Join restriction categories and the importance of being adhesive

J.R.B. Cockett and X. Guo

Department of Computer Science University of Calgary Alberta, Canada

robin@cpsc.ucalgary.ca

Category Theory 2007

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Contents:

Join restriction categories

Completeness of restriction categories

van Kampen colimits

 $\mathcal{M} ext{-adhesive}$

Mind the gap

Free joins

Restriction Categories

A category \mathbb{C} is a **restriction category** if it has a restriction operator:

[R.1] $f\overline{f} = f$, [R.2] $\overline{f}\overline{g} = \overline{g}\overline{f}$, [R.3] $\overline{g}\overline{f} = \overline{g}\overline{f}$, [R.4] $\overline{g}f = f\overline{g}\overline{f}$.

The domain of definition of f is expressed by \overline{f} . Restriction categories are abstract categories of partial maps.

A map is **total** if $\overline{f} = 1$. The total maps form a subcategory.

More properties

- ▶ The restriction idempotents $e = \overline{e} : A \longrightarrow A$ form a semilattice written $\mathcal{O}(A)$ (in fact \mathcal{O} is a contravariant functor to the category of semilattices with stable maps: a *corestriction* category). Think of these as the "open sets of A".
- Restriction categories are partial order enriched with $f \le g \Leftrightarrow g\overline{f} = f$
- ▶ A map $f : A \to B$ is a **partial isomorphism** in case there is an $f^{(-1)} : B \to A$ such that $ff^{(-1)} = \overline{f^{(-1)}}$ and $f^{(-1)}f = \overline{f}$.
- A restriction category in which all maps are partial isomorphism is an inverse category. A one object inverse category is an inverse semigroup with a unit!

Inverse categories are to restriction categories what groupoids are to categories.

Compatibility

• Restriction categories are **compatibility** enriched with $f \smile g \Leftrightarrow g\overline{f} = f\overline{g}$. This relation is preserved by composition:

$$f \smile g \Rightarrow hfk \smile hgk.$$

• A set $S \subseteq \mathbb{C}(A, B)$ is **compatible** if for every $s, s' \in S$, $s \smile s'$.

It is reasonable to consider a join operation restricted to compatible maps

Join Restriction Categories

A restriction category \mathbb{C} is a **join restriction category** if for each compatible subset $S \subseteq \mathbb{C}(A, B)$, the join $\bigvee_{s \in S} s \in \mathbb{C}(A, B)$ exists:

- ▶ $\bigvee_{s \in S} s$ is the join with respect to \leq in $\mathbb{C}(A, B)$,
- The join is *stable* in the sense that: $(\bigvee_{s \in S} s)g = \bigvee_{s \in S} (sg)$.

Four consequences:

- The join is *universal* in the sense that $f(\bigvee_{s \in S} s) = \bigvee_{s \in S} (fs)$.
- The join commutes with the restriction $\overline{\bigvee_{s\in S} s} = \bigvee_{s\in S} \overline{s}$.
- ► Each O(A) is a *locale*. (In fact O is a covariant functor to the restriction category of locales with stable maps).

 Join restriction categories allow the manifold construction (Marco Grandis).

Free Join Restriction Categories

Given any restriction category \mathbb{X} , one may construct from it a free join restriction category $\mathbb{X} \longrightarrow \widehat{\mathbb{X}}$ (Marco Grandis) with

- ▶ objects: X ∈ X;
- ► maps: S : A → B where S ⊆ X(A, B) is a down-closed compatible set;
- identities: $1_A = \downarrow \{1_A\} = \{e | e = \overline{e} : A\} = \mathcal{O}(A);$
- ▶ composition: for maps $S : A \rightarrow B$ and $T : B \rightarrow C$ $TS = \downarrow \{ts | s \in S, t \in T\};$
- restriction: $\overline{S} = {\overline{s} | s \in S};$
- join: V_{i∈Γ} S_i = U_{i∈Γ} S_i, where each S_i is a down closed compatible set and {S_i}_{i∈Γ} are compatible sets.

Partial Maps Categories

- A collection *M* of monics is a stable system of monics if it includes all isomorphisms, is closed under composition and is pullback stable.
- For any stable system of monics *M*, if *mn* ∈ *M* and *m* is monic, then *n* ∈ *M*.
- ► An *M*-category is a pair (C, *M*), where C is a category and *M* is a stable system of monics in C.
- Functors between *M*-categories must preserve the selected monics and pullbacks of these monic. Natural transformations are "tight" (Manes) in the sense that they are cartesian over the selected monics.

Partial Maps Categories

The category of partial maps $\mathsf{Par}(\mathbb{C},\mathcal{M})$ is:

- objects: $A \in \mathbb{C}$;
- ▶ maps: $(m, f) : A \to B$ (up to equivalence) with $m : A' \to A$ is in \mathcal{M} and $f : A' \to B$ is a map in \mathbb{C} :

- identities: $(1_A, 1_A) : A \rightarrow A;$
- composition: (m',g)(m,f) = (mm'',gf'):

Completeness and representation

For a *split* restriction category, \mathbb{X} , the subcategory of total maps is an \mathcal{M} -category, where $m \in \mathcal{M}$ if and only if it is monic and a partial isomorphism. In that case $Par(Total(\mathbb{X}), \mathcal{M})$ is isomorphic to \mathbb{X} .

