the composite
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transformation holds: this can be seen by pasting the transformation squares together.

F (C1)
F (f) //

αC1

��

F (C2)

αC2

��
G(C1)

G(f)
//

βC1

��

G(C2)

βC1

��
H(C1)

H(f)
// H(C2)

�

In order to conveniently manipulate functors and natural transformations it is useful to develop
the 2-categorical view of them. As there are many levels of activity in a general 2-category it is
useful to introduce a special notation: the objects of a 2-category (in Cat these are categories)
are often called 0-cells while the maps (or functors) are called 1-cells and the transformations
between the 1-cells are called 2-cells.

In this enriched view of Cat there are two sorts of composition: the composition of natural
transformations, αβ, written by juxtaposition and the composition of functors which we shall write
with a semicolon, F ;G.

Proposition 3.9 Cat is a Cat–enriched category.

Th proof is left as an exercise. The main difficulty of the proof of this is to show that functor
composition

; : Cat(A,B)× Cat(B,C) −→ Cat(A,C)

is a functor of two arguments.
As the semicolon is an enriched composition we may apply it to the natural transformations as

well as to the functors so that if α : F −→ G and α′ : I −→ J then

α;α′ : F ; I −→ G; J

As a consequence of the enrichment one will then have the equation, which is called the interchange
law which is a direct consequence of the fact that the composition is a functor of two arguments.

(α;β)(α′;β′) = (αα′); (ββ′)

In order to represent these compositions we shall use pasting diagrams: these diagrams are very
useful as interchange and associativity laws become graphical equalities. This means that one can
immediately “see” that two composites are equal with a minimal amount of manipulation. Below
is the representation of the interchange law:

A G //

F

""

H

<<
B J //

I

""

K

<<
C

α
��

β
��

α′��

β′��

24



Pasting diagrams may be translated back into 2-categorical notation but not in an unambigu-
ous way as there are many ways of representing a given pasting diagram as in the 2-categorical
“combinator” notation we have introduced. For example the above interchange can also be written:

(α; J)(β;α′)(H;β′)

(α; (α′β′))(β;K)

(F ;α′)(α;β′)(β;K)

....

It is important to realize that not every pasting diagram is legal. Here are a description of the
conditions to ensure that it is legal:

(a) The diagram must be planar with nodes labeled by objects (0-cells) arrows by functors (1-cells)
and regions by (2-cells);

(b) There must be a start node (object or 0-cell) and an end node (object or 0-cell);

(c) The maps (functors or 1-cell) must form an acyclic directed graph;

(d) Every map (functor or 1-cell) must be on a path from the start node to the end node, which
we will call a trip.

(e) For the transformations (2-cells) there must be a starting trip (path from start node to end
node) and an ending trip.

(f) Every arrow must be either on the end trip or in the domain of exactly one transformation
(but not both);

(g) Every arrow must be either on the start trip or in the codomain of exactly one transformation
(but not both).

Notice that the conditions (b), (c), and (d) must already be true of commuting diagrams.
These systems are actually familiar in computer science: they occur as in formal languages.

The rules of a context free language may be seen as 2-cells. The system above allows us a notation
for describing the derivations in the language.

3.4 Adjoints

In this section we introduce one of the most important concepts of basic category theory: an
adjunction. This notion occurs all over mathematics and plays an absolutely fundamental role in
understanding how abstract settings, such as a programming languages, are constructed.

3.4.1 The universal property

Let G : Y −→ X be a functor and X an object of X, then an object U ∈ Y together with a map
ηX : X −→ G(U) is a universal pair for the functor G at the object X if for any f : X −→ G(Y )
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there is a unique f ] : U −→ Y such that

X
ηX //

f !!DDDDDDDDD G(U)

G(f])
��

G(Y )

commutes.
It is useful to have in mind a particular instance of this universal property. A nice example

is as follows: let X be the category of directed graphs and Y the category of categories, let the
functor G be the “underlying functor” which forgets the compositional structure of a category, that
is regards a category as no more than the “underlying” directed graph. The map which takes a
directed graph and embeds it into the graph underlying the path category as the singleton paths
(paths of length one) has the universal property for this “underlying” functor.

Consider a map of directed graphs into the graph underlying a category, h : G −→ U(C), we can
extend it uniquely to a functor from the path category to the category as follows. Let h] : Path(G)
−→ C be defined on arrows by

h](A, [a1, .., an], B) = h(a1)..h(an) : h(A) −→ h(B)

then it is easy to check that this is a functor and that is uniquely determined by h. Before
proceeding, it is well worth doing the exercise to check that this does really work.

In the next section on limits and colimits we shall be discussing another important situation
in which these universal properties hold. However, we shall continue here to develop the theory of
these universal properties first. The reader who needs more concrete motivation may like to start
reading the section on limits and colimits in parallel.

We first make the simple but crucial observation:

Lemma 3.10 If (ηX , U) and (η′X , U
′) are universal at X for G : X −→ Y then there is a unique

isomorphism α : U −→ U ′ such that ηXG(α) = η′X .

Proof: We may define α as the unique map (η′X)]:

X
ηX //

η′X ""DDDDDDDDD G(U)

G(α)
��

G(U ′)

and by swapping the role of U and U ′ we obtain a β : U ′ −→ U using the universal property of
(U ′, η′X). However, now

ηXG(αβ) = ηXG(α)G(β) = η′XG(β) = ηX

so αβ = η]X and η]X = 1U so αβ = 1U and by a similar argument βα = 1U ′ . �

Thus a universal pair (U, η) for a functor G at an object X is determined upto a unique
isomorphism.
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We may also use the Yoneda lemma to re-express this property: if F : Y −→ Sets and there is a
natural isomorphism α : Y(U, )→ F then F is said to be representable with universal element
αU (1U ) ∈ F (U). In this case we have:

α : Y(U, )⇒ X(X,G( )) : Y −→ Sets

where αY (h) = ηXG(h) and the inverse maps sends f to f ]. Thus the universal property above
can be re-expressed by saying that X(X,G( )) is a representable functor with universal element
ηX ∈ X(X,G(U)). This reminds us that specifying the map ηX actually suffices to determine the
situation.

Now it is certainly not always the case that, for a functor G there will be universal pairs
(F (X), ηX) at each object X, however, if this is the case we have:

Proposition 3.11 Let G : X −→ Y be a functor such that for each X ∈ X there is a universal pair
(F (X), ηX) then:

• F is a functor with F (g) = (gη)];

• ηX : X −→ G(F (X)) is a natural transformation;

• εY = 1]G(Y ) : F (G(Y )) −→ Y is a natural transformation;

• The triangle equalities ηG(Y )G(εY ) = 1G(Y ) and F (ηX)εF (X) = 1F (X) hold.

Conversely given functors F and G with transformations η and ε, as above, which satisfy the triangle
identities, then each (F (X), ηX) is universal for G at X.

Proof: We start by verifying that F so defined is a functor it will then be immediate that η is a
natural transformation. We must verify that F preserves identities, which is the observation that
(ηX)] = 1, and that F (f)F (g) = F (fg). For the latter we have that, as

ηXG((fηY )](gηZ)]) = ηXG((fηY )])G((gηZ)]) = fηYG((gηZ)]) = fgηZ

that (fηY )](gηZ)] = (fgηZ)].

It remains to prove that εY = 1]G(Y ) is a natural transformation and that the second triangle
equality holds – the first is immediate from the definition of ε. For the naturality of ε we have for
a map f : Y −→ Y ′ that

G(f) = ηG(Y )G((1G(Y ))
])G(f) = ηG(Y )G(εY )G(f)

so that G(f)] = εY f . Similarly,

G(f) = G(f)ηG(Y ′)G((1G(Y ′))
]) = ηG(Y )G(F (G(f))G((1G(Y ′))

]) = ηG(Y )G(F (G(f))G(εY ′))

so that G(f)] = G(F (G(f)))εY ′ . Thus, ε is natural.
Finally, for the second triangle equality we have:

ηXG(F (ηX)εF (X)) = ηXηF (X)εF (X)) = ηX
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so that F (ηX)εF (X) = 1F (X) = η]X .
For the converse, suppose we have (F,G, η, ε) and the triangle equalities then, given f : X

−→ G(Y ) we can set f ] = F (f)εY then, using the naturality of η and the first triangle equality we
have:

ηXG(f ]) = ηXG(F (f)εY ) = fηG(X)εY = f.

To show uniqueness we suppose ηXG(h) = f then

h = F (ηX)εF (X)h = F (ηX)F (G(h))εY = F (ηXG(h))εY = F (f)εY = f ].

�

We say that F is left adjoint to G (equally G is right adjoint to F : notice that this is also the
dual statement) in case, as in the proposition there are natural transformations η (called the unit
of the adjunction) and ε (called the counit of the adjunction) satisfying the triangle equalities. We
write this situation as:

(η, ε) : F ` G : X −→ Y.

Recall there is a dual concept: let F : X −→ Y be a functor and Y an object of Y, then an object
V ∈ X together with a map εY : F (V ) −→ Y is a couniversal pair for the functor F at the object
Y if for any g : F (X) −→ Y there is a unique g[ : X −→ V such that

F (X)
g //

F (g[)
��

Y

F (V )

εY

==zzzzzzzzz

commutes.
When F has for each Y ∈ Y a couniversal pair (G(Y ), εY ) then this also gives rise to an

adjunction but this time the constructed functor G is right adjoint to F . In terms of universal
elements we now have a natural isomorphism:

α : X( , V )⇒ Y(F ( ), Y ) : Xop −→ Sets.

which is determined by the couniversal element εY . The fact, that this is a dual concept is
apparent in this formulation as we have replaced X by Xop.

3.5 Basic properties of adjoints

There is the following characterization of an adjoints which here we state for Sets–enriched cat-
egories. The result is true more generally for categories enriched elsewhere (e.g. Cat-enriched
categories for example).

Theorem 3.12 The following are equivalent for Sets–enriched categories and functors F : X −→ Y
and G : Y −→ X:

(i) An adjoint (η, ε) : F a G : X −→ Y;
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(ii) Two combinators ( )[ and ( )] where

(g : F (A) −→ B)[ : A −→ G(B) and (f : A −→ G(B))] : F (A) −→ B

such that

• (f ])[ = f and (g[)] = g,

• (F (h)fk)[ = hf [G(k) and (k′gG(h′))] = F (k′)g]h′;

(iii) A natural isomorphism ( )[ : Y(F ( ), )⇒ X( , G( )) : Xop × Y −→ Sets;

(iv) An isomorphism of categories ( )] : X/G −→ F/Y such that ( )]; Π0 = Π0 and ( )]; Π1 = Π1;

(v) For each X ∈ X there is a pair (F (X), ηX) which is universal for G at X such that F (h) =
(hη)];

(vi) For each Y ∈ Y there is a pair (G(Y ), εY ) which is couniversal for F at Y such that G(k) =
(εk)[.

Proof: We already know that the universal properties (and couniversal properties for that matter)
are equivalent to giving adjoints and it is clear that (iv) and (v) are dual. Thus it remains to prove
the following:

(i) ⇒ (ii) : Given the above adjunction we may define h[ = ηG(h) and g] = F (g)ε. Now these
are inverse as

(h[)] = (ηG(h))] = F (ηG(h))ε = F (η)εh = h

and the argument for (f ])[ = f is dual. Now notice that

(F (h)fk)[ = ηG(F (h)fk) = hηG(f)G(k) = hf [G(k)

and the other identity follows by the dual argument.

(ii) ⇔ (iii) : The “sharp” and “flat” now are going to be viewed as natural isomorphisms; the
announced properties of sharp and flat are exactly saying that regarded as transformations
they are natural!

(ii) ⇔ (iii) : The sharp and flat are now going to be regarded as functors. The commuting
square:

X
h //

f
��

G(Y )

G(g)
��

X ′
h′
// G(Y ′)

is a map (f, g) : h −→ h′ in X/G under the “sharp” combinator it is carried to the square:

F (X)
h] //

F (f)
��

Y

g

��
F (X ′)

(h′)]
// Y ′
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which commutes as F (f)(h′)] = (fh′)] = (hG(g))] = h]g. Thus, “sharp” does indeed give
a functor which clearly has an inverse and, furthermore, this functor commutes with the
projections from the two slice categories as required.

Conversely if we are given such an isomorphism of categories then by “sharping” the following
two diagrams:

X
fh //

f
��

G(Y )

X ′
h
// G(Y )

X ′
h // G(Y )

G(k)
��

X ′
hG(k)
// G(Y ′)

we obtain:

F (X)
(fh)] //

F (f)
��

Y

F (X ′)
h]

// Y

F (X ′)
h] // Y

k
��

F (X ′)
(hG(k))]

// Y ′

Which gives the combinator identity

(k′gG(h′))] = F (k)(gG(h))] = F (k′)g]h′

in two steps. The other required identity for the “flat” functor follows dually.

(ii) ⇒ (iv) : We must now recover the universal property from the “sharp” and “flat” combina-
tors: set ηX = (1F (X))

[ then given f : X −→ G(Y ) we have show

(1F (X))
[G(f ]) = (1F (X)f

])[ = (f ])[ = f

and it remains to show that f ] is unique. So suppose f = (1F (X))
[G(g) then

f ] = ((1F (X))
[G(g))] = ((1F (X)g)[)] = (g[)] = g.

Finally we note

(fη)] = (f(1F (X′))
[)] = F (f)((1F (X′))

[)] = F (f)1F (X′) = F (f)

So that the definition of F agrees with that given by the universal property.

�

We shall often write the two-way transformation as a two-way logical inference:

X
f = g[−−−−−−→ G(Y )

F (X) −−−−−−→
g = f ]

Y
F a G
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This allows us to move from maps h : F (X) −→ Y to h[ : X −→ G(Y ) and back f : X −→ G(Y )
to f ] : F (X) −→ Y where these moves are mutually inverse and natural. This style of handling
adjoints as we shall see shortly allows a convenient way of reasoning about the effect of adjoints.

Left adjoints preserve universal pairs and dually, although we do not formally state it, right
adjoints preserve couniversal pairs:

Proposition 3.13 If G : Y −→ X and (η′, ε′) : H a K : Y −→ Z and (U, η′) is a universal pair for
then (H(U), ηUη

′) is a universal pair for K;G.

Proof: Suppose f : X −→ G(K(Z)) then we obtain a unique f ]
′

: U −→ K(Z) now we may use the
universal property of the adjunction to give a unique (f ]

′
)] : H(U) −→ Z such that η′G(f ]

′
)]) = f .

X
f−−→ G(K(Z))

U
f ]
′

−−−→ K(Z)

Universal

H(U) −−−−−→
(f ]
′
)]

Z
H a K

�

This, in particular, means that if G has a left adjoint then K;G will have a left adjoint whose
unit is ηXη

′
F (X). This gives:

Corollary 3.14 If F and G are left (right) adjoints then F ;G is a left (right) adjoint.

Proof: While the above remarks establish that this observation is correct we may also see this
very directly by using the inferences:

X
f−−→ G(K(Z))

F (X)
f ]
′

−−−→ K(Z)

F a G

H(F (X)) −−−−−→
(f ]
′
)]

Z
H a K

�

3.6 Basic limits and colimits

Perhaps the most basic and most pervasive examples of universal and couniversal pairs arise through
limits and colimits.

3.6.1 Initial and final objects

An initial object in a category C is an object which has exactly one map to every object (including
itself) in the category. We shall often denote an initial object as the numeral 0 to remind us that
it is a starting point and denote the unique map as ?A : 0 −→ A.

In Sets the initial object is the empty set, in vector spaces it is the 0-dimensional vector space,
and in Cat it is the empty category.
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Dual to an initial object is a final object: a final object in a category C is an object to which
every object has exactly one map. We shall often denote the final object by the numeral 1 and the
unique map by !A : A −→ 1.

In Sets the final object is the one element set, in vector spaces the final object is the same as
the initial object (that is the 0-dimensional vector space) and in Cat it is the category with one
object and one arrow.

A simple observation is:

Lemma 3.15 If K and K ′ are initial in C then there is a unique isomorphism α : K −→ K ′.

Proof: As K is initial there is exactly one map α : K −→ K ′. Conversely, as K ′ is initial there is
a unique map α′ : K ′ −→ K. This map is the inverse of α as αα′ : K −→ K is the unique endo-map
on K namely the identity and similarly we obtain α′α = 1′K . �

Thus initial objects (and by duality final objects) are unique up to unique isomorphism.
While there can only be one map to a final object there can be many maps from a final object

to a given object (consider Sets for example). These maps are often called elements and we make
the following observation:

Lemma 3.16 Elements in any category are sections.

Proof: An element is a map a : 1 −→ A and has a right inverse ! : A −→ 1. �

One way to view an object in a category is as a functor from the final category.

Proposition 3.17 An object K in a category C is an initial object if and only if K a! : 1 −→ C.

Proof: Consider the universal diagram

?
1? //

1?   AAAAAAAA !(K)

!(1]?)
��

!(X)

As the final category only has one map each object must have a unique map from the initial object.
It is also clear that the counit is an isomorphism as it is the only map of the final category.

This means that K, the functor, is full and faithful. �

3.6.2 Binary products and coproducts

Perhaps one of the most fundamental structures a category can have is a product. In fact, it is so
fundamental we have already assumed several times that the reader knew what a product was in
order to facilitate the development. Let A and B be any two objects in a category then a product of
A and B is an object, often written A×B equipped with two maps π0 : A×B −→ A and π1 : A×B
−→ B such that given any object W with two maps f : W −→ A and g : W −→ B there is a unique
map, often written 〈f, g〉 : W −→ A×B, such that 〈f, g〉π0 = f and 〈f, g〉π1 = g.

The maps π0 and π1 are called projections.
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This can be depicted graphically as

A

W

f

44hhhhhhhhhhhhhhhhhhhhhhhh

g

**VVVVVVVVVVVVVVVVVVVVVVVV
〈f,g〉 // A×B

π0

;;wwwwwwwww

π1

##GGGGGGGGG

B

The product in Sets is the cartesian product, in vector spaces is what is often called the “direct
sum” (the dimensions of the vector spaces are added), and in Cat is the product of categories.

This time we shall start by describing the couniversal property which characterizes the product
from this we can then interpret the sense in which products are unique. To state the universal
property we need to consider the diagonal functor ∆ : C −→ C × C : f −→ (f, f) and the meaning
of a couniversal object at (A,B) for ∆:

∆(C)

∆(〈f,g〉)
��

(f,g)

&&MMMMMMMMMM

∆(A×B)
(π0,π1)

// (A,B).

This gives us immediately that:

Lemma 3.18 The product of A and B is the couniversal pair at (A,B) for the diagonal functor.

The uniqueness of couniversal pairs tells us the sense in which a product is unique up to a
unique isomorphism. It is worth unwinding this statement more explicitly to give a direct proof.
The result very closely follows the proof style given for the initial object:

Suppose (K, (a0, a1)) and (K ′, (a′0, a
′
1)) are both products of A and B then there is a unique

map α : K −→ K ′ such that αa′0 = a0 and αa′1 = a1 as K ′ is a product. But similarly there is a
unique map α′ : K ′ −→ K such that α′a0 = a′0 and α′a1 = a′1. The composite αα′ : K −→ K has
αα′a0 = αa′0 = a0 and αα′a1 = αa′1 = a1. However 1K : K −→ K also has this property so we must
conclude αα′ = 1K and similarly α′α = 1K′ .

