Introduction to Restriction Categories

Robin Cockett

Department of Computer Science University of Calgary Alberta, Canada

robin@cpsc.ucalgary.ca

Estonia, March 2010

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Defining restriction categories

Examples

Completeness

Special properties - joins and meets

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

DEFINITION

A restriction category is a category with a restriction operator

$$\frac{A \xrightarrow{f} B}{A \xrightarrow{f} A}$$

satisfying the following four equations:

Restriction categories are abstract partial map categories.

MOTIVATING EXAMPLE Sets and partial maps, Par: Objects: Sets .. Maps: $f : A \rightarrow B$ is a relations $f \subseteq A \times B$ which is deterministic $(x \ f \ y_1 \text{ and } x \ f \ y_2 \text{ implies } y_1 = y_2)$; Identities: $1_A : A \rightarrow A$ is the diagonal relation $\Delta_A \subseteq A \times A$; Composition: Relational composition $fg = \{(a, c) | \exists b.(a, b) \in f \& (b, c) \in g\}$; Restriction: $\overline{f} = \{(a, a) | \exists b.(a, b) \in f\}$.

The restriction gives the *domain of definition* by an idempotent.

< D > < 同 > < E > < E > < E > < 0 < 0</p>

In any restriction category \mathbb{X} :

 $\blacktriangleright \ \overline{f} \ \overline{f} = \overline{f}.$

• For any monic $\overline{m} = 1_A$ (in particular $\overline{1_A} = 1_A$).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

- $\blacktriangleright \ \overline{\overline{f}} = \overline{f}.$
- $\blacktriangleright \ \overline{fg} = \overline{f\overline{g}}.$

BASIC RESULTS In any restriction category X:

$$\overline{f} \ \overline{f} = \overline{f} \text{ as } \overline{f} \ \overline{f} =_{[\mathbf{R},\mathbf{3}]} \ \overline{\overline{f}f} =_{[\mathbf{R},\mathbf{1}]} \overline{f}.$$

For any monic $\overline{m} = 1_A$ as $\overline{m}m = [\mathbf{R}.\mathbf{1}]$ $m = 1_A m$ (in particular $\overline{1_A} = 1_A$).

$$\bullet \ \overline{\overline{f}} = \overline{f} \text{ as } \overline{\overline{f}} = \overline{\overline{f}} 1_A =_{[\mathbf{R}.\mathbf{3}]} \overline{f} \ \overline{1_A} = \overline{f}.$$

•
$$\overline{fg} = \overline{f} \overline{g}$$
 as

$$\overline{f\overline{g}} =_{[\mathbf{R}.4]} \overline{\overline{fg} f} =_{[\mathbf{R}.3]} \overline{fg} \overline{f}$$
$$=_{[\mathbf{R}.2]} \overline{f} \overline{fg} =_{[\mathbf{R}.3]} \overline{\overline{f} fg} =_{[\mathbf{R}.1]} \overline{\overline{fg}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

In any restriction category X a map $f : A \rightarrow B$ is **total** when $\overline{f} = 1_A$:

- All monics are total (in particular identity maps are total).
- ► Total maps compose as f and g total means $\overline{fg} = \overline{fg} = \overline{f1_B} = \overline{f} = 1_A.$

Lemma

The total maps of any restriction category form a subcategory $Total(X) \subseteq X$.

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Total(Par) is the category of sets and functions ...

In any restriction category X the hom-sets are partially ordered:

$$f \leq g \Leftrightarrow \overline{f}g = f$$

$$\overline{hfk}hgk = h\overline{fk}gk = h\overline{fk}\ \overline{f}gk = h\overline{fk}fk = hfk.$$

This means every restriction category is partial order enriched. In Par $f \leq g$ if and only if $f \subseteq g$.

In any restriction category X the hom-sets have a compatibility structure. f is **compatible** to g, f - g, if and only if:

$$f \smile g \Leftrightarrow \overline{f}g = \overline{g}f$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

In Par this means where both maps are defined they are equal.

Compatibility is always a symmetric, reflexive relation (not transitive in general).

Lemma

In any restriction category;

(i)
$$f \smile g$$
 if and only it $\overline{f}g \le f$ and $\overline{g}f \le g$;
(ii) If $f \smile g$ then hfk \smile hgk.

