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DEFINITION
A category, C consists of a directed graph:

◮ A collection of objects, C0.

◮ A collection of maps, C1.

◮ Each map f ∈ C1 has a domain ∂0(f ) ∈ C0 and a codomain

∂1(f ) ∈ C0.

A map f with domain A and codomain B is written

f : A −→ B or A
f

−−→ B



DEFINITION cont.
with a composition:

◮ Associated with each object is an identity map:

1A : A −→ A

◮ Any pair of maps f : A −→ B and g : B −→ C (with the
codomain of f being the same as the domain of g) can be
composed1 to obtain fg : A −→ C :

f : A −→ B g : B −→ C

fg : A −→ C

1NOTE: I use diagrammatic order for composition.



DEFINITION cont. Such that:

◮ (Identity laws) if f : A −→ B then 1Af = f = f 1B ,

◮ (Associative law) if f : A −→ B , g : B −→ C , and h : C −→ D

then (fg)h = f (gh).
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MOTIVATING EXAMPLE I
Sets and functions, Set:

Objects: Sets.

Maps: f : A −→ B is a function. That is a relation
f ⊆ A× B which is deterministic (a f b1 and a f b2

implies b1 = b2) and total (∀a ∈ A.∃b ∈ B .a f b);

Identities: 1A : A −→ A is the diagonal relation
∆A = {(a, a)|a ∈ A} ⊆ A × A;

Composition: Relational composition
fg = {(a, c)|∃b.(a, b) ∈ f & (b, c) ∈ g};

Composition is associative and the identities behave correctly!



MOTIVATING EXAMPLE II
Sets and partial functions, Par:

Objects: Sets.

Maps: f : A −→ B is a partial function. That is a relation
f ⊆ A× B which is deterministic (a f b1 and a f b2

implies b1 = b2);

Identities: 1A : A −→ A is the diagonal relation
∆A = {(a, a)|a ∈ A} ⊆ A × A;

Composition: Relational composition
fg = {(a, c)|∃b.(a, b) ∈ f & (b, c) ∈ g};

Composition is associative and the identities behave correctly!

A category is not determined by its objects!



SUBCATEGORIES
A subcategory of a category is determined by taking a subset of
the objects and the maps which form a category.

A subcategory is a full subcategory if f : A −→ B is in the
category whenever the objects A and B are in the subcategory.
Clearly full subcategories are completely determined by the objects
which are included.

Set is a subcategory of Par BUT it is not a full subcategory.



MOTIVATING EXAMPLE III
Sets and relations, Rel:

Objects: Sets.

Maps: f : A −→ B is a relation f ⊆ A × B ;

Identities: 1A : A −→ A is the diagonal relation
∆A = {(a, a)|a ∈ A} ⊆ A × A;

Composition: Relational composition
fg = {(a, c)|∃b.(a, b) ∈ f & (b, c) ∈ g};

Composition is associative and the identities behave correctly!

This category has a converse operation

f : A −→ B
f ◦ : B −→ A

where (1A)◦ = 1A, (f ◦)◦ = f , and (fg)◦ = g◦f ◦.



MOTIVATING EXAMPLE IV
Sets and relations, Rel′:

Objects: Sets.

Maps: f : A −→ B is a relation f ⊆ A × B ;

Identities: 1A : A −→ A is the off-diagonal relation
∆A = {(a, a′)|a, a′ ∈ A, a 6= a′} ⊆ A × A;

Composition: Dual relational composition
fg = {(a, c)|∀b.(a, b) ∈ f ∨ (b, c) ∈ g};

Composition is associative and the identities behave correctly!

A category is not determined by its sets and maps!



LARGE AND SMALL
These are important examples ...

Note the “set of sets” is not a set so the objects of these categories
do not form a set! These are examples of “large” categories.

If X is a category then the homset X(A,B) consists of all the
arrows f : A −→ B .

Notice that in all these examples the homsets do form sets! When
the homsets live in sets we say the category is locally small.
When the objects are a set as well we say the category is small

In fact, more generally the homsets can live in another category

and when this happens we say the category is enriched in that
other category. So small categories are enriched in Set!



OTHER EXAMPLES
For any algebraic theory algebras and homomorphisms form a
category:

◮ The category of groups Group: object groups, maps group
homomorphisms (preserve composition and unit).

◮ The category of meet semilattices MeetSLat: objects meet
semilattices, maps semilattice homomorphism (preserve meet,
and top).

◮ The category of commutative rings, CRing: objects
commutative (unital) rings, ring homomorphisms (preserve
addition, multiplications. and both units)

These are all large categories which are locally small.



MOTIVATING EXAMPLE V
Finite sets and functions, Setf :

Objects: Finite sets.