A product has a number maps associated with it. The first map we consider is the diagonal
map ∆ = 〈1A, 1A〉 : A −→ A × A this is the unit of the adjunction implied by the existence of all
couniversal pairs.

Observe that 〈1A, 1A〉π0 = 1A this gives:

Lemma 3.19 The diagonal map if it exists for an object in any category is a section and therefore
monic.

One might think that the projections must be epimorphisms: this is clearly so for cartesian
powers (A × A, A × A × A, ..) but is definitely not the case in general. Even in Sets there is a
counterexample to this: A× 0 −−→

π 0
A for nonempty A is not surjective and thus not epic.
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Of course × is a functor f × g is define to be 〈π0f, π1g〉 as illustrated by:

A
f // A′

A×B

π0

99sssssssssss

π1

%%KKKKKKKKKKK
f×g // A′ ×B′

π0

;;vvvvvvvvv

π1

##HHHHHHHHH

A′ g
// B′

Next for any binary product there is a symmetry map:

A

A×B

π0

33hhhhhhhhhhhhhhhhhhhhhhhh

π1
++VVVVVVVVVVVVVVVVVVVVVVVV

cAB // B ×A
π1

;;wwwwwwwww

π0

##GGGGGGGGG

B

It is not hard to check that cABcBA = 1A×B and therefore we have:

Lemma 3.20 The symmetry map for any product is an isomorphism.

and ∆AcAA = ∆A: the trick is to break the maps into their components by post-composing
them with the projections.

Lastly there is an important map which allows one to re-associate products:

aABC : (A×B)× C −→ A× (B × C)

this map is the unique map determined by the equations

aABCπ0 = π0π0 aABCπ1π0 = π0π1 aABCπ1π1 = π1.

This map has an obvious inverse:

a−1
ABC : A× (B × C) −→ (A×B)× C

determined by the equations

a−1
ABCπ0π0 = π0 a−1

ABCπ0π1 = π0π0 a−1
ABCπ1 = π1π1.

Lemma 3.21 The associativity map for any product is an isomorphism.

In many structures which are “product like” these isomorphisms are present even though the
projections or diagonals are absent. The “coherence” diagrams satisfied by these isomorphisms
then becomes significant.

We shall say that a category C has binary products if every pair of objects has a product:
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Proposition 3.22 The following are equivalent:

(i) A category C has binary products;

(ii) The diagonal functor is a left adjoint:

(∆, (π0, π1)) : ∆ a × : C −→ C× C;

(iii) There is and object operation (A,B) 7→ A× B on C with two families of maps πA,B0 : A× B
−→ A and πA,B1 : A×B −→ B together with a pairing combinator:

f : X −→ A g : X −→ B

〈f, g〉 : X −→ A×B

such that

〈f, g〉π0 = f 〈f, g〉π1 = g 〈π0, π1〉 = 1A×B h〈f, g〉 = 〈hf, hg〉.

Proof: The first two formulations given the view of products as a couniversal pair are clearly
equivalent. For the final formulation it is straightforward to check that a product satisfies these
identities but less obvious that these define a product. To establish this we show that the pairing
map is unique: suppose that k has kπ0 = f and kπ1 = g then

k = k1A×B = k〈π0, π1〉 = 〈kπ0, kπ1〉 = 〈f, g〉.

�

The equality 〈π0, π1〉 = 1A×B is called to surjective pairing requirement. It is this identity
which often is the most difficult to secure. For example, while it is possible in the lambda calculus
to define many pairing combinators (satisfying everything but this last identity) it is provably
impossible to produce a surjective pairing.

We should also note here that the formation of pairs can be reversed (which is the content of
the surjective pairing condition, thus the inference rule may be written as a two-way inference:

hπ0 = f : X −→ A hπ1 = g : X −→ B

h = 〈f, g〉 : X −→ A×B
Dual to the notion of a product is the notion of a coproduct. Let A and B be any two objects

in a category then a coproduct of A and B is an object, often written A+B equipped with two
maps ι0 : A −→ A+B and ι1 : B −→ A+B such that given any object V with two maps h : A −→ V
and k : W −→ B there is a unique map, often written 〈h|k〉 : W −→ A × B, such that ι0〈h|k〉 = h
and ι1〈h|k〉 = k.

The maps ι0 and ι1 are called the coprojections.
We express this universal property diagrammatically as follows:

A

ι0 ##GGGGGGGGG
h

**VVVVVVVVVVVVVVVVVVVVVVVV

A+B
〈h|k〉 // V

B

ι1
;;wwwwwwwww h

44hhhhhhhhhhhhhhhhhhhhhhhh
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Now it is interesting to note that the coproduct in Sets is entirely different from the product.
It is the disjoint union of the two sets the coprojections are the embeddings of the components into
the disjoint union. In vector spaces the product and coproduct coincide — when this happens, in
a nice way, we shall say that we have biproducts (see later). In Cat the coproduct is the disjoint
union of the categories much as for sets.

The analogue to the diagonal maps is called the codiagonal and is the map

∇ = 〈1A|1A〉 : A+A −→ A.

We say a category has coproducts if every pair of objects has a coproduct.

3.6.3 Limits and colimits of diagrams

There is a general notion of the limit and colimit of a “diagram” which we now introduce. This
leads to the notion of a complete category, that is a category in which the limits of all (small)
diagrams exist. Of course, certain limits (e.g. equalizers and products) imply the presence of all
other limits so that completeness can be reduced to having all equalizers and all (small) products.

A diagram is, concretely a morphism of a directed graph into a category. Ocassionally this
notion of a diagram is too restrictive as we may also want to say that certain composites in the
diagram must be equal. A directed graph together with the specification that certain composites
are equal is just a presentation of a category. We may construct an actual category from such a
presentation by moving to the path category generated by the graph and “forcing” the equalities
we wish to hold to be true. This we may do by generating the smallest congruence on the path
category which includes the desired equalities. The category we want is then the quotient category
with respect to this congruence and the diagrams are then functors from this category.

In this section we shall be ambivalent about whether we are working with functors from cate-
gories, presentations of categories, or just diagrams. The results we prove rely only on the directed
graph structure and not on any overlying commuting constraints.

Thus, a diagram D : G −→ U(C) is a map of directed graphs into the underlying directed
graph of C (we know this corresponds to a functor D] : Path(G) −→ C) then a D–cone over this
diagram consists of an object A, called the apex of the cone together with for each node N of G
a map αN : A −→ D(N) such that for each arrow of G, a : N1 −→ N2, we have αN1G(a) = αN2 .

A morphism of cones (α, h, β) : α −→ β is given by a map in C, h : A −→ B between the apexes
of the cones such that αN = hβN for all the nodes of the diagram. We observe:

Lemma 3.23 The cones over D : G −→ C form a category, ConeD(C), with objects the cones and
maps the morphisms of cones.

This is straightforward to check and we leave it to the reader.
A limit of a diagram is a final object in the category ConeD(C). We often write the apex of

this cone as Lim(D) with projections πN : Lim(D) −→ G(N).
We may display diagrammatically the concept of a limit of a diagram as follows:
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A //

αN1

��)
))))))))))))))))))))))))))))))

αN2

  AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

αN3

��1
1111111111111111111111111111111111111111111 Lim(D)

πN1

}}{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

πN2

		��������������������������������

πN3

����������������������������������������������

D(N1)
D(a) // D(N2)

D(N3)

D(b)

::ttttttttt

First we note that this notion of limit subsumes both the definition of a final object (take G
to be the empty graph) and the definition of the product (take G to be the discrete graph – with
no arrows – with two nodes). Furthermore it suggests what should be the definition of an n-ary
product: namely, the limit of a discrete diagram with n nodes. However, as illustrated above there
are many more shapes diagrams may take and, thus, a whole variety of limits of which we should
develop some understanding.

Before doing so, however, it is useful to relate this notion of limit to that of a universal pair.
To do this, as is often the case, it is a matter of choosing ones category and functors carefully.

Let Dgrm(G,C) be the category of G-shaped diagrams in C having objects morphisms of
directed graphs D : G −→ U(C) and maps natural transformations (equivalently natural transfor-
mations between functors D] : Path(G) −→ C). From general principles we know that this is a
category.

There is also a diagonal functor ∆ : C −→ Dgrm(G,C) which takes an object C to the degenerate
diagram on that object where all the nodes of G become the object C itself and the arrows of G
become the identity map 1C . We now have:

Proposition 3.24 Dgrm(G,C) is a category with a diagonal functor ∆ : C −→ Dgrm(G,C). Fur-
thermore a couniversal pair at diagram D for ∆ is exactly a limit of D, (LimD,π).

Proof: This is more a matter of translation than of proof! The first thing to realize is that a
natural transformation h : ∆(A) −→ D is exactly a cone. Thus, the couniversal diagram:

∆(A)

∆(〈f〉)
��

f

%%JJJJJJJJJJ

∆(Lim(D)) π
// D.

also ensures that (Lim(D), π) is final in the category of cones. �
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We shall say that a category is complete in case ∆ : C −→ Dgrm(G,C) has a right adjoint for
each graph G. Here the size of the directed graphs is important: we are tacitly assuming that the
directed graphs we are talking about are “small” in the sense that both the nodes and arrows form
sets. However, we could assume that both the node and arrow sets must be finite: we will say the
category is finitely complete if for any finite G the functor ∆ has a right adjoint.

Dual to the notion of limit is that of colimit. A colimit of a diagram D is a universal pair, often
written (coLimD, ι), at D for the functor ∆.

We may display a colimit diagrammatically as:

D(N1)
D(a) //

D(b)

$$JJJJJJJJJ

βN1

��;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

ιN1



���������������������������������������
D(N2)

βN2

��'
'''''''''''''''''''''''''''''''''''''

ιN2

�����������������������������������������������������

D(N3)

βN3

��55555555555555555555555555555555555

ιN3

���������������������������������������

coLimD // A

We shall say that a category is cocomplete in case ∆ : C −→ Dgrm(G,C) has a left adjoint
for each small graph G. We will say the category is finitely cocomplete if for any finite G the
functor ∆ has a left adjoint.

Because a colimit is a universal pair and universal pairs are preserved by left adjoints, useful
fact is:

Lemma 3.25 Left adjoints preserve colimits and right adjoints preserve limits.

3.7 Special limits: equalizers and pullbacks

There are many shapes for diagrams and in this section we start by focusing on two special shapes:
equalizer diagrams and pullback diagrams. We show how the existence of limits for various shapes
of diagrams imply the existence of limits for others, culminating in proving that all limits exist
when products and equalizers are present.

An equalizer diagram is a parallel pair of arrows:

A
f−−→−−→
g

B

a cone for the above equalizer diagram is called an equalizer of f and g and is given by an object
Q together with a map q : Q −→ A such that qf = qg (this map is the map Q −→ B required to
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make a cone). A limit (E, e) is called the equalizer even though it is not unique and satisfies the
following couniversal property

Q

k ��

q

''OOOOOOOOOOOOOOO

E e
// A

f //

g
// B

that there is a unique k such that ke = q.
We shall often write the equalizer of f and g as the object couniversal pair πf=g : f = g −→ A.

We observe:

Lemma 3.26 Suppose (E, e) is the equalizer of A
f−−→−−→
g

B then e is monic.

Proof: Suppose xe = xy = z : X −→ A then zf = zg so there is a unique k : X −→ E such that
ke = z. Therefore k = x = y and so certainly x = y. �

A pullback diagram is a binary fan of arrows:

A

f
��

B g
// C

a cone for the above pullback diagram is called a pullback of f and g and is given by an object Q
together with two maps qA : Q −→ A and qB : Q −→ B such that qAf = qBg (this map is the map
Q −→ C required to make a cone). A limit (E, eA, eB) is called the pullback even though it is not
unique and satisfies the following couniversal property

Q

k
��

qA

''OOOOOOOOOOOOOOO

qB

��/
/////////////

E eA
//

eB
��

A

f
��

B g
// C

that there is a unique k such that keA = qA and keB = qB.
We shall occasionally write the pullback of f and g as the couniversal pair (f ∧g, π). Sometimes

we shall want to view the pullback diagram in an asymmetric way and so we shall say (in the above)
eA is the pullback along f of g.

Lemma 3.27 In any category

(i) the pullback of a monic along any map is a monic;

(ii) the pullback of a retraction along any map is a retraction;

(iii) the pullback of an isomorphism along any map is an isomorphism.
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Proof:

(i) Suppose g is monic and k1eA = k2eA then

k1eBg = k1eAf = k2eAf = k2eBg

so as gis monic k1eB = k2eB.
Q

  

k1eA=k2eA

''PPPPPPPPPPPPPPP

k1eB=k2eb

��0
0000000000000

E eA
//

eB
��

A

f
��

B //
g
// C

However, this makes k1 and k2 comparison maps from the outer square to the pullback.

(ii) Suppose now g is a retraction so there is a g′ with g′g = 1C . Now consider the comparison
map given by:

A

k
�� OOOOOOOOOOOOOOO

OOOOOOOOOOOOOOO

fg′

��/
/////////////

E eA
//

eB
��

A

f
��

B g
// // C

Clearly it is a left inverse for eA.

(iii) As an isomorphism is a monic retraction we may combine the two previous parts to obtain
this one.

�

A helpful observation is the following:

Lemma 3.28 In any category f : A −→ B is monic if and only if the following square is a pullback:

A A

f
��

A
f
// B.

Proof: If this square is a pullback then whenever xf = yf there is a unique comparison map

X
x

''PPPPPPPPPPPPPPP

y

��0
0000000000000

  
A A

f
��

A
f
// B.
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which shows x = y. Conversely if f is monic then whenever we form the outer square so that it
commutes x = y so that this also gives a comparison map, whose uniqueness is forced by the fact
that f is monic. �

This then allows us to link the property of being monic to a couniversal property whence we
can conclude:

Corollary 3.29 Right adjoints preserve monics and (dually) left adjoints preserve epics.

Pullback squares can be pasted together and the following observation is key to the behavior of
squares under pasting with respect to pullbacks:

Proposition 3.30 In the following (commuting) diagram:

A
f //

a
��

B
g //

b
��

C

c
��

A′
f ′
// B′

g′
// C ′

(i) if the two inner squares are pullbacks the outer square is a pullback;

(ii) if the rightmost square and outer square is a pullback the leftmost square is a pullback.

Proof:

(i) Suppose xc = yf ′g′ : X −→ C then there is a unique map w : X −→ B such that wg = x
and wb = yf ′. The latter equality gives a unique v : X −→ A such that va = x and vf = w.
But this means vfg = wg = x. Thus, v is the desired comparison map. It remains to check
uniqueness which is straightforward.

(ii) Suppose xb = yf ′ Then xgc = yf ′g′ so there is a unique k such that ka = y and kfg = xg.
But now both kf and x have the property that xg = kfg and xb = yf ′ = kaf ′ = kfb. Thus,
they both give the unique comparison map to the rightmost square, so kf = x. This means
that k is a comparison map to the leftmost square: again it is straightforward to check that
k is unique.

�

3.8 Completeness and cocompleteness

We shall say a category has equalizers or has pullbacks in case the appropriate limits always
exist. The category of Sets has both equalizers and pullbacks. Equalizers can be described very
simply in Sets, the limit cone for parallel set maps f and g is:

{a ∈ A|f(a) = g(a)} ⊆ A
f−−→−−→
g

B.

Finite dimensional vector spaces over a field K (take, for example, K = R) also have equalizers.
These, however, this time are harder to describe but is basically the solution space for a set of
linear equations. The following result shows that these examples also have pullbacks:
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Proposition 3.31

(i) If a category has binary products and equalizers then it has pullbacks;

(ii) If a category has pullbacks and binary products then it has equalizers;

(iii) If a category has a final object and pullbacks then it has binary products;

(iv) If a category has binary products then it has n-ary products for all n > 0.

Proof:

(i) We may construct the pullback as the equalizer:

f ∧ g
〈πA, πB〉−−−−−−−→ A×B

π0f−−−−→−−−−→
π1g

C

Where we notice that 〈x, y〉π0f = 〈x, y〉π1g : X −→ C if and only if xf = yg and the unique
k : X −→ f ∧ g has k〈πA, πB〉 = 〈kπA, kπB〉 = 〈f, g〉 which is the case if and only if kπA = f
and kπB = g as required.

(ii) The equalizer of two maps may be constructed using the following pullback:

f = g
π //

πf
��

A

〈f,g〉
��

B
∆
// B ×B.

Suppose xf = xg : X −→ B then

xf∆ = xf〈1, 1〉 = 〈xf, xf〉 = 〈xf, xg〉 = x〈f, g〉

so that there is a map k : X −→ f = g with kπ = x which is forced to be unique as π is monic
being a pullback of the section ∆.

(iii) The binary fan
A

!
��

B
!
// 1

has the pullback the product of A and B as any cone of the one is a cone of the other.

(iv) The n-ary product may be built from a composite of binary products.

�

The main observation of this subsection is as follows:

Proposition 3.32 A category is (finitely) complete if and only if it has (finite) products and equal-
izers.
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Proof: If the category is (finitely) complete then it will have all (finite) products and equalizers
so the content of the result is in the converse. Let D : G −→ U(C) be a diagram then we have the
arrows of the graph G1 and the nodes of the graph G0 and we can form the following equalizer:

V
〈va〉a∈G0−−−−−−−→

∏
a∈G0

D(a)
〈π∂0(f)D(f)〉f∈G1−−−−−−−−−−−−−−→−−−−−−−−−−−−−−→
〈π∂1(f)〉f∈G1

∏
f∈G1

D(∂1(f))

Notice that any equalizer of this equalizer is also a cone for D as

vaD(f) = 〈va〉a∈G0π∂0(f)D(f)f

= 〈va〉a∈G0〈π∂0(g)D(g)〉g∈G1πf

= 〈va〉a∈G0〈π∂1(g)〉g∈G1πf

= 〈va〉a∈G0π∂1(f)

= vb.

and conversely very cone for D gives rise to an equalizer of this diagram as

〈va〉a∈G0〈π∂0(f)D(f)〉f∈G1

= 〈〈va〉a∈G0π∂0(f)D(f)〉f∈G1

= 〈〈v∂0(f)D(f)〉f∈G1

= 〈〈v∂1(f)〉f∈G1

= 〈va〉a∈G0〈π∂1(f)〉f∈G1 .

Finally a morphism of cones over D becomes a morphism of equalizers as a map to a product is
determined by its components. This means that the two limits have isomorphic cone categories.
Thus if either has a limit it is also a limit of the other. �
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4 Exercises for part I

(1) Prove that the following data forms a category:

Objects: Sets

Maps: Relations

Identities: 1A = {(x, y) ∈ A×A|x 6= y}
Composition: R;S = {(x, z) ∈ A× C|∀y ∈ B · (x, y) ∈ R ∨ (y, z) ∈ S}

(2) A rig R is a set together with an operation + which is commutative and associative with
unit 0, and an operation · which is associative with unit 1 which distributes over the + .
Thus, these operations satisfying:

• (x+ y) + z = x+ (y + z)

• x+ y = y + z

• 0 + x = x = x+ 0

• (x · y) · z = x · (y · z)
• x · 1 = x = 1 · x
• x · (y + z) = (x · y) + (x · z)
• (y + z) · x = (y · x) + (z · x)

• 0 · z = 0 = z · 0

Show that the category of matrices, MatR, over a rig R form a category:

Objects: Natural numbers,

Maps: n×m-Matrices for n and m natural numbers,

Composition: Matrix composition,

Identities: Diagonal matrices.