So far ... in any restriction category X:

- $e: A \rightarrow A$ with $\overline{e} = e$ is called a **restriction idempotent**. The restriction idempotents on A form a semilattice $\mathcal{O}(A)$. Think of these as the "open" sets of the object.
- A map : A → B is total in case f = 1. All monics are total maps and total maps compose the total maps form a subcategory Total(X).
- The hom-sets are partially ordered $f \leq g \Leftrightarrow \overline{f}g = f$.
- ► Two parallel arrows are compatible f ⊂ g in case fg = gf (are the same where they are both defined).

A partial isomorphism is an $f : A \rightarrow B$ which has a (partial) inverse $f^{(-1)}$ such that $f^{(-1)}f = \overline{f^{(-1)}}$ and $ff^{(-1)} = \overline{f}$.

Lemma

In any restriction category:

- *(i)* If a map in a restriction category has a partial inverse then that partial inverse is unique;
- *(ii)* Partial isomorphisms include isomorphisms and all restriction idempotents;
- (iii) Partial isomorphisms are closed to composition.

In Par a partial isomorphism is just a partial map which is monic on its domain.

BASIC RESULTS Uniqueness of partial inverses: Suppose $fg = \overline{f}$, $gf = \overline{g}$ and $fh = \overline{f}$, $hf = \overline{h}$ then

$$g = \overline{g}g = gfg = g\overline{f} fg = gfhfg = \overline{g} \overline{h}g$$
$$= \overline{h} \overline{g}g = \overline{h}g = hfg = h\overline{f} = hfh = \overline{h}h = h$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

The partial isomorphisms of any restriction category form a subrestriction category. A restriction category in which *all* maps are partial isomorphisms is called an **inverse category**.

Inverse categories are to restriction categories as groupoids are to categories.

< D > < 同 > < E > < E > < E > < 0 < 0</p>

RESTRICTION FUNCTORS

A restriction functor $F : \mathbb{X} \to \mathbb{Y}$ is a functor such that, in addition, preserves the restriction $\overline{F(g)} = F(\overline{g})$. A (strict) restriction transformation $\alpha : F \to G$ between restriction functors is a natural transformation for which each α_X is total.

A lax restriction transformation $\alpha : F \to G$ between restriction functors is a natural transformation for which each α_X is total and the naturality square commutes up to inequality:

$$F(X) \xrightarrow{\alpha_X} G(X)$$

$$F(f) \downarrow \leq \qquad \qquad \downarrow G(f)$$

$$F(Y) \xrightarrow{\alpha_Y} G(Y)$$

Lemma

Restriction categories, restriction functors, and restriction transformations (resp. lax transformations) organize themselves into a 2-category Rest (resp. Rest₁).

RESTRICTION FUNCTORS

Restriction functors preserve:

- Restriction idempotents
- Total maps
- Partial isomorphisms
- ▶ Restriction monics (= partial isomorphism which are total).

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◇◇◇

EXAMPLES

- Any category is "trivially" a restriction category by setting <u>f</u> = 1. This is a *total* restriction category as all maps are total.
- Sets and partial maps is a restriction category in fact, a split restriction category.
- A meet semilattice S is a restriction category with one object, composition xy = x ∧ y, identity the top, and restriction defined by x̄ = x.
- An inverse monoid (an inverse semigroup with a unit) is a one object inverse category and thus is a restriction category. An inverse monoid is a monoid with an inverse operation (_)⁽⁻¹⁾ which has

くしゃ (雪) (目) (日) (日) (日)

•
$$(x^{(-1)})^{(-1)} = x$$
,

•
$$(xy)^{(-1)} = y^{(-1)}x^{(-1)}$$
,

- $xx^{(-1)}x = x$
- $xx^{(-1)}yy^{(-1)} = yy^{(-1)}xx^{(-1)}$

EXAMPLES Take a directed graph, G, form a category where

Objects: Nodes of *G*

Maps: $A \xrightarrow{((A, s, B), S)} B$ where S is a finite prefix-closed set of paths out of A, and $(A, s, B) \in S$ is a path from A $\rightarrow B$ called the **trunk**. Being prefix closed requires that if (A, rt, C) is a path in S, then (A, r, C') is a path in S.

