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DEFINITION
A restriction category is a category with a restriction operator

A
f
−−→ B

A −−→
f

A

satisfying the following four equations:

[R.1] f f = f [R.2] f g = g f

[R.3] f g = f g [R.4] f g = fgf

Restriction categories are abstract partial map categories.



MOTIVATING EXAMPLE
Sets and partial maps, Par:

Objects: Sets ..

Maps: f : A −→ B is a relations f ⊆ A× B which is
deterministic (x f y1 and x f y2 implies y1 = y2);

Identities: 1A : A −→ A is the diagonal relation ∆A ⊆ A× A;

Composition: Relational composition
fg = {(a, c)|∃b.(a, b) ∈ f &(b, c) ∈ g};

Restriction: f = {(a, a)|∃b.(a, b) ∈ f }.

The restriction gives the domain of definition by an idempotent.



BASIC RESULTS

In any restriction category X:

◮ f f = f .

◮ For any monic m = 1A (in particular 1A = 1A).

◮ f = f .

◮ fg = f g .



BASIC RESULTS
In any restriction category X:

◮ f f = f as f f =[R.3] f f =[R.1] f .

◮ For any monic m = 1A as mm =[R.1] m = 1Am (in particular
1A = 1A).

◮ f = f as f = f 1A =[R.3] f 1A = f .

◮ fg = f g as

f g =[R.4] fgf =[R.3] fg f

=[R.2] f fg =[R.3] f fg =[R.1] fg



BASIC RESULTS
In any restriction category X a map f : A −→ B is total when
f = 1A:

◮ All monics are total (in particular identity maps are total).

◮ Total maps compose as f and g total means
fg = f g = f 1B = f = 1A.

Lemma
The total maps of any restriction category form a subcategory
Total(X) ⊆ X.

Total(Par) is the category of sets and functions ...



BASIC RESULTS
In any restriction category X the hom-sets are partially ordered:

f ≤ g ⇔ f g = f

◮ f ≤ f ...

◮ f ≤ g and g ≤ h implies f ≤ h as

f = f g = f gh = f gh = f h.

◮ f ≤ g and g ≤ f then f = f g = f gg = gf g = gg = g .

But more f ≤ g implies hfk ≤ hgk as

hfkhgk = hfkgk = hfk f gk = hfkfk = hfk.

This means every restriction category is partial order enriched.
In Par f ≤ g if and only if f ⊆ g .



BASIC RESULTS
In any restriction category X the hom-sets have a compatibility
structure. f is compatible to g , f ⌣ g , if and only if:

f ⌣ g ⇔ f g = gf

In Par this means where both maps are defined they are equal.

Compatibility is always a symmetric, reflexive relation (not
transitive in general).

Lemma
In any restriction category;

(i) f ⌣ g if and only it f g ≤ f and gf ≤ g;

(ii) If f ⌣ g then hfk ⌣ hgk.



BASIC RESULTS
So far ... in any restriction category X:

◮ e : A −→ A with e = e is called a restriction idempotent.
The restriction idempotents on A form a semilattice O(A).
Think of these as the “open” sets of the object.

◮ A map : A −→ B is total in case f = 1. All monics are total
maps and total maps compose the total maps form a
subcategory Total(X).

◮ The hom-sets are partially ordered f ≤ g ⇔ f g = f .

◮ Two parallel arrows are compatible f ⌣ g in case f g = gf
(are the same where they are both defined).



BASIC RESULTS
A partial isomorphism is an f : A −→ B which has a (partial)

inverse f (−1) such that f (−1)f = f (−1) and ff (−1) = f .

Lemma
In any restriction category:

(i) If a map in a restriction category has a partial inverse then
that partial inverse is unique;

(ii) Partial isomorphisms include isomorphisms and all restriction
idempotents;

(iii) Partial isomorphisms are closed to composition.

In Par a partial isomorphism is just a partial map which is monic
on its domain.



BASIC RESULTS
Uniqueness of partial inverses:
Suppose fg = f , gf = g and fh = f , hf = h then

g = gg = gfg = gf fg = gfhfg = g hg

= h gg = hg = hfg = hf = hfh = hh = h



BASIC RESULTS
The partial isomorphisms of any restriction category form a
subrestriction category. A restriction category in which all maps
are partial isomorphisms is called an inverse category.

Inverse categories are to restriction categories
as groupoids are to categories.