(3) Provide a functor from boolean matrices to finite sets and relations:

H : Matbool −→ Relf

Now provide a functor in the opposite direction (the difficulty is that there are many finite sets
of the same cardinallity ...)

G : Relf −→Matbool

and show that there is a natural isomorphism

α : IdRelf −→ G; ;H

and that H; ;G is the identity functor. Conclude that the categories are equivalent!

A question to ponder: given this relationship, what is MatL for some distributive lattice L?

(4) In a partially ordered set (viewed as being a category) what is an initial object, final object,
product, and coproduct?
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(5) A zero object is an object which is both initial and final. Prove that in a category with a zero
object all projections from products are epic.

(6) Prove that in the category of monoids not every bijic is an isomorphism.

(7) A preinitial object is an object with at most one map from any object. Prove that P is preinitial
if and only if

P
1P

��@@@@@@@@

P

P
1P

??~~~~~~~~

is a coproduct.

A question to ponder: what are the preinitial objects in the category of (commutative) rings?

(8) Prove carefully that the symmetry and associativity maps for binary products are isomorphisms.

(9) If a category has products and coproducts prove that

〈〈f |g〉, 〈h|k〉〉 = 〈〈f, h〉|〈g, k〉〉 : A+B −→ C ×D.

(10) If a category C has products (and therefore a final object 1) prove that:

A































!

��0
000000000000

A 1

is a limit cone. Show, therefore that A× 1 and 1× A are canonically (in the sense that these
maps always exist) isomorphic to A.

(11) If a category C has products prove that the following diagrams are always pullbacks:

A×B f×1B //

π0
��

A′ ×B
π0
��

A
f

// A′

A
〈1A,f〉//

f
��

A×B
f×1B
��

B
∆
// B ×B.

(12) If a category has products prove that

A
∆−−→ A×A

π0−−−→−−−→
π1

A

gives the equalizer of π0 and π1.
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(13) Prove that in any category the pushout along any map of a section is itself a section. Show
that the pullback of a section is not necessarily a section: give a counter example in finite sets.

(14) Prove that if mr = 1Y and e = rm then, in the following diagram

Y
m−−→ X

e−−−→−−−→
1X

X
r−−→ Y

m is the equalizer of e and 1X and r the coequalizer.

(15) Prove that if a functor F : C −→ D preserves pullbacks and C has products that F preserves
equalizers (Hint: show that 〈F (p0), F (p1)〉 is monic).

(16) Describe coequalizers in Sets. Prove that Sets is complete and cocomplete.

(17) Suppose that (η, ε) : F a G : X −→ Y is a reflection (ε is a natural isomorphism) and that X
has colimits then Y has colimits.

(18) Certain limits can be obtained from other limits:

(a) Prove that any category has limits for acyclic graphs with a source. These are graphs with
an object from which any other object can be reached (in a unique way) following the
direction of the arrows (hint: a tree in fact!).

(b) (Harder) Prove that any category with equalizers has limits for finite graphs with a source
(any other object can be reached from the source in a not necessarily unique way following
the direction of the arrow).

(c) Prove that if a category has pullbacks it has limits for all finite connected acyclic graphs.
These are the diagrams which regarding each (directional) arrow as a two-way arrow leaves
every object reachable from every other in a unique way.

(d) (Harder) Prove that if a category has pullbacks and equalizers that every finite connected
diagram has a limit. These are the diagrams which regarding each (directional) arrow as a
two way arrow leaves every object reachable from every other (possibly in many ways).

(19) Show that a small category (both objects and arrows are sets) which is complete is a preorder.
Give a concrete proof that any meet preserving map from a complete poset has left adjoint.

(20) A complete partial order is a partial order with all limits or, equivalently all meets. Prove that
the inclusion of complete partial orders into all partial orders is a reflection (you may need to
look up some lattice theory here!).

(21) Show that SetsC
op

for any small category C is complete and cocomplete.

(22) Show that a congruence on a 2-category is an equivalence relation on the 2-cells which only
relates like typed 2-cells and satisfies:

(a) if α ∼ β then γαγ′ ∼ γβγ′ whenever these vertical composites are defined,

(b) if α ∼ β then γ;α; γ′ ∼ γ;β; γ′ whenever these horizontal composites are defined.

Show that every 2-functor can be factorized into a 2-functor which is surjective on 2-cells and
bijective on 1-cells and 0-cells followed by a 2-faithful 2-functor (i.e one which is injective on
the 2-cells hom-sets).

46



Part II

Restriction Categories

Partial functions arise everywhere in mathematics. One area where partiality arises rather brutally
is in computability [11]. A standard way to approach computability theory is through primitive re-
cursive functions and minimalization. The latter construction fundamentally introduces partiality.
The aim of this section is to introduce an abstract and yet very convenient categorical formulation
of partiality.

One way to define partiality categorically is to use “partial map categories” – a. presentation
of partial map categories is given in chapter 2 of [2]. The maps of a partial map category embody
the intuition of what a partial map should be: they are spans (m, f) : X → Y , that is pair of

maps X
m←−− X ′

f−−→ Y , whose left legs are monic. These spans give a direct representation of
partiality: X ′ is the domain of definition for f , and m is the monic inclusion of the domain of
definition into the source of the span. The drawback to partial map categories so constructed is
that composition relies on forming pullbacks and taking spans up to an equivalence relation. This
means that reasoning based on this formulation becomes rather cumbersome.

Restriction categories, [8], provide a much simpler approach to handling partiality. In a re-
striction category, the partiality of a map, f , is determined through a restriction idempotent , f ,
associated with f . This association of idempotent with map capture partiality in a completely
algebraic manner: the restriction satisfies just four simple equations. This simplifies the reasoning
required for partiality.

The first objective of these notes is to show that restriction categories completely capture the
notion of partiality. To achieve this we shall establish an equivalence between partial map categories
and restriction categories in which idempotents split.

The next section follows [7] closely: there is more material in that reference.
The notion of restriction actually has quite a long and interesting history: an account of this

is provided in [9]. Although we shall use restriction categories here to provide an abstract account
of computability, they have implication in other areas of mathematics: Manes highlights some of
these applications to semigroup theory and topology in [23].
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5 Introduction to restriction

Definition 5.1 A restriction category is a category equipped with a restriction operator

A
f−−→ B

A −−→
f

A

which given a map returns an endomorphism on the domain of that map satisfying: he definition
of a restriction category:

[R1] f f = f [R3] If dom(f) = dom(g) then f g = g f

[R2] If dom(f) = dom(g) then g f = f g [R4] If dom(g) = cod(f) then g f = fgf

Here are some examples of restriction categories:

Example 5.2 The trivial restriction.

The restriction defined by f = 1dom(f) is, on any category, always a restriction operator, called the
trivial restriction. A category with this trivial restriction is called a trivial restriction category.

Example 5.3 Sets and partial functions.

Take the category of sets and partial functions. One can define a restriction for A −−→
f

B here by

f (x) =

{
x f(x) defined

↑ otherwise
As this is a key example let us verify the axioms:

[R1] f(f (x)) = f(x) whether f(x) is defined or not.

[R2] If both g and f are defined at x, then g (f (x) = x = f (g (x)). If both g and f are undefined
at x, then g (f (x)) =↑= f (g (x)). Finally, only one of the functions is defined at x, then with-
out loss we may assume f is defined and g is not. Then f (g (x)) = f (↑) =↑= g (x) = g (f (x)).

[R3] First if f is defined at x, then g(f (x)) = g(x), so that if g is defined at x, f g (x) = x =

g (f (x)), and if g is undefined at x, then f g (x) =↑= g (f (x)). On the other hand, if f is

undefined at x, then f (g(x)) is undefined at x, so f g (x) =↑= g ↑= f (g (x)).

[R4] In the case that f is defined at x, and g is defined at, f(x), then g (f(x)) = f(x). On
the other hand, g(f(x)) is defined so f(fg (x)) = f(x). If g were not defined at f(x), then
g (f(x)) =↑= f(↑) = f(fg (x)). In the case that f is undefined at x, then g is necessarily
undefined at f(x), and g (f(x)) =↑= f ↑= f(gf (x)).

Here the restriction f : A −→ A for any partial map f is precisely the domain of definition of f .
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Example 5.4 The free restriction category on a graph

Another restriction category, the free restriction category on a graph can be given explicitly, and is
a nice example of a restriction category which gives an unexpected presentation of partiality. First,
we will give the construction then show the restriction axioms hold.

Take a directed graph, G, then form a category, the free restriction category [6], where

Objects: Nodes of G

Maps: A
(s, S)−−−−→ B where S is a finite prefix-closed set of paths out of A, and s ∈ S is a path

from A −→ B called the trunk. Being prefix closed requires that if rt is a path in S, then r
is a path in S.

Composition: Given, A
(s, S)−−−−→ B and B

(t, T )−−−−→ C take the composite to be:

(s, S)(t, T ) : A −→ C = (st, S ∪ sT ) : A −→ C.

Identities: ((A, [], A), {(A, [], A)}) : A −→ A (we will write 1A := (A, [], A)).

The restriction on this category is given by (s, S) = ((A, [], A), S). The restriction axioms are
particularly easy to check.

[R1] (1A, S)(s, S) = (s, S ∪ S) = (s, S)

[R2] (1A, S)(1A, T ) = (1A, T ∪ S) = (1A, S ∪ T ) = (1A, T )(1A, S).

[R3] (t, T ) (s, S) = (1A, T )(s, S) = (s, T ∪ S) = (1A, T ∪ S) = (1A, T )(1A, S)

[R4] (t, T )(s, S) = (t, T )(1A, S) = (t, T∪tS) = (1A, T∪tS)(t, T ) = (ts, T ∪ tS) (t, T ) = (t, T )(s, S) (t, T ).

The trunk, A
t−→ B, may be thought of as a particular choice of path out of A. The restriction

which reduces a map to having an empty trunk can be thought of as leaving the choice of path out
of A open. This partiality then is a sort of indeterminacy on the paths out of A.

5.1 Restriction basics

The following lemma shows that restricted maps are idempotents, and that the restriction operator
itself is idempotent.

Lemma 5.5 Let, C, be any restriction category, and let f, g ∈ C with dom(g) = cod(f).

(i) f f = f (ii) fg f = fg (iii) fg = fg (iv) f = f

Proof:

(i) f f = f f = f .

(ii) fg f = f fg = f fg = fg .
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(iii) fg = gf f = fg f = fg .

(iv) f = f1 = 1f = f .

�

Since restriction maps are idempotent and commute the restriction idempotents associated to
an object A form a semilattice, O(A). We think of this semilattice topologically as specifying
the open sets of A. Each map f : A −→ B then, acting like a continuous map, carries open sets
backward

f∗ : O(B) −→ O(A); e 7→ fe

this map preserves the meet operation but does not preserve the top element: it is, therefore, a
stable map of semilattices.

Every restriction category is order enriched: given two parallel maps f, g : X −→ Y in a
restriction category we shall write

f ≤ g ⇔ f g = f.

Lemma 5.6 In any restriction category:

(i) The relation f ≤ g is a partial order on each hom-set;

(ii) If f ≤ g then, for every h and k for which the composites are defined, hfk ≤ hgk.

Proof:

(i) Clearly it is reflexive. For transitivity suppose f ≤ g and g ≤ h then

f = f g = f g h = f g h = f h.

For anti-symmetry suppose f ≤ g and g ≤ f then f = f g and g = g f so

f = f g = f g g = g f g = g g = g.

(ii) If f ≤ g then hfk hgk = hfk gk = hfk f gk = hfk fk = hfk.

�

Two parallel maps f, g : X −→ Y in a restriction category are compatible, written f ^ g, in
case f g = g f . Intuitively this means that they agree where they are both defined:

Lemma 5.7 In any restriction category:

(i) f ^ g if and only if g f ≤ g or f g ≤ f ;

(ii) If f ^ g then, for every h and k for which the composites are defined, hfk ^ hgk.

Proof:

(i) If f g ≤ f if and only if f g f = f g, but then g f = g f f = f g f .
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(ii) We must show hfk hgk ≤ hfk when f g ≤ f but hfk hgk = hfk gk = hfk f gk ≤ hfk fk =
hfk.

�

Definition 5.8 A total map , A
f−−→ B, in a restriction category is a map for which f = 1A.

Recalling the example of sets and partial functions above, a map, f , is total - that is the
restriction is the identity – when ∀x.f (x) = x which means precisely that f is defined at all x,
giving the usual meaning of totality. By way of contrast, a map in the free restriction category is
total when (s, S) = (1A, {1A}). But this means S = {frm[o]−−A} to begin with; thus, the only
total maps in this category are the identity maps.

Lemma 5.9 In any restriction category,

(i) All monics are total

(ii) If f and g are total and composable, then fg is total

(iii) If fg is total, then f is total

Proof:

(i) We have f f = f = 1f which implies, as f is monic, that f = 1

(ii) Assuming f and g are total and composable, then fg = fg = f1 = 1

(iii) Assuming fg is total then f = f fg = fg = 1.

�

As identities are monic, there is an immediate corollary:

Corollary 5.10 The total maps of a restriction category, C, form a subcategory denoted Total(C).

In restriction categories there is a weaker notion of “isomorphism”: a map f : A −→ B is a
partial isomorphism if there is a map f (−1) : B −→ A such that ff (−1) = f and f (−1)f = f (−1) .
The notation suggests that the partial inverse is unique and this is the case:

Lemma 5.11 In any restriction category:

(i) If f is a partial isomorphism then f (−1) is unique;

(ii) Partial isomorphisms are closed to composition.

Proof:

(i) Suppose g an h are partial inverse to f then

g = g g = gfg = gf = gfh = g h = h g h = hfgfh = hf fh = hfh = hh = h.

51



(ii) If f and g are partial isomorphisms then fg has partial inverse g(−1)f (−1) as

fgg(−1)f (−1) = fg f (−1) = fg ff (−1) = fg f = fg .

�

A restriction category in which all maps are partial isomorphisms is called an inverse category:
a one object inverse category is an inverse semigroup (with a unit). Thus, there is another ready
source of restriction categories!

SLOGAN
Inverse categories are to restriction categories what groupoids are to categories.

One can also ask whether restriction idempotents split:

Definition 5.12 A restriction idempotent, e, is a split restriction if there exists an m and r such
that e = rm, and mr = 1. We shall say m is a restriction monic whenever it is part of a splitting
of an idempotent, that is there is an r such that rm = rm, and mr = 1.

Notice that a restriction monic is precisely a partial isomorphism which is monic, Therefore its
retraction is unique and, in fact, the restriction idempotent which it splits is unique.

Lemma 5.13 Let C be a restriction category. Then

(i) If ms = 1 then sm = s

(ii) Suppose mr = 1 = ms, and both rm = rm and sm = sm then r = s;

(iii) Suppose mr = 1 = nr, and either rm = rm or rn = rn then m = n.

Proof:

(i) s = sms = smsms = sms = sm .

(ii) Here we can either use the fact that it is a partial isomorphism or calculate directly using
rm = rm = r : r = r(ms) = rms = rmsms = smrmssmrms = sms = s s = s.

(iii) Suppose without loss rm = rm = r then rm = r(nr)m = (rn)(rm) = rnr = rnr rn =
r rn = rn and since, r is epic, m = n.

�

Definition 5.14 A split restriction category is a restriction category in which all restriction
idempotents split.
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Split restriction categories play an important role in what follows because in a split restriction
category from any map we can extract a monic, to represent its domain, and a total map on that
domain to obtain the data of a partial map:

A
f−−→ B := A

f0←−− A′ f1−−→ B

where f splits as rm = f and mr = 1 then f0 = m and f1 = mf , where mf is total as mf =

mf = mrm = m = 1. Thus, in split restriction categories one has a direct representation of the
domain of definition of the maps.

A restriction functor is just a functor with the additional property that the restriction is
preserved F (x ) = F (x) . Natural transformations between restriction functors come in two main
varities: strict transformations and lax trannsformations. In both cases they are given by
families of maps so that respectively

F (A)

αA

��

F (f) // F (B)

αB

��
G(A)

G(f)
// G(B)

F (A)

≥αA

��

F (f) // F (B)

αB

��
G(A)

G(f)
// G(B)

in the latter case the naturallity diagrams are required to commute up to inequality.
Given any restriction category, X, and any collection E of idempotents which includes the

identities then we may split these idempotents and form the category SplitE(X). The objects as
usual are the idempotents and the maps f : e1 −→ e2 are those with e1fe2 = f . We may also
redefine the restriction to be:

e
f−−→ e

e
ef−−−→ e

Clearly ef f = f so [R1] holds, ef eg = ef eg e = eg ef e = eg ef so [R2] holds. But also
ef eg = ef eg e = efeg e = efg so [R3] holds. Finally fe′g == fg = efg = efg f so [R3] holds.
This means we have:

Proposition 5.15 For any restriction category X and set of idempotents which include the iden-
tities SplitE(X) is a restriction category and the embedding

KE : X −→ SplitE(X) :

X

f
��
Y

7→

1X

f

��
1Y

is a restriction functor such that KE(e) for every e ∈ E is split.

The case which is particular interest to is when E = O, that is all the restriction idempotents.
In that case, in SplitO(X) it is easy to see that all the restriction idempotents split.
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5.2 M-categories

To understand why restriction categories give a clean way to discuss partial maps it is useful to have
a more explicit formulation of a partial map category so that the two notions can be compared.

Definition 5.16 Let C be a category, and M a class of monics in C. M is a stable system of
monics in case

[SSM1] All isomorphisms are in M

[SSM2] M is closed to composition

[SSM3] For any m : B′ → B ∈ M, f : A→ B ∈ C the following pullback, called an M-pullback,
exists and m′ ∈M:

A′
f //

m′

��

B′

m
��

A
f
// B

An M-Category is a pair (C,M) where C is a category with a specified system of stable monics
M.

Example 5.17 Trivial system of monics

Give any category, take M to be the collection of isos. This is called the trivial system of monics.

Example 5.18 Categories with pullbacks and all monics

Given a category with pullbacks, the set of all monics form a stable system of monics. Isomorphisms
are monic, composite of monics are monic. Further, pullbacks of monics along any map are monic:

A′
f ′ //

d
��

B′

m
��

A
f
// B

In particular, (Sets,Monics) is an M-category.

Proposition 5.19 Given any split restriction category, C, the collection of restriction monicsMC
forms a stable system of monics in the subcategory Total(C).

Proof:

[SSM1] 1 = 1 is a restriction idempotent, so any isomorphism is the monic part of the splitting
of a restriction idempotent.

[SSM2] If m and m′ split restriction idempotents with retractions r and r′ respectively then
rr′m′m = rr′m = rr′ rm = rr′ r = rr′ so the composite of restriction monics is a
restriction monic.
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[SSM3] The proof that MC has M-pullbacks is a bit more involved. It involves constructing
pullbacks in the total maps of a split restriction category using only the splittings and
composition. Suppose that me : B′ −→ B ∈MC and f : A −→ B ∈ Total(C), the fact that
we are in a split restriction category immediately gives the following data:

B′

me

��
A

fe

YY f
// B

re

]]

e=e

YY

Next, we can form a square by splitting fe = mr.