Maps: f : A −→ B is a function. That is a relation
f ⊆ A× B which is deterministic (a f b1 and a f b2

implies b1 = b2) and total (∀a ∈ A.∃b ∈ B .a f b;

Identities: 1A : A −→ A is the diagonal relation
∆A = {(a, a)|a ∈ A} ⊆ A × A;

Composition: Relational composition
fg = {(a, c)|∃b.(a, b) ∈ f & (b, c) ∈ g};

Clearly this category is enriched in finite sets! (Although its objects
do not form a finite set ...)

It is also a full subcategory of Set.



MOTIVATING EXAMPLE VI
A category can be finite.

The simplest category of all 0 has no objects and no maps! This is
called (for reasons which will be explained later) the initial

category. The initial category is certainly finite and there is not
much else one can say about it!

The next most simple category is the category with exactly one
object and exactly one arrow, 1. This is called the final category:
it is also finite and there is not so very much more one can say
about it either! The one arrow is actually forced to be the identity
map on the one object.



MOTIVATING EXAMPLE VI cont.
A finite category, a category internal to finite sets, must have both
a finite number of objects and a finite number of arrows.
A finite category, F, may be presented as a directed graph with a
multiplication table for each object:

A1A

%%
x1

11

x2

$$

B

1B

��
e1ff

y2

yy

y3

yy

y1qq

C

z1

ee

z2

99

z3

99

1B

cc

f1

MM
f2

11



MOTIVATING EXAMPLE VI cont.

A B C

A 1A x1 x2

A 1A 1A x1 x2

B y1 y1 e1 y3

C z1 z1 z3 f2

A B C

B y1 1B e1 y2 y3

A x1 1A x1 x1 x2 x2

B 1B y1 1B e1 y2 y3

e1 y1 e1 e1 y3 y3

C z2 z1 z2 z3 f1 f2
z3 z1 z3 z3 f2 f2

A B C

C z1 z2 z3 1C f1 f2

A x2 1A x1 x1 x2 x2 x2

B y2 y1 1B e1 y2 y2 y3

y3 y1 e1 e1 y3 y3 y3

C 1C z1 z2 z3 1C f1 f2
f1 z1 z2 z3 f1 f1 f2
f2 z1 z3 z3 f2 f2 f2

Composition tables for F



FINITE CATEGORIES ...

Finite categories are very important ... they are great for providing
simple counterexamples.
Can you find categories with:

Number of objects
0 1 2 3

0 1 0 0 0
1 0 1 0 0

Number of maps 2 0 2 1 0
3 0 3 1
4 0

Categories with only one object are monoids.



DUALITY ..
Category theory is full of symmetries ...

The basic source of symmetry is the ability to reverse arrows.
Given any category we may obtain a new category by keeping
everything the same except to switch the direction of the arrows. If
we start with a category C and flip the direction of the arrows we
obtain a new category written C

op (the dual category). Observe
now that anything which is true of C now holds in the dual form
in C

op.

Thus, when we prove a result there is always another result,
obtained by reversing the sense, of the arrows which will also be
true. This principle of duality allows us to get double the bang for
our buck!



DUALITY ..

◮ What is the category Relop?

◮ What is the category F
op?

◮ What is the category Setop?

◮ What is the category CRingop?

Obvious questions don’t always have easy answers!



PATHS ... EXAMPLE VII
Given a directed graph G we may form a category Path(G), called
the path category of G:

Objects: The objects are the nodes of G.

Maps: Sequences of edges in G: (A, [g0, .., gn],B) : A −→ B

where, when the list of maps is non-empty,
A = D0(g0), B = D1(gn), and D1(gi ) = D0(gi+1).
Otherwise A = B .

Identities: (A, [],A) for each object A.

Composition: (A, l1,B)(B , l2,C ) = (A, l1 ++l2,C ).



MATRICES ... EXAMPLE VIII
Let R be a rig: a commutative associate operation, addition
(x + y with an identity 0) and an associative multiplication with
unit 1 such that:

x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x ,

x · (y · z) = (x · y) · z and x · 1 = x = 1 · x

x · 0 = 0 = 0 · y

then we may form Mat(R) the category of R–matrices:

Objects: The natural numbers 0, 1, 2, ...

Maps: n × m-matrices [ri ,j ] : n −→ m

Identities: 1n : n −→ n the diagonal matrix.

Composition: Matrix multiplication.

We allow 0 × n and n × 0 matrices! The composites with these
“empty” matrices are themselves empty.



MATRICES ... EXAMPLE VIII cont.

Mat(R) always has a converse involution given by transposition.