RESTRICTION FUNCTORS
A restriction functor F : X −→ Y is a functor such that, in
addition, preserves the restriction F (g) = F (g).
A (strict) restriction transformation α : F −→ G between
restriction functors is a natural transformation for which each αX

is total.
A lax restriction transformation α : F −→ G between restriction
functors is a natural transformation for which each αX is total and
the naturality square commutes up to inequality:

F (X )

F (f )
��

αX //

≤

G (X )

G(f )
��

F (Y )
αY

// G (Y )

Lemma
Restriction categories, restriction functors, and restriction
transformations (resp. lax transformations) organize themselves
into a 2-category Rest (resp. Restl ).



RESTRICTION FUNCTORS

Restriction functors preserve:

◮ Restriction idempotents

◮ Total maps

◮ Partial isomorphisms

◮ Restriction monics (= partial isomorphism which are total).



EXAMPLES

◮ Any category is “trivially” a restriction category by setting
f = 1. This is a total restriction category as all maps are
total.

◮ Sets and partial maps is a restriction category – in fact, a split
restriction category.

◮ A meet semilattice S is a restriction category with one object,
composition xy = x ∧ y , identity the top, and restriction
defined by x = x .

◮ An inverse monoid (an inverse semigroup with a unit) is a one
object inverse category and thus is a restriction category. An
inverse monoid is a monoid with an inverse operation ( )(−1)

which has
◮ (x (−1))(−1) = x ,
◮ (xy)(−1) = y (−1)x (−1),
◮ xx (−1)x = x
◮ xx (−1)yy (−1) = yy (−1)xx (−1)



EXAMPLES Take a directed graph, G , form a category where

Objects: Nodes of G

Maps: A
((A, s,B), S)
−−−−−−−−→ B where S is a finite prefix-closed set

of paths out of A, and (A, s,B) ∈ S is a path from A
−→ B called the trunk. Being prefix closed requires
that if (A, rt,C ) is a path in S , then (A, r ,C ′) is a
path in S .

Composition: Given, A
((A, s, B), S)
−−−−−−−−→ B and B

((B, t,C), T )
−−−−−−−−−→ C

take the composite to be:

((A, s,B),S)((B , t,C ),T ) : A −→ C = ((A, st,C ),S∪(A, s,B

Identities: ((A, [],A), {(A, [],A)}) : A −→ A.

Restriction: ((A, s,B),S) = ((A, [],A),S)



EXAMPLES:
B
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EXAMPLES
The restriction can be displayed as:

A

A // B

88qqqqq

&&MM
MMM

B // A

A

A // B

88qqqqq

&&MM
MMM

B // A

restriction

Notice that in a restriction category generated by a graph, the only
total map are the identity maps (X , [ ],X ). Thus the only monics
are the identities: this is in contrast to the free category (or path
category) in which all maps are monic.



EXAMPLES
The category of meet semilattices with stable maps, StabSLat, is a
corestriction category.

Objects: Meet semilattices (L,∧,⊤);

Maps: Stable maps f : L1 −→ L2 such that
f (x ∧ y) = f (x) ∧ f (y) (but ⊤ not necessarily
preserved).

Identity: As usual the identity map ...

Composition: As usual ...

Corestriction If f : L1 −→ L2 then f : L2 −→ L2; x 7→ f (⊤) ∧ x .

Lemma
Every restriction category, X, has a “fundamental restriction
functor”

O : X −→ StabSLatop



M-CATEGORIES
A stable system of monics M in a category X is a class of maps
satisfying:

◮ Each m ∈M is monic

◮ Composites of maps inM are themselves inM

◮ All isomorphisms are inM

◮ Pullbacks along of anM-map along any map always exists
and is anM-map.

A×C B

f ′

��

// m′

// A

f

��
B //

m
// C

AnM-category (X,M) is a category X equipped with a stable
system of monics M.

Think the category of sets with all injective maps (Set,Monic).



M-CATEGORIES

◮ For any stable system of monics M, if mn ∈M and m is
monic, then n ∈M.

◮ Functors between M-categories, calledM-functors, must
preserve the selected monics and pullbacks of these monics.

◮ Natural transformations are “tight” (Manes) in the sense that
they are cartesian over the selected monics.

Lemma
M-categories, M-functors, and tight transformations form a
2-category MCat.



PARTIAL MAP CATEGORIES
The partial map category of anM-category, written Par(C,M) is
a (split) restriction category:

Objects: A ∈ C;

Maps: (m, f ) : A −→ B (up to equivalence) with m : A′ −→ A
is inM and f : A′ −→ B is a map in C:

A′
m
����

� f

''OOOOOOOO

A B
Identities: (1A, 1A) : A −→ A;

Composition: (m′
, g)(m, f ) = (mm′′

, gf ′):

A′′

(pb)

m′′

����
� f ′

''OOOOOOO

A′
m
����

�
f ''OOOOOOOO B ′

m′����
� g

''OOOOOOOO

A B C

Restriction: (m, f ) = (m,m).