A′
mfre //

m
��

B′

me

��
A

fe

YY f
//

r

AA

B

re

]]

e

YY

To show that the square commutes, i.e. mf = mfreme, note that

mfreme = mfe fm = fef m = fmrm = fm

Furthermore, this all must happen within Total(C), so we must show that mfre is a total
map. But, f is assumed to be total and m,me are total since they are monic and so mf
is total. Now since mf = mfreme, refm is total. The splitting of restrictions guaranteed
that m is monic, so it remains to show that we indeed have in this square a pullback.
Suppose we have an object Q with maps k : Q −→ B′ and h :−→ A in Total(C) that form
a commuting square:

Q

q

��

h

""

k

��
(a)

(b)

A′

m
��

mfre
// B′

me

��
A

f
// B

Now, we know there is a map from q : Q −→ A′, namely hr. To see that this map makes
(a) commutes we have

h = kme h = kmereme h = kmee h = hfe = hrm = qm

the fact that this commutes also shows that q is total. (b) commutes as qmfreme =
qmf = hf = kme and me is monic so qmfre = k. Finally, the fact that m is monic
ensures that q is unique.
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Thus any split restriction category has its the total map category an M-category. Given any
restriction category we can always split the idempotents and whence associate with it an M-
category.

The importance of an M-category is that one may build a partial map category from it by
the following well-known construction. The construction is designed to catch the intuition behind
partial maps:

Definition 5.20 Let (C,M) be an M-Category. Define Par(C,M) to be the category where

Objects: The objects of C

Maps: A
(m, f)−−−−−→ B are classes of spans (m, f),

A′

m

~~~~~~~~~~
f

  AAAAAAAA

A B

where m ∈ M. The classes of spans are formed under the equivalence relation ∼ which is
the relation, (m, f) ∼ (m′, f ′) if there is an isomorphism, φ, such that both triangles in the
following diagram commute.

A′
m

��
f

,,

α // A′′

m′rr

f ′

��
A B

Identities: A
(1A,1A)−→ A

Composition: By pullback; i.e. given A −→ (m, f)B B −→ (m′, f ′)C, the pullback

A′′

m′′

~~||||||||
f ′′

!!BBBBBBBB

A′

m

~~~~~~~~~~
f

!!BBBBBBBB B′

m′

}}||||||||
f ′

  AAAAAAAA

A B C

gives a composite (m′′m, f ′′f ′) : A −→ C. Note for associativity the equivalence relation ∼ is
important.

Lemma 5.21 Par(C,M) is a restriction category with the restriction structure given by (m, f) =
(m,m).

Proof:
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[R1] Consider (m,m)(m, f), noting m : A′ −→ A is monic iff

A′

1A′
��

1A′ // A′

m
��

A′ m
// A

is a pullback, so the composite is

A′

1A′

~~}}}}}}}}
1A′

  AAAAAAAA

A′

m

~~~~~~~~~~
m

  AAAAAAAA A′

m

~~}}}}}}}}
f

  AAAAAAAA

A A B

Thus, (m,m)(m, f) = (m1A′ , f1A′) = (m, f), giving R1.

[R2] Consider (m, f) = (m,m), and (m′, g) = (m′,m′)

A′

1A′

~~}}}}}}}}
1A′

  AAAAAAAA

A′

m

~~~~~~~~~~
m

  AAAAAAAA A′

m

~~}}}}}}}}
f

  AAAAAAAA

A A B

A′

1A′

~~}}}}}}}}
1A′

  AAAAAAAA

A′

m

~~~~~~~~~~
m

  AAAAAAAA A′

m

~~}}}}}}}}
f

  AAAAAAAA

A A B

To make diagrams equal we need α = 1A′′ and x′m′ = xm, but this is given by the commu-
tativity of the pullback.

[R3] Take A
(m, f)−−−−−→ B, A −→ (m′, f ′)C, then we have,

A
m

��

f

��

A′′
f ′

��m′qqA B C

First, consider (m,m)(m′, f ′),

A′′

m′′

~~||||||||
f ′′

!!BBBBBBBB

A′

m

~~~~~~~~~~
m

!!BBBBBBBB B′

m′

}}||||||||
f ′

  AAAAAAAA

A A B
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Thus, (m,m)(m′f ′) = (m′′m, f ′′f) = (m′′m,m′′m)

Next, consider (m, f) (m′, f ′) = (m,m)(m′,m′),

A′′

m′′

~~||||||||
f ′′

!!BBBBBBBB

A′

m

~~~~~~~~~~
m

!!BBBBBBBB B′

m

}}||||||||
m

  AAAAAAAA

A A A

Next, note that f ′′m′ = m′′m by the commutativity of the pullback; hence, (m, f) (m′, f ′) =
(m′′m, f ′′m′) = (m′′m,m′′m). Therefore, [R3] holds.

[R4] Take A
(m, f)−−−−−→ B,B

(m′, g)−−−−−→ C then the composite gives (m, f)(m′, g) = (m′′m, f ′g), as

A′′

m′′

~~||||||||
f ′

!!BBBBBBBB

A′

m