A special example of this category which is very well-studied is
Mat(K ) where K is a field (such as R). The category is then
equivalent to the category of finite dimensional vector spaces.

Mat(R) is a small category.

What is Mat(Bool) where Bool is a rig with the meet giving the
multiplication and the join the addition.



MONICS, EPICS
A map f : A −→ B in a category C is monic in case whenever
k1f = k2f then k1 = k2.

Dual: a map f : A −→ B in a category C is epic (or sometimes an
epimorphism) in case whenever fh1 = fh2 then h1 = h2.

The fact that a map is monic does not stop it from being epic as
well: a map that is both epic and monic we shall refer to as being
bijic.

In Set monic=injective, epic=surjective ...
What are the epics in Path(G).



MONICS, EPICS

Lemma
In any category C:

(i) The composition of monics is monic;

(ii) Dual: the composition of epics is epic;

(iii) If fg is monic then f is monic;

(iv) Dual: if fg is epic then g is epic.

(v) The composition of bijics is bijic;

(vi) If fg is bijic then f is monic and g is epic.



SECTIONS, RETRACTIONS, ISOMORPHISMS

A map f : A −→ B is a section in case there is a map f ′ : B −→ A

such that ff ′ = 1A.

Dual: a map g : A −→ B is a retraction in case there is a map
g ′ : B −→ A such that g ′g = 1B . It is quite possible for a map to
be both a section and a retraction: such a map is called an
isomorphism. Clearly identity maps are always isomorphisms.



SECTIONS, RETRACTIONS, ISOMORPHISMS

Lemma
In any category C:

(i) All sections are monic;

(ii) Dual: all retractions are epic;

(iii) The composition of two sections is a section;

(iv) Dual: the composition of two retractions is a retraction;

(v) If fg is a section then f is a section;

(vi) Dual: if fg is a retraction then g is a retraction;

(vii) All isomorphisms are bijic;

(viii) Composites of isomorphisms are isomorphisms;

(ix) If fg is an isomorphism then f is a section and g is a

retraction.



ISOMORPHISMS
If f : A −→ B is a map a right inverse for f is a map g : B −→ A

such that fg = 1A. Dually left inverse for f a map h : B −→ A

such that hf = 1B . Right inverses are sections, left inverses are
retractions. An isomorphism has both a left inverse and a right
inverse:

Lemma
If f : A −→ B has a left inverse h and a right inverse g then h = g.

Proof: Observe f is both epic and monic as it is both a section
and a retraction. Thus, fh = fh1A = fhfg = f 1Bg = fg = 1A so
that h is also a right inverse of f . But then fh = fg and as f is
epic h = g . �

Thus the inverse of an isomorphism, f , is unique we shall denote it
f −1.



ISOMORPHISMS
We have the following alternative characterizations of
isomorphisms:

Lemma
The following are equivalent:

(i) f is a section and a retraction; (iii) f is an epic section;

(ii) f is a monic retraction (iv) f is an isomorphism;

gf = 1 implies fgf = f as f is monic fg = 1.

When a category has every map an isomorphism it is called a
groupoid. All groupoids have a converse:

( )−1 : G −→ G; f 7→ f −1

The isomorphism of any category form a groupoid.



PREORDERS ... EXAMPLE IX
We can enrich in sets with cardinality at most one! The result
preorders!

When there is at most one arrow between any two objects the
value of the composite of any two maps is forced! Thus, it is
simply a matter of whether maps exists between objects or not.

A (small) preorder is a set with a reflexive, transitive relation . A
relation is reflexive on a set X in case whenever x ∈ X we require
(x , x) to be in the relation: this gives the identity map on that
object. A relation is transitive in case whenever (x , y) and (y , z)
are in the relation then (x , z) must be in the relation: this gives
composition.



PREORDERS ... EXAMPLE IX (cont.)

A relation is an equivalence relation in case in addition it is
symmetric that is whenever (x , y) is in the relation (y , x) is also
in the relation. This is equivalent to asking that every arrow is an
isomorphism.

A partially order set is a preorder with the addition
anti-symmetry property that whenever (x , y) and (y , x) are in the
relation then x = y . This is equivalent categorically to asking
either that the only isomorphisms are the identity maps.



MONICS, EPICS

All maps in preorders are bijic ...

What are the monics in Par?

What are the monics in Rel?

Simple questions don’t necessarily have simple answers!!



PRODUCTS AND SUMS OF CATEGORIES
Given two categories X and Y one can just consider the disjoint
union of the categories X ⊔ Y. This is a category whose objects
(respectively maps) are the disjoint union of the objects
(respectively maps) of each Xi .