This gives a (2-)functor

Par :MCat −→ Rest



PARTIAL MAP CATEGORIES
Examples of partial map categories:

◮ Par(Set,Monic) is sets and partial maps.

◮ Consider the category of topological spaces with continuous
maps Top: a special class of monics is the inclusions of open
sets (up to iso.) open this gives Par(Top, open) as a partial
map category and therefore a restriction category. Now O(X )
is just the lattice of open sets.

◮ Consider the category of commutative rings CRing: a
localization is a ring homomorphism induced by freely adding
(multiplicative) inverses of maps. Some facts: localizations
compose and include isomorphisms, pushouts along
localizations are localizations, localizations are epic. So
(CRingop

, loc) is andM-category: Par(CRingop
, loc) is

essentially the subject matter of algebraic geometry!!!

MORAL: Restriction occur everywhere AND they can be very
non-trivial!



SPLITTING IDEMPOTENTS
A restriction monic is a monic which is a partial isomorphism:

Lemma
In any restriction category the following are equivalent:

(i) A monic partial isomorphism;

(ii) A total partial isomorphism;

(iii) A section which splits a restriction idempotent.

Corollary

In any restriction category:

(i) Every restriction monic splits a unique restriction idempotent
and has a unique retraction.

(ii) Composites of restriction monics are restriction monic.

A restriction category is a split restriction category if every
restriction idempotent is split by a restriction monic.

Partial map categories are split restriction categories.



SPLITTING IDEMPOTENTS For any class, E , of idempotents,
SplitE (X) is a restriction category with:

Objects: Idempotents e ∈ E

Maps: f : e1 −→ e2 where e1fe2 = f

Identities: e : e −→ e

Composition: As before ...

Restriction:
e1

f
−−→ e2

e1 −−−→
e1f

e1

In SplitE (X) the idempotents in E are split.

We shall be mostly interested in Splitr (X) where we split the
restriction idempotents: this is always a split restriction category.



COMPLETENESS
For a split restriction category, X, the subcategory of total maps is
anM-category, where m ∈M if and only if it is a restriction
monic.

Why do pullbacks of restriction monics exist?

A′
mfre //

m

��

B ′

me

��
A

fe

XX f
//

r

BB

B

re

\\

e

XX

In that case Par(Total(X),M) is isomorphic to X!!

Theorem (Completeness)

Every restriction category is a full subcategory of a partial map
category.



REPRESENTATION
BTW there is also a representation theorem:

Theorem (Representation: Mulry)

Any restriction category C has a full and faithful
restriction-preserving embedding into a partial map category of a
presheaf category

C −→ Par(SetTotal(splitr (C))op
,M̂)



CARTESIAN RESTRICTION CATEGORIES
A cartesian restriction category is a restriction category with
partial products:

◮ It has a restriction final object 1:
◮ Each A has a total map ! : A −→ 1

◮ If A
f
−−→ 1 then f = f !.

◮ It has binary restriction products in case for every A and B
there is a cone (A × B , π0, π1) such that given any other cone
there is a unique comparison map

A

C
〈f ,g〉//

f

≥

55llllllllllllllllll

≥

g

))RRRRRRRRRRRRRRRRRR A× B

π0

<<xxxxxxxxx

π1

""FF
FF

FF
FF

F

B

such that gf = 〈f , g〉π0 and f g = 〈f , g〉π1.



CARTESIAN RESTRICTION CATEGORIES Partial products are
examples of restriction limits ...

The following equations hold in any cartesian restriction category:

◮ Letting ∆ = 〈1, 1〉 then ∆ is total, ∆πi = 1

◮ h〈f , g〉 = 〈hf , g〉 = 〈f , hg〉

◮ 〈f , g〉 = f g .

In the total category the partial products become ordinary
products:

Theorem
If restriction idempotents split then X is a cartesian restriction
category if and only if Tot(X) is a cartesian category.

Sets and partial maps form a cartesian restriction category ...



MEETS
A restriction category has meets

A
f
−−→−−→
g

B

A −−−−→
f ∩ g

B

if the following are satisfied:

◮ f ∩ g ≤ f and f ∩ g ≤ g ,

◮ f ∩ f = f ,

◮ h(f ∩ g) = hf ∩ hg .

This makes f ∩ g the meet of f and g in the hom-set lattice.

In sets and partial maps f ∩ g is the intersection of the relations.



DISCRETENESS
An object X in a cartesian restriction category is discrete in case
its diagonal map

∆ : X −→ X × X

is a partial isomorphism. A cartesian restriction category is
discrete in case very object is discrete.