~~~~~~~~~~
f

!!BBBBBBBB B′

m′

}}||||||||
g

  AAAAAAAA

A B C

Next consider “fg ,” i.e. (m, f)(m′,m′),

A′′

m′′

~~||||||||
f ′

!!BBBBBBBB

A′

m

~~~~~~~~~~
f

!!BBBBBBBB B′

m′

}}||||||||
m′

  AAAAAAAA

A B B

Thus using the commutativity of the pullback to give f ′m′ = m′′f , conclude (m, f)(m′,m′) =
(m′′m, f ′m′) = (m′′m,m′′f)

Next consider “fg f , i.e. (m′′m,m′′m)(m, f),

A′′

1A′′

}}{{{{{{{{
m′′

  BBBBBBBB

A′′

m′′m

~~}}}}}}}}
m′′m

!!CCCCCCCC A′

m

}}||||||||
f

  AAAAAAAA

A A B

Thus, (m′′m,m′′m)(m, f) = (m′′m,m′′f), and so [R4] holds.
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Therefore, Par(C,M) with (m, f) = (m,m) is a restriction category. �

Lemma 5.22 The restriction structure on Par(C,M) is split.

Proof: Note that (1, 1) = (1,m)(m, 1), and (m,m) = (m, 1)(1,m) since,

A
1A

��~~~~~~~~
1A

��@@@@@@@@

A
m

��~~~~~~~~
1A

��@@@@@@@@ A
1A

��~~~~~~~~
m

��@@@@@@@@

A A A

=

A
m

��~~~~~~~~
m

��@@@@@@@@

A A

and
A

1A

��~~~~~~~~
1A

��@@@@@@@@

A
1A

��~~~~~~~~
m

��@@@@@@@@ A
m

��~~~~~~~~
1A

��@@@@@@@@

A A A

=

A
1A

��~~~~~~~~
1A

��@@@@@@@@

A A

�

This means that given a restriction category we can split the idempotents, take theM-category
of total maps, and finally take the partial map category of this. A key observation is:

Lemma 5.23 There is a full and faithful embedding for any restriction category

E : C −→ Par(Total(Split(C)),MSplit(C)).

Proof: If C is a split restriction category then we shall prove the stronger property that the
embedding E : C −→ Par(Total(C),MC) is an isomorphism of categories. This will prove the
lemma.

Define E(C) = C and E(f) = (mf ,mf f). Set E−1(m, g) = rg where r is the unique retraction

of m in C. Then E(E−1(m, g)) = E(rg) but rg = r as g is total and r = rm so (up to ∼
equality) E(rg) = (m, g). Conversely, E−1(E(f)) = E−1(mf ,mf f) = rfmf f = f . So the maps
are certainly inverse and it suffices to prove that one is functorial.

Consider E: clearly it preserves identities so the only difficulty concerns composition. But
E(fg) = (mfg ,mfg fg) and E(f)E(g) = (mf ,mf f)(mg ,mg g). Calculating the pullback we must

split mf fg = mf fg to obtain (mmf fg
mf ,mmf fg

mf f). But mmf fg
mf splits fg as:

rf rmf fg
mmf fg

mf = rfmf fgmf = rfmf fg = f fg = fg .

�

This allows us to state the completeness result for restriction categories in the following form:

Theorem 5.24 Every restriction category occurs as a full subcategory of a partial map category.
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5.3 Joins and meets

A restriction category is said to have (finite) joins if:

[J1] For each pair of objects A and B there is a zero map 0AB : A −→ B which is stable so that

for every A
f−−→ B, 0AB ≤ F and f0BCg = 0AC .

[J2] For all compatible arrows f and g there is a join f ∨ g (in the sense that f ≤ f ∨ g, g ≤ f ∨ g
and whenever f ≤ h and gleqh the f ∨ g ≤ h) which is stable so that h(f ∨ g) = (hf) ∨ (hg).

A (finite) join restriction category is restriction category with finite joins. We shall drop the
“finite” prefix in these notes, however, before we do we should remark that a restriction category
with arbitrary joins is an interesting beast. The open set lattices O(A) are locales and this makes
them especially interesting from the topological perspective. Furthermore each finite join restriction
category can be completed to one with arbitrary joins.

The definition was given in a minimalist way we note:

Lemma 5.25 In any join restriction category:

(i) 0 = 0;

(ii) For every g, 0g = 0;

(iii) f ∨ g = f ∨ g ;

(iv) (f ∨ g)h = (fh) ∨ (gh).

Proof:

(i) 0 ≤ 0 so that 0 = 0 .

(ii) 0g = g0 g = g0 = g0 = 0;

(iii) It is clear that f ∨ g ≤ f ∨ g , and so f ∨ g = f ∨ g . We must show the reverse inequality

f ∨ g (f ∨ g ) = f ∨ g (f ∨ g )

= (f ∨ g )(f ∨ g) = (f ∨ g )f ∨ (f ∨ g )g

= f (f ∨ g )f ∨ g (f ∨ g )g = f f ∨ g g f ∨ g

(iv) Again it is clear that (fh)∨ (gh) ≤ (f ∨ g)h, we must show that the reverse inequality holds.
To do this we shall first establish that (f ∨ g)h = (fh ) ∨ (gh ) as

(f ∨ g)h = (f ∨ g)h (f ∨ g) = ((f ∨ g)h f ∨ (f ∨ g)h g)

= ((f ∨ g)h f f ∨ (f ∨ g)h g g) = (f (f ∨ g)h f ∨ g (f ∨ g)h g)

= (f (f ∨ g)h f ∨ g (f ∨ g)h g) = (fh f ∨ gh g) = (fh ∨ gh )

It remains to show that (f ∨ g)h ≤ (fh)∨ (gh) and to show this it suffices to show (f ∨ g)h =
(fh) ∨ (gh) but for this we have:

(fh) ∨ (gh) = fh ∨ gh = fh ∨ gh = fh ∨ gh

= (f ∨ g)h = (f ∨ g)h
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If a join restriction category has coproducts we now show that the coproducts are absolute
in the sense that any restriction functor which preserves the joins must necessarily preserve the
coproducts. To see why this is so consider:

Lemma 5.26 In any restriction category with joins and coproducts:

(i) The coproduct embeddings σ0 : A −→ A + B and σ1 : B −→ A + B are not only total but
sections;

(ii) The coproduct functor is a restriction functor, that is f + g = f + g ;

(iii) The coproduct embeddings are restriction monics;

(iv) The copairing map 〈f |g〉 = 〈f |0〉 ∨ 〈0|g〉;

(v) 〈f ∨ f ′|g ∨ g′〉 = 〈f |g〉 ∨ 〈f ′|g′〉.

Proof:

(i) Consider the copoduct embedding σ0 : A −→ A + B: there is a map 〈1|0B,A〉 : A + B −→ A
and σ0〈1A|0B,A〉 = 1A. So σ0 is a section.

(ii) We have:

f + g = 〈σ0f + g |σ1f + g 〉
= 〈σ0(f + g)σ0|σ1(f + g)σ1〉
= 〈f σ0|g σ1〉 = f + g .

(iii) Consider 〈1|0B,A〉σ0 = 〈σ0|0B,Aσ0〉 = 〈σ0|0B,A+B〉 = 1+0: as 1+0 is a restriction idempotent
this shows that 〈1|0B,A〉 is the partial inverse to σ0.

(iv) Note that σ0(〈f |0〉 ∨ 〈0|g〉) = .(σ0〈f |0〉) ∨ (σ0〈0|g〉) = f ∨ 0 = f so that 〈f |0〉 ∨ 〈0|g〉 = 〈f |g〉.

(v) σ0(〈f |g〉 ∨ 〈f ′|g′〉) = (σ0〈f |g〉) ∨ (σ0〈f ′|g′〉) = f ∨ f ′.

�

The absolute nature of coproducts follows from:

Proposition 5.27 In any restriction category with joins A
a−−→ C

b←−− B is a coproduct if and only
if a and b are restriction monics such that a(−1) b(−1) = 0 and a(−1) ∨ b(−1) = 1C .

Proof: If this were a coproduct the above establishes that the coproduct embeddings must be
partial isomorphisms also 1A+B = (σ0 + 0) ∨ (σ1 + 0) and (σ0 + 0)(σ1 + 0) = 0 + 0 = 0.

Conversely define 〈f |g〉 := (a(−1)f) ∨ (b(−1)g) where a(−1)f ^ b(−1)g as a(−1) b(−1) = 0. Then

a((a(−1)f) ∨ (b(−1)g)) = (aa(−1)f) ∨ (ab(−1)g) = f ∨ (aa(−1) b(−1)g) = f ∨ 0 = f.
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Thus, it remains only to show this map is unique. For this suppose:

A

f   @@@@@@@@
a // C

h
��

B
boo

g~~~~~~~~~~

D

then a(−1)f = a(−1)ah = a(−1) h and

h = 1h = (a(−1) ∨ b(−1) )h = (a(−1) h) ∨ (b(−1) h) = (a(−1)f) ∨ (b(−1)g).

�

Corollary 5.28 If F is a join preserving restriction functor between join restriction categories
then F preserves coproducts.

A restriction category can also have the meets of parallel maps, written f ∩ g. This operation
is defined for all parallel maps and satisfies:

[Mt1] f ∩ f = f

[Mt2] f ∩ g ≤ g and f ∩ g ≤ f

[Mt3] h(f ∩ g) = hf) ∩ (hg)

A restriction category with meets is called a meet restriction category.
The meet of two partial maps in sets and partial maps is precisely their intersection (viewed as

relations), that it is the part on which they agree. So, for example, we would expect the meet of
two compatible maps to be the restriction of either to their common domain:

Lemma 5.29 In any meet restriction category:

(i) If h ≤ f and h ≤ g then h ≤ f ∩ g (so it really is the meet!);

(ii) h (f ∩ g) = (h f ∩ g) = (f ∩ h g);

(iii) If f ≤ f ′ then f ∩ g ≤ f ′ ∩ g;

(iv) If f ^ g then f ∩ g = f g.

(v) (f ∩ g)h = (fh ∩ gh );

(vi) f ∩ g f = f ∩ g g.

Proof:

(i) h (f ∩ g) = h f ∩ h g = h ∩ h = h.

(ii) (h f ∩g) ≤ h f and (h f ∩g) ≤ g so that certainly (h f ∩g) ≤ h g, thus, (h f ∩g) ≤ (h f ∩h g) =
h (f ∩ g).
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(iii) If f ≤ f ′ then f = f f ′ so f (f ′ ∩ g) = (f f ′ ∩ g) = (f ∩ g) so that f ∩ g ≤ f ′ ∩ g.

(iv) If f ^ g then f g = g f so that f ∩ g = f g (f ∩ g) = g f ∩ f g = f g.

(v) Clearly (fh ∩ gh ) ≤ (f ∩ g)h for the converse we have:

(f ∩ g)h = (f ∩ g)h (f ∩ g) = ((f ∩ g)h f) ∩ (f ∩ g)h g)

≤ (fh f) ∩ gh g) = (fh ) ∩ (gh ).

(vi) As f ∩ g ≤ f and f ∩ g ≤ g then f ∩ g f = f ∩ g = f ∩ g g.

�

Notice that we do not ask for this meet to have a top element as this will not be the case in
general. Similarly, we do not ask that (f ∩ g)h = (fh) ∩ (gh) because this will not be the case in
general.

One might expect to have to demand that if a meet restriction category has joins that the meet
distribute over the join. However, it is a remarkable coincidence of structure that this is already
implicit in the situation:

Lemma 5.30 In any meet restriction category with joins the meet distributes over the join:

h ∩ (f ∨ g) = (h ∩ f) ∨ (h ∩ g).

Proof:

h ∩ (f ∨ g) = (f ∨ g)h ∩ (f ∨ g) = (f ∨ g )h ∩ (f ∨ g)

= (f (h ∩ (f ∨ g))) ∨ (g (h ∩ (f ∨ g))) = (h ∩ f (f ∨ g)) ∨ (h ∩ g (f ∨ g))

= (h ∩ f (f ∨ g)) ∨ (h ∩ g (f ∨ g)) = (h ∩ f) ∨ (h ∩ g)

�

In a restriction category, f is a partial monic in case whenever g1f = g2f then g1f = g2f .
Clearly monics are partial monics and so, therefore, are restriction monics.

Lemma 5.31

(i) In any restriction category: if f and g are partial monics then fg is a partial monic and,
furthermore, if fg is a partial monic then fgf is a partial monic.

(ii) In a meet restriction category f is a partial monic if and only if fx ∩ fy = f(x ∩ y) for all x
and y.

Proof:

(i) Suppose f and g are partial monics and h1fg = h2fg then, using that g is partial monic yields
h1fg f = h1fg = h2fg = h2gf f which allows one to use the fact that f is partial monic to
obtain h1fg = h2fg .

Now suppose that fg is a partial monic and h1fg f = h2fg f so that h1fg fg = h2fg fg, if
follows as fg is partial monic that h1fg = h2fg which shows fg f is partial monic.
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(ii) As xf ∩ yf xf = xf ∩ yf yf = xf ∩ yf and f is a partial monic it follows that

xf ∩ yf x = xf ∩ yf xf = xf ∩ yf yf = xf ∩ yf y

so that

xf ∩ yf (x ∩ y)f = (xf ∩ yf xf ) ∩ (xf ∩ yf yf )f = xf ∩ yf xf = xf ∩ yf

showing that xf ∩ yf ≤ (x ∪ y)f . The inequality (x ∪ y)f ≤ xf ∩ yf is, however, immediate.
Thus we have established that when f is partial monic (x ∪ y)f = xf ∩ yf .

Conversely, suppose (x ∪ y)f = xf ∩ yf then when xf = yf it follows xf = (x ∪ y)f = yf so
that

xf = xf x = (x ∪ y)f x = (x ∪ y)f x = (x ∪ y)f y = yf y = yf .

�

An important observation concerning meet restriction categories is that all idempotents split if
and only if the restriction idempotents split. This is a consequence of:

Lemma 5.32 If e is an idempotent and the restriction idempotent 1 ∩ e splits as mr = 1 and
rm = 1 ∩ e then e splits and m(er) = 1 and (er)m = e.

Proof: We us ethe fact that (f ∩ g) f = (f ∩ g) g and that (1 ∩ e) = (1 ∩ e) (as (1cape ≤ 1)
to conclude that (1 ∩ e)e = (1 ∩ e) e = (1 ∩ e) 1 = 1 ∩ e. This allow the calculations m(er) =
m(1 ∩ e)er = m(1 ∩ e)r = mr = 1 and erm = e(1 ∩ e) = (e ∩ e) = e. �

5.4 Cartesian restriction categories

A cartesian restriction category5, X, is a restriction category which has a (partial) final object
and for which each pair of objects has a (partial) product.

To say that there is a partial final object means, explicitly, there is an object 1 which has
from each object a total map !A : A −→ 1 so that any map f : A −→ 1 has f = f !A This, in
turn, means the maps from A −→ 1 are in bijective correspondence to the restriction idempotents
on A, O(A). Clearly a partial terminal object becomes a true terminal object in the total map
subcategory.

To say that X has binary (partial) products is to say that for each A,B ∈ X there is an
object A × B with total maps π0 : A × B −→ A and π1 : A × B −→ B such that for any pair
of maps f : Z −→ A and g : Z −→ B there is a unique map 〈f, g〉 : Z −→ A × B such that
〈f, g〉π0 = g f and 〈f, g〉π1 = f g. This means that × : × × X −→ X is a restriction functor and
that : 〈1A, 1A〉 = ∆A : A −→ A×A is total and a natural transformation.

Notice that the projections are lax natural rather than natural.in the sense that we have:

A×B
π0
��

≥

f×g // A′ ×B′

π0
��

A
f

// A′

5Di Paola and Heller called partial products “near products” and these where the basis for Rossolini and Robinson
P-categories. A cartesian restriction category is a P-category with a one “element object” in their terminology. The
terminology we use here appropriately emphasizes the parallel to ordinary categories.
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Also note that on the total category this means we have real products. This ensures that the
cartesian structure is unique.

Here are some useful manipulations with regard to the restriction structure:

Lemma 5.33 In any cartesian restriction category:

(i) 〈f, g〉 = f g

(ii) If e = e then e〈f, g〉 = 〈ef, g〉 = 〈f, eg〉

A rather useful observation is as follows:

Proposition 5.34 A split restriction category is a cartesian restriction category if and only it its
total map category is cartesian category.

Proof: The difficulty is to prove that if a split restriction category has a total map category which
is cartesian that it must e a cartesian restriction category. To achieve this we establish that there
is a natural cartesian restriction structure on the whole category if there is one on the total map
category.

For the partial terminal object suppose A
f−−→ 1 then this may be represented as a span

A
mf←−−− A′

mf f−−−−→ 1 as mf f is total it must be the unique !;A′ −→ 1 but this immediately makes

f = f !.
A similar argument works for the pairing: 〈f, g〉 is obtained by first making f and g have the

same domain by altering them to become g f and f g and splitting their now common idempotent.
This gives two total maps f ′ : f g −→ A and g′ : f g −→ B as we have products in the total category
we may pair these giving a spans of a restriction monic and a total map which corresponds uniquely
to a partial map in the category. �

The point is that any partial map category, Par(X,M), of a category X which already has
products immediately gives rise to a cartesian restriction category. This therefore provides many
examples.

We now turn to the effect of adding joins and meets to a cartesian restriction category. Again it
would seem that we should have to enforce that these structures work together nicely: remarkably
everything, as above, is already implicit. In particular, we would like the partial product functor
to preserve joins (f ∨ g)× h = (f × h) ∨ (g × h) but there is no need to add this as a requirement:

Lemma 5.35 In any cartesian restriction category with joins (f ∨ g)× h = (f × h) ∨ (g × h).

Proof: We shall first prove 〈f ∨ g, h〉 = 〈f, h〉 ∨ 〈g, h〉:

〈f ∨ g, h〉 = 〈f ∨ g, h〉 〈f ∨ g, h〉 = f ∨ g h 〈f ∨ g, h〉
= f ∨ g 〈f ∨ g, h〉 = (f 〈f ∨ g, h〉) ∨ (g 〈f ∨ g, h〉)
= 〈f (f ∨ g), h〉 ∨ 〈g (f ∨ g), h〉 = 〈f, h〉 ∨ 〈g, h〉

Now

(f ∨ g)× h = 〈π0(f ∨ g), π1h〉 = 〈(π0f) ∨ (π0g), π1h〉 = 〈π0f, π1h〉 ∨ 〈π0g, π1h〉 = (f × h) ∨ (g × h).
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Suppose now that we add coproducts to a join cartesian restriction category as coproducts are
absolute andA× preserves joins it follows, in the light of 5.28, thatA×(B+C) ∼= (A×B)+(A×C) in
other words the distributivity of products over coproducts holds. We shall therefore call a cartesian
restriction category which has joins and coproducts a distributive restriction category.

We now consider the effect of adding meets to a cartesian restriction category.
In a cartesian restriction category an object A is said to be discrete in case its diagonal map

∆ : A −→ A × A is a restriction monic. Explicitly this means that ∆A has a partial inverse ∆
(−1)
A

and, to remind us of its relationship to equality, we shall sometimes write the restriction idempotent

∆
(−1)
A as eqA.

A cartesian restriction category in which all objects are discrete is called a discrete restric-
tion category (note the cartesianness is assumed). The following observation links meets and
discreteness:

Proposition 5.36 If X is a cartesian restriction category then X is discrete if and only if X is a
meet restriction category.

Proof: If X is discrete define f ∩ g = 〈f, g〉∆(−1) then

[Mt1] f ∩ f = 〈f, f〉∆(−1) = ∆(f × f)∆(−1) = f∆∆(−1) = f

[Mt2] To prove f ∩ g ≤ f we shall first establish that (f ∩ g) f = (f ∩ g) g by:

(f ∩ g) f = 〈f, g > ∆(−1) f = 〈f, g > ∆(−1) g f

= 〈f, g〉∆(−1) 〈f, g〉π0 = 〈f, g〉∆(−1)∆π0

= 〈f, g〉∆(−1)∆π0 = 〈g, f〉∆(−1)∆π0

= 〈g, f〉∆(−1) 〈g, f〉π0 = 〈f, g〉∆(−1) g

= (f ∩ g) g

then we have

(f ∩ g)∆ = 〈f, g〉∆(−1)∆ = 〈f, g〉∆(−1) 〈f, g〉
= 〈f, f ∩ g g〉 = 〈f, f ∩ g f〉 = f ∩ g 〈f, f〉 = f ∩ g f∆

so that f ∩ g ≤ f and similarly f ∩ g ≤ g.

[Mt3] h(f ∩ g) = h〈f, g〉∆(−1) = 〈hf, hg〉∆(−1) = (hf ∩ hg).

So that this implies that when X is discrete it is a meet restriction category.
Conversely suppose that X has partial products and is a meet restriction category then set

∆(−1) = π0 ∩ π1. Clearly
∆(π0 ∩ π1) = (∆π0 ∩∆π1) = 1 ∩ 1 = 1

and

(π0 ∩ π1)∆ = 〈(π0 ∩ π1), (π0 ∩ π1)〉
= 〈(π0 ∩ π1)π0, (π0 ∩ π1)π1〉
= (π0 ∩ π1) 〈π0, π1〉 = (π0 ∩ π1)

66



showing π0 ∩ π1 is partial inverse to ∆. �
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6 Turing categories

Turing categories are cartesian restriction categories with a special kind of weakly universal object,
called a Turing object . After the basic definition we show that one can normalize the weak universal
structure associated with a Turing object to facilitate verifying that a category is a Turing category.
Next some examples are presented mainly from recursion theory; Turing categories are supposed
to embody an abstract notion of computability, and so they had better encompass the traditional,
concrete notions. The Turing structure on a category is structure which is not canonical and it is
interesting to see how different Turing structures on a category are related.

The central definitions of these notes is:

Definition 6.1 (Turing category) Let C be a cartesian restriction category.

(i) Given a morphism τX,Y : A × X −→ Y , a morphism f : Z × X −→ Y is said to admit a
τX,Y -index when there exists a total map h : Z −→ A for which the following diagram is
commutative:

A×X
τX,Y // Y

Z ×X
f

;;wwwwwwwww
h×X

OO�
�
�

In this case, h is called a τX,Y -index for f .

(ii) A morphism τX,Y is called a universal application when every f : Z × X −→ Y admits a
τX,Y -index. We will also simply say that τX,Y is universal.

(iii) A Turing object in C is an object A such that for each X,Y ∈ C, there is a universal
application τX,Y : A×X −→ Y .

(iv) The category C is called a Turing category if it possesses a Turing object.

One way to think of a Turing object A is as an object which plays, for each pair of objects
X,Y , the role of a weak exponential of X and Y ; in that light, the universal application morphism
τX,Y : A × X −→ Y then acts as an evaluation map. We do not insist that the “exponential
transpose” h of f is unique; in the (rather special) case where transposes are unique we say that
τX,Y is extensional.

In the case where Z = 1, the terminal object, this means that for each morphism f : X −→ Y ,
there is a total point a : 1 −→ A, such that (a× 1)τ1,Y = f . We shall refer to a as a code for f .

It is important to realize that, given a particular Turing object, the universal morphisms τX,Y
are not part of the data of a Turing object. Certainly, the existence of such data is required
but generally, a Turing object may have many possible families τX,Y which realize it as a Turing
object. Similarly, in a Turing category, we do not take a choice of Turing object to be part of the
structure but rather require the existance of such an object; a Turing category may possess many
non-isomorphic Turing objects.

Definition 6.2 (Turing structure) Let C be a Turing category and A an object of C.

1. A family of maps τ = {τX,Y : A×X −→ Y |X,Y } where X,Y range over all objects of C will
be called an applicative family for A.
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2. An applicative family τ is called universal for A when each τX,Y is universal, in which case
we also say that τ is a Turing structure on A.

3. A pair (A, τ), where τ is universal for A is called a Turing structure on C.

The question of how different Turing objects in a given category are related and of how different
Turing structures on a given Turing object are related will be discussed shortly.

We should give some examples at this point, but as one can imagine, verifying whether a given
category is a Turing category using the above definition may not be straightforward. We therefore
postpone this until we have gathered a few results which will allow for an equivalent formulation
which is easier to check in practice.

As a first observation, we note that a Turing object is a universal object, in the strong sense
that every object is a retract of it.

Lemma 6.3 In a Turing category C with Turing object A, every object X is a retract of A.

Proof: Consider the diagram

A× 1
τ1,X // X

X × 1

πX

;;xxxxxxxxx
π̃X×1

OO

where π̃X is a τ1,X -index for πX . Precomposing both ways around with the isomorphism X −→ X×1
gives the desired result. �

In particular we have that all finite powers 1, A,A2, A3, . . . are retracts of A. This example
not only indicates something about the size of the object A (which, if we were working over the
category of sets, would have to be either a singleton or infinite) but also tells us that there is an
internal pairing operation on A.

We next turn to the problem of normalizing the Turing structure in the sense of showing
how such structure can be generated from some key components. One of these key ingredients is a

Turing morphism: this is a universal self-application map, which we shall write as A×A • //A .
Clearly, given a universal applicative family τ = {τX,Y } on A, the map τA,A : A× A −→ A is such
a Turing morphism. However, simply having such a Turing morphism is not sufficient to generate
a Turing structure on A; one needs the additional requirement that A is a universal object.

Let X,Y be arbitrary objects, and suppose we seek to construct a universal application map
τX,Y : A×X −→ Y . Let us assume that we have embedding-retraction pairs (mX , rX) : X / A and
(mY , rY ) : Y / A. We define τX,Y to be the composite

A×X A×mX// A×A • // A
rY // Y.

To verify that this morphism is a universal application suppose we are given f : Z × X −→ Y .
Consider the diagram

A×XA×mX// A×A • // A
rY // Y

Z ×X

h×X

OO

Z×mX

// Z ×A

h×A

OO

Z×rX
// Z ×X

fmY

OO

f

;;wwwwwwwww

69



The triangle on the right commutes because of the equality mY rY = 1. The square in the middle
uses the fact that • is a Turing morphism and hence that there is an index h for the composite
(Z × rX)fmY . Obviously the left hand square commutes, and the bottom composite is simply the
identity. Thus h is also an index for f relative to the top composite.

This way of constructing the morphisms τX,Y from the single instance • = τA,A is not canonical.
There may in general be many ways of extending τA,A to a Turing structure on A. Because we
have constructed all Turing morphisms from • under the assumption that every object is a retract
of A, we have proved the equivalence of (i) and (ii) below:

Theorem 6.4 (Recognition of Turing categories) For a cartesian restriction category C, the
following are equivalent:

(i) C is Turing category;