Clearly objects from different components will not be connected by
any maps. Indeed given any category there is always a (unique)
decomposition of it into connected components which allows us to
view it as a sum of connected categories.

The product of two categories X and Y, X×Y, puts the categories
in parallel:

Objects: Pairs (X ,Y ) with X ∈ X and Y ∈ Y.

Maps: (f , g) : (X ,Y ) −→ (X ′,Y ′) where f : X −→ X ′ in X

and g : Y −→ Y ′ in Y.

Identities: (1X , 1Y ) : (X ,Y ) −→ (X ,Y ).

Composition: (f , g)(f ′, g ′) = (ff ′, gg ′).



SLICE CATEGORIES
Turning maps into objects!!!

If C is any category and X ∈ C we may form the slice category

C/X . This has the following structure:

Objects: Maps of C to X , f : C −→ X ;

Maps: Triples (f1, g , f2) : f1 −→ f2 which are commutative
triangles:

C1

f1   @
@@

@@
@@

@

f // C2

f2~~~~
~~

~~
~~

X

Identities: (f , 1C , f ) : f −→ f .

Composition: (f1, g , f2)(f2, h, f3) = (f1, gh, f3) which is well-defined
as ghf3 = gf2 = f1.

What is Set/A? – A-indexed sets.



IDEMPOTENTS
An endomap e : A −→ A is an idempotent if ee = e.

If h : A −→ B is a retraction with left inverse h′ : B −→ A then hh′

is an idempotent as hh′hh′ = h1Bh′ = hh′.

We shall say that an idempotent e is split if there is a retraction h

with left inverse h′ such that e = hh′. Splittings are unique up to

unique isomorphism:

Lemma
Suppose e : A −→ A is an idempotent and h1 : A −→ B1 has left

inverse h′1 and h2 : A −→ B2 has left inverse h′2, with

e = h1h
′

1 = h2h
′

2 then there is a unique isomorphism k : B1 −→ B2

such that h1k = h2 and kh′2 = h′1.

Proof: Set k = h′1h2 then k is an isomorphism. Suppose k ′ also
satisfies h1k

′ = h2 then h1k
′ = h1k and as h1 is a retraction and

therefore epic it follows that k = k ′. �



IDEMPOTENTS
Idempotents will not generally split, however, there is an
IMPORTANT construction which allows one to freely split
idempotents.
Let C be any category, define Split(C) be the following category:

Objects: Idempotents e of C;

Maps: (e1, f , e2) : e1 −→ e2 where e1 : A −→ A and e2 : B

−→ B is a map f : A −→ B in C such that e1fe2 = f ;

Compositions As in C on the middle coordinate:
(e1, f , e2)(e2, g ; e3) = (e1, fg , e3).

Identities: the identity for an idempotent is that idempotent
(e, e, e) : e −→ e.

... it is not hard to show that this is a category.



IDEMPOTENTS
What is interesting about this category is that all the idempotents
in it split:

Theorem
Let C be any category then C is a full subcategory of Split(C) and

all idempotents split in Split(C).

Proof: We may regard C as a full subcategory of Split by letting
the identity maps (which are certainly idempotent) represent the
objects of C in Split(C).
Suppose (e, k, e) : e −→ e is an idempotent in Split(C) then k is an
idempotent in C. But then we have maps (e, k, k) : e −→ k and
(k, k, e) : k −→ e in Split(C) and it is easy to check that these
provide a splitting for (e, k, e). �



IDEMPOTENTS
Why is this construction interesting?

Consider the category of partial recursive functions on the natural
numbers, Rec. Each enumerable set may be characterized by an
idempotent which is the computation which returns the element
unchanged when it is in the recursively enumerable set but simply
does not terminate on elements outside.

In Split(Rec) there is an object or type for each enumerable set.
Thus, this gives an example of how to construct from a unityped
system a very rich type system.



EXAMPLE X – TANGLES

Do we have time to tango!



EXAMPLE X – TANGLES
There are non-bijic tangles, because there are nontrivial
idempotents: if e is any nontrivial idempotent, then e is not
monic, because ee = 1e but e 6= 1.
An example of an idempotent is the following:

@A BC

vvvvv
vvvvv

vvv

GF ED

We can also add an equal number of cups and caps to the left and
right, and extend the length of the diagonal line accordingly. For
example:

mmmmmmmmmmmmmmmmmmmmmmmm
It is easy to see this is also an idempotent.



EXAMPLE X – TANGLES
However, the 1 −→ 1 identity can be written in other ways. For
example,

If we take the splitting corresponding to this writing of the identity,
we recover another idempotent:

		
		

		
		

		
		

																



EXAMPLE X – TANGLES

Do idempotents split in tangles?
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