Theorem (Completeness: Cockett and Lack)

Every restriction category is a full subcategory of a partial map category.

There is also a representation theorem:

Theorem (Representation: Mulry)

Any restriction category \mathbb{C} has a full and faithful restriction-preserving embedding into a partial map category of a presheaf category

$$\mathbb{C} \to \mathsf{Par}(\mathbf{Set}^{\mathsf{Total}(\mathsf{split}_r(\mathbb{C}))^{\mathrm{op}}}, \widehat{\mathcal{M}})$$

Completeness and representation with joins

When does an $\mathcal{M}\text{-}\mathsf{category}$ have its partial map category a join restriction category?

The answer: $(\mathbb{X}, \mathcal{M})$ must be \mathcal{M} -adhesive ...

Theorem (Cockett and Guo)

Every join restriction category is a full subcategory of the partial map category of an adhesive \mathcal{M} -category whose gaps are in \mathcal{M} .

The rest of the talk is about the proof of this and a few consequences ...

First attempts ...

To form joins $(m, x) \lor (n, y)$ in $Par(\mathbb{C}, \mathcal{M})$:

In order to have $(m, x) \vee (n, y) = (k, z)$, the **gap** k must in \mathcal{M} , the **pushout** (σ_m, σ_n) of (π_m, π_n) must be **stable** under pulling back.

 \ldots also need stability under composition of spans: what on earth is this ???!!! \ldots

van Kampen Squares

As in [4], a van Kampen (VK) square is a pushout (A, B, C, D) such that for each commutative cube:

whenever the back side faces are pullbacks, the front side faces are pullbacks iff the top face is a pushout.

Adhesive Categories

Definition (Adhesive category, [4])

A category ${\mathbb X}$ is said to be ${\boldsymbol{adhesive}}$ if

- (i) X has pushouts along monics;
- (ii) \mathbb{X} has pullbacks;
- (iii) pushouts along monics are van Kampen squares.

Set and elementary toposes are adhesive but Pos, Top, Grp, and Cat are not [4].

We want to extend the notions of van Kampen squares and adhesive categories to van Kampen colimits and adhesive $\mathcal{M}\text{-}categories$

van Kampen colimits in general

A colimit $\alpha : D \Rightarrow C$, where $D : \mathbb{S} \to \mathbb{C}$, is **van Kampen** if for any diagram $D' : \mathbb{S} \to \mathbb{C}$, any cone $\alpha' : D' \Rightarrow X$ under D', and any commutative diagram

in which β is cartesian natural transformation, $\alpha': D' \Rightarrow X$ is a colimit if and only if for each $s \in S$

$$D'(s) \xrightarrow{\alpha'(s)} X$$

$$\beta(s) \downarrow \qquad \qquad \downarrow r$$

$$D(s) \xrightarrow{\alpha(s)} C$$

is a pullback diagram.

van Kampen colimits

Some properties:

- van Kampen colimits are pullback stable.
- ▶ Let D_i be diagrams on \mathbb{S}_i , i = 1, 2. If both $\alpha_1 : D_1 \Rightarrow X$ and $\alpha_2 : D_2 \Rightarrow X$ are van Kampen colimits, then so is $\alpha_1 \times_X \alpha_2 : D_1 \times_X D_2 \Rightarrow X$, where $D_1 \times_X D_2 : \mathbb{S}_1 \times \mathbb{S}_2 \longrightarrow \mathbf{C}$ is given by the following pullback diagram:

$$\begin{array}{c|c} (D_1 \times_X D_2)(s_1, s_2) \xrightarrow{\beta(s_1, s_2)} D_2(s_2) \\ \gamma(s_1, s_2) & & & \downarrow \\ D_1(s_1) \xrightarrow{\alpha_1(s_1)} X \end{array}$$

and $(\alpha_1 \times_X \alpha_2)(s_1, s_2) = \alpha_1(s_1)\gamma(s_1, s_2) = \alpha_2(s_2)\beta(s_1, s_2)$, for each $(s_1, s_2) \in \mathbb{S}_1 \times \mathbb{S}_2$.

van Kampen \mathcal{M} -amalgams

A stable poset is a poset with *binary* meets. When S is a stable poset and $D : S \longrightarrow M$ a diagram, an M-cone $\alpha : D \Rightarrow X$ is an M-amalgam in case for all $s_1, s_2 \in S$ each

is a pullback diagram.

A stable poset \mathcal{M} -diagram $D : \mathbb{S} \to \mathcal{M}$ is \mathcal{M} -amalgamable if there is an \mathcal{M} -amalgam under D.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

\mathcal{M} -adhesive categories

- An *M*-category X is an *M*-adhesive category if each amalgamable *M*-diagram *D* has a van Kampen colimit.
- A map g : X → Y in an M-adhesive category is an M-gap if there is a van Kampen colimit ν : D ⇒ X such that each gν(s) ∈ M for each s ∈ S:

Note: \mathcal{M} -gaps are necessarily monic so that these van Kampen colimits are \mathcal{M} -amalgams.