(ii) There is an object A of which every object is a retract, and for which there exists a Turing

morphism A×A • // A ,

(iii) There is an object A of which every object is a retract which has a coding morphism.

It remains to explain (iii): we shall say that ◦ : A × A −→ A is a coding morphism in case
for every map f : A −→ A there is a not necessarily unique total point c[f ] : 1 −→ A, which we call
a code, such that

A×A ◦ // A

A
f

77nnnnnnnnnnnnnnn

〈!c[f ],1〉

OO

commutes.
We shall prove that, when every object is a retract of A, having a coding morphism implies

that one has a Turing morphism and conversely having a Turing structure implies that one has a
coding morphism.

Let us start by assuming we have a coding morphism and A× AC(s,r) A then given g : A× A
−→ A we have:

A×A r×1 // A×A×A 1×s // A×A ◦ // A

A×A×A

s×1

OO jjjjjjjjjjjjjjj

jjjjjjjjjjjjjjj

A×A

〈!c[g],π0,π1〉

OO 〈!c[g],π0,π1〉

::

s
// A

〈!c[rg],1〉

OO

r
// A×A

g

EE���������������

showing that defining • := (r × 1)(1× s)◦ provides a Turing morphism: it has 〈!c[g], 1〉s as an
index for g. Notice that this index is total as s is total. Notice, also, that a coding morphism is
not necessarily a Turing morphism.
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Conversely, if one has Turing structure (which follows from having a Turing morphism) then
there is a index p for

A×A
τA,A=•

// A

1×A π1
//

p×1

A

g

??��������

showing that τA,A also serves as a coding morphism.

6.1 Examples

We now present some examples of Turing categories, ranging from the Turing category for classical
recursion theory and models of the lambda calculus to less well-known examples.

6.1.1 The classical recursion category

We first recall some concepts and notation from elementary recursion theory. First of all, one may
consider a suitable enumeration φ0, φ1, . . . of the partial recursive functions f : N −→ N (of one
variable), based on the fact that such a function can be described by finitely many instructions,
and that these instructions can be coded into one single number. Alternatively, one may consider a
coding for Turing machines, since the Turing machine-computable functions are exactly the partial
recursive ones. Similarly, there exist enumerations of partial recursive functions of several variables;

φ
(n)
0 , φ

(n)
1 , . . . will be an enumeration of the n-ary partial recursive functions. When f = φe, one

also says that the number e is a code for f .

The key properties one can prove about such a family φ
(n)
m (and this is where one needs the

enumeration to be “suitable”) are:

1. The Universality Theorem. This result says, that the functions (for each n > 0)

Φ(n)(e, x1, . . . , xn) = φe(x1, . . . , xn),

called the universal functions, are partial recursive.

2. The Parameter Theorem. This says that there are primitive recursive functions Snm, for
each n,m > 0, such that

Φ(n+m)(e, x1, . . . , xm, u1, . . . , un) = Φ(m)(Snm(e, x1, . . . , xm), u1, . . . , un).

Moreover, the Snm functions may be taken to be injective.

(In some texts, the Universality Theorem is taken to be part of the Enumeration Theorem.
Moreover, some texts take the validity of the above two theorems to be the definition of a suitable
enumeration.) We now fix such an enumeration and use it to define the so-called Kleene-application

on the natural numbers; this is the function N× N • // N , defined by

n • x = φn(x).

That is, n •m is the result of applying the n-th partial recursive function to input m (and is
undefined whenever that computation diverges).
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Having this at our disposal, consider the category whose objects are the finite powers of N, and
where a morphism Nk −→ Nm is an m-tuple of partial recursive functions of k variables. In case
k = 0, we simply get m-tuples of elements of N. Denote this category by Comp(N).

The object N is a Turing object in this category. First, any (primitive) recursive pairing function
p : N×N −→ N together with unpairing functions p0, p1 : N −→ N×N will exhibit N×N as a retract
of N (in fact, these objects are isomorphic), and similarly for the other objects.

The application on N is Kleene-application; the Universality Theorem guarantees that this is a
partial recursive map, and the weak universal property of • is now an application of the Parameter
Theorem.

Note that all of the universal functions are in fact Turing morphisms in this category. In the
light of this example, we thus arrive at a justification for the axioms of a Turing category; they are
supposed to give a minimal setting in which the Universality Theorem and the Parameter Theorem
hold. (The fact that classically the reparametrization functions are primitive recursive and not just
merely total recursive does not have a direct analogue in a general Turing category; the fact that
they may be taken to be injective does - see Section 6.2.)

6.1.2 Variation

A minor variation on the above category is obtained by considering as objects all recursively
enumerable (r.e.) subsets of Nk, k ≥ 0, and (tuples of) partial recursive functions between those.
Again, N, equipped with the Kleene-application, is a Turing object in this category. (This category
is in fact obtained from the first example by splitting the restriction idempotents.)

One could also consider a “smaller” version of the classical recursion category Comp(K1), namely
by taking only the objects 1 and N (and all computable maps between them). Since N ∼= N×N via
a computable isomorphism, this is actually a skeleton of Comp(K1). One recovers the old category
by splitting the idempotents which correspond to the products.

6.1.3 Reflexive objects

A reflexive object in a cartesian closed category is an object A together with embedding-retraction
pairs 1 /A, A×A/A, AA /A. It is well-known that such an object is a model of untyped lambda
calculus (see, e.g. [18]). A category where the search for non-trivial reflexive objects often leads
to success is that of (directed-)complete partial orders (CPOs) and Scott-continuous maps. Given
a reflexive object A in that category, one may consider the smallest cartesian closed subcategory
generated by A. This is a Turing category with Turing object A; the Turing morphism is defined
by taking an embedding-retraction pair (m, r) : AA / A, and by defining

•A : A×A r×A // AA ×A ev // A.

This category only has total maps; although one might initially expect a treatment of recursion
theory to have partiality (as Di Paola and Heller insisted), this limiting case is not excluded and,
indeed, we wish to make a point here that the study of categorical models of the untyped extebsional
lambda calculus may be viewed as the study of cartesian closed (total) Turing categories.

Also, we note that, more generally, one could work in a partial cartesian closed Turing category
(for more on this notion, see, e.g. [10], or [27]), and look for reflexive objects in there; those
correspond to models of the untyped partial lambda calculus (see [24]). Hence in general cartesian
closed Turing categories will correspond to partial lambda algebras.
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6.1.4 Classifying categories

So far, our examples were set-based, in the sense that the Turing object was always a set equipped
with some extra data (or in the more precise sense that the Turing categories were faithful over
Par). Thus, they embody set-based notions of computation. We will now sketch an example which
is quite different.

The theory Partial Combinatory Logic (PCL, for short) is a unityped partial algebraic
theory which has two constants k and s, and a binary application symbol •. From these (and
variables of course), partial terms are formed; the term formation rules include the usual rules, but
there is the added rule of term restriction: given terms t, r, one may form a new term t|r, to be
thought of as t restricted to (the domain of) r. The PCL axioms are kxy = x, sxyz = xz(yz) and
x|sxy = x, where the application is written as an invisible, left associating, operation. The first two
axioms are the usual axioms for the combinators k and s and the last axiom is to be read as “sxy
is total”. The models of this theory are the partial combinatory algebras which will be discussed
in Section 6.4.

Now for ordinary equational theories one can always consider a term model, which is built
from the syntax of the theory and which is an initial model. In the case of a partial theory such as
PCL, this is replaced by a classifying category: this is a cartesian restriction category containing
a generic model. It follows from the specific properties of PCL (combinatory completeness) that
the classifying category for PCL is a Turing category. Because of its initiality, it may be regarded
as a generic model of computation.

6.1.5 Turing categories vs. Kleene categories

There is a variation on the definition of Turing category, in which one demands that every morphism
f now has an index h up to inequality, in the sense that f ≤ •(h×1) instead of the usual f = •(h×1).
Such an h is then called a realizer for f . One is tempted to call such structure a Kleene category,
since they are more suited for purposes of realizability than for computability.

Many things which are true for Turing categories are already true for Kleene categories. For
example, in a Kleene category each object is a retract of the Kleene object, and hence one can
normalize the structure. However, there are some important differences: some recursion theoretic
concepts, such as m-completeness (see Section 6.3), make sense in Kleene categories, but basic
results about them break down.

6.2 Comparing Turing structures

We remarked earlier that a given Turing category may have many different Turing structures. We
now investigate how different Turing structures on a Turing category are related, and give some
criteria for verifying whether certain data induces Turing structure. Categorically, this may be
viewed as a coherence issue; on the other hand it immediately leads to the subject of simulations,
and is closely related to the classical concept of recursive invariance.

Let us fix a Turing category C. All we know is that there exists a Turing object, say A. But
already from A, we can obtain more Turing objects, namely the powers A2, A3, . . .. This follows
directly from the following Lemma, which gives a criterion for an object to be a Turing object.
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Lemma 6.5 Let A be a Turing object in C. Then an object B is a Turing object if and only if A
is a retract of B.

Proof: Clearly, by Lemma 6.3, the condition is necessary. Conversely, let us assume that A is
a retract of B, and let us construct universal application morphisms for B. Define σX,Y : B ×X
−→ Y as the composite

σX,Y : B ×X r×X // A×X
τX,Y // Y

where the map r is a retraction of B onto A, and where τX,Y is a universal application for A. Given
f : Z ×X −→ Y , we now can consider an index h : Z −→ A for f relative to A, and compose this
index with a splitting of r. �

Thus, all Turing objects in a Turing category are retracts of each other. From this, it does not,
in general, follow that they are isomorphic - this requires (a computable version of) the Cantor-
Schröder-Bernstein Theorem.

Even though the above Lemma is, as a coherence result, quite crude, in some cases it still gives
us an easy way to determine which objects in a given Turing category are Turing objects. For
example, consider the category where the objects are r.e. subsets of powers of N, and where the
morphisms are the partial recursive functions between those (example 6.1.2). Of course, N is a
Turing object, as are all powers of N. Moreover, it is known (see [25]) that every infinite r.e. set U
can be viewed as the range of an injective total recursive function, and this function has a recursive
section, exhibiting N as a retract of U . Thus, every such infinite U is a Turing object as well.
Obviously a finite set cannot be a Turing object, which leads us to the conclusion that the Turing
objects are exactly the infinite r.e. sets.

Now let us suppose that we have two Turing objects A and B, together with chosen structure
τ = {τX,Y |X,Y } on A and σ = {σX,Y |X,Y } on B. How are τ and σ related? Well, we first pick
an embedding-retraction pair (m, r) : A / B. Then consider the diagram

B ×X
σX,Y // Y

A×X
m×1X

// B ×X

h×X

OO

r×1X
// A×X τX,Y

// Y

1

OO

The arrow h is a σ-index for the composite (r × 1X)τX,Y . Since mr = 1, this gives the equation

τX,Y = (mh× 1X)σX,Y .

Thus, the map mh relates the two application morphisms; because m was just a choice of embedding
and h was just any index, no coherence (varying X and Y ) can be expected.

Of course, we may reverse the roles of A and B, and then we will get a comparison morphism
in the other direction: given an embedding-retraction pair (n, t) : B / A, we find j such that

σX,Y = (nj × 1X)τX,Y .

We may turn the above observation into a criterion for when a family σX,Y : B × X −→ Y
defines Turing structure on B.
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Lemma 6.6 Let A be a Turing object with universal maps τX,Y . A family σX,Y : B × X −→ Y
constitutes a Turing structure on B if and only if there exist total maps pX,Y : A −→ B such that
τX,Y = (pX,Y × 1X)σX,Y .

Proof: One direction was proved in the preceding discussion. For the converse, suppose such a
family pX,Y is given. Then, for a morphism f : Z ×X −→ Y , one finds a σ-index by first finding a
τ -index f̃ : X −→ A and then composing with p. �

We can also use this to give a criterion for when a morphism B ×B • //B is a Turing mor-
phism.

Lemma 6.7 Let A be a Turing object and let τB,B be a universal application map. Then a mor-

phism B ×B • // B is a Turing morphism precisely when there is a total map p : B −→ A making
the following diagram commute:

A×B
τB,B // B

B ×B

p×B

OO

•

;;xxxxxxxxx

6.3 Comparing Turing morphisms

We now know that different Turing objects must be retracts of each other, and that between dif-
ferent universal applicative families there must always be comparison morphisms. To complete the
description of the coherence among different Turing structures, we would like to give character-
izations in terms of the normalized structures. This is certainly possible, but in order to give a
complete account one needs both the language and the results about simulations. We therefore
present a few simple observations here which can be stated in elementary terms, and illustrate these
by connecting them to recursion-theoretic phenomena. As a corollary, we show that the Halting
set is m-complete in any Turing category.

Let us first illustrate how it can happen that a given Turing object A has different Turing

morphisms. Suppose we have picked a Turing morphism A×A • // A on A; then we can change
this into another application •′ by considering the following composite:

A×A r×A // (A×A)×A π0×A // A×A • // A.

Here, we have chosen an embedding-projection pair (m, r) : A × A / A. Now •′ is again a Turing
morphism: given f : X ×A −→ A, consider the diagram

A×A r×A // (A×A)×A π0×A // A×A • // A

X ×A

h×A

OO

mX×A
// A×A

〈g,1〉×A
OO

rX×A
//

g×A

77ppppppppppp
X ×A

f

<<xxxxxxxxx

where g is an index of (rX ×A)f relative to •, and where we have chosen (mX , rX) : X /A. Then
h may be defined as the composite

h = mX〈g, 1〉m,

75



since then

(h×A)(r ×A)(π0 ×A)• = ((mX〈g, 1〉m)×A)(r ×A)(π0 ×A) •
= (mX ×A)(〈g, 1〉mr ×A)(π0 ×A) •
= (mX ×A)(〈g, 1〉 ×A)(π0 ×A) •
= (mX ×A)(g ×A) •
= (mX ×A)(rX ×A)f

= f

Observe that this new index h is in fact a section, and thus in particular a monomorphism. Thus
we have in fact shown that every Turing category possesses a Turing structure for which every map
has a monic index.

Remark. In classical recursion theory one often exploits the scholium to the Parameter Theorem
that the reparametrization functions may be taken to be injective. The construction is also related
to what is sometimes called “Padding”: the fact that, given a particular code for a function, one
can effectively generate infinitely many more codes (see [25]). Now in a general Turing category
this result will not hold for every Turing structure (for example if the structure is extensional).
However, the above observation shows that there always exists a Turing structure on the same
Turing object for which padding does work (provided the category is non-trivial of course).

This example tells us more than just about the possibility of creating different Turing mor-
phisms: it tells us that certain properties (in this case, having monic indices) are not properties of
the Turing category, but are properties of specific choices of structure.

Before we look at the relation between different Turing morphisms, we introduce a bit of notation
which will also prove useful later on. Let us be given a Turing morphism • on A. From this, we
may define a family of iterated application morphisms •(n) : A × An −→ A. These are defined
inductively: •(1) = •, and if we have defined •(n), then let •(n+1) be the composite

A×A×An •×1 // A×An •(n)
// A.

Thus, •(n) is n-fold application, associated to the left. In case no confusion is possible we will be
sloppy and omit the parameter n from the notation and simply write • for all of the members of
this family.

Lemma 6.8 Each of the derived morphisms •(n) is a universal application.

Proof: This is proved by induction on n, where the case n = 1 is true by assumption that • is a
Turing morphism. If we have proved the statement for n = k, then consider f : Z × Ak+1 −→ A,
and construct an index for f according to

A×A×Ak •×1 // A×Ak •k // A

X ×A×Ak
h×Ak

OO

= // X ×A×Ak
f

99ssssssssss
g×Ak

OO
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where g : X ×A −→ A is a •(k)-index for f (which exists by induction hypothesis), and h : X −→ A
is a •-index for g.

�

We have started the inductive definition of •(n) at n = 1, and one may ask what •(0) should
be! Given that the morphisms •(n) allow us to view elements of A as n-ary morphisms, a natural
choice would be to let •(0) be the identity, for then we regard an element of A as a 0-ary function,
that is, a constant. However, there are compelling reasons for making another choice: we define
•(0) to be the composite

A
∆ // A×A • // A.

A first argument in favour of this choice is that many of the interesting properties of the family
•(n) are shared by the above map, but not by the identity. (More reasons will be provided in
Section 6.4.) For example, it is also a universal application: given f : X −→ A, let d : X −→ A be a
•-index for fπX : X ×A −→ A. Then d is also a •(0)-index for f . See the following diagram.

A
∆ // A×A • // A

X

d

OO

〈1,d〉
// X ×A

d×A

OO

πX
// X

f

OO

We digress for a moment to note that we have actually proved a result from recursion theory
here, namely the completeness of the Halting set. Let us briefly explain this: if two domains
e ∈ O(X), e′ ∈ O(Y ) are given, we say that e (many-one) reduces to e′, written e ≤m e′ , when
there is a total map f : X −→ Y such that e = f∗(e′), i.e. e is the pullback of e′ along f . A domain
is said to be complete if every other domain reduces to it6.

Now for any Turing structure τ = {τX,Y } on A, the domain of τ1,A is indeed complete: given a
domain e ∈ O(X), consider

A
τ1,A // A

X

h

OO

e // X

m

OO

where m : X −→ A is a choice of embedding and h is an index for em. Because me = τ1,Ah, the

domains of hτ1,A and of em are equal. Thus, letting K (so K = •(0) , we get

e = em = hτ1,A = h∗(K),

by totality of m, which shows that e ≤m K.
Now we may apply this to the domain of the morphism •(0); this gives:

Corollary 6.9 (Completeness of the halting set) The domain K is complete.

6A more familiar categorical formulation of a complete predicate would be: e is complete if and only if it is a weak
generic object in the appropriate subobject fibration (over the category of total maps).
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Similar reasoning shows the completeness of other domains. Indeed, if we take any total point

a : 1 −→ A of A, then we may consider the composite A
〈1,a〉 // A×A • // A . The domain of this

map will then be complete, for if we are given a domain e on X, consider

A
〈1,a〉 // A×A • // A

X
〈1,a〉

//

h

OO

X ×A

h×A

OO

eπX
// X

m

OO

where h is an index for πXem. Since h is total and the bottom composite is e, this shows that e is
a pullback of the domain of the top composite.

One can strengthen this to encompass so called 1-completeness. Here the map along which the
reduction is performed is not only required to be total but also it must be monic. To achieve this
one must simply modifying the Turing morphism so as to ensure that indices are monic.

We return to the problem of relating different Turing morphisms. Suppose we have two Turing
objects A, B, with specified Turing morphisms •A = τA,A and •B = σB,B. Choose a retraction
(m, r) : ACB. First, consider the diagram

B ×B •B // B

A×A
m×m

// B ×B

h×B

OO

r×r
// A×A •A

// A

m

OO

This gives an equation
(mh×m)•B = •Am

relating the two Turing morphisms. Written in the more palatable internal language of the category
(using infix notation for the applications), this reads

h(m(x)) •B y = m(x •A y).

Thus, m preserves the application modulo the “twist” h.

Remark. In recursion theory, one considers two acceptable systems of indices (enumerations)
φ0, φ1, . . . and ψ0, ψ1, . . ., or the partial recursive functions, giving rise to Kleene applications •φ
and •ψ, respectively. Then one asks how these are related. One answer is that there is a total
recursive function h for which

h(x) •ψ y = x •φ y.

(The embedding m which figures in our equation is the identity here.) In addition, one can show
that h may be taken to be an isomorphism. It is the latter aspect which is specific to classical
recursion theory and does not generalize to our setting. Also, it has been shown that there must
exist a total recursive g such that g(x) • g(y) = g(x • y) (see [25]); again, this exploits specific
properties of the natural numbers and does not generalize.
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We can reformulate the relation between •A and •B using the iterated application •(2)
B . Indeed,

consider

B ×B ×B
•(2)B // B

A×A
m×m

// B ×B
r×r

//

u×B×B

OO

A×A •A
// A

m

OO

where u : 1 −→ B is now a code. Written in the internal language again, this means that

(u •B m(x)) •B m(y) = m(x •A y).

We may summarize this in the following Lemma:

Lemma 6.10 If (A, •A) and (B, •B) are both Turing objects, then there are codes u : 1 −→ A and
v : 1 −→ B, and morphisms m : A −→ B and n : B −→ A such that the following diagrams commute:

A×A •A //

〈u,m,m〉
��

A

m
��

B ×B •B //

〈v,n,n〉
��

B

n
��

B ×B ×B •B
// B A×A×A •A

// A

6.4 Partial Combinatory Algebras

From the few examples in the previous section, as well as the recognition theorem, we saw that
Turing categories are, in a certain sense, generated from a single object which comes equipped
with a binary application map. This binary application makes a Turing object an internal partial
combinatory algebra in its ambient Turing category. This section introduce partial combinatory