Composition: Given, $A \xrightarrow{((A, s, B), S)} B$ and $B \xrightarrow{((B, t, C), T)} C$ take the composite to be:

 $((A, s, B), S)((B, t, C), T) : A \rightarrow C = ((A, st, C), S \cup (A, s, S))$

くしゃ (雪) (目) (日) (日) (日)

Identities: $((A, [], A), \{(A, [], A)\}) : A \rightarrow A.$ Restriction: $\overline{((A, s, B), S)} = ((A, [], A), S)$

EXAMPLES The restriction can be displayed as:

Notice that in a restriction category generated by a graph, the only total map are the identity maps (X, [], X). Thus the only monics are the identities: this is in contrast to the free category (or path category) in which all maps are monic.

EXAMPLES

The category of meet semilattices with *stable* maps, StabSLat, is a *corestriction* category.

Objects: Meet semilattices (L, \land, \top) ;

Maps: Stable maps $f : L_1 \rightarrow L_2$ such that $f(x \wedge y) = f(x) \wedge f(y)$ (but \top not necessarily preserved).

Identity: As usual the identity map ...

Composition: As usual ...

Corestriction If $f: L_1 \to L_2$ then $\overline{f}: L_2 \to L_2; x \mapsto f(\top) \land x$.

Lemma

Every restriction category, \mathbb{X} , has a "fundamental restriction functor"

$$\mathcal{O}:\mathbb{X} \to \mathsf{StabSLat}^{\mathrm{op}}$$

$\mathcal{M}\text{-}\mathsf{CATEGORIES}$

A stable system of monics $\mathcal M$ in a category $\mathbb X$ is a class of maps satisfying:

- Each $m \in \mathcal{M}$ is monic
- \blacktriangleright Composites of maps in ${\mathcal M}$ are themselves in ${\mathcal M}$
- \blacktriangleright All isomorphisms are in ${\cal M}$
- Pullbacks along of an *M*-map along any map always exists and is an *M*-map.

An \mathcal{M} -category $(\mathbb{X}, \mathcal{M})$ is a category \mathbb{X} equipped with a stable system of monics \mathcal{M} .

Think the category of sets with all injective maps (Set, Monic).

$\mathcal{M}\text{-}\mathsf{CATEGORIES}$

- For any stable system of monics *M*, if *mn* ∈ *M* and *m* is monic, then *n* ∈ *M*.
- ► Functors between *M*-categories, called *M*-functors, must preserve the selected monics *and* pullbacks of these monics.
- Natural transformations are "tight" (Manes) in the sense that they are cartesian over the selected monics.

Lemma

 $\mathcal{M}\text{-}categories,\ \mathcal{M}\text{-}functors,\ and\ tight\ transformations\ form\ a$ 2-category $\mathcal{M}\text{Cat}.$

PARTIAL MAP CATEGORIES

The partial map category of an \mathcal{M} -category, written $Par(\mathbb{C}, \mathcal{M})$ is a (split) restriction category:

PARTIAL MAP CATEGORIES

Examples of partial map categories:

- Par(Set, Monic) is sets and partial maps.
- Consider the category of topological spaces with continuous maps Top: a special class of monics is the inclusions of open sets (up to iso.) open this gives Par(Top, open) as a partial map category and therefore a restriction category. Now O(X) is just the lattice of open sets.
- Consider the category of commutative rings CRing: a localization is a ring homomorphism induced by freely adding (multiplicative) inverses of maps. Some facts: localizations compose and include isomorphisms, pushouts along localizations are localizations, localizations are epic. So (CRing^{op}, loc) is and *M*-category: Par(CRing^{op}, loc) is essentially the subject matter of algebraic geometry!!!

MORAL: Restriction occur everywhere AND they can be very non-trivial!

SPLITTING IDEMPOTENTS

A restriction monic is a monic which is a partial isomorphism:

Lemma

In any restriction category the following are equivalent:

- (i) A monic partial isomorphism;
- (ii) A total partial isomorphism;
- (iii) A section which splits a restriction idempotent.

Corollary

In any restriction category:

(i) Every restriction monic splits a unique restriction idempotent and has a unique retraction.

▲ 臣 ▶ ▲ 臣 ▶ 臣 の < @

(ii) Composites of restriction monics are restriction monic.

A restriction category is a **split restriction category** if every restriction idempotent is split by a restriction monic.