In Par(Top,Open) the discrete objects are precisely discrete
topological spaces.

Sets may be viewed as the discrete objects in Top!



DISCRETENESS

Theorem
A cartesian restriction category is discrete if and only if it has
meets.

Proof: Note ∆(π0 ∩ π1) = ∆π0 ∩∆π1 = 1 ∩ 1 while

π0 ∩ π1 = π0 ∩ π1〈π0, π1〉 = 〈π0 ∩ π1π0, π0 ∩ π1π1〉

= 〈π0 ∩ π1, π0 ∩ π1〉 = (π0 ∩ π1)∆

Conversely set f ∩ g = 〈f , g〉∆(−1). �



JOINS
A restriction category has a restriction zero in case there is a zero

map between every pair of objects A
0
−−→ B (with f 0 = 0 and

0g = 0) such that 0A,B = 0A,A.

A restriction category has joins if

◮ It has a restriction zero

◮ Whenever f ⌣ g there is a join of the maps, f ∨ g , such that
◮ f , g ≤ f ∨ g and whenever f , g ≤ h then f ∨ g ≤ h
◮ The join is “stable” in the sense that h(f ∨ g) = hf ∨ hg .

NOTE: stability implies that the join is also “universal” in the
sense that (f ∨ g)h = fh ∨ gh.

Sets and partial maps have joins given by the union of relations.



JOINS
In a join restriction category coproducts are absolute (i.e.
preserved by any join preserving restriction functor)

Theorem
In any restriction category with joins A

a
−−→ C

b
←−− B is a

coproduct iff a and b are restriction monics such that
a(−1) b(−1) = 0 and a(−1) ∨ b(−1) = 1C .

Proof: To define the copairing map 〈f |g〉 := (a(−1)f ) ∨ (b(−1)g)

where a(−1)f ⌣ b(−1)g as a(−1) b(−1) = 0. Then

a((a(−1)f ) ∨ (b(−1)g)) = (aa(−1)f ) ∨ (ab(−1)g) = f ∨ 0 = f .

It remains to show this map is unique:

A

f ��?
??

??
??

a // C

h

��

B
boo

g
��~~

~~
~~

~

D

then a(−1)f = a(−1)ah = a(−1)h and

h = 1h = (a(−1)∨b(−1))h = (a(−1)h)∨(b(−1)h) = (a(−1)f )∨(b(−1)g).



JOINS AND MEETS
A remarkable fact of nature:

Lemma
In any meet restriction category with joins the meet distributes
over the join:

h ∩ (f ∨ g) = (h ∩ f ) ∨ (h ∩ g).

Proof:

h ∩ (f ∨ g) = (f ∨ g)h ∩ (f ∨ g)

= (f ∨ g)h ∩ (f ∨ g)

= (f (h ∩ (f ∨ g))) ∨ (g(h ∩ (f ∨ g)))

= (h ∩ f (f ∨ g)) ∨ (h ∩ g(f ∨ g))

= (h ∩ f (f ∨ g)) ∨ (h ∩ g(f ∨ g))

= (h ∩ f ) ∨ (h ∩ g)

�



JOINS
Another remarkable fact of nature:

Lemma
In any cartesian restriction category with joins
(f ∨ g)× h = (f × h) ∨ (g × h).

Proof: We shall first prove 〈f ∨ g , h〉 = 〈f , h〉 ∨ 〈g , h〉:

〈f ∨ g , h〉 = 〈f ∨ g , h〉〈f ∨ g , h〉 = f ∨ g h〈f ∨ g , h〉

= f ∨ g〈f ∨ g , h〉 = (f 〈f ∨ g , h〉) ∨ (g〈f ∨ g , h〉)

= 〈f (f ∨ g), h〉 ∨ 〈g(f ∨ g), h〉 = 〈f , h〉 ∨ 〈g , h〉

Now

(f ∨g)×h = 〈π0(f ∨g), π1h〉 = 〈(π0f )∨(π0g), π1h〉 = 〈π0f , π1h〉∨〈π0g , π1h

�



COPRODUCTS
Why is this all so remarkable?

A restriction category is a distributive in case it has a restriction
coproducts and the products distribute over the coproducts.

In a join restriction category X as coproducts are absolute and
A× as a functor preserves joins it follows that if X has
coproducts it is necessarily distributive.

Local structure (joins) implies global structure (distributivity).



PROSPECT ...
We are interested in categories which express computability. Some
properties are:

A. They are restriction categories ....

B. They are cartesian restriction categories ...

C. They have joins ...

D. They are discrete (they have meets) ...

E. They have coproducts.

We now know this structure together has some surprisingly
pleasant consequences!

What else .......... Turing categories.
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