algebras and describes how they can be used to generate Turing categories.

Throughout this section, we will work in an arbitrary cartesian restriction category C.

Definition 6.11 (Applicative system) An applicative system A = (A, •) in C consists of an

object A together with a morphism A×A • // A , called application.

There are no axioms to be satisfied, and therefore this notion is rather wide. In order to select
a class of interesting applicative systems, we focus on the morphisms which can be “computed” by
an applicative system. Before we can define what we mean by this, we recall from 6.3 the family
of iterated application morphisms •n : A×An −→ A, derived from •, including the special case for
n = 0, where •(0) is the composite •∆.

We now define:

Definition 6.12 (Computable morphism, absolute version) Let A = (A, •) be an applica-
tive system.

(i) For n ≥ 0, a morphism f : An −→ A is said to be A-computable (or computable whenever A
is clear from the context) when there exists a total point p : 1 −→ A such that

A×An • // A

An

p×1

OO

f

;;vvvvvvvvv
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is commutative. (We suppress the isomorphism An ∼= 1 × An). Moreover, if n > 1, it is
required that the morphism

1×An−1 p×1 // A×An−1 •n−1
// A

is total.

In this situation, we call p a code for the morphism f .

(ii) More generally, a morphism An −→ Am is computable when all components are; finally, we
say that a morphism An −→ 1 is computable if its domain is (as a map An −→ An).

The second clause in the definition which requires a to be total in its first n− 1 arguments can be
justified in a few different ways; see the remarks at the end of the section.

Remark. One can, in the definition of a computable morphism, replace the condition that the
relevant diagram is commutative on the nose, by the relaxed condition that it commutes up to
inequality (i.e. that f ≤ •(p × 1)). This is typically referred to as the realizability of a morphism
f . Thus, computability is a stricter notion which requires the domain of f to be captured by the
code p.

In order to single out interesting applicative structures we may ask for certain useful morphisms
to be computable. For example, we may want the identity morphism on A, or more generally the
projection morphisms to be computable; one could additionally ask that the computable maps are
closed under composition. Ultimately, one wants to extract a category from C, where the objects
are the finite powers of A and the morphisms are the computable maps. This category, which will
be denoted by comp(A), can be constructed as follows:

Objects: Formal finite powers of A. We may identify these with the natural numbers 0, 1, . . ..

Morphisms: A morphism n −→ m is an A-computable morphism An −→ Am in the base category
C.

One could directly impose the requirement on A that this forms a category; however, we will
take the more common approach of discussing combinatory completeness first and then showing
that these two things are equivalent.

From A = (A, •), we can build a subcategory of C, called the A-polynomial category, or simply
the polynomial category ; this is defined to be the smallest cartesian restriction subcategory of C
on the objects 1, A,A2, . . . which contains all total points of A as well as the application map.
Morphisms in this subcategory are called A-polynomial morphisms; think of such a morphism
f : An −→ A as a polynomial in n variables with coefficients in A.) The key definition is now:

Definition 6.13 (Combinatory Completeness) An applicative system is combinatory com-
plete when every polynomial morphism is computable.

It is a classic result that combinatory completeness already follows from two instances (see, for
example, [4]). Define the map k0 to be the first projection π0 : A×A −→ A, and define the map s0

to be the composite

A×A×A
〈π13,π23〉// (A×A)× (A×A)

•×• // A×A • // A.
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Theorem 6.14 For an applicative system A = (A, •), the following are equivalent:

1. A is combinatory complete

2. the polynomial morphisms k0, s0 are A-computable.

A choice of codes for k0, s0 is usually denoted by k and s, respectively. It is important to note
that these codes of combinators (as they are usually called) are by no means unique.

We now define aPartial Combinatory Algebra (PCA for short) to be a combinatory complete
applicative system. Often, a PCA is taken to be an applicative system together with chosen
combinators k and s; here we shall try to avoid making these choices as the constructions and
morphisms we shall be considering will not rely on having made such a choice.

Before we turn to examples of PCAs, we give the promised result (proved in the total case
by Longo and Moggi) that combinatory completeness is precisely what is needed to guarantee the
computable maps do form a category.

Theorem 6.15 (Categorical characterization of completeness) For an applicative system A =
(A, •) in a category C, the following are equivalent:

(i) A is combinatory complete

(ii) The A-computable morphisms form a cartesian restriction category over C.

Proof: We sketch the proof, which is a straightforward extension of the total case proved in [20].
Assume first that A is combinatory complete. By definition, this means that every polynomial

map is computable. In particular, the application map is computable, as is every total element.
Now if f : An −→ A is computable, we may express f as a polynomial, since it has a code a such
that f = •(n)(a×1), expresses f as a composite of polynomials. Thus the polynomial maps and the
computable maps coincide, and hence the computable maps form a cartesian restriction category.

For the converse, assume that computable maps form a category; we first note that this implies
that the identity map A −→ A has a code, say i. Then i is also a code for the application map,
and hence the application map is computable. Now the maps k0, s0 defined above are built from
the application and the cartesian structure, so are in the category of computable maps. By the
previous theorem this implies combinatory completeness. �

In this proof, one aspect has been hidden: given a morphism f , how do we see that f is again
computable? Consider the diagram

A×A×A • // A

A
〈1,f〉

// A×A
π0

99tttttttttt
k×A×A

OO

By definition of k, the triangle commutes; the composite π0〈1, f〉 equals the domain f . Since all
maps are computable, so is f .

Of course, categorically what we are using here is that in any cartesian restriction category, the
restriction structure is definable in terms of the products, namely as f = 〈1, f〉π0
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We pause for a moment to contemplate what the elements of a PCA are. We defined an element
p : 1 −→ A to be computable if it has a •(0)-index; an equivalent formulation would be: an element

p : 1 −→ A is computable if the composite A
!−→ 1

p−−→ A is computable. The first formulation has
the advantage that it explains the relation between the collection of total and of partial elements
of a PCA. We state this in a lemma:

Lemma 6.16 Let A = (A, •) be a PCA in C. Then every partial element p : 1 −→ A factors
through •(0) via a total element.

Proof: Of course, the desired total element is simply a •(0)-index for p. �

In set-theoretic notation, this means that every partial element p may be written p = u • u, for
some total u.

The main point is, that this reveals more of the role of the family •(n) and why •(0) fits into it:
it provides a normal form for morphisms in comp(A). Indeed, every morphism may be given by a
total element followed by one of the •(n).

So far, we have shown that a PCA A = (A, •) in C gives a faithful category over C on the
computable maps. Given the preceding discussion of combinatory completeness, it should not
come as a surprise that comp(A) is in fact a Turing category with Turing morphism •, regarded
as a morphism 2 −→ 1. The only thing left to verify is that every object n is a retract of 1. We
show this for 2, and the others will follow. The point is that combinatory completeness entails that
one can construct a computable pairing map p : A×A −→ A, together with computable unpairings
p0, p1 : A −→ A (see, e.g. [19]). Then A×A is a retract of A in C via the pair of computable maps
p and 〈p0, p1〉). Thus we have shown:

Theorem 6.17 For any PCA A = (A, •) in C, the category comp(A,C) is a Turing category.

Although it is probably clear from the construction, it is important to remark that the Turing
category comp(A,C) is faithful over C, via the functor n 7→ An. In fact, we have found a way of
generating a Turing categories over a fixed base category by considering PCAs in the base category.
This is classically how the notion of computability arises.

Remark. One can of course consider the category R(A) of realizable maps (those maps f for
which there exists a realizer p such that h ≤ (p×1)•. Everything above generalizes immediately, and
we find that every PCA gives rise to a Kleene category (as discussed in Example 6.1.5). Moreover,
R(A) is obtained from comp(A) by formally adding all domains from C.

We end this section with an elementary observation which allows us to transport PCAs along
cartesian functors. If A = (A, •) is an applicative system in C and F : C −→ D is a cartesian
restriction functor, then FA = (FA,F•) is an applicative system in D. Moreover, if we can make
a choice for k, s in A, then Fk, F s will turn FA into a PCA. Thus cartesian restriction functors
preserve PCAs as long as in the external world we are able to make a choice of combinators.

6.5 Examples of PCAs

Given the connection between Turing categories and PCAs, it is now clear that each example of a
Turing object in a Turing category is an example of a PCA (in that Turing category). Nevertheless,
we give some more examples to provide a more complete the picture.
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Kleene’s first model. The prime example of a PCA is Kleene’s model K1; its underlying set
is N, and application is Kleene-application as defined in the previous section. Combinators k and
s are found using the Parameter Theorem (see [5]) for a precise account). Of course, comp(K1) is
the classical recursion category (first example in the previous section).

Oracles. One may generalize this example by considering computability relative to an oracle
A; the resulting model is denoted KA

1 . It has the same underlying set N, but application is given
by n •A m = φn,A(m), where φ0,A, φ1,A, . . . is a suitable enumeration of the class of unary partial
functions which are computable with help of the oracle A.

Basic recursive function theory. Generalizing the situation even further, there is the notion
of a so-called Basic Recursive Function Theory, BRFT for short (see [29, 30]). Essentially, a BRFT
consists of an infinite set B, a collection of partial functions F on B, and, for each n, an enumeration
function Φ(n), which plays the role of the universal function of n variables. It is required that F
contains the identity, constant functions and the parametrization functions, as well as decision
functions d(x, y, u, v), which are supposed to satisfy

d(x, y, u, v) =

{
u if x = y
v otherwise.

Now we can use the enumeration function Φ(1) to define an application on B, and use the
parametrization functions to define the combinators k, s. Thus, each BRFT can be made into a
PCA. It can be shown that if the underlying set of a BRFT is the natural numbers, then the class
F must contain all partial recursive functions. Thus, this example does generalize some important
aspects of elementary recursion theory over N; indeed it has been shown that most basic aspects
of recursion theory can be proved in this setting.

Effective applicative structures. When, in the definition of a BRFT, one omits the require-
ments that the decision functions be present, one arrives at what Asperti and Longo ([1]) call an
effective applicative structure. It is easily seen that this notion coincides with that of a combina-
tory complete applicative structure which is non-trivial (because we insist on the underlying set
being infinite). Note that the requirement that the identity function and the constant functions
be present is already ensured by combinatory completeness. Thus, after a series of generalizations
from the recursive structure on the natural numbers, we have come back to PCAs (in the category
of sets, that is).

Syntactical models. Combinatory logic (CL) is an equational theory whose models are total
combinatory algebras (i.e. applicative systems whose application map is total) which come equipped
with a specific choice of combinators k, s. Both the open and closed term models of CL are therefore
examples of (total) PCAs. It is well-known that CL admits a rewriting presentation; therefore it
makes sense to look at strongly normalizing terms. The set of strongly normalizing terms modulo
provable equality is a PCA; for details, see [5].

Partial combinatory logic (PCL) is a partial equational theory whose models are PCAs (in which
one has chosen combinators). As indicated in Example 6.1.4, it gives rise to a classifying category
CPCL containing a generic model; if we are given a PCA in an arbitrary cartesian restriction
category C then there is an essentially unique cartesian restriction functor which sends the generic
PCA to the given model. In particular, we can apply the global sections functor to the generic
PCA, and the result is (up to isomorphism) the PCA of strongly normalizing CL-terms.
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Models of lambda calculus. Any model of the (partial) lambda calculus is a PCA; in particular,
a reflexive object in a (partial) cartesian closed category is a PCA.
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7 Recursion categories

The standard settings for computability (also known as recursion theory) has much more structure
than that of a mere Turing category. Unlike Turing categories computability settings can never
be total. Furthermore, they always support the discussion of recursive properties – that is those
properties which can be decided by a computable function. A crucial component of this is identifying
certain key undecidable properties.

The aim of this section is to provide a basic framework for computability and to establish some
of the basic results of computability theory. To prosecute this we introduce recursion categories:
these are very closely related (but not quite the same) as the setting originally proposed by Di
Paola and Heller. Below we shall show how the standard results of computability theory can be
developed in any recursion category.

Of particular interest is the manner in which the results on undecidability are expressed. Their
expression is slightly different from the usual statement as we shall prove that if certain predicates
are decidable then this leads to the collapse of the recursion category to a “trivial” recursion
category which has essentially only one object and one map. Thus these results state that in any
non-trivial recursion category a certain predicate cannot be decidable.

It is also worth being absolutely upfront about the fact that one cannot hope to get all the
results of recursion theory in a general recursion category: the standard setting really does have
many more properties. Part of our purpose here is to make more explicit the relationship between
the special properties of the classical setting and the results in these settings. What is particularly
significant is that many of the fundamental results, as we have already seen, are true in much
greater generality.

7.1 Recursiveness

A recursion category is a discrete Turing category with (finite) joins. Explicity this means it is a
cartesian restriction category, which possesses a Turing structure, which also has joins and meets.

The classical setting for computability (recursion) theory is, as we shall shortly see, an example
of a recursion category which also possesses a number of additional features. One important way
in which recursion categories differ from the classical setting concerns the status of the equality
predicate: in a recursion category equality on the Turing object is only assumed to be “semi-
decidable”, an “enumerable set”, or, more abstractly given by a restriction idempotent. Thus, these
settings are still much broader than the classical setting (in which equality is definitely decidable).

Given a recursion category it is clear that we can split the restriction idempotents (which means,
of course, all idempotents split) to obtain a new recursion category. It simplifies arguments greatly
to work in a split recursion category and we will, therefore, feel free to assume that idempotents
split in the remainder of this section. Of course, as the original (non-split) recursion category
embeds in the split one in a full and faithful manner all the results we shall prove are preserved
and reflected by splitting.

Coproducts are crucial for building general data types, a remarkable fact about recursive cate-
gories is that they (once split) already have coproducts:

Theorem 7.1 Split recursion categories have coproducts and are distributive restriction categories.
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Proof: The idea of the proof is as follows: if we had a boolean object so that 1
true−−−→ Bool

false←−−−− 1
is a coproduct then by taking the product with the Turing object, T we would get a coproduct

1× T true× 1T−−−−−−−→ Bool× T false× 1T←−−−−−−− 1× T

and so be able to take coproducts of the Turing object. However, as every object occurs as a retract
of the Turing object it now follows easily that there are now coproducts for all objects.

Recall that in the join restriction setting coproducts are absolute for join preserving functors of
which × T is one. This fact also guarantees that he coproducts are distributive.

Therefore the key thing to show is that we do have a Boolean object in these categories. First
we remark that that every total element a : 1 −→ A is also a restriction monic as clearly !a is an
idempotent and so a splits the idempotent (!a) ∩ 1A. Our objective is to find two elements which
intersect at the zero object (also, of course, the initial object in the total category). Consider the
elements i and z:

1×A
i×1A

��

π1 // A

A×A
•

<<xxxxxxxxx

1×A
z×1A

��

0 // A

A×A
•

<<xxxxxxxxx

The pullback of these subobjects exists, call it P :

P

q

��

p // 1

i
��

1 z
// A

we wish to show that P = 0. Consider

P × 1

q×1

��

p×1 // 1× 1

i×i
�� π1i

��

1× 1

0 //

z×i
// A×A

•

##FFFFFFFFF

A

then (p× 1)π1i = 0 as π1i is monic p× 1 = 0 but p is a restriction monic which forces P = 0. �

Having coproducts allows us to talk about “recursive” predicates. Of course, the predicates
of a object A in restriction category are its open sets O(A) or more simply the set of restriction
idempotents on A. In a distributive restriction category to say that a predicate p = p on an object
A is recursive is to say that p has a complement, in the sense that there is a p′ = p′ with pp′ = 0

and p ∨ p′ = 1A. This, in fact, means that p
p−−→ A

p′←−− p′ is a coproduct and so there is a unique
map χp

p
p //

!
��

A

χp

��

p′
p′oo

!
��

1
true
// bool 1

false
oo
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which makes this diagram of total maps a pullback in each square (this property is called “exten-
sivity”). The map χp is the decider of the recursive property p.

Saying that a property is undecidable is asserting that such a map χp does not exist. Shortly we
shall start investigating these properties. However, before that let us briefly discuss how recursion
categories can arise.

7.2 Finite interleaving

In any restriction category with meets and joins a map h is an interleaving of a pair of parallel
arrows f, g : A −→ B if there is an arrow h : A −→ B such that f ≤ h , g ≤ h , and h = (h∩f)∨(h∩g).
Intuitively we might think of h as a computation arrived at by interleaving the computation of f
with g, thus, the result is a computation which always behaves either like f or g, although where
they overlap could behave like either (classically this depends on which takes less time to halt). In
the special case where f and g are compatible this means that we should expect the interleaving
to be the join:

Lemma 7.2 In a restriction category with meets and joins, an interleaving of compatible maps is
the join of those maps.

Proof: Suppose f and g are compatible and h is an interleaving of f and g then certainly h ≤ f∨g
as (h ∩ f) ≤ f ≤ f ∨ g and (h ∩ g) ≤ g ≤ f ∨ g. but also f ≤ h and g ≤ h, so that h = f ∨ g, as

f h = f ((h ∩ f) ∨ (h ∩ g)) = (f (h ∩ f)) ∨ (f (h ∩ g))

= ((f h) ∩ (f f)) ∨ ((f h) ∩ (f g)) = (f ∩ f) ∨ (f ∩ g f)

= f ∨ (g f) = f

�

This means interleaving gives a way of constructing the join, and thus when interleaving is
provided by a construction this allows an algebraic description for forming the join. A recursion
category in which all parallel pairs of maps have an interleaving will, naturally, be called a recursion
category with (finite) interleaving . We shall not require that this interleaving need be uniformly
given. Thus, the interleaving operation itself need not be given be an operation on codes within
the Turing category. In the classical setting, of course, interleaving is uniformly present: that is
code for the interleaved computation can be constructed in a computable manner from the original
codes.

A partial combinatory algebra, (A, •, k, s), in a cartesian restriction category is said to be in-
terleaving if A is a discrete object and comes equipped with two codes and an operation. The
two codes are total elements: z : 1 −→ A the “zero” code and e : 1 −→ A the “equality” code. The
operation is a total map 	 : A×A −→ A called the “interleaving” such that:

[IntL.1] The zero is the code for the zero map: (z× 1)• = 0;

[IntL.2] The equality code is the code for the partial inverse to the diagonal map: (e× 1× 1)(•×
1)• = ∆(−1);

[IntL.3] The operation 	 : A×A −→ A, is such that (	×1A)• : A×A×A −→ A is an interleaving
of (π0 × 1A)• and (π1 × 1A)•.
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It is important to note that we have not required that the construction of the interleaving
code should itself be something which is A-computable (although this may be the case and even
desirable). Thus, we allow for the possibility that the code for interleaving of two codes can
be constructed in the more powerful external fashion (or non-uniform) but not in a computable
manner.

The main result is:

Theorem 7.3 In any cartesian restriction category with joins whenever A is an interleaving partial
combinarory algebra, Comp(A) is a recursion category.

Proof: Given any cartesian restriction category it is easy to see that the full subcategory of
discrete objects is a discrete subcategory. Thus, the construction can be done within this subcat-
egory. However, now the proof is immediate as Comp(A) by design is discrete and because of the
interleaving and the lemma just proven inherits the joins of the ambient setting. �

In the standard model of computation interleaving of computations is a standard technique and