Partial map categories are split restriction categories.

SPLITTING IDEMPOTENTS For any class, E, of idempotents, $\text{Split}_{E}(\mathbb{X})$ is a restriction category with:

Objects: Idempotents $e \in E$

Maps: $f : e_1 \rightarrow e_2$ where $e_1 f e_2 = f$

Identities: $e: e \rightarrow e$

Composition: As before ...

Restriction:
$$\begin{array}{c} e_1 \xrightarrow{f} e_2 \\ e_1 \xrightarrow{e_1 \overline{f}} e_1 \end{array}$$

In Split_{*E*}(\mathbb{X}) the idempotents in *E* are split.

We shall be mostly interested in $\text{Split}_r(\mathbb{X})$ where we split the restriction idempotents: this is always a split restriction category.

COMPLETENESS

For a split restriction category, X, the subcategory of total maps is an \mathcal{M} -category, where $m \in \mathcal{M}$ if and only if it is a restriction monic.

Why do pullbacks of restriction monics exist?

In that case Par(Total(X), M) is isomorphic to X!!

Theorem (Completeness)

Every restriction category is a full subcategory of a partial map category.

REPRESENTATION

BTW there is also a representation theorem:

Theorem (Representation: Mulry)

Any restriction category \mathbb{C} has a full and faithful restriction-preserving embedding into a partial map category of a presheaf category

$$\mathbb{C} o \mathsf{Par}(\mathbf{Set}^{\mathsf{Total}(\mathsf{split}_r(\mathbb{C}))^{\mathrm{op}}}, \widehat{\mathcal{M}})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

CARTESIAN RESTRICTION CATEGORIES

A **cartesian restriction category** is a restriction category with partial products:

- ▶ It has a restriction final object 1:
 - Each A has a total map $!: A \rightarrow 1$
 - If $A \xrightarrow{f} 1$ then $f = \overline{f}!$.
- ► It has binary restriction products in case for every A and B there is a cone (A × B, π₀, π₁) such that given any other cone there is a unique comparison map

such that $\overline{g}f = \langle f, g \rangle \pi_0$ and $\overline{f}g = \langle f, g \rangle \pi_1$.

CARTESIAN RESTRICTION CATEGORIES Partial products are examples of restriction limits ...

The following equations hold in any cartesian restriction category:

• Letting
$$\Delta = \langle 1,1
angle$$
 then Δ is total, $\Delta \pi_i = 1$

$$\overline{h}\langle f,g\rangle = \langle \overline{h}f,g\rangle = \langle f,\overline{h}g\rangle$$
$$\overline{\langle f,g\rangle} = \overline{f}\overline{g}.$$

In the total category the partial products become ordinary products:

Theorem

If restriction idempotents split then X is a cartesian restriction category if and only if Tot(X) is a cartesian category.

Sets and partial maps form a cartesian restriction category ...

MEETS A restriction category has **meets**

$$A \xrightarrow[f]{g} B$$
$$\overline{A \xrightarrow[f \cap g]{g}} B$$

if the following are satisfied:

- $f \cap g \leq f$ and $f \cap g \leq g$,
- ► $f \cap f = f$,
- ▶ $h(f \cap g) = hf \cap hg$.

This makes $f \cap g$ the meet of f and g in the hom-set lattice.

In sets and partial maps $f \cap g$ is the intersection of the relations.

DISCRETENESS

An object X in a *cartesian* restriction category is **discrete** in case its diagonal map

$$\Delta: X \longrightarrow X \times X$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

is a partial isomorphism. A cartesian restriction category is **discrete** in case very object is discrete.

In Par(Top, Open) the discrete objects are precisely discrete topological spaces.

Sets may be viewed as the discrete objects in Top!

4

DISCRETENESS

Theorem

A cartesian restriction category is discrete if and only if it has meets.

PROOF: Note $\Delta(\pi_0 \cap \pi_1) = \Delta \pi_0 \cap \Delta \pi_1 = 1 \cap 1$ while

$$\overline{\pi_0 \cap \pi_1} = \overline{\pi_0 \cap \pi_1} \langle \pi_0, \pi_1 \rangle = \langle \overline{\pi_0 \cap \pi_1} \pi_0, \overline{\pi_0 \cap \pi_1} \pi_1 \rangle$$
$$= \langle \pi_0 \cap \pi_1, \pi_0 \cap \pi_1 \rangle = (\pi_0 \cap \pi_1) \Delta$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Conversely set $f \cap g = \langle f, g \rangle \Delta^{(-1)}$.