Mind the gap

What is the relation to van Kampen squares? When $\mathcal M\text{-}\mathsf{gaps}$ are $\mathcal M$...

Theorem

An \mathcal{M} -category is \mathcal{M} -adhesive with all \mathcal{M} -gaps in \mathcal{M} if and only if all \mathcal{M} -amalgams which are pushouts have van Kampen colimits whose gaps are in \mathcal{M} .

The situation when the \mathcal{M} -gaps are *not* in \mathcal{M} is of interest ...

\mathcal{M} -adhesive Categories

The class \mathcal{M}_{gap} of all \mathcal{M} -gaps in an \mathcal{M} -adhesive category **C** is a stable system of monics in **C** with $\mathcal{M} \subseteq \mathcal{M}_{gap}$.

Theorem If \mathbb{X} is an \mathcal{M} -adhesive category, then (i) \mathbb{X} is an \mathcal{M}_{gap} -adhesive category; (ii) $(\mathcal{M}_{gap})_{gap} = \mathcal{M}_{gap}$.

So one can always complete an $\mathcal M\text{-}\mathsf{adhesive}$ category to be closed to gaps.

Completeness for joins

Theorem

Let X be a category with a stable system of monics \mathcal{M} . Then Par(X, \mathcal{M}) is a join restriction category if and only if X is an \mathcal{M} -adhesive category and $\mathcal{M}_{gap} \subseteq \mathcal{M}$.

PROOF: (\Leftarrow) For any compatible set { $(m_i, f_i)|i \in I$ }, $\nu : D \Rightarrow A$, given by $\nu(i) = m_i$, is a stable \mathcal{M} -cone on { A_i }, D has a VK colimit ($\forall_{j\in I}A_j, \alpha$). $\exists !m : \forall_{j\in I}A_j \rightarrow A$ and $\exists f : \forall_{j\in I}A_j \rightarrow B$: A_i $(m, f) = \forall \{(m_i, f_i)|i \in I\}$ and

イロト 不得 トイヨト イヨト

Completeness for joins

 (\Rightarrow) For all \mathcal{M} -diagrams $D : \mathbb{S} \to \mathcal{M}$, and an \mathcal{M} -amalgam $\alpha : D \Rightarrow X$,

- ▶ The join $\forall_{s \in \mathbb{S}}(\alpha(s), \alpha(s)) = (m, m)$ exists, $m : C \longrightarrow X \in \mathcal{M}$;
- ► $(\alpha(s), \alpha(s)) \le (m, f)$ implies there is an \mathcal{M} -map $\iota(s) : D(s)$ $\rightarrow C$ implies \exists an amalgam \mathcal{M} -cone $\iota : D \Rightarrow C$.

• $\iota: D \Rightarrow C$ is a van Kampen colimit.

Free joins and \mathcal{M} -gaps

- Since any elementary topos is adhesive [4], Set^{Total(split}_r(C))^{op} is an adhesive category.
- \blacktriangleright Since $\mathcal{M}\subseteq \mathcal{M}_{\mathrm{gap}},$ there is a faithful embedding:

$$\mathsf{Par}(\mathbf{Set}^{\mathsf{Total}(\mathsf{split}_r(\mathbb{C}))^{\mathrm{op}}}, \widehat{\mathcal{M}})$$

$$\downarrow^{\mathcal{E}}_{\mathsf{V}}$$

$$\mathsf{Par}(\mathbf{Set}^{\mathsf{Total}(\mathsf{split}_r(\mathbb{C}))^{\mathrm{op}}}, \widehat{\mathcal{M}_{\mathrm{gap}}})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Free joins and \mathcal{M} -gaps

Hence there is a unique restriction functor $\mathcal{F}: \widehat{\mathbb{C}} \longrightarrow \mathsf{Par}(\mathbf{Set}^{\mathsf{Total}(\mathsf{split}_r(\mathbb{C}))^{\mathrm{op}}}, \widehat{\mathcal{M}_{\mathrm{gap}}})$ such that

commutes

The functor \mathcal{F} in the last commutative diagram is full and faithful. So constructing joins in the Grothendieck category is the same as constructing joins directly ...

References

- J.R.B. Cockett and Stephen Lack, *Restriction categories I: Categories of partial maps*, Theoret. Comput. Science 270(2002), 223-259.
- J.R.B. Cockett and Stephen Lack, *Restriction categories II: Partial map classification*, Theoret. Comput. Science **294**(2003), 61-102.
- H. Ehrig, M. Pfender, and H.J. Schneider, Graph-grammers: an algebraic approach, *IEEE Conf. on Automata and Switching Theory*, 167-180, 1973.
- S. Lack and P. Sobociński, Adhesive and quasiadhesive categories, Theoretical Informatics and Applications 39(2005), 511-546.
- P.S. Mulry, *Partial map classifiers and partial cartesian closed categories*, Theoret. Comput. Sci. **99**(1992), 141-155.