can be done uniformly. This certainly shows that the standard model of recursion theory is indeed
a recursion category.

7.3 Undecidability

One of the first and most basic results of recursion theory is to prove that the halting set is undecid-
able. Recall that we already know from general Turing considerations that it is complete, however,
without joins (and coproducts) it was not even a well-posed question to ask about undecidability.

To express undecidability categorically we must first surmount a minor embarrassment. There
are perfectly good recursion categories in which the halting set is decidable: namely any recursion
category which is equivalent to the category with one object and one map! We call such a recursion
category trivial and we are of course interested in recursion categories which are non-trivial. An
important observation is:

Lemma 7.4 Any cartesian restriction category with joins, in which there is a zero map, 0 : 1 −→ A
from the final object to any object, which is total, is trivial.

Proof: This immediately forces the identity map on the final object to be the zero map making
1 ∼= 0. But now A ∼= A × 1 ∼= A × 0 ∼= 0 (A × always preserves coproducts including the empty
coproduct). Thus, the category is trivial. �

Now we can state more precisely, for a recursion category, what it means for the halting set to
be undecidable:

Theorem 7.5 In a recursion category, X, the halting predicate K has a complement if and only if
X is trivial.

Proof: Let K ′ = K ′ be an idempotent with K ′K = 0. Set v to be a code for K ′:

A

v×1
��

K′ // A

A×A
•

;;xxxxxxxxx
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this means that v is a total element. However, we now have

vK = v•(0) = v∆• = 〈v, v〉• = vK ′

so that vK ′ = vK ′K ′ = vKK ′ = 0 = vK ′K = vKK ′ = vK so that if K tK ′ = 1 then

0 = 0 = (vK) t (vK ′) = v(K tK ′) = v = 1

But this collapses the final object to zero and make the whole category trivial. �

Note that we have shown that K is “creative” that is given e = e with Ke = 0 there is a point
pe with pK = 0 = pe. Clearly, therfore, any creative idempotent in a recursion category has a
complement only when the category is trivial.

This has a number of consequences on the logic of predicates in a recursion category. Clearly,
whatever the logic is, it is certainly not boolean - that is we cannot have each O(A) a boolean
algebra without collapsing the category. (A restriction category in which this is the case is called a
classical restriction category.) However, worse, the logic cannot even be intuitionistic, that is O(A)
cannot be a Heyting algebra because given any creative predicate p (such as the halting predicate)
we can always find an element between p and any q with pq = 0. However, a Heyting negation
p⇒ 0 cannot have any non-zero predicate between it and p. This shows:

Corollary 7.6 Every recursion category whose Turing object T has O(T ) a Heyting algebra is
trivial.

So for example there is no non-trivial recursion category which has arbitrary joins.

Corollary 7.7 Every recursion category with arbitrary joins is trivial.

This reminds us on the one hand that computability is quite a delicate business – too much
structure easily collapses it – and on the other hand that many of the tools used in traditional logic
simply do not apply! This latter is one reason why the subject should be of special interest to the
categorically minded!

Another classical result concerns recursive inseparability: two disjoint restriction idempotents
e0, e1 : X −→ X are recursively inseparable if there is no complemented idempotent e such that
e0 ≤ e and e1e = 0. A classical result of recursion theory is that there are inseparable predicates
and it is true in every non-trivial recursion category.

Theorem 7.8 (F. Lengyel) Every non-trivial recursion category has recursively inseparable re-
striction idempotents.

Proof: The above assures us that we may find two total points p0, p1 : 1 −→ T (where T is the
Turing object) such that, viewed as predicates p0 ∩ 1, p1 ∩ 1 : T −→ T , they are disjoint (so that
(p0 ∩ 1), (p1 ∩ 1) = 0). Any pair of such points will do.

Set ki = ∆ • (pi ∩ 1) : T −→ T . The predicate ki then is those codes which when applied to
themselves evaluate to pi. Note that k0 and k1 are clearly disjoint as

k0k1 = ∆ • (p0 ∩ 1) ∆ • (p1 ∩ 1) = ∆ • (p0 ∩ 1)(p1 ∩ 1) = 0.
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Now suppose that ki ≤ ui and u0u1 = 0. We wish to now show that assuming that u0∨u1 = 1T
forces the category to be trivial.

Consider the map q = u0p1 ∨ u1p0, note that it is total (as q = u0p1 ∨ u1p0 = u0 ∨ u1 = 1) and
it is, given our assumption, essentially a recursive decider for u0. Define q′ to be a code for q, so
that (q′ × 1)• = q. Observe that

q′k0 = q′∆ • (p0 ∩ 1) = q′∆ • (p0 ∩ 1) q′ = q′(q′ × 1) • (p0 ∩ 1) q′

= q′(u0p1 ∨ u1p0)(p0 ∩ 1) q′ = q′u0p1(p0 ∩ 1) ∨ u1p0(p0 ∩ 1)

= 0 ∨ u1p0 q
′ = q′u1p0 q

′ = q′u1

and similarly q′k1 = q′u0. This shows q′u1 = q′u1u1 = q′k0u1 = 0 and similarly q′u0 = 0 This is
obviously bad and gives the following calculation to clinch it:

11 = q′ = q′(u0 ∨ u1) = q′u0 ∨ q′u1) = 0.

This suffices to show the category is trivial! �

7.4 The recursion theorem and Rice’s theorem

The recursion theorems hold in any Turing category. There is the “second” recursion theorem:

Theorem 7.9 In any Turing category, for any partial operation f : T × T −→ T on the Turing
object T there is a (total) point p : 1 −→ T such that (p× 1)• = (p× 1)f .

Proof: Set h = (∆× 1)(•× 1)f then there is a code, h•, for h, with (h•× 1)• total and (h•× 1×
1)(• × 1)• = h – as in the diagram – and setting p = (h• × h•)• makes

T
h•×1

%%JJJJJJJJJJ

p×1

))

p×1

66

T × T × T •×1 // T × T
f

""FFFFFFFFF

T × T

h•×1×1
��

h //

∆×1
77nnnnnnnnnnnn

T

T × T × T •×1
// T × T

•

44iiiiiiiiiiiiiiiiiiii

commutative. Note that e is total as (h• × 1)• is total. �

This result is often stated in a rather different form which is worth recording:

Corollary 7.10 In any Turing category, for any total map g : T −→ T there is a (total) point p
such that ((pg)× 1)• = (p× 1)•.

Proof: To obtain this form of the result from the above note that the total map, g, allows one to
define f = (g × 1)• from which the result is immediate. �
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This form of the result suggests that there is a “fixed point” for g in the (rather special) sense
that the code p has the same computational effect as g(p). In extensional Turing categories (that
is when p is uniquely determined by (p × 1)•) this gives a real fixed point which explains the
preoccupation with fixed points.

This “recursion theorem”is a crucial ingredient in obtaining a version of Rice’s theorem for
recursion categories.

We say that a restriction idempotent e on the Turing object of a recursion category is exten-
sional (with respect to a given choice of Turing structure!) in case the following implication holds
for all parallel maps f and g

((fe)× 1)• = g × 1 • ⇒ fe g = fe ge.

If take f and g to be (total) codes wuch that fe = f : 1 −→ A, so that f is in e and fe = 1.
The first equality then requires the behaviours of the codes f and g, when applied to an input, to
be the same. For e to be extensional then it must follow that g also lies in e, that is ge = g. The
condition is stated more generally as it must be applicable beyond codes.

An example of an extensional predicate in a recursion category is e = (1× p0) • (p1 ∩ 1) where
p0 and p1 are total points. This predicate picks out all the codes c which when applied to p0 give
p1 (that is c • p0 = p1). Suppose ((fe)× 1)• = (g × 1)• then here is the calculation:

fe ge = fe g(1× p0) • (p1 ∩ 1)

= fe g(1× p0) • (p1 ∩ 1) g

= fe (1× p0)(g × 1) • (p1 ∩ 1) g

= fe (1× p0)((fe)× 1) • (p1 ∩ 1) g

= fe ((fe)(1× p0) • (p1 ∩ 1) g

= fe fee g

= fe g

Clearly there are many others. An example for which the calculation for extensionality is similar
is the codes which terminate on a particular point e = (1× p0)• . Once we have a supply we may
use the following observations to generate new extensional predicates:

Lemma 7.11

(i) The empty predictate 0 and the true predicate 1T are always extensional;

(ii) If e1 and e2 are extensional that e1e2 and e1 ∨ e2 are extensional;

(iii) If e is extensional and has a complement e′ then e′ is extensional.

Proof:

(i) This is immediate for the identity and zero predicate as the conclusion of the extension
requirement is always true.
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(ii) For the first fe1e2 = fe2e2 and so (fe1e2 × 1)• = (g × 1)• by extensionality of e2 gives
fe1e2 g = fe1e2 ge2 but by extensionality of e1 gives fe1e2 g = fe1e2 ge1 which easily gives
fe1e2 g = fe1e2 ge1e2.

Suppose now that (f(e1 ∨ e2)× 1)• = (g × 1)• and e1 and e2 are extensional then

f(e1 ∨ e2) g = fe1 g ∨ fe2 g

= fe1 ge1 ∨ fe2 ge2

= fe1 ge1(e1 ∨ e2) ∨ fe2 ge2(e1 ∨ e2)

= fe1 g(e1 ∨ e2) ∨ fe2 g(e1 ∨ e2)

= f(e1 ∨ e2) g(e1 ∨ e2).

(iii) Suppose (fe′ × 1)• = (h× 1)• then we always have

fe′ h = fe′ h(e ∨ e′) = (fe′ he) ∨ (fe′ he′)

so that it suffices to show fe′ he = 0.

Consider

(fe′ he× 1)• = (fe′ he × 1)(h× 1) •
= (fe′ he × 1)(fe′ × 1) •
= (he fe′ × 1)•

Now using extensionality of e:

fe′ he he fe′ = fe′ he he fe′e = 0

but this means he fe′ = 0 so that he fe′ = he fe′ = fe′ he = 0 and whence fe′ he =
fe he he = 0.

�

We shall say a restriction idempotent e on the Turing object is non-trivial in case there are
two points, p0 and p1 with p0e = p0 and p1e = 0.

Theorem 7.12 (Rice’s theorem) In a non-trivial recursion category no non-trivial extensional
idempotent is complemented.

Proof: Suppose e is nontrivial and extensional. We wish to prove that if e has a complement e′

then the setting must be trivial. Note that e′ is necessarily extensional (so both are) and non-trivial
(so both are). Thus, there are points p0 and p1 with p0e = p0 and p1e

′ = p1. Using the second
recursion theorem define a point h by:

(h× 1)• = (h× 1)((e× 1)π1(p1 × 1) • ∨(e′ × 1)π1(p0 × 1)•)

where

(h× 1)((e× 1)π1(p1 × 1) • ∨(e′ × 1)π1(p0 × 1)•) = (he× 1)π1(p1 × 1) • ∨(he× 1)π1(p0 × 1) •
= (he × 1)(p1 × 1) • ∨(he′ × 1)(p0 × 1)•
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then

(he× 1)• = (he × 1)(h× 1) •
= (he × 1)((he × 1)(p1 × 1) • ∨(he′ × 1)(p0 × 1)•)
= (he × 1)(p1 × 1)• = (he p1 × 1) •

so using extensionality we have:
he he p1 = he he p1e.

However, p1e = 0 so that he p1 = 0 so that he = 0. By symmetry he′ = 0 as well implying
h = h(e ∨ e′) = 0 forcing the category to be trivial. �

It should be remarked that there is a term logic for these categories and this makes reasoning in
them much more natural. The diagram chasing proofs, while solid, become much harder to follow
once the number of steps in the proof becomes large. Indeed, this last result while classical still
needs understanding categorically ... here I have rather slavishly simply translated the classical
proofs. But developing more conceptual proofs is crucial to understanding these settings abstractly.

7.5 Gödel incompleteness

From Rice’s theorem we know we cannot have a non-trivial extensional idempotent which is comple-
mented and maintain consistency. However, this does not rule out the possibility of an extensional
idempotent which is not complemented. Indeed, such a predicate would simply say that we can,
in some sense, enumerate equal maps: this, of course, is an eminently reasonable hypothesis in any
system which is generated by a finite set of axioms.

However, famously this is where Gödel’s incompleteness theorem has something to say. For, if
such system is consistent, it must be “incomplete”. That is there are propositions which can be
proven neither true nor false. Gödel’s results caused a considerable philosophical furor at the time.
It fuelled, for example, inappropriate speculation as to the limits of computation as compared to
that of human thought.

It is, however, a Mathematical result about the relationship between “axiomatizability” and
“computability” and, as such it is appropriate to search for an expression of it in terms of Turing
categories and recursion categories. Pleasingly, it turns out that the result has a very elegant and
very general expression in Turing categories.

This way of categorically interpreting Gödel’s incompleteness result was first explored by Andre
Joyal in his work on Arithmetic Universes: he observed that Gödel’s theorem implied that in the
initial Arithmetic Universe there are subobjects of the final object which are neither initial or the
full subobject. Thus, as subobjects of the final object viewed as the truth values of the setting,
Gödel result, as we express it below, states that if one is in a computational setting (in particular, a
Turing category) in which one has a certain extensional predicate then one cannot be in a classical
setting, in the sense that there only two truth values.

Given that mathematics is determinedly built on the assumption that everything is classical,
this is a shattering enough observation in itself!!!

Given a Turing category, X, with Turing object (T, •) a provability predicate is a restriction
idempotent esfpf ∈ O(T ) such that points k1 and k2 are in epf if and only if 〈!k1, 1〉• ≤ 〈!k2, 1〉•.
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Recall that a point of T is a total map k : 1 −→ T with k = 11, and that a point of T is to be
thought of as “code” for the, “program” 〈!k, 1〉• : T −→ T (we have been writing f• for a point and
the f : T −→ T for the program. To say points k1 and k2 are in epf is to say 〈k1, k2〉eeq = 〈k1, k2〉.
Given a provability predicate epf one can immediately obtain an extensional equality predicate
Epf = epfc×epf : where k1 and k2 are in Epf if and only if 〈!k1, 1〉• = 〈!k2, 1〉•.

Proposition 7.13 A Turing category has an extensional equality predicate if and only if it has a
provability predicate.

Proof: In a restriction category f ≤ g if and only if f g = f this turns the inequality into an
equality test. In order to realize this idea at the level of codes we must be able to compose codes
and take their restriction. The composition of codes is given by:

T × T • // T

T × T × T
(1×•)•

66mmmmmmmmmmmmmmm
comp×1

OO

To see that one can take the restriction of codes is a bit more challenging.
The idea is to use the the following equality f = 〈f, 1〉π0 and the fact that T × T C(s,r) T .

Then Pi : 1 −→ T is a code for T
r−−→ T × T −→ πiT . and the pairing of two codes is given by

〈f•, g•〉• = (〈f, g〉s)•. �

In a recursion category due to Rice’s theorem the provability predicate cannot be recursive:
if it were we could easily produce a non-trivial recursive extensional predicate as those codes
extensionally equal to a particular point (say the code for the empty–never terminating–program).
Of course, this does not preclude the possibility of having a non-recursive provability predicate.
And, indeed, this can happen.

Theorem 7.14 (Gödel’s theorem for Turing categories) Every non-trivial Turing category with
joins (or minimally a restriction zero) and a provability predicate has a predicate of the terminal
object which is neither 0 ∈ O(1) nor 11 ∈ O(1).

Proof: We will use the second recursion theorem and the provability predicate: first use epf ∈
O(T × T ) to generate epf ! : T × T −→ 1 and whence by composition with a point of T a map
epf !k : T × T −→ T . We need some other helpful functions: let 0• be a code of the zero map and
0•• be a code for !0• so that

T × T • // T

1× T

0•×1

OO

0

77ooooooooooooo

T × T • // T

1× T

0••×1

OO

!0•

77ooooooooooooo

commute. Also, from codes for two programs, one can construct a code for the composite as
discussed above.
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We now set f = (〈1, !0••〉comp) × 1)epv!k : T × T −→ T where k : 1 −→ T Now by the second
recursion theorem, Theorem 7.9, there is a point g• : 1 −→ T so that g = 〈!g•, 1〉• = 〈!g•, 1〉f : 1
−→ T and we can turn this into a map g•! : 1 −→ 1. We have:

0•g! = 〈g•, 0•〉f !

= 〈g•, 0•〉(〈1, !0••〉comp)× 1)epv!k!

= 〈g•, 0••〉comp), 0•〉epv!
= 〈(!0•g)•, 0•〉epv! as epv is extensional.

Now consider 0•g! : 1 −→ 1: if there were only two predicates of the final object this would
have to be either 0 or 1. Suppose 0•g! = 0 then we know 〈(0•g)•, 0•〉epv = 〈(0•g)•, 0•〉 and
〈(!0•g)•, 0•〉! = 11 showing that 0 = 1 and that the category is trivial contrary to assumption.

Conversely, suppose 0•g! = 11 then 0•g is total so that 〈〈g•, (0•)•〉comp, 0•〉epf ! is 11 and so
the category cannot be consistent. Conversely, suppose it is 0•g! = 1 then we know g 6≤ 0 and so
〈(0•g)•, 0•〉epv cannot be total, in fact, if there are only two truth values this must be 0 as it cannot
be 1. Thus again 0 = 1 and contrary to assumption the category collapses. �

7.6 General interleaving

An important property that the classical setting for computability possesses is a much stronger
version of finite interleaving which, given an enumeration of codes allows one to interleave their
application. This clearly introduces unions for compatible families with codes which can be enumer-
ated. Thus, although one does not have arbitrary joins for compatible families one certainly does
have joins over families of this special form. Classically this is used to show one can approximate
a partial recursive function by its finite effects.

A Turing category has (general) interleaving in case given any e ∈ O(T ), where T is the
Turing object, then there is an fe : T −→ T (an interleaving of e) and a ke : T −→ T such that

T × T e×1 // T × T • // T

T

〈ke,1〉

OO

fe

55jjjjjjjjjjjjjjjjjjjj

commutes and (e× 1)• ≤ π1ke .
We immediately observe:

Lemma 7.15 If a Turing category has interleaving then

(i) ke = fe ;

(ii) 〈ke, 1〉 is a partial section of (e× 1)•π1;

(iii) kee = ke.

A partial section of a map f : A −→ B is a restriction category is a map g : B −→ A such
that gf = g and fgf = f . Note that the second requirement can be restated, in view of the first
requirement, as fg = f .
Proof:
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(i) ke ≤ fe as ke fe = ke 〈ke, 1〉(1× e)• = 〈ke, 1〉(1× e)• = fe . But fe ≤ ke as

fe = 〈ke, 1〉(1× e)• = 〈ke, 1〉(1× e)•

≤ 〈ke, 1〉π1ke = 〈ke, 1〉π1ke = ke .

(ii)

〈ke, 1〉(1× e)•π1 = 〈ke, 1〉(1× e)• 〈ke, 1〉π1

= fe ke = ke = 〈ke, 1〉
(1× e)•π1〈ke, 1〉 = (1× e)•π1ke

= (1× e)•π1ke π1

= (1× e)•π1 as (1× e)• ≤ π1ke

(iii) kee ≤ ke clearly for the converse

ke = fe ke = 〈kee, 1〉• ke ≤ 〈kee, 1〉 ke = kee ke = kee.

�

As 〈ke, 1〉 is a partial section of (e× 1)•π1 it follows that 〈ke, 1〉 is the absolute range (or image)
of (e× 1)•π1. Thus, (e× 1)• is defined on values precisely for the predicate ke .

This leads to a a simpler statement of the requirement for a Turing category to have interleaving:

Lemma 7.16 A Turing category has interleaving if and only if each (e× 1)•π1 has a partial sec-
tion.

Proof: We must prove the existence of a partial section suffices: we can assume it of the form
〈k1, k2〉 : T −→ T × T where

〈k1, k2〉(e× 1)•π1 = 〈k1, k2〉 and (e× 1)•π1〈k1, k2〉 = (e× 1)•π1

We therefore have

k1 k2 = 〈k1, k2〉 k2 = 〈k1, k2〉(e× 1)•π1 k2

= 〈k1, k2〉(e× 1)• k2 = 〈k1, k2〉(e× 1)• 〈k1, k2〉π1

= 〈k1, k2〉(e× 1)•π1 = 〈k1, k2〉 = k1 k2

and whence 〈k1, k2〉 = 〈k2 k1, 1〉. So we may set ke = k2 k1 and fe = 〈ke, 1〉(e × 1). Finally,
(e× 1)• ≤ π1ke as

(e× 1)• π1ke = (e× 1)•π1ke = (e× 1)•π1〈k1, k2〉

= (e× 1)•π1〈k1, k2〉 = (e× 1)•π1 = (e× 1)•

�

We would expect that if a recursion category has general interleaving that it should have finite
interleaving. This is the case as we now show:
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Proposition 7.17 If a recursion category has general interleaving then it has finite interleaving.

Proof: Given f, g : T −→ T we want to show that there is an h : T −→ T which is an interleaving
of f and g, that is:

(h ∩ f) ∨ (h ∩ g) = h and h = f ∨ g .

Define (total) points f•, g• : 1 −→ T by:

T × T • // T

1× T

f•×1

OO

π1f

<<xxxxxxxxx

T × T • // T

1× T

g•×1

OO

π1g

<<xxxxxxxxx

Set e = (1∩!f•)∨ (1∩!g•). This restriction idempotent which isolates exactly the codes for the two
maps: In fact, the map f• : 1 −→ T has a restriction inverse (f•)(−1) so that (f•)(−1)f• = 1∩!f•

and f•(f•)(−1) = 11 and similarly for g•. By general interleaving we have maps k and h such that

T × T e×1 // T × T • // T

T

〈k,1〉

OO

h

55jjjjjjjjjjjjjjjjjjjj

commutes and (e× 1)• ≤ π1k . The claim is now that h is an interleaving of f and g. To prove
this we need to verify:

(1) h = f ∨ g :

h = 〈k, 1〉(e× 1)• = 〈k, 1〉(((1∩!f•) ∨ (1∩!g•))× 1)•
= 〈k, 1〉((1∩!f•)× 1)• ∨ 〈k, 1〉((1∩!g•)× 1)•
= 〈k, 1〉((f•)(−1)f•)× 1)• ∨ 〈k, 1〉(((g•)(−1)g•)× 1)•
= 〈k, 1〉(f•)(−1) × 1)π1f ∨ 〈k, 1〉((g•)(−1) × 1)π1g

= k(f•)(−1) f ∨ k(g•)(−1) g

≤ f ∨ g

But also we have

f = 〈!f•, 1〉•
= 〈!f•, 1〉((1∩!f•) ∨ (1∩!g•))× 1)•

as !f• =!f•(1∩!f•) =!f•(1∩!f•)((1∩!f•) ∨ (1∩!g•)) =!f•((1∩!f•) ∨ (1∩!g•))

= 〈!f•, 1〉(e× 1)• = 〈!f•, 1〉(e× 1)•

≤ 〈!f•, 1〉π1k as (e× 1)• ≤ π1k

= 〈!f•, 1〉π1k = !f• k = k as f• is total.

= h

and similarly g ≤ h so that f ∨ g ≤ h establishing equality.
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(2) (h ∩ f) ∨ (h ∩ g) = h:

Here first note that it suffices to prove h ≤ (h ∩ f) ∨ (h ∩ g). Next note that

〈k, 1〉((1∩!f•)× 1) • ∩f = 〈k, 1〉((f•)(−1)f• × 1) • ∩f
= 〈k, 1〉((f•)(−1) × 1)π1f ∩ f
= k(f•)(−1) f ∩ f
= k(f•)(−1) f

= 〈k, 1〉((1∩!f•)× 1)•

and similarly 〈k, 1〉((1∩!g•) × 1) • ∩g = 〈k, 1〉((1∩!g•) × 1)•. This permits the following
calculation:

h = 〈k, 1〉(e× 1) •
= 〈k, 1〉(((1∩!f•) ∨ (1∩!g•))× 1) •
= 〈k, 1〉((1∩!f•)× 1) • ∨〈k, 1〉((1∩!g•)× 1) •
= (〈k, 1〉(((1∩!f•)× 1)•) ∩ f) ∨ ((〈k, 1〉((1∩!g•)× 1)•) ∩ g)

≤ ((〈k, 1〉(((1∩!f•) ∨ (1∩!g•))× 1)•) ∩ f) ∨ ((〈k, 1〉(((1∩!f•) ∨ (1∩!g•))× 1)•) ∩ g)

= ((〈k, 1〉(e× 1)•) ∩ f) ∨ ((〈k, 1〉(e× 1)•) ∩ g)

= (h ∩ f) ∨ (h ∩ g)

�
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8 Exercises for Part II

1. Show that in a restriction category the relation f ^ g need not be transitive (if it is the
category is said to be unitary).

2. Is the category of sets and relations a restriction category where restriction gives the domain
of the relation?

3. Show that the category of meet semilattices with maps which preserve the binary meet but
not necesarily the top element (stable maps) is a corestriction category.

4. Show that the categry of frames (= locales) with join preserving stable maps is a join
corestriction category.

5. Prove that in any restriction category with meets that for any parallel endomorphisms f and
g, (g ∩ f)(g ∩ f ) = (f ∩ g ∩ 1).

6. In any category do the sections form a stable system of monics? Provide a counter-example.

7. Prove that in the opposite of the category of commutative rings the class of maps which are
localizations forms a system of monics. Ponder what Par(Ringop, loc) looks like: what is the
restriction?

8. In sets pushouts of epics are epic: therefore in the opposite category these maps form a system
of monics what does resulting category Par(Setop, epic) look like?

9. Prove that in a Turing category the restriction of every •(n) is complete.

10. Prove that in a recursion category every complete set is undecidable.

11. Prove that in a recursion category if p0 and p1 are disjoint (total) points that (1× p0) • (1 ∪ p0)
is inseperable from (1× p0) • (1 ∪ p1) .
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