JOINS

A restriction category has a **restriction zero** in case there is a zero map between every pair of objects $A \xrightarrow{0} B$ (with f0 = 0 and 0g = 0) such that $\overline{0_{A,B}} = 0_{A,A}$.

A restriction category has joins if

- It has a restriction zero
- Whenever $f \smile g$ there is a join of the maps, $f \lor g$, such that
 - ▶ $f,g \leq f \lor g$ and whenever $f,g \leq h$ then $f \lor g \leq h$
 - The join is "stable" in the sense that $h(f \lor g) = hf \lor hg$.

NOTE: stability implies that the join is also "universal" in the sense that $(f \lor g)h = fh \lor gh$.

Sets and partial maps have joins given by the union of relations.

JOINS

In a join restriction category *coproducts are absolute* (i.e. preserved by any join preserving restriction functor)

Theorem

In any restriction category with joins $A \xrightarrow{a} C \xleftarrow{b} B$ is a coproduct iff a and b are restriction monics such that $a^{(-1)}b^{(-1)} = 0$ and $a^{(-1)} \vee b^{(-1)} = 1_C$.

PROOF: To define the copairing map $\langle f|g \rangle := (a^{(-1)}f) \vee (b^{(-1)}g)$ where $a^{(-1)}f \smile b^{(-1)}g$ as $\overline{a^{(-1)}b^{(-1)}} = 0$. Then

$$a((a^{(-1)}f) \vee (b^{(-1)}g)) = (aa^{(-1)}f) \vee (ab^{(-1)}g) = f \vee 0 = f.$$

It remains to show this map is unique:

then $a^{(-1)}f = a^{(-1)}ah = \overline{a^{(-1)}}h$ and $h = 1h = (\overline{a^{(-1)}} \sqrt{b^{(-1)}})h = (\overline{a^{(-1)}}h) \vee (\overline{b^{(-1)}}h) = (\underline{a}^{(-1)}f) \vee (\underline{b}^{(-1)}g)$ JOINS AND MEETS A remarkable fact of nature:

Lemma

In any meet restriction category with joins the meet distributes over the join:

$$h \cap (f \lor g) = (h \cap f) \lor (h \cap g).$$

Proof:

$$h \cap (f \lor g) = \overline{(f \lor g)}h \cap (f \lor g)$$

= $(\overline{f} \lor \overline{g})h \cap (f \lor g)$
= $(\overline{f}(h \cap (f \lor g))) \lor (\overline{g}(h \cap (f \lor g)))$
= $(h \cap \overline{f}(f \lor g)) \lor (h \cap \overline{g}(f \lor g))$
= $(h \cap \overline{f}(f \lor g)) \lor (h \cap \overline{g}(f \lor g))$
= $(h \cap f) \lor (h \cap g)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

JOINS Another remarkable fact of nature:

Lemma

In any cartesian restriction category with joins $(f \lor g) \times h = (f \times h) \lor (g \times h).$ PROOF: We shall first prove $\langle f \lor g, h \rangle = \langle f, h \rangle \lor \langle g, h \rangle$:

Now

$$(f \lor g) \times h = \langle \pi_0(f \lor g), \pi_1 h \rangle = \langle (\pi_0 f) \lor (\pi_0 g), \pi_1 h \rangle = \langle \pi_0 f, \pi_1 h \rangle \lor \langle \pi_0 g, \pi_1 h \rangle$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

COPRODUCTS Why is this all so remarkable?

A restriction category is a **distributive** in case it has a restriction coproducts and the products distribute over the coproducts.

In a join restriction category X as coproducts are absolute and $A \times _$ as a functor preserves joins it follows that if X has coproducts it is *necessarily* distributive.

Local structure (joins) implies global structure (distributivity).

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

PROSPECT ...

We are interested in categories which express computability. Some properties are:

- A. They are restriction categories
- B. They are *cartesian* restriction categories ...
- C. They have joins ...
- D. They are discrete (they have meets) ...
- E. They have coproducts.

We now know this structure together has some surprisingly pleasant consequences!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

What else Turing categories.